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Abbreviations 

AL- Acute leukaemia 

ALL – Acute lymphoid leukaemia 

AML – Acute myeloid leukaemia 

ANLL – Acute non-lymphoblastic leukaemia 

CNS – Central Nervous System 

GB – Great Britain 

LSS – Life Span Study 

RBM – Red bone marrow 
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Abstract 

Empirical estimation of cancer risks in children associated with low-dose ionizing radiation (<100 

mSv) remains a challenge. The main reason is that the required combination of large sample sizes with 

accurate and comprehensive exposure assessment is difficult to achieve. An international scientific 

workshop “Childhood cancer and background radiation” organised by the Institute of Social and 

Preventive Medicine of the University of Bern brought together researchers in this field to evaluate 

how epidemiological studies on background radiation and childhood cancer can best improve 

understanding of the effects of low-dose ionising radiation. This review summarises and evaluates the 

findings of the existing studies in the light of their methodological differences, identifies key 

limitations and challenges and proposes ways forward. Large childhood cancer registries, such as 

those in Great Britain, France and Germany, now allow the conducting of studies that should have 

sufficient statistical power to detect the effects predicted by standard risk models. Nevertheless, larger 

studies or pooled studies will be needed to investigate disease subgroups. The main challenge is to 

accurately assess children’s individual exposure to radiation from natural sources and from other 

sources, as well as potentially confounding non-radiation exposures, in such large study populations.  

For this, the study groups should learn from each other to improve exposure estimation and develop 

new ways to validate exposure models with personal dosimetry. 

 

Keywords: childhood cancer, background ionising radiation, exposure assessment, record-based study 
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Introduction 

Exposure to high doses of ionizing radiation is known to increase the risk of cancer. Standard risk 

models based on data from the Life Span Study (LSS) of atomic bomb survivors from Hiroshima and 

Nagasaki are broadly consistent with a linear/linear-quadratic increase in cancer risk with dose. The 

excess relative risk (ERR) per gray is modified by sex, age at exposure and time since exposure (1, 2). 

These variations are pronounced for leukaemia: ERR/Gy is highest after exposure in childhood and 

reaches a peak some 5 years after exposure (with ERR estimates of about 50 per Sv), declining 

thereafter (3). Evidence from other studies is also consistent with a higher risk of radiation induced-

cancer after exposure during childhood compared to exposure in later life for various cancer types 

including leukaemia, thyroid, skin, breast and brain cancer (4).  

The empirical estimation of excess cancer risks associated with low doses (<100 mGy low-LET 

radiation) is more difficult due to sample size requirements and the challenge of reliable dosimetry. 

However, a recent pooled analysis of nine cohort studies with individual dosimetry, including over 

260,000 people exposed to low doses during childhood from medical exposure and from the atomic 

bombs, found evidence of excess risks associated with doses of less than 50 mSv for acute leukaemia 

(5). The pooled analysis included a large cohort study from the UK that reported that cumulative doses 

to the red bone marrow (RBM) of about 50 mGy and to the brain of about 60 mGy (2-3 head CT 

scans) might almost triple the risk of leukaemia and brain tumours (6).  A recent nationwide cohort 

study in the Netherlands included 168,394 children who received one or more CT scans also reported 

that brain doses of about 20–50 mGy may increase brain tumour risk (7), but no association was 

observed for leukaemia. However, results from studies of paediatric CT scans need to be interpreted 

with caution, because of the potential for reverse causation and confounding by indication (8, 9). 

Children’s heightened susceptibility combined with short latency periods suggest that a meaningful 

proportion of leukaemia cases in children, and possibly also of central nervous system (CNS) tumours, 

might be caused by exposure to natural sources of radiation. Indeed, based on standard risk models, 

studies from Great Britain (GB) and France estimate this proportion to be up to about 20% (10, 11), 

and in Finland estimates were about 5% (unpublished results), albeit all with large uncertainties. 
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However, in the LSS, which commenced just over 5 years after the bombings and upon which the 

standard leukaemia risk models are based, only four cases of leukaemia occurred among survivors 

with attained age <10 years and their RBM doses were >1 Sv (12). So, caution is required in applying 

these risk models to children receiving very low annual doses. 

Most of the previous ecological studies investigating associations between childhood leukaemia and 

naturally occurring sources of ionising radiation have found positive associations for radon (13-15) 

while for gamma radiation and cosmic rays results have been inconsistent (16-22). Early case-control 

studies of the association between natural sources of radiation and childhood leukaemia were 

underpowered and have reported mixed results (23-26). The largest of these, the UK Childhood 

Cancer Study, included over 2000 cases of childhood cancer and reported weak evidence of a negative 

association between childhood leukaemia and measured radon concentrations (25) but no evidence of 

an association with measured gamma dose rates (26). However, the proportion of eligible subjects 

participating in the measurements was low and varied by socio-economic status. Because exposure to 

these sources is ubiquitous and variation in cumulative doses received by children of similar age are 

small, large sample sizes are needed to detect the small predicted risk. Given the rarity of childhood 

cancer, the only way to achieve such sample sizes is by combining data over long periods of 

systematic cancer registration.    

In the last decade, several nationwide record-based studies in Europe, also referred to as registry-based 

or register-based studies, have investigated associations between childhood cancer and natural sources 

of radiation including gamma radiation (with or without the cosmic component) (27-31) and domestic 

radon (27, 30, 32, 33). In contrast to questionnaire- or interview-based studies, record-based studies 

rely for the most part on comprehensive data compiled systematically for the entire population and do 

not require any active participation by study members. Exposure prediction models are used to 

estimate residential exposure to different sources of background radiation. 

