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Abstract

The aggregation of consistent individual judgments on logically inter-
connected propositions into a collective judgment on the same proposi-
tions has recently drawn much attention. Seemingly reasonable aggrega-
tion procedures, such as propositionwise majority voting, cannot ensure
an equally consistent collective conclusion. The literature on judgment
aggregation refers to such a problem as the discursive dilemma. In this
paper we assume that the decision which the group is trying to reach is
factually right or wrong. Hence, the question we address in this paper is
how good the various approaches are at selecting the right conclusion. We
focus on two approaches: distance-based procedures and Bayesian analy-
sis. Under the former we also subsume the conclusion- and premise-based
procedures discussed in the literature. Whereas we believe the Bayesian
analysis to be theoretically optimal, the distance-based approaches have
more parsimonious presuppositions and are therefore easier to apply.

1 Introduction

Members of a group often have to express their opinions on several proposi-
tions. Examples are expert panels, legal courts, boards, and councils. Once
the members have stated their views on the issues in the agenda, the individual
judgments need to be combined to form a collective decision. The aggregation
of individual consistent judgments on logically interconnected propositions into
an equally consistent group judgment on the same propositions has recently
drawn much attention. The difficulty lies in the fact that there is no general
agreement upon which procedure to use.

In this paper we evaluate and compare the methods proposed so far in the lit-
erature with a Bayesian approach to judgment aggregation. The assessment
criterion we employ is reliability. We assume that the resulting collective judg-
ment is factually right or wrong, and we compare the procedures in terms of
how reliable they are at selecting the right social decision. In particular, we
present results concerning the reliability of several methods to aggregate con-
flicting individual judgments into a consistent group conclusion. The first group
of methods are distance-based procedures, among them the majority fusion op-
erator [11]. Fusion originates from computer science, where the problem of
combining information from equally reliable sources arises in several contexts
[5]. The second method is a full Bayesian analysis of the underlying decision
problem.

The combination of finite sets of logically interconnected propositions has been
recently investigated in the emerging field of judgment aggregation [9]. A judg-
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A B C
Judges 1, 2, 3 Yes Yes Yes
Judges 4, 5 Yes No No
Judges 6, 7 No Yes No
Majority Yes Yes No

Table 1: An illustration of the discursive dilemma

ment is an assignment of yes/no to a proposition. The problem is that a seem-
ingly reasonable aggregation procedure, such as propositionwise majority voting,
cannot ensure a consistent collective conclusion.

Here is an illustration. A court has to make a decision on whether a person
is liable of breaching a contract (represented by a proposition C, also referred
to as the conclusion). The judges have to reach a verdict following the legal
doctrine. This states that a person is liable if and only if she did an action X
(represented by proposition A, also referred to as the first premise) and had
contractual obligation not to do X (represented by proposition B, also referred
to as the second premise). The legal doctrine can be formally expressed as the
formula (A ∧ B) ↔ C. Each member of the court expresses her judgment on
A, B and C such that the rule (A ∧ B) ↔ C is satisfied. Suppose now that
the court has seven members making their judgments according to Table 1. We
see that, although each judge expresses a consistent opinion, propositionwise
majority voting (consisting in the separate aggregation of the votes for each of
the propositions A, B and C via the majority rule) results in a majority for A
and a majority for B, but in a majority for ¬C. This is clearly an inconsistent
collective result as it violates the rule (A ∧ B) ↔ C. The paradox (called the
discursive dilemma) rests with the fact that majority voting can lead a group
of rational individuals to endorse an irrational collective judgment. Clearly, the
relevance of such aggregation problems goes beyond the specific court example
and it applies to all situations in which individual binary evaluations need to
be combined into a group decision.

Two escape-routes to the discursive dilemma have been suggested: the premise-
based procedure (PBP) and the conclusion-based procedure (CBP). According to
PBP, each judge votes on each premise. The conclusion is then inferred from the
rule (A∧B)↔ C and from the judgment of the majority of the group on A and
B. In case the judges of the example followed the PBP, the defendant would be
declared liable of breaching the contract. On the other hand, according to the
CBP, the judges decide privately on A and B and only express their opinions
on C publicly. The judgement of the group is then inferred from applying the
majority rule to the individual judgments on C. In the example, contrary to
the PBP, the application of the CBP would free the defendant. Moreover, no
reasons for the court decision could be supplied.

In this paper, we study further properties of the information fusion procedure
which takes a middle position between PBP and CBP. Above all, we address the
question how good an aggregation procedure is at selecting the right conclusion.1

The behavior of the fusion procedure will be contrasted with the PBP and the
CBP that were studied by Bovens and Rabinowicz [2] and by List [7, 8]. Fur-
thermore, we apply Bayesian conditionalization to the group decision problem.

1See [4] for an investigation of aggregation procedures in terms of reliability in selecting
the right situation, i.e. premises and conclusion.
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It is shown that the Bayesian approach enjoys theoretical optimality and high
flexibility. In particular, we can combine it with any set of prior distributions
and utility matrices. On the other hand, it requires a costly computation of a
posterior distribution where both the prior distribution and the competence of
the voters have to be made explicit. These requirements may be hard to meet in
many practical applications. Finally, we compare the distance-based procedures
to the Bayesian analysis.

The paper is structured as follows: In Section 2, we describe the fusion procedure
and show that it is an element of a continuum of distance-based procedures
which also contains PBP and CBP. Section 3 compares these three approaches
in terms of their reliabilities at selecting the right conclusion. A full Bayesian
analysis of a group decision problem is provided in Section 4. Section 5 concludes
and sketches further open questions. Finally, the appendix contains the proofs
and the calculation details.

2 Distance-based procedures

2.1 Introduction

As shown in [11], the application of a fusion operator to judgment aggregation
problems allows to define consistent group decisions and to avoid paradoxical
outcomes without having to choose between two possibly conflicting procedures
like the PBP and CBP. This subsection summarizes the approach and the results
of [11]. The reader is referred to that paper for more details.

