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We propose a novel approach to multiple criteria sorting incorporating a threshold-based 
value-driven procedure. The parameters deciding upon the shape of marginal value func-
tions and separating class thresholds are inferred through preference disaggregation from 
the Decision Maker’s incomplete assignment examples and partial requirements on the 
type of (non-)monotonicity for each marginal value function. These types include standard 
monotonic shapes, level-monotonic functions, A- and V-types combining increasing and 
decreasing value trends, and unknown monotonicity constraints. A representative instance 
of the sorting model compatible with the preference information is constructed by solving 
a dedicated Mixed-Integer Linear Programming problem. Its complexity is controlled by 
minimizing the number of changes in monotonicity between all subsequent sub-intervals 
of marginal value functions. The assignments derived using the constructed representative 
model are validated against the outcomes of robustness analysis. The proposed method 
is applied to a real-world problem of exposure management of engineered nanomateri-
als. We develop a model for predicting precaution level while handling nanomaterials in 
certain conditions using a respirator. The model captures interrelations between ten ac-
counted evaluation criteria, including both monotonic and non-monotonic criteria, and the 
recommended class assignment. This makes it suitable for the management of exposure 
scenarios, which have not been directly judged by the experts.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multiple Criteria Decision Aiding (MCDA) is one of the fastest developing sub-fields of computer science and operational 
research [16]. Its importance derives from offering a diversity of approaches for structuring decision problems involving 
multiple criteria and carrying forward their solution. As the criteria used to represent pertinent viewpoints on the quality 
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of considered alternatives usually do not align to indicate the most preferred alternative, arriving at the problem’s solution 
requires involvement of Decision Maker (DM). (S)he is expected to exchange information with the method in a way ensuring 
that a recommendation constructed in the course of a decision aiding process is feasible and consistent with his/her value 
system [36].

The two major components of decision aiding approaches are responsible for querying the DM for suitable inputs and 
performing the analysis of his/her feedback to produce a recommendation in function of the specific problem to solve [23]. 
When it comes to the required inputs, their characteristics may be two-fold. On the one hand, they may be imposed by 
the context of a particular decision problem, hence referring to the characteristics of criteria, type of performances, or 
specificity of expected results. On the other hand, the inputs may represent the DM’s subjective preferences indicating 
his/her priorities, requirements, and choices that should be respected when deriving the recommendation. Processing such 
diverse information consists in constructing a preference model of the DM in the context of the considered decision problem, 
and exploiting this model to produce numerical and other arguments supporting the recommendation.

Most traditional MCDA methods incorporate complete information about the problem and model parameters. Such in-
formation takes the form of precise performances of alternatives, well-defined preference directions for all criteria, exact 
requirements imposed on the provided outcomes, or exact values of preference model parameters [37]. The assumption on 
availability of such complete information may be questioned on many grounds. When it comes to the model parameters, 
it may not be possible to obtain their reliable exact estimates from the DM due to a misunderstanding of their meaning, 
a prohibitively high cognitive effort related to their elicitation, a lack of DM’s confidence in providing precise inputs, or 
an application of some arbitrary transformation of the incomplete judgments to the complete ones (e.g., converting ordinal 
scales of criteria to cardinal weights). For this reason, the interest in recently developed MCDA approaches has been shifted 
to acquiring partial preference information at an affordable effort [5,37].

The terms of incomplete or partial information can be interpreted in two interrelated ways [13,28]. On the one hand, they 
indicate that the DM’s preferences – usually modeled in form of some constraints – can be satisfied by more than one set 
of parameter values. This implies multiplicity of preference model instances compatible with the DM’s statements [37]. On 
the other hand, incompleteness or partiality of preference information emphasizes that its use may not lead to a univocal 
recommendation [5]. However, the latter can be made robust by eliciting richer (i.e., more complete) information from the 
DM [3].

As far as MCDA methods incorporating partial preference information are concerned, the preference disaggregation ap-
proaches have been prevailing in the recent years [5,21]. They assume that the DM’s preferences have the form of example 
holistic decisions concerning a subset of reference alternatives. Such judgments may come from historical data, from the 
DM’s better knowledge of some alternatives, or can be implied by a relative easiness of performing a comprehensive evalu-
ation of such alternatives [39].

In this paper, we consider multiple criteria sorting problems oriented toward an assignment of alternatives to pre-defined 
and preference ordered decision classes [47]. For this purpose, we use a threshold-based value-driven sorting procedure [14,
46]. It incorporates a preference model composed of an additive value function and thresholds separating the classes on 
a scale of a comprehensive value. The parameter values deciding upon the shape of marginal value functions and sepa-
rating thresholds are inferred indirectly from the assignment examples, which are composed of reference alternatives and 
their desired class assignments [14]. The latter ones should be reproduced in the final recommendation, while addition-
ally delimiting the space of admissible values of preference model parameters and influencing the sorting of non-reference 
alternatives.

The preference disaggregation paradigm has been so far mostly applied in the context of monotone learning data, i.e., 
criteria with well-defined preference directions [14,26]. These include gain and cost criteria, on which one prefers, respec-
tively, greater or lesser performances. However, the recent trend in MCDA (see, e.g., [11,25,34]) – motivated by numerous 
real-world applications – consists in accounting for the non-monotonic criteria [1].

The framework proposed in this paper accounts for a wide spectrum of types of monotonic and non-monotonic marginal 
value functions within a preference disaggregation framework. These types admit specification of partial information con-
cerning the DM’s per-criterion preferences implied by the problem’s peculiarity. In particular, we consider both gain- and 
cost-type criteria as well as preference-ordered attributes for which the direction of monotonicity cannot be specified a 
priori. Furthermore, we account for A- and V-type functions, which combine increasing and decreasing trends in disjoint 
sub-ranges of the performances scale. We also generalize the latter functions to level-monotonic characteristics, which cor-
respond to the shapes assigning the same marginal value to all performances in a certain performance sub-region, but 
adhering to monotonicity constraints in the other region [34]. For example, the level-decrease function assigns the same 
maximal marginal value to a subset of the least performances, while systematically decreasing it from a certain point of 
the performance scale down to zero being associated with the greatest performance. Finally, we also account for the cri-
teria with unknown monotonicity constraints [25], for which the respective marginal functions are allowed to take any 
shape.

Similarly to Kliegr [25], we aim at constructing a model whose complexity is controlled by the number of changes in 
monotonicity between all subsequent sub-intervals of marginal value functions. Minimizing this number, we implement 
the prudence principle in MCDA, while adjusting the model’s complexity to the available incomplete preferences. Hence, 
the lack of complete information about the monotonicity of particular criteria offers different means for ensuring consis-
tency between the DM’s preference information and the model than in traditional MCDA approaches. Indeed, it opposes to 
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both consistency restoration which eliminates the conflicting DM’s statements [30,31] and consistency preservation enforc-
ing compatibility of the new DM’s judgments with the previously elicited statements [2,4]. To adjust the non-monotonic 
character of the marginal value functions to the available assignment examples, we use Mixed-Integer Linear Programming 
(MILP).