The Institute of Social and Preventive Medicine of the University of Bern, Switzerland, organized the 

international scientific workshop “Childhood cancer and background radiation” on June 6th, 2018. 

The aim of the workshop was to bring together researchers in the field and interested parties from 
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around the world to discuss how epidemiological studies on background radiation and childhood 

cancer can improve understanding of the effects of low-dose ionising radiation. The studies presented 

at the workshop represent all studies that have been conducted based on nationwide registration of 

childhood cancers. 

The purpose of this review is to describe the findings of the existing studies and their methodological 

differences, identify limitations and challenges, and propose ways forward in this area of research. In 

the first section, we describe the methods and findings of the studies. The second section highlights the 

main methodological challenges, providing an inside view from the authors and presenters of the 

workshop. Finally, we conclude with future perspectives and recommendations for further research. 

Review of recent record-based studies 

In this section, we briefly summarize each of the record-based studies on natural sources of radiation 

and childhood cancer in chronological order of their publication (27-33). An overview of the 

methodological characteristics and findings is presented in Tables 1 and 2. More details on methods 

of assessing exposure to gamma radiation and residential radon are provided in Tables 3 and 4. All 

studies used cancer registries with high completeness to identify cases (31, 34-38). 

The first one was a Danish case-control study that examined domestic radon exposure (33). It included 

2,400 childhood malignancies (leukaemia, CNS, and malignant lymphoma) diagnosed in 1968-1994. 

Control children were selected from the Danish Central Population Registry matching on sex and year 

of birth. Exposure assessment covered all residences in which the child had lived between birth and 

diagnosis (or equivalent date). Domestic radon exposure was estimated using a regression model 

developed from measurements in the living rooms of 3,116 Danish dwellings, with predictors 

including geographical region, soil type, and house characteristics (39). The study found a relative risk 

(RR) of 1.56 per cumulative exposure of 103 Bq/m3-years (95% confidence interval (CI): 1.05, 2.30) 

for acute lymphoblastic leukaemia (ALL). No association was observed for childhood acute non-

lymphoblastic leukaemia (ANLL) or brain/CNS tumours, with RRs of 0.75 (95% CI: 0.34, 1.62) and 

0.92 (95% CI: 0.69, 1.22) per 103 Bq/m3-years, respectively. The exposure model performed relatively 
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well in predicting radon concentrations in a test sample of 758 independent measurements (coefficient 

of determination R2 = 0.45) (39). Background gamma radiation was not assessed. 

A large record-based case-control study from Great Britain (GB: England, Wales and Scotland) 

investigated associations of indoor radon and gamma exposure with various childhood cancers (30). It 

included 27,447 children diagnosed with cancer during 1980–2006 of which 9,058 were childhood 

leukaemia. For each case, a control was selected from the same birth register matching for sex and 

date of birth (within six months). Radiation exposures were estimated for mother’s residence at the 

child’s birth. Exposure to gamma radiation was estimated using the County District mean dose rates 

based on 2,283 indoor measurements made throughout GB. Exposure to radon was estimated using a 

predictive map based on approximately 400,000 measurements in homes throughout GB. Cumulative 

doses to the RBM since conception were calculated assuming residential exposures at the same dose 

rate as the residence of birth. The authors reported a RR for childhood leukaemia of 1.12 (95% CI: 

1.03, 1.22) per mSv cumulative equivalent dose to the RBM from terrestrial gamma and 1.03 (95% CI: 

0.96, 1.11) for RBM dose from domestic radon.  

In Switzerland, two studies, one on radon and another on gamma radiation, were conducted using data 

from a census-based cohort study (29, 32). Cases of childhood cancer were identified through 

probabilistic record linkage with the Swiss Childhood Cancer Registry (SCCR). Exposure to 

residential radon was estimated using a prediction model based on 35,706 indoor measurements and 

soil and building characteristics (tectonic units, soil texture, floor level and degree of urbanization) as 

predictors. In internal validation, the radon model had a relatively low R2 of 0.2. Outdoor dose rates 

from terrestrial gamma and cosmic radiation were estimated using a map developed by interpolation 

based on a diverse set of measurements including airborne spectrometry (40). Change of residence 

between censuses, but not full lifetime residential history, was taken into account to calculate time-

varying cumulative exposure. The study on radon exposure included 997 cases of childhood cancer 

and found no evidence of an association, neither for all cancers combined, nor for leukaemia nor CNS 

tumours. The study on exposure to gamma radiation included 1,782 cases and found evidence of 

associations for leukaemia and CNS tumours: for both diagnostic groups a RR of about 1.04 (95% CI: 

1.00, 1.08) per mSv cumulative whole-body dose was estimated. 
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A nationwide case-control study in Finland investigated association between exposure to gamma 

radiation and childhood leukaemia. It included 1,093 cases diagnosed over the period 1990-2011 (28). 

Three controls per case, individually matched on year of birth and sex, were selected from the national 

population register. Exposure was assessed using a map of terrestrial gamma radiation dose rate and a 

map of Chernobyl fallout. For cases with partially unknown residential history, municipal averages of 

terrestrial gamma dose rates were used. Exposure assessment accounted for type of building regarding 

shielding and the radiation from the building materials. Full residential history was available to 

calculate cumulative dose to the RBM. Overall, there was no evidence of an association for childhood 

leukaemia (RR 1.01, 95% CI: 0.97, 1.05 for 10 nSv/h increase in average equivalent dose rate to 

RBM). In subgroup analyses, leukaemia diagnosed at ages 2-6 years was associated with cumulative 

dose to the RBM (RR 1.27, 95% CI: 1.01, 1.60 per mSv).  