One of the key points in the literature on information fusion is that the aggrega-
tion of finite sets of propositions satisfying some constraints does not guarantee
a collective judgment satisfying the same constraints. One way to overcome
this problem is to restrict the space of the possible solutions to the set of the
admissible situations only, i.e. to those sets of premises and conclusion that
satisfy the constraints. Then, the fusion operator selects one of these consis-
tent situations, namely the (possibly not unique) element that minimizes the
distance to the actual individual inputs.

To illustrate how the majority fusion operator works, we apply it to the court
example. We have to form a judgment on the set of propositions X = {A, B, C}
with the constraint (A ∧ B) ↔ C. Hence, there are only four consistent situa-
tions:

S1 = {A, B,C} = (1, 1, 1)
S2 = {A,¬B,¬C} = (1, 0, 0)
S3 = {¬A, B,¬C} = (0, 1, 0)
S4 = {¬A,¬B,¬C} = (0, 0, 0)

(1)

In this terminology, A is identified with a 1 and ¬A with a 0. In a group of N
persons, there are n1 persons endorsing the situation S1 (i.e. they judge A, B
and C to be true), n2 persons endorsing S2, and so on. Hence, n1+n2+n3+n4 =
N . On pain of individual irrationality, every member of the group has to endorse
exactly one of these situations. In principle, the equations in (1) involve an
abuse of notation because the situations refer to states of the world as well
as to elements in a vector space that bear distance relations to the submitted
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A B C Total
Judges 1,2,3 1 1 1 S1

Judges 4,5 1 0 0 S2

Judges 6,7 0 1 0 S3

Average 5/7 5/7 3/7 —
Hamming distance to S1 (componentwise) 2/7 2/7 4/7 8/7
Hamming distance to S2 (componentwise) 2/7 5/7 3/7 10/7
Hamming distance to S3 (componentwise) 5/7 2/7 3/7 10/7
Hamming distance to S4 (componentwise) 5/7 5/7 3/7 13/7

Table 2: The distance-based fusion operator in the original example of table 1.

judgments. Nonetheless, the intended meaning of “S1” will always be evident
from the context.

To apply the fusion operator, the four situations must be weighed with the
number of persons that endorsed that situation. In other words, we look at

S :=
1
N

4∑
i=1

niSi (2)

Fusion opts for the situation in {S1, S2, S3, S4} which has the lowest distance to
S. In other words, if “+Si” denotes a decision for Si as the aggregated collective
judgment set and “−Si” a decision against Si then

+Si ⇐⇒ ‖Si − S‖ ≤ min
j 6=i
‖Sj − S‖

If we define di := ‖Si − S‖, fusion ranks the situation Si first if and only if

di < min
j 6=i

dj

Note that nothing hinges on the choice of a particular norm as a distance func-
tion because all norms in finite-dimensional spaces are (ordinally) equivalent.
In particular, the Si and S are all members of R3 so that the fusion procedure
is invariant under the choice of a norm: only the ordering of the distances mat-
ters for the decision. In order to simplify calculations we recommend to use
the 1-norm (i.e. to sum the absolute values of the three components) which
corresponds to the Hamming distance.

The principle behind the distance minimization is the selection of a situation
that is closest to the average. Table 2 illustrates that, in the court example, the
situation selected by the fusion operator is S1 = {1, 1, 1}. This is because S1 is
— among the possible situations — the closest to the collective average.

Since d1 = 2/7 + 2/7 + 4/7 is smaller than any other distance to a situation,
the fusion operator selects S1. We also see that, with regard to a decision on
S1, we can apply all three procedures – PBP, CBP and fusion – to conjunctive
aggregation rules (A ∧ B ↔ C) as well as to disjunctive rules (A ∨ B ↔ C)
because the latter are representable as ((¬A ∧ ¬B) ↔ ¬C). The judgment
aggregation mechanism is absolutely isomorphic – accepting ¬A∧¬B amounts
to accepting A ∨B and vice versa.
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2.2 Representation results

There is also an intuitively understandable representation of the majority fusion
procedure (henceforth FP). Assume that a voters judge A to be true, b voters
judge B to be true and c voters judge C ↔ (A ∧ B) to be true. (Of course, a,
b, and c can be calculated from the ni and vice versa.) Then several facts can
be shown:2

Fact 1 The following claims hold:

1. min(a, b) ≥ c ≥ a + b−N

2. +S1 ⇔ (a + c > N) ∧ (b + c > N).

3. If d1 < d2, d3, then also d1 < d4.

Among these claims, we would like to draw special attention to the second one:

+S1 ⇔ (a + c > N) ∧ (b + c > N) (3)

In order to satisfy equation (3) and to accept S1 in the aggregated judgment,
a sufficient number of people have to endorse the conclusion C individually. In
particular, a two-third majority on each of the premises is sufficient to guarantee
that fusion selects the situation S1.

From (3), we can also derive the following fact:

Fact 2 Let +Si(X) denote a decision for the situation Si under procedure X.
Then

• +S1(CBP) → +S1(FP) → +S1(PBP).

• −S1(PBP) → −S1(FP) → −S1(CBP).

Hence, if the CBP opts for S1, so does fusion. And if fusion opts for S1, so does
the PBP. However, if the result from the CBP is negative, then fusion is more
cautious than the premise-based procedure. To recall, the PBP suffers from a
high false positive rate, i.e. it often endorses C ↔ (A ∧ B) when it is in fact
false (cf. [7, 8]). Fusion is less vulnerable to this mistake, as fact 2 shows. We
will expand on this point in the subsequent section.

It might be suspected that for an increasing number of premises, fusion more
and more resembles the premise-based procedure because the contribution of
the premises outweighs the contribution from the conclusions. Nonetheless this
is only true in the trivial sense that all three approaches make it increasingly
hard to endorse the conclusion even when it is true.