The proposed basic model constructs a single additive value function and a vector of precise class thresholds. However, 
when using indirect preference information, there may exist multiple instances of the sorting model that would be com-
patible with it, hence restoring the DM’s assignment examples [14,17,22]. In our case, a set of compatible instances of the 
sorting model is delimited by the minimal number of changes in monotonicity for all marginal value functions. The ap-
plication of such model instances on the set of non-reference alternatives may lead to different assignments [14,26]. From 
the viewpoint of robustness analysis, it is thus advisable to examine how the sorting recommendation changes when the 
complexity of compatible model instances varies within the plausible limits. The results of such an examination take the 
form of possible assignments, which indicate classes to which a given alternative is assigned by at least one instance of 
the compatible sorting model. Such assignments can be interpreted as robust conclusions which are supported by the DM’s 
partial preference information.

The proposed method is applied to a real-world problem of exposure management of Engineered Nanomaterials (ENMs). 
Nowadays, such materials are commonly used in consumer products like cosmetics, clothes and food, which implies that the 
number of workers exposed to such materials is increasing each year [12,27]. The available approaches proposed for control-
ling exposure to nanomaterials include the use of personal protective equipment, administrative and work practices control 
and engineering controls [33]. We develop a model for assessing the suitability of a particular Risk Management Measure 
(RMM) for exposure management during the manufacturing of ENMs. Specifically, we focus on the use of a respirator while 
handling nanomaterials in certain conditions. The input preference information concerns a holistic assessment of a subset 
of exposure scenarios to nanomaterials conducted by a team of experts in view of the recommended level of the selected 
RMM [32]. In addition, ten descriptors are included in the model development. They include seven monotonic criteria of 
either gain- or cost-type, a single level-increase criterion, and two non-monotonic variables. The role of constructed model 
is to capture the interrelations between the evaluation criteria and the recommended level of use of the considered RMM. 
In this way, the model explains the expert judgments, but it can also be used to assess other exposure scenarios to ENMs. 
The obtained recommendation is validated against the outcomes of robustness analysis in view of the plurality of sorting 
model instances compatible with the assignment examples.

The remainder of this paper is organized as follows. In Section 2, we describe the mathematical models underlying the 
proposed method and review the existing preference disaggregation methods that are able to handle non-monotone data. 
Section 3 discusses the results of its application to exposure management of engineered nanomaterials. The last section 
concludes and outlines avenues for future research.

2. Construction of threshold-based value-driven sorting model with partially known monotonicity constraints based on 
the Decision Maker’s assignment examples

Let us use the following notation [23]:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;

• AR = {a∗, b∗, . . .} ⊆ A – a finite set of reference alternatives, which the DM accepts to critically judge in a holistic way;

• G = {g1, g2, . . . , g j, . . . , gm} – a finite set of m evaluation criteria, g j : A →R for all j ∈ J = {1, . . . , m};

• X j = {x j ∈R : g j(ai) = x j, ai ∈ A} – a set of all different performances on g j , j ∈ J ;

• x1
j , x

2
j , . . . , x

n j(A)

j – increasingly ordered values of X j , xk
j < xk+1

j , k = 1, 2, . . . , n j(A) − 1, where n j(A) = |X j | and n j(A) ≤
n;

• C1, C2, . . . , C p - p pre-defined, preference ordered classes, where Ch+1 is preferred to Ch , h = 1, . . . , p − 1 (H =
{1, . . . , p}).

2.1. Sorting model

To comprehensively assess the quality of alternatives, we use an additive value function defined as follows [24,39]:

U (ai) =
m∑

j=1

u j(g j(ai)) =
m∑

j=1

u j(ai) ∈ [0,1], (1)

where u j is a marginal value associated with criterion g j , j = 1, . . . , m. It is used to evaluate alternatives ai ∈ A from a 
specific point of view. Observe that in Eq. (1) and in the following with the notation u j(a) we mean u j(g j(a)). For all 
criteria, we use general functions with all unique performances corresponding to the characteristic points [14]. Hence, the 
shape of u j(ai) is determined by u j(xk), k = 1, 2, . . . , n j(A).
j
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Fig. 1. Value-driven threshold-based sorting procedure.

To classify the alternatives, we use a value-driven threshold-based sorting procedure in which the boundaries between 
the classes are defined with a vector of thresholds t0, t1, . . . , th, . . . , tp , such that th−1 and th are, respectively, the lower and 
upper bounds on a scale of a comprehensive value for class Ch , h = 1, . . . , p [14,46]. Alternative ai ∈ A is assigned to class 
Ch in case th−1 ≤ U (ai) < th . Such a procedure is presented graphically in Fig. 1. The set of constraints defining the basic 
assumptions of the underlying preference model is as follows:

U (ai) = ∑m
j=1 u j(ai), for all ai ∈ A,

th − th−1 ≥ ε, h = 1, . . . , p,

t0 = 0, tp ≥ 1 + ε,

⎫⎪⎬
⎪⎭

E M O D E L (2)

where ε is an arbitrarily small positive value.
In the following subsections, we discuss constraints that reconstruct the DM’s preference information and define a set of 

compatible value functions. We also present the mathematical models for both selection of a single representative sorting 
model as well as robustness analysis whose results are quantified by means of possible assignments.

2.2. Preference information

The parameters of an assumed sorting model are inferred indirectly from the DM’s assignment examples specifying for 
each reference alternative a∗

i ∈ AR its desired class C DM(a∗
i ) (e.g., alternative a∗

1 should be assigned to class C2, whereas 
alternative a∗

2 should be sorted into class C4) [14,26]. The assignment examples are translated to the following con-
straints:

for all a∗
i ∈ AR :

U (a∗
i ) ≥ tDM(a∗

i )−1,

U (a∗
i ) + ε ≤ tDM(a∗

i ).

⎫⎪⎪⎬
⎪⎪⎭

E A S S−E X (3)

Thus, a comprehensive value of a reference alternative assigned to C DM should be within the bounds associated with this 
class.

2.3. Compatible sorting model instances

In the proposed approach, we consider a wide spectrum of types of monotonic and non-monotonic marginal value 
functions within a preference disaggregation framework. These types include standard monotonic shapes, level-monotonic 
functions, A- and V-types combining increasing and decreasing value trends, and unknown monotonicity constraints.

The existing preference disaggregation methods that are able to handle non-monotone data can be classified into 
different streams. Firstly, one has proposed to use some specific forms of non-monotonicity or pre-defined shapes of non-
monotonic marginal value functions. In this regard, Despotis and Zopounidis [6] and Guo et al. [17] considered the criteria 
with some mid-point corresponding to the most preferred performance, whereas Rezaei [34] accounted for a rich spectrum 
of precisely specified shapes including, e.g., A- or V-type functions. Secondly, some more general algorithms have been de-
vised to avoid dealing solely with some specific form of non-monotonicity. In particular, Doumpos [7] used a differential 
evolution algorithm and Ghaderi et al. [10] introduced a mathematical programming model for constructing non-monotonic 
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functions, while not directly restraining the model’s complexity. The last group of methods aimed at disaggregating holistic 
judgments while not making any assumptions on the shape of marginal value functions, but controlling their complexity. In 
this regard, Kliegr [25] penalized the changes of non-monotonicity in the shape of marginal functions using MILP models, 
whereas Ghaderi et al. [11] and Liu et al. [29] considered minimization of the variation in slope with, respectively, Linear 
Programming (LP) techniques or a quadratic optimization problem.

In what follows, we discuss constraints that define the shape of marginal value functions depending on the desired types 
of (non-)monotonicity, and normalize comprehensive values within the [0, 1] range.