In France, a nationwide case-control study investigated the association of childhood acute leukaemia 

and background radiation (27). It included 2,761 cases diagnosed during 2002-2007 and 30,000 

controls sampled from a national dataset of households. Exposure to both radon and gamma radiation 

was based on cokriging models that combined indoor measurements – 17,404 for gamma (41) and 

10,843 for radon (42)  – with a map of geogenic radon/uranium potential (R²=0.32 for radon; R²=0.65 

for gamma). Exposure was assessed based on residence at time of diagnosis. Cumulative doses to the 

RBM from radon and gamma radiation were calculated assuming constant place of residence since 

birth. The authors reported an RR for childhood acute leukaemia of 1.00 (95% CI: 0.98, 1.01) per 

nSv/h of gamma radiation and 0.98 (95% CI: 0.90, 1.07) per 100 Bq/m3 of radon concentration.  

Recently, two ecological studies were conducted in France and Germany. In France, the ecological 

study assessed cancer risks and exposure across 36,326 municipalities and included 9,056 cases 

diagnosed between 1990 and 2009. Results were published in parallel with the aforementioned case-

control study (27) and used the same exposure models, but exposure was determined at the town 

centre for radon and at municipality-level means for gamma. Among the 30,000 controls in the case-

control study, the municipality-based estimates of exposure used in the ecological study correlated 

strongly with the estimates of exposure based on residential addresses: r = 0.975 for gamma exposure 

and r = 0.991 for radon exposure. The results were consistent in both studies and neither showed any 
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evidence of association between radon or gamma exposure and acute leukaemia or the subgroups ALL 

or AML. The RR for radon and gamma combined was 1.00 (95% CI 0.99-1.01) per mSv cumulative 

RBM dose for leukaemia.  

The recent nationwide ecological study from Germany (31) investigated childhood cancer risks and 

gamma ray exposure at the municipality level (11,292 municipalities).  The study included childhood 

cancer cases diagnosed during 1987-2011 with ALL (11,447 cases), AML (1,927 cases), CNS (9,048 

cases) and thyroid cancer (230 cases) and a set of childhood cancer diagnoses assumed a priori to be 

unrelated with radiation exposure (11,385 cases) (31). Exposure to terrestrial gamma radiation was 

assessed for the municipality of residence at diagnosis by interpolation of measured dose rates from 

the sites of the gamma monitoring network using inverse distance weighting. Data on radon exposure 

were not available. CNS tumour incidence rates were associated with annual ambient dose rate (RR 

comparing 1.5 to 0.5 mSv/a of 1.35; 95% CI: 1.17, 1.57). The study did not find evidence of an 

association with ALL or AML. The ambient dose rate data were extrapolated from 1,800 outdoor 

measuring sites to the 11,292 inhabited communities. Exposure was assessed only at time of diagnosis. 

Methodological challenges   

In contrast to earlier studies (14, 25, 26) that were often limited by potential for selection bias and/or 

limited statistical power (23, 43, 44) , the more recent record-based studies reviewed here do not require 

active participation of the study population. They thus can achieve larger sample sizes, while essentially 

avoiding selection bias.  

Kheifets et al. evaluated potential bias due to low participation in previous measurement-based studies 

compared to more recent record-based studies. Overall, associations were stronger for studies based on 

modelling as compared to ones with measurements. However, only the UK provides sufficient 

information for appropriate comparison (44). Despite this inherent advantage of studies that are purely 

record-based, achieving large sample sizes remains a challenge, particularly for countries with small 

population sizes such as Switzerland, Finland, or Denmark. The greatest challenge of record-based 

studies, however, is how to accurately assess individual exposure.   

Sample size and statistical power 
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Achieving sufficient statistical power is a key challenge of any epidemiological study assessing cancer 

risks associated with low-dose radiation. Statistical power depends not only on sample size and the 

magnitude of the expected effects, but also on the variability of the exposure between subjects. 

Three of the reviewed studies reported power calculations (27, 28, 30). For GB, Little et al. computed 

the number of years of comprehensive cancer registration that would be required to achieve sufficient 

sample sizes to detect the expected effects of radon and background gamma combined on childhood 

leukaemia risk (23). Depending on the study design the resulting numbers were: 14 years (6,400 cases) 

for a cohort study, 17 years (7,800 cases) for a case-control study with 5 controls per case and 19 years 

(8,700 cases) for an ecological study. The authors assumed the linear low-dose part of the BEIR V 

model derived from the Japanese data (ERR=32.1 Sv-1) and required 80% power for a 1-sided test at 

the 5% significance level. Larger samples are required for investigating effects of radon and gamma 

radiation separately (23).  

Despite the large sample size, the statistical power of the recent GB study to detect expected 

association between gamma ray exposure and childhood leukaemia risk was only about 50% (30); the 

geographic matching (by birth registration district) of cases and controls combined with the county 

district averaging resulted in about half of the cases having the same gamma dose rate estimate as their 

controls. The attempt to mitigate possible spatial confounding by regional matching reduced the 

exposure contrast between cases and controls and with that also the statistical power of the study.  For 

radon, there were considerably more measurements and the areal units were smaller, so this problem 

does not apply to the radon analysis, but the RBM dose is smaller and statistical power is much lower 

for this measure. 

The power of the recent French study (27) to detect the expected effects predicted by the 

multiplicative ERR model published by UNSCEAR (1) for leukaemia was 92.4% for gamma radiation 

exposure, 44.8% for radon exposure, and 99.4% for total gamma and radon exposure combined. 