Fact 3 Let a1, . . . , am denote the number of votes for each of the m premises.
Then,

1. min ai ≥ c ≥
∑m

i=1 ai − (m− 1)N

2All proofs are given in the appendix.
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2. +S1 ≡ ai + c > N ∀i ∈ {1, . . . ,m}

This entails that for constant p and large m, c/N (i.e. the fraction of people
voting for S1) is probably small. This is so because the large number of premises
which have to be affirmed raises the hurdles for endorsing S1. Even if there is a
majority for each of the premises: the greater m, the higher the sampling vari-
ance in the ai, so that the additional condition ai + c > N becomes increasingly
hard to satisfy. Hence, for a large number of premises, FP will resemble CBP
and set the standards for an endorsement of S1 substantially higher than PBP.3

All this suggests that fusion is intimately related to CBP and PBP. Indeed,
we can represent the two latter procedures as distance-based procedures when
we parametrize the situation S1 by means of St

1 := (1, 1, t) with t ∈ [0,∞].
(For any t, St

1 refers to the same real world situation as the original S1 – both
premises and the conclusion are true. Merely the distance between this situation
and the submitted set of judgment is now measured differently, in particular
S

t
:= (a/N, b/N, tc/N).) Again, the situation which minimizes the distance to

S
t
, the average of the submitted judgment sets, is chosen. This elucidates the

connection between fusion, CBP and PBP:

Proposition 1 Let St
1 = (1, 1, t). Choosing the situation with the minimum

distance to S
t

is equivalent to PBP for t = 0, yields FP for t = 1 and converges
to CBP for t→∞.

In other words, for t → 0, the distance-based operator converges against the
PBP which is attained for t = 0.4 On the other hand, when t → ∞, the
distance-based operator converges against the CBP. Finally, for t = 1, we obtain
the conventional fusion operator.5 From now on, we intend the term “distance-
based procedure” to refer to all aggregation procedures that correspond to a
specific value of t, including t =∞. This gives us a continuum of distance-based
approaches, ranging from the premise-based to the conclusion-based operator,
with fusion having a middle position. We now turn to an evaluation of the
procedures.

3 Comparing the distance-based procedures

3.1 Preliminaries

In order to investigate the epistemic reliability of the fusion procedure, we adopt
a probabilistic framework. In particular, we assign to every voter an individual
competence p ∈ (0, 1) to make a correct judgment about a single premise. This
means that when a premise (either A or B) is true, the voter gives a correct
report with probability p1 = p, and equally, if the premise is false, the voter gives

3This does not contradict the obvious fact that, for fixed prior probabilities, the probability
of correctly detecting S1 approaches 0 as m goes to infinity for all three approaches.

4We can think of that case as a projection of St
1 onto the hyperplane spanned by the other

three situations.
5The value t = 1 is special because it is the only value where the yes=1/no=0 assignment

scheme introduced in the previous subsection applies to premises and conclusion.
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a correct report with probability p2 = p.6 It would, of course, also be possible
to assign two different competences to the voter, one for correctly discerning A
and one for correctly discerning ¬A. But that would couple the competence of
the voter to the prior probabilities of the various situations. To see this, note
that

p = p1 P(A) + p2 (1− P(A)) (4)

We would often like to say that the reliability of the voters is independent of
the prior probabilities over the four situations. The only possible way to ensure
this independence is to assume that the probability of a false positive report
on a premise equals the probability of a false negative report, in other words,
p1 = p2.7 Then, the Condorcet Jury Theorem links the competence of the
voters to the reliability of majority voting: Assume that the individual votes on
a proposition A are independent of each other, conditional on the truth or falsity
of that proposition. If the chance that an individual voter correctly judges the
truth or falsity of A is greater than fifty percent (in other words, p > 0.5),
then majority voting eventually yields the right collective judgment on A with
increasing size of the group. Therefore, the Condorcet Jury Theorem offers an
epistemic justification to majority voting and motivates the use of the PBP and
CBP in the judgment aggregation problem ([2]).

It should be noted, though, that an application of the Condorcet results to
judgment aggregation requires further assumptions which we now make explicit.
They are also required to avoid computational complexity and are formulated
as in [2]:

(i) The prior probabilities that A and B are true are equal (P(A) = P(B)).

(ii) A and B are (logically and probabilistically) independent.

(ii) All voters have the same (independent) competence to assess the truth of
A and B (p). Their judgments on A and B are independent.

(iv) Each individual judgment set is logically consistent.

Assumption (iv) entails that only four situations are possible:

St
1 = {A, B,C} = (1, 1, t) St

2 = {A,¬B,¬C} = (1, 0, 0)

St
3 = {¬A, B,¬C} = (0, 1, 0) St

4 = {¬A,¬B,¬C} = (0, 0, 0)

Moreover, assumption (i) and independence claim (ii) entail that we can parametrize
the set of prior distributions by a single parameter q := P(A) = P(B). From
the independence assumptions we then obtain

6We ascribe an individual competence only for voting on premises, not for voting on any
proposition (such as A ∧B). Indeed, it follows that given an individual voting competence p
on A and B, the voting competence on A∧B is p2 6= p ([8]). However, in many contexts it is
reasonable to assign individual voting competence to only a certain kind of propositions. E.
g. in a legal case this would be propositions as “P had contractual obligation not to do X”
or “P actually did X”, but not on propositions as “P should go to jail”.

7Setting p1 = p2 also answers List’s concerns ([8]) that for a very low value of p1 or p2, the
voters are bad at tracking the true situation although the overall reliability p, as defined in (4),
can still be high. Regardless of whether this point is really convincing, setting p1 = p2 kills
two birds with one stone: we circumvent List’s objection and we decouple overall reliability
and prior probabilities.
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P(St
1) = q2; P(St

2) = P(St
3) = q(1− q); P(St

4) = (1− q)2

The probability that a distance-based procedure chooses the right conclusion
can be calculated via

P(G) := P(A distance-based procedure selects the right conclusion)

= P(St
1) P(+St

1|St
1) +

4∑
i=2

P(St
i ) P(−St

1|St
i )

where “+St
1” denotes a collective judgment that selects the situation St

1 and the
P(St

i )-terms can be replaced by the corresponding q-terms.