Shape of marginal value functions. For each criterion g j , j = 1, . . . , m, the DM is expected to define the respective re-

quirements on monotonicity of marginal values which are assigned to the respective performances x1
j , x

2
j , . . . , x

n j(A)

j . These 
are implied by the type associated with a given criterion. We consider the following types: gain, cost, monotonic non-
defined, A, V, increase-level, decrease-level, level-increase, level-decrease, and non-monotonic. In what follows, we explain 
their meaning and discuss the respective constraints. Whichever the criterion’s type, we require all marginal values to be 
non-negative:

u j(xk
j) ≥ 0, j = 1, ....,m,k = 1, ...,n j(A).

}
E N O N−N EG

The set of constraints involving E N O N−N EG as well as the constraints related to the type of (non-)monotonicity for all criteria 
will be denoted by E M O N .

• Gain type means that the greater g j(ai), the more preferred alternative ai on criterion g j , thus implying the non-
decreasing trend for the marginal values with the increase in g j(ai) (see Fig. 2a):

u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A).
}

E M O N
G AI N

• Cost type implies that the greater g j(ai), the less preferred alternative ai on criterion g j , thus implying the non-
increasing trend for the marginal values with the increase in g j(ai) (see Fig. 2b):

u j(xk
j) ≤ u j(xk−1

j ), k = 2, ...,n j(A).
}

E M O N
C O ST

• Monotonic non-defined type implies that the preference on g j adheres to the monotonicity constraints, but whether it is 
of gain or cost type cannot be specified a priori:

u j(xk
j) = u↑

j (xk
j) + u↓

j (xk
j), k = 1, ...,n j(A),

u↑
j (xk

j) ≥ u↑
j (xk−1

j ), k = 2, ...,n j(A),

u↓
j (xk

j) ≤ u↓
j (xk−1

j ), k = 2, ...,n j(A),

u↑
j (xk

j), u↓
j (xk

j) ≥ 0, k = 1, ...,n j(A),

u↑
j (x

n j(A)

j ) ≤ M · (1 − vmon
j,cost),

u↓
j (x1

j ) ≤ M · vmon
j,cost,

vmon
j,cost ∈ {0,1},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E M O N
N O N−D E F

where M is an arbitrarily large positive constant. The marginal value function u j is modeled as a sum of values derived 
from the assumption that g j is either of gain (u↑

j ) or cost (u↓
j ) type. However, only one of them can be activated with 

the binary variable vmon
j,cost . Specifically, if vmon

j,cost = 1, g j is of cost type. Then, u↑
j (x

n j(A)

j ) = 0 and, thus, all marginal values 
u↑

j (·) are equal to 0. Otherwise, u↓
j (x1

j ) = 0 and, thus, all marginal values u↓
j (·) are equal to 0. This, in turn, implies that 

g j is of gain type.

When modelling marginal value functions for the criteria of gain, cost, or monotonic non-defined types, we required 
that monotonicity is non-strict. This admits marginal values assigned to a pair of performances xk−1

j and xk
j for k =

2, . . . , n j(A), to be equal. In case the DM would expect the marginal function to be strictly monotonic, the respective 
weak inequalities should be replaced with their strict counterparts involving ε. For example, for gain-type criteria, 
constraint u j(xk

j) ≥ u j(xk−1
j ) contained in E M O N

G AI N should be replaced with u j(xk
j) ≥ u j(xk−1

j ) + ε.

• A-type means that the most preferred performance potentially does not align with any extreme performance, hence 
admitting at most one change of monotonicity from non-decreasing to non-increasing (see Fig. 2c):
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Fig. 2. Example marginal value functions representing different types of requirements with respect to their monotonicity.

M · ∑k
p=2 vopt

j,p + u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A),

u j(xk
j) ≤ u j(xk−1

j ) + M · (1 − ∑k
p=2 vopt

j,p), k = 2, ...,n j(A).

∑n j(A)

p=2 vopt
j,p ≤ 1,

vopt
j,p ∈ {0,1}, p = 2, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

E M O N
A

Note that vopt
j,p is allowed to be 1 for at most one p ∈ {2, . . . , n j(A)}. If vopt

j,p = 1, then the following constraints hold:

u j(xk
j) ≥ u j(xk−1

j ), if p ≥ 3, k = 2, ..., p − 1,

u j(xk
j) ≤ u j(xk−1

j ), k = p, ...,n j(A).

⎫⎬
⎭

Thus, if vopt
j,2 = 1, u j is non-increasing (i.e., g j is of cost type); if vopt

j,p = 1, for 3 ≤ p ≤ n j(A), then u j is of pure A-type, 
whereas vopt = 0 for p ∈ {2, . . . , n j(A)} implies that u j is non-decreasing (i.e., g j is of gain type).
j,p



66 M. Kadziński et al. / International Journal of Approximate Reasoning 117 (2020) 60–80
• V-type means that the least preferred performance potentially does not align with any of the extreme performances, 
hence admitting at most one change of monotonicity from non-increasing to non-decreasing (see Fig. 2d):

u j(xk
j) ≤ u j(xk−1

j ) + M · ∑k
p=2 vopt

j,p, k = 2, ...,n j(A).

M · (1 − ∑k
p=2 vopt

j,p) + u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A),

∑n j(A)

p=2 vopt
j,p ≤ 1,

vopt
j,p ∈ {0,1}, p = 2, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

E M O N
V

The role of binary variable vopt
j,p is analogous to the case of A-type function.

• Increase-level type implies that u j is non-decreasing up to a certain (though not indicated a priori) performance and 
then reaches saturation, hence remaining constant from this point up to the greatest performance (see Fig. 2e). This 
type of function can be enforced by putting together the requirements for A- and gain-type functions, i.e.:

E M O N
A , E M O N

G AI N .
}

E M O N
I NC−LE V

• Level-increase type implies that u j is constant up to a certain performance (thus, assigning zero to the respective 
marginal values), and non-decreasing in the range between this point and the greatest performance (see Fig. 2f). This 
type of function can be enforced by putting together the requirements for V- and gain-type functions, i.e.:

E M O N
V , E M O N

G AI N .
}

E M O N
LE V −I NC

• Decrease-level type implies that u j is non-increasing up to a certain performance and then assigns zero to marginal 
values corresponding to all remaining performances (see Fig. 2g), i.e.:

E M O N
V , E M O N

C O ST .
}

E M O N
D EC−LE V

• Level-decrease type implies that u j is constant up to a certain performance (thus, assigning the maximal value to the 
respective marginal values), and non-increasing in the range between this point and the greatest performance (see 
Fig. 2h), i.e.:

E M O N
A , E M O N

C O ST .
}

E M O N
LE V −D EC

• Non-monotonic type means that there is no prior information on the monotonicity of criterion g j (see Fig. 2i). In general, 
it would be possible to avoid defining any constraints for such functions, but since we aim at controlling the complexity 
of the inferred marginal value functions, we will include the following constraint set which captures the number of 
changes in monotonicity between the neighboring performance sub-intervals:

M · (1 − vk,k−1
j,mon−dir) + u j(xk

j) ≥ u j(xk−1
j ), k = 2, ...,n j(A),

u j(xk
j) ≤ u j(xk−1

j ) + M · vk,k−1
j,mon−dir k = 2, ...,n j(A),

vk,k−1
j,mon−dir − vk−1,k−2

j,mon−dir + M · vk,k−2
j,change−mon ≥ 0, k = 3, ...,n j(A),

vk,k−1
j,mon−dir − vk−1,k−2

j,mon−dir − M · vk,k−2
j,change−mon ≤ 0, k = 3, ...,n j(A),

vk,k−1
j,mon−dir ∈ {0,1},k = 2, ...,n j(A),

vk,k−2
j,change−mon ∈ {0,1},k = 3, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E M O N
N O N−M O N

If u j(xk
j) ≥ u j(xk−1

j ), then vk,k−1
j,mon−dir = 1 and u j is non-decreasing between characteristic points xk−1

j and xk
j . If u j(xk

j) ≤
u j(xk−1

j ), then vk,k−1
j,mon−dir = 0 and u j is non-increasing between characteristic points xk−1

j and xk
j . If there is a change 

in the monotonicity direction of u j between three characteristic points xk−2
j , xk−1

j , and xk
j (i.e., either vk,k−1

j,mon−dir = 1

and vk−1,k−2
j,mon−dir = 0, or vk,k−1

j,mon−dir = 0 and vk−1,k−2
j,mon−dir = 1), then vk,k−2

j,change−mon = 1. Otherwise (i.e., either vk,k−1
j,mon−dir = 1

and vk−1,k−2
j,mon−dir = 1, or vk,k−1

j,mon−dir = 0 and vk−1,k−2
j,mon−dir = 0), vk,k−2

j,change−mon = 0 and there is no change in the monotonicity 

direction of u j between xk−2
j and xk

j . Thus, the sum of vk,k−2
j,change−mon ∈ {0, 1}, for k = 3, ..., n j(A), represents the number 

of changes in the monotonicity of u j .

Normalization. For the sake of interpretability, an additive value function is normalized to the [0, 1] interval. This is attained 
by means of two types of constraints. On the one hand, the marginal values of the least preferred performances on all 
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criteria need to be zero. In this way, a comprehensive value of an anti-ideal alternative is also equal to zero. On the other 
hand, the marginal values assigned to the most preferred performances on all criteria need to sum up to one, i.e.:

∑m
j=1 ubest

j = 1,
}

E N O RM−1

where ubest
j is the greatest marginal value for criterion g j , j = 1, ..., m. The set of constraints involving E N O RM−1 as well 

as dedicated normalization constraints related to the type of (non-)monotonicity for all criteria will be denoted by E N O RM . 
The respective constraints which allow to identify the least and the most preferred performances which are assigned, re-
spectively, zero and a maximal marginal value are discussed individually for each criterion type:

• For gain, increase-level, and level-increase criteria, the least performance is assigned a marginal value of zero, i.e.:

u j(x1
j ) = 0,

}
E N O RM−0

G AI N

whereas the greatest performance is the most preferred one, i.e.:

u j(x
n j(A)

j ) = ubest
j .

}
E N O RM−1

G AI N

• For cost, decrease-level, and level-decrease criteria, the greatest performance is assigned a marginal value of zero, i.e.:

u j(x
n j(A)

j ) = 0,

}
E N O RM−0

C O ST

whereas the least performance is the most preferred one, i.e.:

u j(x1
j ) = ubest

j .
}

E N O RM−1
C O ST

• For monotonic criteria with non-defined type of monotonicity, the less preferred performance is either the least (if 
vmon

j,cost = 0) or the greatest one (if vmon
j,cost = 1), i.e.:

u↓
j (x

n j(A)

j ) ≤ M · (1 − vmon
j,cost),

u↑
j (x1

j ) ≤ M · vmon
j,cost,

⎫⎬
⎭ E N O RM−0

N O N−D E F

whereas the most preferred performance is either the greatest (i.e., vmon
j,cost = 0) or the least one (if vmon

j,cost = 1), i.e.:

ubest
j − u↓

j (x1
j ) ≥ −M · (1 − vmon

j,cost),

ubest
j − u↓

j (x1
j ) ≤ M · (1 − vmon

j,cost),

ubest
j − u↑

j (x
n j(A)

j ) ≥ −M · vmon
j,cost,

ubest
j − u↑

j (x
n j(A)

j ) ≤ M · vmon
j,cost .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
N O N−D E F

• For A-type criteria, the least preferred performance is either x1
j (if v j,norm−0 = 0) or x

n j(A)

j (if v j,norm−0 = 1), i.e.:

u j(x1
j ) ≤ u j(x

n j(A)

j ) + M · v j,norm−0,

M · (1 − v j,norm−0) + u j(x1
j ) + ε ≥ u j(x

n j(A)

j ),

u j(x1
j ) ≤ M · v j,norm−0,

u j(x
n j(A)

j ) ≤ M · (1 − v j,norm−0),

v j,norm−0 ∈ {0,1},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−0
A

whereas the most preferred performance is either xk−1
j (if vopt

j,k = 1 for some k = 2, ..., n j(A)) or x
n j(A)

j (if vopt
j,k = 0 for 

all k = 2, ..., n j(A)), i.e.:

ubest
j − u j(xk−1

j ) ≥ −M · (1 − vopt
j,k ), k = 2, ...,n j(A),

ubest
j − u j(xk−1

j ) ≤ M · (1 − vopt
j,k ), k = 2, ...,n j(A),

ubest
j − u j(x

n j(A)

j ) ≥ −∑n j(A)

k=2 vopt
j,k ,

ubest
j − u j(x

n j(A)

j ) ≤ ∑n j(A)

k=2 vopt
j,k .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
A
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• For V-type criteria, the less preferred performance is either xk−1
j (if vopt

j,k = 1 for some k = 2, ..., n j(A)) or x
n j(A)

j (if 
vopt

j,k = 0 for all k = 2, ..., n j(A)):

u j(xk−1
j ) ≤ 1 − vopt

j,k , k = 2, ...,n j(A),

u j(x
n j(A)

j ) ≤ ∑n j(A)

k=2 vopt
j,k ,

⎫⎬
⎭ E N O RM−0

V

whereas the most preferred performance is either x1
j (if v j,norm−1 = 1) or x

n j(A)

j (if v j,norm−0 = 0), i.e.:

u j(x1
j ) ≤ u j(x

n j(A)

j ) + M · v j,norm−1,

M · (1 − v j,norm−1) + u j(x1
j ) ≥ u j(x

n j(A)

j ),

ubest
j − u j(x

n j(A)

j ) ≤ M · v j,norm−1,

ubest
j − u j(x

n j(A)

j ) ≥ −M · v j,norm−1,

ubest
j − u j(x1

j ) ≤ −M · (1 − v j,norm−1),

ubest
j − u j(x1

j ) ≥ M · (1 − v j,norm−1),

v j,norm−1 ∈ {0,1}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−0
V

• For non-monotonic criteria u j(xk
j) needs to be equal to 0 for at least one characteristic point xk

j , k = 1, ..., n j(A), such 
that vk

j,norm−0 = 1:

u j(xk
j) − M · (1 − vk

j,norm−0) ≤ 0, k = 1, ...,n j(A),

∑n j(A)

k=1 vk
j,norm−0 ≥ 1, k = 1, ...,n j(A),

vk
j,norm−0 ∈ {0,1}, k = 1, ...,n j(A).