Statistical power was higher for assumed ERRs of 5% and 10% per mSv, which correspond to effect 

sizes an order of magnitude greater than that found in the GB and Swiss studies. Despite this, no 

evidence of an association was found, while confidence intervals were incompatible with those of the 
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study from GB. This discrepancy is unlikely to be due to chance, suggesting that there are biases in 

either or both studies, or that the effects genuinely differ. The timing of the exposure assessment, 

which was at birth in the study from GB and at diagnosis in the French study, is one apparent 

methodological difference that might partially explain the difference. Assuming that early life 

exposure has a greater effect on cancer risk, exposure assessment at birth should give larger effect 

estimates (4, 45). However, this explanation is tenable only if residential mobility, i.e. moving home 

between birth and diagnosis, causes large and systematic differences in exposure between birth and 

diagnosis, which seems unlikely (see below for a discussion on residential mobility and potential 

biases). 

If the sample size calculations by Little et al. are used as a reference, the smaller studies conducted in 

Switzerland, Finland, and Denmark were markedly underpowered. However, in countries with greater 

exposure variability and/or levels, smaller samples are needed to achieve the same statistical power 

and precision of estimates. In the Swiss study, for instance, gamma-ray dose rate ranged from 55 to 

383 nSv/hr (mean 109 nSv/hr) compared to 38-160 nGy/hr (mean 95 nGy/hr) in GB as used in the 

generic calculations of Little et al. It should be noted that in the GB study of Kendall et al. controls 

were chosen from the same birth registration district as the case, so the power of this study will be 

determined by the variability of dose rates within these districts.  Bespoke power calculations for the 

study of Kendall et al. were carried out and reported in that paper.  The Finnish study had a statistical 

power of 80% for detecting a linear dose-response with OR of 1.06 or greater per 10 nSv h-1 increase 

in dose rate. For radon, the differences in exposure variability are larger between countries than for 

gamma radiation (Table 3).  

The uncertainty of dose estimates was not accounted for in the power calculations cited above. Its 

impact could be important (46), but to take it into account would require appropriately specified 

measurement error models. Further calculations on statistical power that account for the differences in 

exposure distribution by country and for measurement error are needed.  

Separate power calculations are also needed for the investigation of diagnostic subgroups including 

the cytogenetic subtypes of leukaemia, which may differ in their aetiology. Recurrent cytogenetic 
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alterations are important prognostic indicators. However, the epidemiological study of such subtypes 

has only recently begun (47). Of the studies presented in this review, only the Finnish study 

investigated genetic subtypes and results suggested a larger effect of radiation on leukaemia with high 

hyperdiploidy than other subgroups.  

Exposure assessment and measurement error 

One of the reasons why previous studies have focused on residential radon and terrestrial gamma 

radiation, and not for instance on ingested radionuclides, is that the former natural sources of radiation 

show distinct and measurable spatial variation. Such spatial variation can be exploited for exposure 

assessment in record-based studies based on residential information. Some countries, particularly 

those with considerable topographic variation, have included cosmic radiation, which can be modelled 

as a direct function of elevation (1). While concentrations of naturally occurring radionuclides in the 

soil, a major source of gamma radiation, are relatively constant over time, temporal variation due to 

migration and decay of radionuclides from artificial sources, such as the Chernobyl nuclear accident, 

may also be relevant. 

Exposure to terrestrial gamma and cosmic radiation 

In record-based studies, levels of external background gamma radiation in the homes of study 

participants are predicted based on measurements made at other locations throughout the area of study. 

There is considerable heterogeneity between the studies in the types of measurements and methods 

used (Table 3). Both indoor and outdoor measurements have been used for this purpose. Methods for 

assessing exposure in the study population include taking averages over administrative units, simple 

methods of interpolation, and global modelling approaches including kriging methods. The 

computational resolution of the maps ranged between 1x1 km2 (France) and 8x8 km2 (Finland). 

Clearly, these models do not capture all sources of exposure variation. Indoor exposure depends 

strongly on radioactivity in building characteristics including materials, shielding effects and the time 

children spend indoors and outdoors. Even though measured indoor dose rates correlate with outdoor 

dose rates, as shown in Finland as well as in GB (28, 48), exposure estimates derived from indoor 

measurements are anticipated to be more reliable as children spend most of their time indoors. 
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However, if relevant building characteristics are not accounted for in the exposure model and differ 

considerably between children’s homes or between measurement sites and children’s homes, this 

advantage could be lost. Although several studies based exposure assessment on indoor measurements, 

only the Finnish study included information on building type (blocks of flats compared to single-

family houses and terraced houses) in the exposure model.  

Another neglected source of variation are exposures outside the home, such as at schools. The true 

exposure of a child will be a weighted average of exposure at multiple locations within some perimeter 

from their home, suggesting that perfect spatial resolution of exposure models may not be needed for 

accurate prediction of individual exposure.  

Lastly, rainfall can modulate exposure by washing out the decay products of radon, leading to short-

term spikes in measurable radiation levels at ground-level, while snow cover can have a shielding 

effect. The latter may have led to an overestimation of the radiation levels in alpine regions of 

Switzerland, as variations due to snow coverage were not considered.  

There is also heterogeneity in the sources of external background gamma radiation considered for 

exposure assessment. Not all studies included the cosmic component, which is preferable if dose rates 

from cosmic rays vary considerably within the area of study. The studies from Finland and 

Switzerland separately modelled dose contributions originating from the Chernobyl fallout. In 

Switzerland, the dose rates from 137Cs were separately assessed and added to the other components of 

terrestrial radiation without considering temporal variation due to decay and migration of caesium. 