3.2 Results and generalizations

With the above equations in hand, we can now compare the fusion procedure
(FP) to the PBP and the CBP. Bovens and Rabinowicz ([2]) show that the PBP
is always better at identifying the correct situation, while the CBP is sometimes
better at selecting the right conclusion. This means either to accept or to reject
St

1 as the correct situation, and, in case of a rejection, to be silent on whether
St

2, St
3 or St

4 is true. Indeed, in a variety of real aggregation problems, it is
most urgent to come to a verdict with regard to St

1 and it is less important
to discern between St

2, St
3 and St

4 (e.g. because they have the same practical
consequences). However, that does not mean that the aggregation procedures
neglect the reasons for either accepting or rejecting St

1: The number of votes
for each premise plays a substantial part in all distance-based approaches to
judgment aggregation, with the obvious exception of CBP. The complementary
problem of situation selection is covered in detail in a sequel paper ([4]).
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Figure 1: Reliability of PBP (triangles), FP (stars) and CBP (diamonds) as a
function of N , for various values of p and a fixed value of q = 0.3. Upper left
figure: p = 0.56. Upper right figure: p = 0.64. Lower left figure: p = 0.72.
Lower right figure p = 0.8.

Figures 1-3 depict the reliability of PBP, CBP and FP for various values of p, q
and odd values of N . First we would like to discuss figure 1. It turns out that
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Figure 2: Reliability of PBP (triangles), FP (stars) and CBP (diamonds) as a
function of N , for various values of p and a fixed value of q = 0.5. Upper left
figure: p = 0.56. Upper right figure: p = 0.64. Lower left figure: p = 0.72.
Lower right figure p = 0.8.
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Figure 3: Reliability of PBP (triangles), FP (stars) and CBP (diamonds) as a
function of N , for various values of p and a fixed value of q = 0.7. Upper left
figure: p = 0.56. Upper right figure: p = 0.64. Lower left figure: p = 0.72.
Lower right figure p = 0.8.
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for relatively small values of p (p = 0.56, 0.64), the premise-based procedure
too often erroneously endorses St

1, and especially so for small values of N . In
this case, a majority for a premise can emerge by mere random sampling effects
although the premise is actually not satisfied. Therefore PBP is inferior to
both FP and CBP in such circumstances. For higher values of p, however,
the three procedures nearly coincide and do not differ much. This is especially
salient for p = 0.8. Figure 2 confirms the local failure of PBP for a modest p
(p = 0.56). However, we also see that for intermediate values of p (p = 0.64),
PBP clearly dominates the two other approaches whereas there is again no
significant difference between PBP and the rest for high values of p.

The superiority of PBP is most pronounced in Figure 3 where q = 0.7, i.e. St
1

is the most probable situation. For any value of p smaller than 0.8, PBP clearly
outperforms the two other procedures. That is not surprising: the greater q, the
more important is it to avoid erroneous rejection of St

1, just because St
1 occurs

more often. Fact 2 has established that, among the three scrutinized procedures,
PBP is most inclined towards accepting St

1, as already noted by ([2], [8]). This
“optimism” towards St

1 naturally pays off in terms of overall reliability when
q is quite large.8 On the other hand, we see that CBP fails to benefit from
the greater stability in the data which accompanies the increasing number of
voters. Especially, we see that CBP performs quite poorly for large values of
N in comparison to the other procedures. Besides we see again that all three
procedures are almost equally reliable for p = 0.8 because the high individual
reliability guarantees that any procedure is well protected against error.

The concrete observations for large N in the above examples can be general-
ized. We perform an asymptotic analysis of the distance-based procedures in a
general framework, building on the parametrization already used in proposition
1. Consider first the case that St

1 is true.

Proposition 2 Assume that St
1 = (1, 1, t) is the true situation. Then P-almost

surely (P-a.s.) for N →∞:

+St
1 ⇐⇒ dt

1 < min
j 6=1

dt
j ⇐⇒ p > pt :=

√
2t2 + 2t + 1− 1

2t

In particular, this translates as p > 0.5 for PBP, p > (
√

5 − 1)/2 for FP and
p > 1/

√
2 for CBP.

The following corollary asserts that p > pt is both necessary and sufficient in
order to ensure the P-a.s. correct conclusion selection for increasing group size:

Corollary 1 For the group size going to infinity (N →∞), the distance-based
procedures select the right conclusion P-a.s. if and only if p > pt.

Put another way, P(G) N→∞→ 1 if and only if p is larger than the specified
threshold. Hence, PBP has better asymptotic properties than fusion because
for a large number of voters, it eventually becomes perfectly reliable for p > 0.5
whereas fusion requires the stronger p > (

√
5 − 1)/2. CBP requires the even

higher p > 1/
√

2. This superiority of PBP for large voting groups is exemplified
in all three figures. Moreover, the asymptotic results explain why CBP is not

8We even conjecture that there is a threshold for q (dependent on p) so that for any N ,
PBP is more reliable than any other distance-based procedure (t ∈ (0,∞)). We would like to
prove such a result in future work.
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monotonously increasing as a function of N for p = 0.56 or p = 0.64. The same
holds for FP with regard to p = 0.56. However, the figures also teach us that for
large values of p, the asymptotic results carry little importance for the actual
reliability because all three procedures tend to agree quickly. Furthermore,
the asymptotic properties are not always correlated with the performance in
small voting groups: For small to moderate values of p, q and N , FP and
CBP outperform PBP – see the upper graphs in figure 1 and 2. As already
mentioned, we believe that this is due to random sampling effects which occur
in small voting groups.