⎫⎪⎪⎬
⎪⎪⎭

E N O RM−0
N O N−M O N

Similarly, the maximal marginal value needs to be assigned to at least one characteristic point xk
j , k = 1, ..., n j(A), such 

that vk
j,norm−1 = 1:

for k = 1, ...,n j(A) :
u j(xk

j) ≥ u j(xi
j) − M · (1 − vk

j,norm−1), i = 1, ...,k − 1,k + 1, ...,n j(A),

ubest
j − u j(xk

j) ≤ M · vk
j,norm−1,

ubest
j − u j(xk

j) ≥ −M · vk
j,norm−1,

∑n j(A)

k=1 vk
j,norm−1 ≥ 1,

vk
j,norm−1 ∈ {0,1}, k = 1, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
N O N−M O N

Overall, a set of sorting model instances (i.e., additive value functions and class thresholds) compatible with the DM’s 
assignment examples and requirements on the (non-)monotonicity of particular criteria can be defined as follows:

E AR = E M O D E L ∪ E A S S−E X ∪ E M O N ∪ E N O RM .

2.4. Sorting recommendation

In this section, we discuss two complementary ways of exploiting a set of compatible sorting model instances. Arbitrary 
selection of a single representative instance leads to precise assignments for all alternatives, whereas robustness analy-
sis reveals all possible sorting recommendations that follow the DM’s preference information and the use of an assumed 
preference model.

2.4.1. Selection of a single representative sorting model
To select a representative sorting model, we minimize the number of changes in monotonicity for all marginal value 

functions u j , j = 1, ..., m, by solving the following optimization problem:

Minimize : N M =
∑

j∈G ∪ G

n j(A)∑
p=2

vopt
j,p +

∑
j∈G

n j(A)∑
vk,k−2

j,change−mon, s.t. E AR
,

A V N O N−M O N k=3
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where G A and G V are subsets of, respectively, A- and V-type criteria admitting at most one change in monotonicity (their 
number is represented by 

∑n j(A)

p=2 vopt
j,p), and G N O N−M O N is a subset of criteria for which no monotonicity requirements have 

been specified (in this case, the number of changes in monotonicity is captured by 
∑n j(A)

k=3 vk,k−2
j,change−mon). Let us denote the 

minimal number of such changes by N M∗ .
Note that the above objective function is applicable only when at least one criterion is of A-, V- or non-monotonic type. 

Otherwise, there are no changes in monotonicity for any marginal value function and hence N M is equal to zero. Then, a 
standard approach to derive a representative sorting model consists in treating ε contained in E AR

as a variable and solving 
the following problem:

Minimize : ε, s.t. E AR
.

2.4.2. Robustness analysis
Solving the problems presented in Section 2.4.1 leads to a selection of some arbitrary marginal value functions and 

class thresholds compatible with the DM’s partial preference information. Its analysis is beneficial in terms of providing 
precise recommendation along with information on the importance of particular criteria, trade-offs between criteria, or 
distribution of class thresholds [15]. However, in view of the incompleteness of DM’s preferences, there exist multiple 
compatible instances of the sorting model whose recommendation for the non-reference alternatives may be different. To 
verify the stability of sorting recommendation, we refer to the concept of possible assignment, which indicates a set of classes 
to which a given alternative can be assigned by at least one compatible instance of the sorting model [14,22]. The validity 
of such an assignment for alternative a ∈ A and class Ch , h = 1, . . . , p, can be verified by considering the following set of 
constraints, which exploits a set of models with the minimal number of changes in monotonicity for all marginal value 
functions:

E AR
,

N M∗ = ∑
j∈G A ∪ G V

∑n j(A)

p=2 vopt
j,p + ∑

j∈G N O N−M O N

∑n j(A)

k=3 vk,k−2
j,change−mon,

U (a) ≥ th−1, U (a) + ε ≤ th.

⎫⎪⎪⎬
⎪⎪⎭

E(a →P Ch)

If E(a →P Ch) is feasible and ε∗ = max ε, s.t. E(a →P Ch) is greater than 0, a can be possibly assigned to Ch . In case 
E(a →P Ch) is infeasible or ε∗ ≤ 0, a cannot be assigned to Ch with any compatible instance of the sorting model. The 
set of all classes to which a can be possibly assigned is denoted by C P (a). In case C P (a) is a singleton, a is assigned to a 
class contained in C P (a) by all compatible instances of the sorting model. Such an assignment can be deemed as robust or 
necessary.

Note that the possible assignment C P (a) for each alternative a ∈ A is a union of intervals, one for each possible type of 
function. However, since such a union cannot be ensured to be an interval on its own, we cannot guarantee “the no jump 
property” for the possible assignments [14]. Therefore, in what follows, all possible assignments are represented as sets of 
classes (e.g., C P (a35) = {C3, C4, C5}) rather than intervals (e.g., C P (a35) = [C3, C5]). In what follows, we provide a detailed 
discussion on “the no jump property” in the context of the method introduced in this paper.

Let us denote by U a set of all possible value functions, by T – a set of all possible thresholds vectors and by V – a 
set of all possible binary vectors. Now, let us denote by P ⊆ U × T × V a set of all triples (U , b, v) satisfying constraints in 
E AR

, that is, all models (value functions, vectors of thresholds, binary vectors) compatible with the preference information 
provided by the DM.

Let us suppose (U1, t1, v1), (U2, t2, v2) ∈P and that a is assigned to Ch w.r.t. (U1, t1, v1), while a is assigned to Ck w.r.t. 
(U2, t2, v2), with h, k ∈ [1, . . . , p] such that h > k + 1.

We have to distinguish two cases:

1) v1 = v2: in all criteria, the two functions U1 and U2 present the shape and the monotonicity changes exactly in the 
same characteristic points;

2) v1 �= v2: in at least one criterion, the two functions U1 and U2 have a different shape or, they are of the same shape 
but the monotonicity changes in different characteristic points.

Let us prove that for all l ∈]h, k[, there exists (U , b, v) ∈P such that a is assigned to Cl w.r.t. (U , b, v).

Proposition 1. Let a ∈ A, (U1, t1, v1), (U2, t2, v2) ∈P and h, k ∈ [1, . . . , p], such that:

1) a is assigned to Ch w.r.t. (U1, t1, v1),
2) a is assigned to Ck w.r.t. (U2, t2, v2),
3) v1 = v2 ,
4) h > k + 1,

then for all l ∈]k, h[ there exists (U , b, v1) ∈P such that a is assigned to Cl w.r.t. (U , b, v1).
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Proof. The first two hypotheses are equivalent to the following:

t1,h−1 � U1(a) < t1,h and t2,k−1 � U2(a) < t2,k.

Since l ∈]k, h[ and because of the thresholds monotonicity, we have:

U1(a) � t1,h−1 � t1,l > t1,l−1, (4)

and

t2,l > t2,l−1 � t2,k > U2(a). (5)

Let α ∈]0, 1[ and let us define the corresponding convex combinations of t1,l and t1,l−1 on one hand and of t2,l and t2,l−1

on the other hand, that is,

t1αl = αt1,l + (1 − α)t1,l−1

and

t2αl = αt2,l + (1 − α)t2,l−1.

Let us consider the triple (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1) with λ ∈R such that

λU1(a) + (1 − λ) U2(a) = λt1αl + (1 − λ) t2αl

from which

λ = t2αl − U2(a)

(U1(a) − t1αl) + (t2αl − U2(a))
.