Residential radon 

Compared to gamma dose-rates, radon concentration is more difficult to model, because of large 

spatial variations in the radon potential of underlying soils and the strong dependency on housing 

characteristics and individual behaviour such as ventilation and heating habits. Reliable information 

on these predictors is seldom available. Therefore, there is arguably greater potential for 

misclassification when modelling radon compared to gamma. Again, there is considerable 

heterogeneity between the studies in the methods used to predict radon exposure (Table 4).  
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In the GB study, alternative methods for estimating radon concentrations were tested. The first 

grouped measurements by geological boundaries and grid squares; the second used simple averages 

over County Districts.  Broadly, similar results were obtained with either model (49). 

Radon is the dominant source of effective dose from natural sources of radiation in the general 

population. However, most of this dose is delivered to the lung and the contribution from radon to red 

bone marrow doses, which are relevant for the development of leukaemia, is minor compared to 

ingested radionuclides, terrestrial and cosmic radiation. For children in GB, Kendall et al. (50) 

estimated a mean annual RBM dose at ages 0-14 of 1.4 mSv with radon being responsible for around 

6% of the total dose, while terrestrial gamma rays with directly ionising cosmic rays and ingested 

radionuclides are responsible of 50% and 39% of the total dose, respectively. Harley and Robbins (51) 

have suggested that doses from radon decay products to circulating lymphocytes in the 

tracheobronchial epithelium could be relevant for childhood ALL, although Little et al. (10) concluded 

that it remains reasonable to concentrate attention upon the dose to the RBM when assessing the 

radiation-related risk of childhood leukaemia. 

The effects on childhood leukaemia risks of radon exposure are presumably more difficult to detect 

than those of gamma ray exposure, given a greater potential for exposure misclassification and a lower 

contribution to RBM doses. 

Performance of exposure models 

The performance of exposure models is generally assessed by leaving a set of measurements (test 

sample) out and predict its value based on the remaining measurements (training sample). In such 

internal validation, the coefficients of determination (proportion of variance explained, R2) of models 

used to assess residential radon exposure ranged from 0.20 to 0.40 (Table 4). The Danish study, the 

only study to use an independent dataset for validation (external validation), reported an R2 of 0.45 

(39).  

The performance of models used to estimate exposure to gamma radiation has been rarely assessed. In 

GB, gamma exposure was assessed using a simple county district mean, but in recent years several 

alternative prediction models based on gamma measurements in GB (48, 52, 53) have been devised. 
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The best performance was found for a linear model based on weighted sums of gamma dose rates 

among neighbouring measurement points and other simple models (53), which might be used in future 

studies. In France, the model used to estimate gamma exposure was based on Warnery et al. (41) and 

validated against an independent set of 8,839 dwelling indoor measurements (54). A relatively good 

correlation (r = 0.59) between estimates and measurements was observed, but there was a significant 

difference in mean dose rates (76 vs 55 nSv/h), possibly reflecting a difference between the dental 

surgeries and veterinary clinics, where the measurements used for model development had been made, 

and dwellings. In a sensitivity analysis, using an exposure model based on these 8,839 measurements 

within dwellings (unpublished results) rather than on the 17,404 ones used in the published analyses 

(27, 54), the findings of the study were unchanged. 

To date, there has been no validation of the exposure models used in the reviewed studies based on 

personal dosimetry in children. Such a study could help better understand the errors of the exposure 

models (55).  

Neglected sources of exposure 

Doses from medical uses of radiation and ingested radionuclides have been largely neglected in 

studies of cancer risks from background radiation, because data acquisition is exceedingly difficult, 

particularly without active participation of the study population. The Finnish study evaluated various 

hypothetical bias scenarios due to doses from CT scan examinations, but results were not materially 

affected (28). To the extent that omitted exposures correlate with the exposures that were assessed and 

included in regression models, estimated dose response relationships may be biased. Given a likely 

correlation between exposure to residential radon and exposure to terrestrial gamma radiation (30) , 

(organ-specific) doses from these sources should be combined, but dose conversion models for radon 

exposure are not well established as yet. Detailed information regarding possible correlations between 

these exposures and doses from ingested radionuclides or from medical radiation is lacking. A 

correlation of exposure to gamma radiation or domestic radon with doses from ingested radionuclides 

is plausible as the latter may also depend on local or regional concentrations of naturally occurring 

radionuclides. Such correlations would be more likely if consumed food products are grown locally 
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and drinking water is sourced from local aquifers. To some extent homeostatic control of 40K 

concentrations will reduce the variation in doses from internal emitters in the body, but such 

mechanisms do not apply to other radionuclides (56).  

Residential mobility and timing of exposure assessment 

Another important question that arises in studies of childhood cancer and natural sources of radiation 

is whether complete residential histories are required for accurate assessment of cancer risks. 

Radiation doses from gamma and radon exposure are received continuously over the whole lifetime at 

dose rates that are approximately constant at a given residential location (although radon remediation 

measures could substantially reduce radon exposure). The extent to which cancer risks at a given 

attained age depend on doses received at earlier ages remains unclear. Existing models suggest that 

these relationships differ considerably between cancer types (57). In the absence of an agreed 

alternative weighting scheme, cumulative doses are calculated by (unweighted) integration of dose-

rates from conception (or birth) to attained age. Ideally, this calculation should be based on full 

residential history. However, such data are only available in a few, mainly Nordic countries. In 

Finland, Nikkilä et al. examined the effects of incomplete residential histories on studies of 

background radiation (58). About 48% of cases and controls had lived only at one address and those 

who had relocated generally only moved short distances (median 4km, mean 40km) resulting in small 

differences in exposure levels between successive addresses. Similarly, Demoury et al. found only 

about 34% of children moved to another municipality between birth and diagnosis, and that there was 

a high correlation between exposures at birth and at diagnosis or at inclusion in control group: the 

Pearson correlation coefficient was 0.86 for radon and 0.89 for gamma radiation (27).  Of the 

childhood cancer cases in the study from GB, 44% had not moved residence between birth and 

diagnosis, and about two-thirds were living at diagnosis within 2 km of their birth address (43). Thus, 

in the absence of data on full address histories, the estimation from a single address, despite 

introducing measurement error, should still capture a large proportion of exposure variability between 

individuals. 
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Potential confounding 

Potential confounders comprise non-radiation risk factors that are associated with the primary disease 

endpoint and with determinants of radiation exposure from natural sources, such as residential 

location, dwelling characteristics and inhabitants’ living habits. Some factors for which a link with 

childhood cancer is supported by the literature and that might be associated with radiation exposure 

(29, 59) include traffic-related air pollution (60), pesticides (61), exposure to infections (62-66) and 

socioeconomic status (SES) (59, 67-69).  