We can summarize the results as follows: For high values of p (approximately
p > 0.75), all three examined procedures are very reasonable. Choosing an
aggregation method among the infinity of distance-based procedures does not
make much of a difference. Only for moderate values of p (p ∈ [0.5, 0.75]), there
is a real difference between the aggregation procedures. It turns out that the
prior probability of St

1, q2, plays a crucial role here. Roughly, we can say that
the higher q and the higher N , the more should we be inclined towards PBP,
whereas for small groups and modest q, FP or even CBP can be the better
choice. In comparison to CBP, FP has the virtue of not performing too badly
for large samples and medium values of p. For potential applications, it might be
interesting to note that in a lot of jury and panel decisions, the number of voters
is quite small, typically N ∈ {5, 7, . . . , 15}. Hence, especially when we have some
reasons not to fully trust the voters competence (take, for instance, a laymen
jury in a criminal trial), we have a rationale for applying the fusion operator.
For such cases, we also suggest further calibrations of t in order to combine the
power of PBP with the conservativeness of FP, e.g. t = 0.5. By contrast, when
we face a large number of voters, for instance in a plebiscite, recommending
PBP is the safest option due to the asymptotic superiority. Such calibrations
can be further refined by considering the relative severity of a decision error.
E.g. if erroneous acceptance of St

1 were in a specific situation much worse than
erroneous rejection of St

1, we would tend to set t to a higher value than if the
opposite were true.

4 The Bayesian Approach

4.1 General Remarks

The probabilistic framework which we used for the evaluation of PBP, CBP and
FP can be transferred to a full Bayesian approach, too. In a Bayesian approach,
we have a prior probability distribution over the situations S1 to S4, given again
by (q2, q(1 − q), q(1 − q), (1 − q)2). We treat the judgments of the voters (call
them V ) as incoming evidence which we use to update the prior probabilities
to a posterior distribution over S1 to S4:

P(Si|V ) =
P(Si)P(Si|V )

P(V )

This posterior distribution describes our rational degree of belief in the various
situations, given the verdicts of the voters and their individual reliability. Then
we base our decision exclusively on that posterior distribution and the utility
matrix which describes the actual decision problem.
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S1 is true S1 is false
accept S1 (“+S1”) 1 0
reject S1 (“−S1”) 0 1

Table 3: The utility matrix that corresponds to using P (G) as a benchmark
for the performance of the aggregation procedures, shown as a function of the
possible actions and states of the world.

We are now interested in the average probability that the right conclusion (S1

or ¬S1) is selected. In other words, we want to calculate P(G) and use it as a
the benchmark for the various aggregation procedures. Keeping in mind that
P(G) = P(S1) P(+S1|S1) + P(¬S1) P(−S1|¬S1), this corresponds to a decision
problem where utility 1 is assigned to a correct conclusion selection and 0 to a
wrong conclusion selection (see table 3). 9

The Conditional Bayes Principle ([1], p. 8) tells us that, relative to a given
(posterior) distribution, we ought to take the action that maximizes the expected
utility. Faced with the above utility matrix, we will opt for S1 if and only if
P(S1|V ) > 0.5.

We can generalize that principle to the following decision rule: for any set
of judgments that will be observed, take the action that maximizes expected
utility relative to the posterior distribution which we obtain by updating on
the voters’ judgments. Indeed, it can be shown that such a decision rule is a
Bayes rule, i.e. a decision rule that minimizes the expected risk with regard
to the prior distribution among all decision rules.10 Hence we see that the
decision rule given by the Bayesian approach is optimal in the risk-minimizing
(or utility-maximizing) sense. We can base all decisions solely on the posterior
distribution and the problem-specific utility matrix.

This has a number of implications. First, all data that do not affect the posterior
distribution of the Si can be neglected. The posterior distribution is uniquely
determined by the number of votes for A and B, in other words, the statistics a
and b. All further information is irrelevant, given the values of those functions.
Technically spoken, a and b are sufficient statistics.11 Once we know the values
of a and b, we can totally neglect how many people endorsed the conclusion.
This vindicates an intuition underlying the premise-based procedure: complete
information about the premises is all we need to make a reliable decision. Indeed,
the Rao-Blackwell Theorem ([1], p. 41) guarantees that there is no information
that can improve the decision rule beyond what is contained in the sufficient
statistics. More precisely, any decision rule can be improved in a way that it is
only a function of the sufficient statistics.

This also implies that both the premise- and the conclusion-based approach
cannot be optimal: Both are based on 0-1 statistics that measure whether there
are majorities for A, B or C. But those statistics are neither sufficient nor jointly
sufficient. Too much information gets lost when only checking the majorities. A
similar result holds for fusion, where the decision on the right conclusion is only
based on the statistics (a + c) and (b + c) which are neither (jointly) sufficient.
Hence, none of the these three approaches can be optimal. Contrarily, by the

9In other words, erroneously opting for S1 is equally devastating as erroneously opting for
¬S1. A similar matrix can be found for the situation selection problem, see again [4].

10Cf. Result 1 in [1], p. 159.
11A statistic T is sufficient with regard to an unknown parameter Θ when P(Θ = ϑ|T =

t) = P(Θ = ϑ|X = x) where X denotes the full data.
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Figure 4: The probability that the Bayesian procedure identifies the right con-
clusion as a function of the competence of the voters p for q = .7 and N = 11
(dotted line), N = 21 (dashed line) and N = 51 (full line).

aforementioned theorem, the Bayesian approach provides an upper bound for
the reliability of all decision rules. We now turn to the performance of the
Bayesian approach and compare its reliability to the procedures discussed in
the previous section.

4.2 Results and Discussion

In Figure 4.2, we have plotted the reliability of the Bayesian aggregation pro-
cedure as a function of the individual reliability for q = 0.7 and various group
sizes (N = 11, 21, 51). We see that the Bayesian procedure is almost perfectly
reliable when p is far from 0.5. From the above arguments it is clear that the
Bayesian reliability constitutes an upper bound for all other procedures. Also,
we see that the reliability is monotonously increasing in N , and it approaches
1 (pointwise) for all values of p except for a small neighbourhood of 0.5. It can
even be shown that for all values of p except for p = 0.5, the Bayesian procedure
eventually selects the right conclusion.