Observing that t1αl ∈]t1,l−1, t1,l[ and t2αl ∈]t2,l−1, t2,l[, by Eqs. (4) and (5), we get

U1(a) > t1αl

and

t2αl > U2(a),

from which we get λ ∈]0, 1[. Consequently, since any subset of P containing all the triples (U ,b,v) with v = v for some v
is convex, then (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1) ∈P .

Observing that:

• the component l − 1 of the vector λt1 + (1 − λ) t2 is λt1,l−1 + (1 − λ) t2,l−1,
• the component l of the vector λt1 + (1 − λ) t2 is λt1,l + (1 − λ) t2,l ,
• λU1(a) + (1 − λ) U2(a) = λt1αl + (1 − λ) t2αl = α

(
λt1,l + (1 − λ)t2,l

) + (1 − α)(λt1,l−1 + (1 − λ)t2,l−1),
• α ∈]0, 1[,

then

λt1,l−1 + (1 − λ) t2,l−1 � λU1(a) + (1 − λ) U2(a) < λt1,l + (1 − λ) t2,l

implying that a is assigned to Cl w.r.t. (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1). �
Corollary 1. If for all (U , t, v) ∈P , v = v, then for all a ∈ A, C P (a) is an interval of classes without any jump, that is

C P (a) = {CL(a), CL(a)+1, . . . , C R(a)}
where

L(a) = min{h : Ch ∈ C P (a)},
R(a) = max{h : Ch ∈ C P (a)}.

Let us denote by CQ
P (a) the set of possible classes to which a can be assigned by at least one triple (U , t, v) in Q ⊆ P . 

In particular, C P (a) = CP
P (a). The following holds:

Corollary 2. Let P =P1 ∪P2 ∪ . . . ∪Pr where, for all i = 1, . . . , r, for all (U , b, v) ∈Pi , v = vi ; then:
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• CP1
P (a), CP2

P (a), . . . , CPr
P (a), are intervals without jumps and C P (a) = CP1

P (a) ∪ CP2
P (a) ∪ . . . ∪ CPr

P (a),
• if v1 = v2 = . . . = vr , then C P (a) is an interval without jumps.

Since, in general, a union of intervals is not necessarily an interval, if in the previous corollary, vi �= v j for some i, j ∈
{1, . . . , r}, nothing can be said about the presence or absence of jumps in C P (a).

3. Application to exposure management of engineered nanomaterials

Engineered nanomaterials (ENMs) are materials with at least one dimension in the range of 1-100 nanometers, though 
larger ones are usually included in this definition. One distinctive feature of these materials is that their physicochemi-
cal properties are significantly different from materials of larger sizes. This makes them suitable for the development of 
products with enhanced performances in several areas including construction, electronics, environmental management and 
healthcare [35,44,45]. As a result, the number of workers exposed to such materials is rising [12]. Even though ENMs en-
able the development of high performance products, there is a lot discussion and concern about their potential impacts on 
human health and the environment [9]. This motivates the development of risk assessment and management strategies to 
handle the risks that ENMs can cause. Risk assessment is the tool that has been advanced to assess and manage risks of 
ENMs and it is composed of a hazard and an exposure assessment part. In this paper, we focus on the latter and contribute 
to the development of decision support systems to manage exposure to ENMs manufacturing by recommending RMMs 
[42].

3.1. Decision classes, criteria, and alternatives

We present the model for assessing the need of using a risk management measure (i.e., a respirator) by workers exposed 
to nanomaterials during their manufacturing. We incorporate real-world data elaborated by Naidu [32], who developed a 
set of exposure scenarios to ENMs and received expert recommendations on several risk management measures.

Classes. The considered problem is formulated in terms of multiple criteria sorting with five preference ordered classes 
referring to the requirement of precautions: C1 (required; the least preferred class), C2 (might be required), C3 (optional), 
C4 (might be optional), and C5 (not required; the most preferred class).

Criteria. We consider a set of exposure scenarios to ENMs, which are characterized with ten descriptors. These criteria refer 
to the following characteristics of the materials and the exposure conditions:

• Particle size (g1) evaluated on a 6-point ordinal scale. Since most studies suggest that toxicity is higher for smaller 
sizes [41], but does not differ for greater sizes, we assumed an increase-level marginal value function.

• Toxicity (g2; cost type) defined on a 3-point scale (from low through medium to high) determines what type of effect 
the ENM has on human health [8].

• Airborne capacity (g3; cost type) – expressed on 4-point scale from none (preferred) to high (not preferred) – charac-
terizes the capacity of the ENMs to spread in the workplace through the air stream [18].

• Detection limit (g4; gain type), defined on a qualitative 4-point scale (none (not preferred), low, moderate, and good 
(preferred)), relates to the capacity of the exposure assessment tools to identify ENMs.

• Exposure limit (g5; cost type) indicates an assumed level of exposure among five ranges based on asbestos, which is a 
widely accepted reference [32].

• Quantity (g6; cost type) refers to the quantity (in kg) of ENM handled in the scenario (lesser quantities imply smaller 
chance of exposure [19]).

• Number of employees (g7) considers the number of people involved in handling of the ENMs. Due to a lack of clear 
indication how this number affects the exposure management, we consider it as potentially non-monotonic criterion.

• Engineering controls (g8; non-monotonic) indicates the laboratory setting in which the manufacturing tasks are con-
ducted among four possible combinations referring to positive (PP) or negative (NP) pressure as well as open (O) or 
closed (C) system.

• Duration of exposure (g9; cost type) to the nanomaterials during the manufacturing tasks (the shorter the duration, the 
lesser the risk of exposure [19]).

• Multiple exposure (g10; cost type) concerns the frequency of exposure [43] (unknown value is considered as the least 
preferred performance).

In Appendix A, we summarize the characteristics of all criteria as well as the encoding of respective performances. Over-
all, the considered descriptors involve both monotonic and non-monotonic criteria, which justifies an employment of the 
proposed methodological framework.

Alternatives. To demonstrate the framework’s applicability, we consider a set of 51 exposure scenarios (for their perfor-
mances, see Tables 1 and 2). In terms of MCDA, these are interpreted as decision alternatives a1 − a51.
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a representative sorting model.

6 g7 g8 g9 g10 C DM (ai) U (ai)

3 3 5 1 3 0.4007
4 4 2 2 3 0.4181
1 2 2 0 5 0.5523
3 3 4 3 5 0.6550
1 4 5 0 5 0.5531
3 5 4 0 5 0.5523
1 3 1 3 5 0.7404
2 2 1 0 5 0.6411
1 3 3 0 5 0.5523
4 2 4 1 3 0.4617
1 1 5 3 2 0.3249
3 1 2 1 1 0.3101
1 1 1 2 4 0.4765
2 4 2 2 4 0.5375
1 4 3 1 1 0.1394

g6 g7 g8 g9 g10 C(ai) C P (ai)

3 3 4 4 3 2 1, 2
0 1 1 3 2 2 1, 2
4 3 0 1 0 3 2, 3
1 2 0 1 3 5 4, 5
3 0 1 3 2 3 3, 4
1 0 3 2 0 2 1, 2
4 3 0 3 1 1 1
0 0 0 1 2 3 3, 4
1 3 2 3 1 3 2, 3
4 2 4 2 1 1 1, 2
Table 1
The performances of 30 reference exposure scenarios on ten criteria, their desired class assignments C DM , and comprehensive values U (ai) according to 

ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C DM U (ai) ai g1 g2 g3 g4 g5 g

a1 5 2 0 0 2 4 1 2 3 1 2 0.3859 a16 1 2 1 0 1 4
a2 5 2 3 2 4 1 2 5 5 0 1 0.3101 a17 6 3 3 2 4 4
a3 4 2 2 3 5 3 4 5 5 0 3 0.4617 a18 1 1 3 3 4 5
a4 1 3 3 0 3 1 2 2 4 3 1 0.1228 a19 6 1 0 2 4 1
a5 3 1 1 0 4 5 1 4 1 3 3 0.4617 a20 6 3 1 3 3 1
a6 1 2 1 3 3 5 3 1 3 2 3 0.4617 a21 6 1 0 2 2 2
a7 4 2 0 1 5 5 1 1 5 1 3 0.4007 a22 6 3 1 1 1 4
a8 1 3 0 2 4 3 4 5 3 3 3 0.4007 a23 1 1 1 2 2 3
a9 2 2 3 0 1 3 2 3 5 2 1 0.2936 a24 2 2 3 3 5 1
a10 4 1 3 3 5 4 4 1 3 3 3 0.4617 a25 4 1 2 1 3 5
a11 3 1 1 1 4 4 3 2 5 0 5 0.5523 a26 3 1 3 1 3 3
a12 3 1 2 1 3 1 1 5 1 1 5 0.5653 a27 6 1 3 0 5 3
a13 3 2 1 3 4 4 2 5 4 1 5 0.5523 a28 6 2 2 2 5 4
a14 2 1 0 3 3 2 4 4 5 1 5 0.6524 a29 5 1 0 1 3 5
a15 1 2 3 1 3 2 4 5 1 2 3 0.4007 a30 1 3 2 0 4 4

Table 2
The performances of 21 non-reference exposure scenarios on ten criteria, their representative C(ai) and possible C P (ai) assignments.

ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C(ai) C P (ai) ai g1 g2 g3 g4 g5

a31 1 0 2 2 1 0 3 0 2 2 3 2, 3 a42 4 2 2 1 1
a32 3 2 3 1 0 0 3 2 2 0 4 3, 4 a43 2 1 2 1 4
a33 1 2 0 1 2 3 2 0 3 0 4 3, 4 a44 2 2 0 0 1
a34 3 0 1 2 4 1 1 4 1 3 4 4, 5 a45 4 2 2 3 0
a35 5 0 1 0 0 0 3 4 1 0 4 3, 4, 5 a46 2 2 3 3 4
a36 5 0 2 2 1 2 0 3 3 1 3 3 a47 2 2 2 1 4
a37 5 2 2 1 4 4 1 2 4 0 3 2, 3 a48 2 2 3 0 1
a38 0 0 2 3 1 0 2 2 0 0 5 5 a49 0 2 0 1 1
a39 4 2 1 3 4 4 2 4 3 2 4 4, 5 a50 0 1 0 0 3
a40 4 0 1 0 1 4 3 1 0 2 4 4, 5 a51 5 2 3 1 3
a41 4 1 0 2 2 1 0 1 4 0 4 4, 5
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3.2. Preference information

For thirty scenarios (a1 − a30), we consider the expert input in form of class assignments. The respective classes capture 
the recommended precaution level for RMM (see Table 1). Overall, the distribution of classes in the reference judgments 
is as follows: C1 – 5, C2 – 2, C3 – 10, C4 – 2, and C5 – 11. Hence, the use of a respirator has been judged as optional 
(C3) or not required (C5) in the context of the greatest number of exposure scenarios. In addition, for better discrimination 
between the classes the minimal difference between the neighboring thresholds has been assumed to be 0.07.

3.3. Results

3.3.1. Representative sorting model
The expert input has been used to develop a model to recommend a precaution level for workers exposed to nano-

materials. In this way, we account for the interrelations between the ten descriptors of the exposure scenarios and the 
recommended risk management measure. Fig. 3 exhibits the marginal value functions which can constitute a part of the 
representative sorting model. They indicate two changes in the monotonicity, from decreasing to increasing for g7 (engi-
neering controls) and from increasing to decreasing for g8 (number of employees). For all remaining criteria, the shape of 
marginal function adheres to the pre-defined monotonicity constraints. Specifically, for g1 (particle size) – it is increase-
level, for g4 (detection limit) – it is increasing, whereas for the remaining criteria – it is either strictly decreasing or 
non-increasing.

Although all criteria contribute to the comprehensive values, one can observe significant differences in the maxi-
mal shares of respective marginal value functions. Specifically, the greatest maximal shares correspond to detection limit 
(0.2682), duration of exposure (0.1776), and airborne capacity (0.1454). This confirms a substantial impact that these cri-
teria have on the classification. On the contrary, the least maximal shares are noted for quantity (0.0209) and frequency of 
exposure (0.0296), thus indicating their marginal role in deciding upon the sorting of considered scenarios.

When it comes to the variation of marginal values, it also differs vastly from one criterion to another. The greatest 
difference of marginal values can be observed for:

• airborne capacity (g3) when moving from moderate (2) to low (1) capacity of the nanomaterial to spread in the work-
place;

• detection limit (g4) when attaining poor (1) rather than none (0) or good (3) rather than moderate (2) capacity of the 
exposure assessment tool to identify the nanomaterial;

• number of employees (g8) when moving to an intermediate level (11 − 50) from both lower and higher numbers;
• duration of exposure (g9) when reducing the time from less than one hour (3) to less than 15 minutes (2) and further 

to incidental occurrence (1).

These differences indicate the transitions where a high gain in the reduction of precaution level can be attained. On the 
contrary, the least or null differences of marginal values can be observed for particles sizes (g1) greater than 2 nm (2), at 
least moderate (2) toxicity (g2), intermediate (2 − 4) exposure limits (g5), quantities (g6) less than 10 tons (4), number of 
employees (g8) not less than 51 (4), and duration exposure (g9) not less than one minute (3). Consequently, changes of 
performances within these ranges do not influence at all or much the comprehensive values and resulting assignments.

The comprehensive values computed according to a representative value function for the reference exposure scenar-
ios (a1 − a30) are presented in Table 1. They need to be interpreted jointly with the following thresholds which set the 
boundaries for the ranges of comprehensive values judged as typical for particular classes:

t0 = 0, t1 = 0.3175, t2 = 0.3933, t3 = 0.4691, t4 = 0.5449. (6)

For example, all scenarios with comprehensive values not less than 0.3933 and less than 0.4691 are assigned to class C3. 
Clearly, these thresholds were not pre-defined, but rather constructed by the method to reproduce – when coupled with an 
additive value function – all 30 assignment examples.

To support understanding of the employed threshold-based value-driven sorting procedure, Fig. 4 presents five example 
reference alternatives with different assignments along with their marginal values and thresholds separating the classes. 
Firstly, this figure demonstrates to which degree different criteria contribute to the comprehensive values of particular 
alternatives. Secondly, it clarifies that the assignment is derived from attaining a comprehensive value in a particular range. 
Thirdly, it exhibits the differences between the alternatives for which the requirement of precaution is, e.g., obligatory (a9), 
optional (a3), or not needed (a18).