Such association may also exist for other factors discussed in the literature of childhood cancer, for 

instance: genetic syndromes (47) and birth weight (70). Although all studies had considered some of 

these factors, it is difficult for a single study to include all (Table 1). The studies from France, 

Switzerland and Denmark included a broad range of covariates that showed some correlation with 

gamma or radon exposure. However, these adjustments had little effect on estimates of interest.  

Overall assessment of potential errors and bias 

Despite the methodological challenges, record-based studies have potential to detect and quantify 

childhood cancer risks associated with natural sources of radiation. First, by design, these studies are 

virtually free of selection bias (assuming complete cancer registries and random sample of 

representative controls) and the larger studies are adequately powered. Though exposure assessment is 

difficult, we would argue that the consequences of measurement errors may not be as severe as one 

might expect. The methods of estimating individual exposure to natural sources of radiation in record-

based studies involve interpolation, smoothing of measurements, and thus have a tendency for 

regression to the (local) mean. Arguably, therefore, the dominant component of non-systematic 

exposure measurement error in the discussed studies is of Berkson type, which results in reduced 

precision and statistical power, rather than of classical type, which would lead to bias towards the null. 

Furthermore, exposure models that, to a certain extent, smooth out small-scale variation may even 

improve precision of individual exposure assessment, because children’s true exposure is a time-

weighted average of exposures at the various locations (indoors and outdoors) where they spend most 

of their time. Lastly, the risk of confounding may be minimal, because for most of the suspected risk 
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factors neither the correlations between background gamma or radon nor the effects of the latter on the 

risks of childhood cancer are likely to be strong. Furthermore, in none of the studies did adjustment for 

potential confounders, such as SES, appreciably alter effect estimates.  

Despite these grounds for optimism, the excess cancer risks associated with natural background 

radiation are expected to be small and, consequently, even small biases from unmeasured confounding 

or measurement error could obscure the true effects. In consequence, the potential for bias should not 

be neglected. Indeed, the discrepancies between the results of the reviewed studies might suggest that 

systematic errors are at work in some way.  

Systematic errors in exposure estimates might occur if the measurements on which these are based are 

not representative of exposure levels at the locations where the study subjects spend much of their 

time. However, such errors are unlikely to cause bias in effect estimates unless they differ 

systematically between cases and controls. Other potential sources of systematic error could include 

regional differences in cancer registration coverage that correlate with natural sources of radiation 

levels, neglected exposures, large-scale confounding, ecologic bias or biases associated with 

aggregating (or over-smoothing) the exposure (71), and sampling variation, among others. 

Conclusions and future perspectives  

Recent studies on exposure to natural sources of radiation and childhood cancer have shown 

conflicting results, which remain to be resolved. As we have outlined, these studies face some 

common methodological challenges that should be addressed in future research. We propose some 

steps forward in Box 1. Thanks to the early establishment of national cancer registries in some 

countries, the challenge of achieving sufficient statistical power can now be met. Nevertheless, still 

larger studies or the pooling of studies will be needed to investigate disease subgroups.  

Currently, the greater challenge is to accurately assess children’s exposure for such large study 

populations.  For this, the study groups should learn from each other and join in concerted efforts to 

improve exposure estimation and look for new ways to validate these models with personal dosimetry. 

Quantitative analysis of potential biases associated with exposure misclassification and unmeasured 

confounding could shed light on existing inconsistencies and help study designs in future studies. By 
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addressing these challenges, we are reasonably confident that studies on exposure to natural sources of 

radiation and cancer risks in children can provide an evidence base for a better understanding of the 

effects of low dose ionizing radiation.
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Box 1: Recommendations for future research on cancer risks associated with natural sources of 

radiation 

 

 

 

 

 

• Increase sample size by including more recent cases and by pooling studies in order to 

assess effects on diagnostic subgroups and cytogenetic subtypes 

• Pool studies that have information on full residential history to assess the effects of 

timing of exposure 

• Optimise and harmonise methodologies for exposure modelling across studies 

• Refine exposure models for gamma radiation by accounting for shielding effects and 

radioactivity of building materials 

• Conduct focused exposure studies that will allow validation of exposure models used:  

o Surveys that assess individual exposure using personal dosimeters and collect 

information on time spent indoors and outdoors, housing characteristics, and 

perimeter of daily movements 

o New measurements at locations where children spend much of their time 

(schools, playgrounds etc.) 

• Refine and harmonise dosimetric calculations of cumulative organ doses throughout 

childhood 

• Include quantitative analysis and simulation of possible biases under realistic assumptions 

of measurement error and residual confounding 
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Tables 

Table 1. Characteristics of recent nationwide record-based epidemiological studies on background radiation and childhood cancer 

  Denmark Great Britain Switzerland Switzerland Finland France France Germany 

Study 
Raaschou-Nielsen et 

al.  2008 

Kendall et al. 