Proposition 3 For any p 6= 0.5, the Bayesian decision rule eventually selects
the right conclusion P-a.s. when N →∞.

This draws our attention to another feature of the Bayesian analysis: It is
symmetric as a function of p. So Bayesian aggregation is perfectly reliable even
when the individual voters are very unreliable. This sheds light on a substantial
premise of the Bayesian approach, namely that knowledge of p and q is required
to update the prior distribution. In other words, both p and q have to be
transparent to the decision maker. Then, it is no more surprising that the
Bayesian procedure is highly reliable for p ≈ 0: When the aggregators know
that the voters nearly always submit wrong judgments, they will just replace
the individual judgments on the premises by their negations. So, when a highly
unreliable voter submits (1, 0, 0), this amounts to the submission of (0, 1, 0) by
a highly reliable voter. Therefore the Bayesian procedure works perfectly fine
for low values of p.

On the other hand, it is questionable whether knowledge of p and q can really
be presupposed. Such transparency is hardly realistic and not applicable in a
wide class of cases. For example, any kind of assigning prior probabilities is
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frowned upon in legal decision making. Even more disturbing, our estimate of
the individual voting competence may be grossly mistaken. For example, as-
sume that we erroneously claim that p = 0.5, i.e. we believe the voters to be
randomizers. For the Bayesian, this means that the results of the voting process
have no impact on the posterior distribution: it equals the prior distribution.
Even if the voters unanimously endorse both premises and the conclusion, this
has absolutely no impact. In particular, when P(S1) ≤ 0.5, even an unanimous
endorsement of S1 does not lead to the acceptance of S1. This is a result which
we intuitively find absurd: Not only does the Bayesian recommendation conflict
with the principle of unanimity, the data also suggest to revise our estimate of
p because unanimity is much less likely for randomizing voters than for compe-
tent voters. For such an extreme set of submitted judgments, we would rather
tend to accept S1 as it is recommended by all discussed distance-based proce-
dures. The data seem to falsify our previous estimate p = 0.5. Such a revision
is, however, not possible in a genuine Bayesian framework because this would
amount to double-counting the data: once for eliciting an estimate of p and af-
terwards for updating the prior distribution. Assigning a prior distribution over
p and averaging the results over the prior distribution of p (“Bayesian model
averaging”) would mitigate, but not eliminate the effect. We leave it open to
future research whether the Bayesian aggregation procedure can be protected
against severe estimation errors. In any case, the Bayesian approach carries a
considerable estimation risk when p is hard to elicit.

In several contexts it is, of course, not awkward to assume that p is more or
less transparent, e.g. when we have N independent measuring instruments in a
scientific experiment. In such a case we should always use Bayesian updating
and make a decision on the basis of the posterior distribution. But in a variety
of cases where human judgments are aggregated, e.g. when a jury has to decide
upon the liability of the defendant or to award or deny tenure to a faculty
member, the competence of the jury may be hard to estimate. In particular,
there may be no relative success frequency as a basis for an estimate of the
voting competence. Moreover, the Bayesian procedure will sometimes, namely
for low values of p, recommend to do exactly the opposite of what the voters
are thinking. This prevents the Bayesian procedure from being applied in many
practical cases. It fares best when the decision-maker has a sensible estimate of
p and when he does not need the consent of the voters to take an action.12

To summarize: The Bayesian approach has the advantage that the decision
procedure can be flexibly adapted to the particular problem by changing the
utility matrix. Various judgment aggregation problems are characterized by
different utility matrices to which the Bayesian procedure can be flexibly trans-
ferred. E.g. sending someone to jail erroneously has a much higher associated
loss than setting free a guilty person. But denying tenure to an outstanding
researcher and teacher might be worse than giving tenure to a person who is
a capable researcher but only a mediocre teacher. In other words, the utilities
tell us which kind of error we have to avoid. The Bayesian approach naturally
incorporates the variation in the losses associated with a wrong decision of a
certain kind whereas distance-based approaches as CBP, PBP and FP are not
sensitive to the severity of a particular kind of error. The Bayesian framework
can be naturally extended to connection rules different from the conjunction of
the premises, too. On the other hand, the distance-based procedures do not

12So far, we have been silent on the possibility of strategic voting which can occur in the
Bayesian model as well as in the distance-based approaches. Therefore we assume that the
voters have no interest in a specific conclusion – otherwise no voter would submit the judgment
set S2 or S3.
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involve a complicated calculation of posterior probabilities and they are easier
to apply to real decision problems.

5 Conclusions

By means of the t-parametrization in section 2, we have integrated PBP, CBP
and FP into a continuum of distance-based procedures, with FP taking a middle
position between the two extremes PBP and CBP. Thereby we achieve a concep-
tual unification with regard to the traditional methods of judgment aggregation.
With regard to selecting the right conclusion, the distance-based procedures are
theoretically inferior to the Bayesian decision procedure which also enjoys high
flexibility. Nevertheless, the Bayesian approach can only be applied when the
individual competence p and the prior probability q of each premise can be
elicited. Often, estimating p might be associated with a unpredictable estima-
tion risk, deteriorating the performance of the Bayesian approach. This was
illustrated in the toy example of the previous section. In practice, working with
an estimate of p might also be prohibited by external, pragmatic constraints.
The more we are uncertain about p, the more we should be inclined to apply
a distance-based approach which performs reasonably well for various values of
p. The most suitable value of t then depends on the actual number of voters
and the estimated prior probabilities. Distance-based approaches, although not
strictly optimal from a theoretical point of view, might be a reasonable compro-
mise between two ends: to neglect an estimate of individual competence in the
actual decision-making and to have a procedure that reliably selects the right
conclusion. Among these procedures, those which resemble the premise-based
procedure (t � 1) will usually perform best. The precise calibration of t in an
actual application is sensitive to the specific social decision problem and will
be investigated in further work. Moreover, our sequel paper [4] examines the
performance of the discussed procedures at tracking the right situation.