2013 
Hauri et al. 2013 

Spycher et al. 

2015 
Nikkilä et al. 2016 

Demoury et al. 

2017 

Demoury et al. 

2017 
Spix et al. 2017 

Study design case-control case-control 
census-based 

cohort 

census-based 

cohort 
case-control 

ecological 

(municipal level)  
case-control 

Ecological 

(community 

level) 

Period 1968 - 1994  1980 - 2006  

all children living 

in Switzerland 

2000 

 1990-2008 1990 - 2011  1990 – 2009 2002-2007  1987–2011 

Total number of 

cases-controls 
2,400-6,697 27,447-36,793 997 1,782 1,093-3,279 9,056 2,763-30,000 22,652 

Leukaemia cases 1,153 9,058 283 530 1,093 9,056 2,763 13,374 

Brain and CNS 

tumours 
922 6,585 258 423    9,048 

Malignant 

lymphoma 
325 2,319  328     
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Source of cancer 

cases 

Danish Cancer 

Registry 

National Registry 

of Childhood 

Tumours 

Swiss Childhood 

Cancer Registry 

Swiss Childhood 

Cancer Registry 

Finnish Cancer 

Register 

National Registry 

of Childhood 

Cancers 

National 

Registry of 

Childhood 

Cancers 

German 

Childhood 

Cancer 

Registry 

Selection of 

controls/population 
      

 

 

Method 

2 controls for each 

case of leukaemia, 3 

for 

each case of CNS 

tumour, and 5 for 

each malignant 

lymphoma, matched 

on sex and date of 

birth, randomly 

drawn from registry 

1 or 2 controls per 

case matched on 

sex, date of 

birth and place of 

birth registration 

Resident 

population < 16 

years of age during 

national census in 

2000 

Resident 

population < 16 

years of age 

during national 

censuses in 1990 

and 2000 

3 controls per case 

matched on year of 

birth and gender 

Census data from 

1990 - 2009 

30,000 

contemporaneous 

control addresses 

(5,000 per year) 

randomly 

sampled 

Population data 

from 1987 - 

2011 for the 

West and 1991 

- 2011 for the 

East 

Source 

Danish Central 

Population 

Registry 

Birth registry 
Swiss National 

Cohort 

Swiss National 

Cohort 

Population Register 

Centre 

Censuses  

 

Income and 

council tax 

databases of 

households 

Federal 

Statistics 

Bureau 
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Covariates at 

individual level 

birth order, mother's 

age, traffic density, 

electromagnetic 

fields from nearby 

high voltage 

facilities 

birth register, 

social class of the 

father (from 

occupation), 

Socio-economic 

status at census 

ward level 

(Carstairs index) 

sex, age, 

residential 

mobility, birth 

order, 

socioeconomic 

status of the 

parents, distance to 

road, NO2, 

regions, electric 

power lines, 

benzene 

concentrations, 

distance to 

broadcast 

transmitters, 

distance to the 

nearest orchard and 

vineyard, golf 

course, and gamma 

radiation  

education of 

household 

reference person, 

crowding, birth 

weight, birth 

order, traffic -

related air 

pollution, 

electromagnetic 

fields from radio 

and TV 

transmitters, high 

voltage power 

lines 

Down syndrome, 

large for gestational 

age, maternal 

smoking during 

pregnancy 

age, sex, exclusion 

of Paris 

age, sex, 

exclusion of 

Paris, exclusion 

of vicinity of 

nuclear power 

plants, proximity 

to high-voltage 

power lines, 

proximity to high 

traffic road 

age 
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Covariates at group 

level 
   

 degree of 

urbanization of 

municipality, 

socio-economic 

status of 

municipality 

 

socio-economic 

status of the 

municipality (Fdep 

index) 

socio-economic 

status of the 

municipality 

(Fdep index) 

Socio-

economic 

index on 

community 

level, regions, 

excluding big 

cities 

Exposure 

assessment 
 

     

 

 

Included exposures Indoor radon 

Indoor radon 

Indoor gamma 

Cosmic radiation 

Indoor radon 

Terrestrial 

gamma 

Cosmic radiation 

Cs-137 

deposition 

Indoor and outdoor 

gamma 

Chernobyl fallout 

Indoor radon 

Terrestrial gamma 

Cosmic radiation 

Indoor radon 

Terrestrial 

gamma 

Cosmic radiation 

Outdoor 

gamma 

Timing of exposure 
residential address 

history 
at birth at census at census 

residential address 

history 
at diagnosis at diagnosis at diagnosis 

Gamma dose range 

(mean) 
----- 

38.1 - 159.7 

nGy/hr (94.7 

nGy/hr) 

----- 
55 - 383 nSv/hr 

(109 nSv/hr) 

Mean: 67.2 nSv/h 

for cases and 66.4 

nSv/h for controls 

65.9 - 260.8 nSv/hr 

(102.6 nSv) 

65.9 - 260.8 

nSv/hr (102.6 

nSv) 

 56.9 – 172.0 

nSv/hr 

(93.3 nSv/h) 
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Radon exposure 

range (mean) 

4 - 254 Bq/m3  

(48 Bq/m3) 

1.2 - 692 Bq/m3  

(21.3 Bq/m3) 

0.7 - 490.1 Bq/m3  

(86 Bq/m3) 
----- ----- 

12.5 - 819.2 

Bq/m3  

(67.2 Bq/m3) 

12.5 - 819.2 

Bq/m3  

(67.2 Bq/m3) 

----- 

Statistical analysis 
      

 
 