A Calculational details

A.1 Properties of the fusion operator

We examine the case A ∧ B ↔ C. There are N voters and we assume that
N is an odd number ≥ 3. n1 voters vote for S1 = (1, 1, 1), n2 for situation
S2 = (1, 0, 0), n3 for situation S3 = (0, 1, 0) and n4 for situation S4 = (0, 0, 0).
Obviously, N = n1 + n2 + n3 + n4. Fusion chooses the model which has the
lowest distance to the average of submitted judgment sets, S := 1

N

∑4
i=1 niSi

(cf. equation (2)). For reasons of convenience, we work with the Hamming
distance which corresponds to the 1-Norm in real Euclidean vector spaces. (As
mentioned in the main text, all norms are ordinally equivalent). Let a denote
the number of voters that vote for premise A and b the number of voters that
vote for B. Accordingly, let c denote the number of voters that vote for the
conclusion C. Let di := ‖Si − S‖1. Hence, fusion ranks model Si first if and
only if di < minj 6=i dj .
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Proof of Fact 1: The first claim is trivial. For the rest, note that

N(d2 − d1) = (N − a) + b + c− (N − a)− (N − b)− (N − c) = 2b + 2c− 2N

N(d3 − d1) = a + (N − b) + c− (N − a)− (N − b)− (N − c) = 2a + 2c− 2N

N(d4 − d1) = a + b + c− (N − a)− (N − b)− (N − c) = 2a + 2b + 2c− 3N

The first two equations yield d1 < d2 ≡ b + c > N and d1 < d3 ≡ a + c > N . If
these two conditions are satisfied, it follows that

N(d4 − d1) > a + b−N > 0 (5)

because a + c > N also implies a > N/2 and analogously for b. Thus, also
d1 < d4, showing the second and the third part of the fact. �

Proof of Fact 2: We only prove the first claim of the fact, the second fol-
lows by contraposition. A positive report in the conclusion-based procedure
(“+S1(CBP)”) occurs if and only if c > N/2. Since a, b ≥ c, this also implies
a + c > N and b + c > N . So fusion opts for S1, too, in virtue of fact 1. The
two latter inequalities imply that a, b > N/2 (again, because a, b ≥ c). Hence,
if fusion opts for S1, so does the premise-based procedure. �

Proof of Proposition 1:

dt
1 =

1
N

(N − a + N − b + t(N − c)) dt
2 =

1
N

(N − a + b + tc)

dt
3 =

1
N

(a + N − b + tc) dt
4 =

1
N

(a + b + tc)

A decision for St
1 is made if and only if dt

1 < mini6=1 dt
i. For a ≤ N/2 or b ≤ N/2,

we also get c ≤ N/2 and t(N − c) ≥ tc for all values of t. Hence either dt
1 ≥ dt

2

or dt
1 ≥ dt

3 so that St
1 is rejected independent of the value of t.

Therefore assume that a, b > N/2. Then a decision for the conclusion St
1

amounts to dt
1 < mini 6=1 dt

i which can be written as

2a−N + t(2c−N) > 0
2b−N + t(2c−N) > 0

2a−N + 2b−N + t(2c−N) > 0

Obviously, the first two inequalities entail the third one.
For t=1, this leads to the usual conditions a + c > N and b + c > N , as shown
in fact 1.
For t=0, the inequalities are satisfied if and only if a > N/2 and b > N/2, i.e.
when there is a majority for each of the premises. Hence we obtain PBP.
Finally, for very large t, the 2a−N and 2b−N terms drop out of the picture.
Hence we accept St

1 if and only if c ≥ N/2. CBP – accept the conclusion if and
only if it is endorsed by a genuine majority – is obtained in the limit t→∞. �

Remark: It is a simple fact of linear algebra that the relative ordering between
the distances dt

2, dt
3 and dt

4 is not affected by the value of t. So, the proof would
go through even if we aimed at choosing the right situation instead of the right
conclusion.

Proof of Fact 3: The first inequality is trivial. For the second one, the
maximal set of voters who do not accept the conclusion is

∑m
i=1(N−ai). Hence,

c ≥ N −
∑m

i=1(N − ai) =
∑m

i=1 ai − (m− 1)N .
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For the second claim, first assume that there is an i so that ai+c ≤ N ≡ N−c ≥
ai. Then, by measuring distance by the supremum norm, we see that

sup(N − a1, N − a2, . . . , N − am, N − c)
= N − c

≥ sup(N − a1, N − a2, . . . , N − ai−1, ai, N − ai+1, . . . , c)

so that Si := (1, 1, . . . , 1, 0, 1, . . . , 0) is closer to S than S1 = (1, 1, . . . , 1). Hence
S1 is rejected.
Now assume that ∀i : ai + c ≥ N . Then S1 is chosen if and only if N − c <
min(a1, a2, . . . , am) which is true by hypothesis. Hence we have established
necessity and sufficiency of the proposed condition. �

A.2 Asymptotical behaviour of the distance-based proce-
dures

Proof of Proposition 2: Under St
1, a is BN,p-distributed. Similarly, b ∼ BN,p

and c ∼ BN,p2 . All three variables are sums of N independent and identically
distributed random variables so that the Strong Laws of Large Numbers ap-
plies. It follows that P-a.s. a/N, b/N → p, c/N → p2. In particular, with the
exception of a set of measure zero,

∀ε ≥ 0 ∃N0 ∀N ≥ N0 :
c

N
∈ (p2 − ε, p2 + ε),

a

N
,

b

N
∈ (p− ε, p + ε) (6)

Choose (3 + 3t)ε :=
∣∣2tp2 + 2p− (1 + t)

∣∣. A simple computation yields that
2tp2 + 2p − (1 + t) > 0 if and only if p > pt := (1/2t)(