Risk measure 
Rate ratios for 

cumulative exposure 

Relative risk for 

cumulative 

exposure 

Hazard ratios for 

survival data 

Hazard ratios for 

survival data 

Odds ratio for 

cumulative 

exposure and 

average exposure 

Standardized 

incidence ratio for 

cumulative and at 

place of diagnosis 

exposure 

Odds ratio for 

cumulative and 

at place of 

diagnosis 

exposure 

Incidence rate 

ratios 

Latency period -----  9 months ----- ----- 24 months 0 and 24 months 0 and 24 months ----- 
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Table 2. Relative risks in recent nationwide record-based epidemiological studies on background radiation and childhood leukaemia 

Source of exposure Country Cases 

Time-place of 

exposure 

Relative risks (95% confidence interval) 

Leukaemia Central Nervous 
System tumours 

Radon concentration 

(Bq/m3) 
    

 

 
DK 1,153 Full residential history 1.34 (0.97, 1.85)a/ 0.92 (0.69, 1.22)a/ 

 
CH 283 Census  0.90 (0.68,1.19)b/ 1.19 (0.91, 1.57) b/ 

Radon radiation dose 

(mSv) 
    

 

 
GB 9,058 Birth 1.03 (0.96, 1.11)  

 
FR 9,056 Diagnosis  1.00 (0.97, 1.02) - 

Gamma radiation 

dose (mSv) 
    

 

 
GB 9,058 Birth 1.12 (1.03, 1.22)  

 
FI 1,093 Full residential history  0.97 (0.89, 1.06) - 
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FR 9,056 Diagnosis 1.00 (0.99, 1.01) - 

 
CH 530 Census 1.04 (1.00, 1.08)c/ 1.04 (1.00, 1.08)c/ 

 DE 11,447 Diagnosis 1.04 (0.91, 1.20)d/ 1.35 (1.17, 1.57)d/ 

Radon and 

background gamma 

dose combined 

(mSv) 
    

 

 
GB 

       

9,058  Birth 1.07 (1.01, 1.13) - 

  FR 

       

9,056  Diagnosis 1.00 (0.99, 1.01) - 

Note: data are relative risk (95% confidence intervals) per mSv cumulative equivalent dose to the RBM (if not otherwise indicated).  Abbreviations: FI Finland, GB Great Britain, 

FR France, CH Switzerland, DK Denmark and DE Germany. 

a Per 103 Bq/m3-years 

b Per 100 Bq/m3 

c Per mSv cumulative effective dose (whole body) 

d RR comparing 1.5 vs 0.5 mSv/a for acute lymphoid leukaemia 
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Table 3: Characteristics of models use to assess exposure on gamma radiation in recent record-based epidemiological studies on background radiation and childhood 

cancer 

  Great Britain Switzerland Finland France Germany 

Study Kendall et al. 2013 Spycher et al. 2015 Nikkilä et al. 2016 Demoury et al. 2017 Spix et al. 2017 

Exposure assessment 

Indoor 

dose rates from cosmic and 

terrestrial sources 

Outdoor dose rates from 

cosmic and terrestrial sources 

Indoor and outdoor dose rates 

from terrestrial sources 

Indoor dose rates from 

cosmic and terrestrial sources 

Outdoor annual ambient dose 

rate from terrestrial 

 and cosmic sources 

Sources 

2,283 domestic 

measurements in Great 

Britain 

Airborne spectrometry, 166 

in-situ spectrometry 

measurements, 837 in situ 

dose rate measurements, and 

612 laboratory measurements 

of rock and soil  

346 domestic measurements, 

a mobile survey with 

Geiger-counters and 

spectrometers, 

Municipal averages of dose 

rates, 

Map of Cs-137 activity after 

Chernobyl nuclear accident, 

 - Terrestrial gamma 

radiation:  

14,124 measurements (8,895 

indoor, 5,229 outdoor) and 

14,234 TLD measurements in 

surveillance data. 

- Telluric gamma radiation:  

Map of geogenic uranium 

potential and 97,595 TLD 

measurements in dentist 

1,800 

stations in Germany 
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Building material information 

as an indoor/outdoor factor 

surgeries and veterinary 

clinics 

- Ecological study: average 

municipality exposure 

Type of model County districts mean  
Interpolation using inverse 

distance weighting 
Bivariate interpolation Cokriging 

Interpolation using inverse 

distance weighting 

Geographic resolution County District level 2×2 km2 grid map 8 x 8 km grid map 1 × 1 km2 grid map Community level 

  

Page 34 of 35AUTHOR SUBMITTED MANUSCRIPT - JRP-101695.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



IOP Publishing Journal of Radiological Protection 

35 
 

Table 4. Characteristics of radon exposure assessment in recent record-based epidemiological studies on background radiation and childhood cancer 

  Denmark Great Britain Switzerland France 

Study  Raaschou-Nielsen et al. 2008 Kendall et al. 2013 Hauri et al. 2013 Demoury et al. 2017 

Exposure 

assessment 
Domestic radon concentration Domestic radon concentration Domestic radon concentration Domestic radon concentration 

Sources 3,116 indoor measurements ~400,000 indoor measurements, 35,706 indoor measurements 10,843 measurement of indoor radon 

Predictors 
Geographical region, soil type and 

house characteristics 

Bedrock and superficial geological 

characteristics 

Tectonic units, building information, 

soil texture, urbanization and floor 

level 

concentration and a map of geogenic 

radon potential 

Performance 

R² = 0.45  

(tested against independent 

measurements) 

R² = 0.34 - 0.40 R² = 0.20 R² = 0.32 

Method Linear regression model 

Log-normal modelling based on 

measurements grouped by grid square 

and geological boundaries 

Log-linear regression model Cokriging model 

Geographic 

resolution 
 1 × 1 km2 grid map  1 × 1 km2 grid map 
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