√
2t2 + 2t + 1 − 1) for

t 6= 0 and p > 0.5 for t = 0. Recall that St
1 is chosen (“+St

1”) if and only if

2
a

N
− 1 + t

(
2

c

N
− 1
)

> 0

2
b

N
− 1 + t

(
2

c

N
− 1
)

> 0
(7)

(cf. the proof of proposition 1). And indeed, for p > pt and N ≥ N0,

2
a

N
+ t
(

2
c

N
− 1
)

> 2p− 2ε− 1 + t(2p2 − 2ε− 1)
= (3 + 3t)ε− 2ε− 2tε

> 0

Exactly the same computation can be done for the other equation in (7). Thus,
if p > pt, P-almost surely the right conclusion is eventually chosen if St

1 is true.
Assume on the other hand that p ≤ pt. Then, in virtue of (6), for N ≤ N0,

2
a

N
+ t
(

2
c

N
− 1
)

< 2p + 2ε− 1 + t(2p2 + 2ε− 1)
= (−3− 3t)ε + 2ε + 2tε

< 0

and eventually selects the wrong conclusion is P-a.s. selected if St
1 is true.

For t→∞ (CBP), a simple asymptotic analysis yields the condition p > 1/
√

2,
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whereas t = 0 (PBP) amounts to p > 0.5. Finally, in the case t = 1 (FP), we
get the threshold p > (

√
5− 1)/2. �

Proof of Corollary 1: Proposition 2 has already proved that, if St
1 is true,

the right conclusion is eventually chosen P-a.s. if and only if p > pt. Three
remaining cases are to examine.
(a) St

2 is true. If p > 0.5 we will P-a.s. get b < N/2 for increasing N and thus
reject St

1, independent of the value of t.
(b) St

3 is true. The same as (a) due to symmetry.
(c) St

4 is true. If p > 0.5 we will P-a.s. get a, b < N/2 for increasing N . Hence
St

1 is rejected, independent of the value of t.
Since p > pt entails p > 0.5, all distance-based procedures eventually choose the
right conclusion P-a.s. if and only if p > pt. �

A.3 Bayesian posteriors

We calculate the posterior probability of S1 conditional on the observed variables
a and b, the number of votes for premise A and B, respectively. Calculations
are completely analogous for the rivalling models. Let Lij(a, b) be the likelihood
ratio of situation Si to situation Sj as a function of the data x. Then, we have

L21(a, b) =
(

1− p

p

)2b−N

L31(a, b) =
(

1− p

p

)2a−N

L41(a, b) =
(

1− p

p

)2a+2b−2N

L32(a, b) =
(

1− p

p

)2a−2b

L42(a, b) =
(

1− p

p

)2a−N

L43(a, b) =
(

1− p

p

)2b−N

Note that Lij(a, b) = L−1
ji (a, b). We can now calculate the posterior distribution

if a votes for premise A and b votes for premise B are submitted:

P(S1 | a, b) =
P(S1) P(a, b | S1)

P(a, b)
=

P(S1) P(a, b | S1)∑4
i=1 P(Si) P(a, b | Si)

=

[
1 +

4∑
i=2

P(Si)
P(S1)

Li1(a, b)

]−1

=

[
1 +

1− q

q
L21 +

1− q

q
L31 +

(
1− q

q

)2

L41

]−1

=: M−1

In other words, we denote the term inside the square brackets (without the
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exponent) by M . For any event E, due to independence,

P(E | S1) =
N∑

a=1

N∑
b=1

(
N
a

)
pa (1− p)N−a

(
N
b

)
pb (1− p)N−b 1E

P(E | S2) =
N∑

a=1

N∑
b=1

(
N
a

)
pa (1− p)N−a

(
N
b

)
(1− p)b pN−b 1E

P(E | S1) =
N∑

a=1

N∑
b=1

(
N
a

)
(1− p)a pN−a

(
N
b

)
pb (1− p)N−b 1E

P(E | S4) =
N∑

a=1

N∑
b=1

(
N
a

)
(1− p)a pN−a

(
N
b

)
(1− p)bpN−b 1E

1E denotes the 0-1 indicator function of the event E. Assume now that S1 is
true. When we want to calculate the probability that the Bayesian decision
procedure gets the conclusion right, we compute the probability that M is
smaller than 2, given the prior distribution:

P(+S1 | S1) = P (M < 2 | S1)

which can be calculated numerically according to the probability densities given
above. Analogously,

P(−S1 | ¬S1)
= P(−S1 | S2 ∨ S3 ∨ S4)

=
1

1− q2

[
q(1− q)P(−S1|S2) + q(1− q)P(−S1|S3) + (1− q)2P(−S1|S4)

]
=

1
1− q2

[
2q(1− q)P(M ≥ 2|S2) + (1− q)2P(M ≥ 2|S4)

]
so that we can compute P(G).

A.4 Bayesian asymptotics

Proof of Proposition 3: It is clear that for p = 0.5, the reliability of the
Bayesian decision rule is constant in N , because the judgments of the voters do
not affect the posterior distribution. Two cases remain to examine.
(a) p < 0.5. Assume S1 is true. Then (1 − p)/p > 1 and in the long run,
almost certainly a, b < N/2 which entails L21(a, b) = ((1 − p)/p)2b−N → 0.
Similar considerations hold for L31 and L41 as well as for the case that another
situation is true.
(b) p > 0.5. The proof is similar: Assume S1 is true. Then (1 − p)/p < 1
and in the long run, almost certainly a, b > N/2 which entails L21(a, b) =
((1− p)/p)2b−N → 0, etc. �

References

[1] J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Second
Edition. Springer, New York, 1985.

19



[2] L. Bovens and W. Rabinowicz. Democratic answers to complex questions.
An epistemic perspective, Synthese, 150: 131–153, 2006.

[3] F. Dietrich and C. List. Arrow’s theorem in judgment aggregation. Social
Choice and Welfare, 2006.

[4] S. Hartmann, G Pigozzi, and J. Sprenger. Judgment aggregation and the
problem of truth-tracking. In preparation.
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