In this perspective, an assignment of alternative a18 to class C5 (U (a18) = 0.5522 ≥ t4 = 0.5449) was largely due to 
its highly preferred performances on g2, g4, g8, and g9. In particular, its best performance with respect to the detection 
limit (g4) contributes already almost half of the comprehensive value needed for the assignment to the most preferred 
class. Furthermore, alternatives a3 and a29 attained high marginal value on a subset of criteria (for a3 – g1, g4, g7, and 
g10; for a29 – g1, g2, g3, g4 and g9), but scored relatively worse on the remaining criteria (including four criteria with 
marginal values equal to zero), which justifies their assignment to the intermediate classes. When it comes to a1 , eight 
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Fig. 3. Marginal value functions for the exposure management of nanomaterials in the context of using a respirator.

criteria contribute to its comprehensive quality with a marginal value greater than zero. However, only for three of them 
(g1, g3, g8), these contributions can be viewed as relatively high. As a result, the comprehensive value of a1 is rather low 
and sufficient only for granting a place in class C2 (t1 = 0.3175 ≤ U (a1) = 0.3858 < t2 = 0.3933). Finally, alternative a9
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Fig. 4. Marginal and comprehensive values as well as class assignments for the five example reference exposure scenarios. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Marginal and comprehensive values as well as class assignments for the 21 non-reference exposure scenarios.

attained a marginal value of zero on six criteria (g2, g3, g4, g7, g9, and g10), which implied its assignment to the least 
preferred class C1.

As far as non-reference exposure scenarios (a31 - a51) are concerned, their comprehensive values and class assignments 
are presented in Table 2. The explanation of these assignments is enhanced by Fig. 5, which collates the comprehensive 
values with the class thresholds, while additionally decomposing them into the marginal values. For the 21 non-reference 
alternatives, the distribution of class assignments is as follows: C1 - 2, C2 - 3, C3 - 7, C4 - 7, and C5 - 2. Hence, the 
precaution level of the greatest number of exposure scenarios is judged as optional (C3) or might be optional (C4), whereas 
only a pair of alternatives is assigned to either of extreme classes.

Let us explain the classification for a few selected non-reference exposure scenarios by referring to the contribution of 
particular criteria to their comprehensive values. When it comes to a pair of alternatives (a48 and a51) assigned to C1, they 
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perform relatively well only on the less important criteria, while not attaining any positive marginal values on g2, g3, g4
(only for a48), g6, and g8. This justifies their low comprehensive values and sorting into the least preferred class. When 
compared with a48, a44 is characterized by more advantageous performances on g3 and g9, which is sufficient for attaining 
an intermediate class (C3). As for the two alternatives (a38 and a45) placed in C5, 9 and 7 criteria, respectively, contribute 
to their comprehensive values. However, the main role in exceeding the lower threshold of the most preferred class can be 
attributed to: for a38 – g2, g4, g8, and g9, and for a45 – g1, g4, g5, and g9, on which they reached the maximal values. The 
alternatives assigned to the least preferred classes either lack any contribution from the significant share of criteria (see, 
e.g., a37 – C2 or a39 – C4), or have rather unbalanced performance profiles with significant contribution from some criteria 
and relative poor evaluations on the remaining ones (e.g., a50 – C3 or a32 – C4), or simply attain average performances on 
the vast majority of criteria, hence lacking substantial contribution from the most important descriptors (see, e.g., a36 – C3
or a41 – C4).

3.3.2. Robustness analysis
The recommendation obtained for the non-reference exposure scenarios with the representative instance of the sorting 

model is validated against the outcomes of robustness analysis. The possible assignments obtained through the analysis of 
all compatible instances of the sorting model admitting two changes in monotonicity for all marginal value functions are 
presented in Table 2. These possible assignments are precise only for 3 out of 21 alternatives. Hence, the assignment of a36
to C3, a38 to C5, and a48 to C1 can be judged as robust in view of the incompleteness of the DM’s assignment examples 
and multiplicity of compatible sorting models.

For the remaining non-reference exposure scenarios, the possible assignments are imprecise, thus indicating a hesitation 
with respect to the recommended class. However, for 17 alternatives just two classes are possible, and only for a35 – three 
classes can be recommended depending on the choice of a compatible sorting model. The additional classes contained in 
the possible assignment are more or less preferred than the classes suggested by the representative model for, respectively, 
8 (e.g., a34 and a46) and 11 (e.g., a31 and a45) alternatives.

The analysis of such possible assignments allows to indicate the classes that cannot be viewed as an admissible result, 
because they are not confirmed by any compatible instance of the sorting model. For example, since a34 is possibly assigned 
to C4 or C5, the recommended precaution is surely not required (C1), not might be required (C2), nor optional (C3). Similarly, 
since C P (a51) = {C1, C2}, the following requirements of precautions are excluded: optional (C3), might be optional (C4), and 
not required (C5).

3.4. Discussion

The proposed model could be a first tiered solution to exposure management of nanomaterials, similarly to the step-wise 
strategies proposed for the exposure assessment phase [20,38]. It could be used to provide an initial indication of concern 
regarding specific tasks performed by the workers. In this way, when the proposed model indicates that the assigned class 
is at most C3 (indicating required, potentially required, or optional precaution level), these tasks should be given priority 
and further investigated as they can be seen as “safety warning flags”. Obviously, the less preferred the class, the greater 
attention should be paid to the analysis of a respective task. For such alternatives, the choices of the health managers could 
be directed towards working on the criteria of the model, i.e., characteristics of the materials and the exposure conditions, 
to see whether any of them can be modified to increase a comprehensive value and to trigger a more preferred class. 
The analysis of marginal value functions provides directions on which performance changes offer the greatest gains in this 
regard and which modifications do not lead to significant improvements.

Let us also emphasize that the primary aim of Section 3 was to illustrate the applicability of the proposed method in a 
standard MCDA setting. In this setting, the DM’s preference information is used to construct a preference model compatible 
with the DM’s value system. Such a model is subsequently employed to evaluate the non-reference alternatives that have not 
been directly judged by the DM, in a way that would be acceptable for him/her, being consistent with his/her preferences. 
Thus, in typical MCDA applications the objective truth to be discovered does not exist as the true classification for the 
non-reference alternatives is not known. However, it can be analyzed for the considered study, because the most appropriate 
assignments for the non-reference exposure scenarios have also been determined by the experts. In this regard, for 12 out 
of 21 non-reference scenarios (a36, a37, a38, a42, a44, a45, a46, a47, a48, a49, a50, and a51) the assignments obtained with a 
representative sorting model instance agree with the actual ones. Moreover, for the remaining 9 non-reference scenarios, 
the actual class is contained in the set of possible assignments, hence being confirmed by at least one compatible sorting 
model instance.

4. Conclusions

We proposed a novel approach for multiple criteria sorting incorporating a threshold-based value-driven procedure. The 
parameters of the constructed model deciding upon the shape of marginal value functions and separating class thresholds 
are inferred through disaggregation of the assignment examples provided by the DM. This is attained by solving dedicated 
MILP problems. Apart from accounting for the incomplete preference information, the method allows the DM to specify 
partial requirements on the assumed type of (non-)monotonicity for the individual criteria. Specifically, we considered gain 
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and cost attributes, monotonic functions without a pre-defined preference direction, level-monotonic shapes, A- and V-
types combining increasing and decreasing trends within a single function, and lack of monotonicity constraints. In this 
perspective, to control the complexity and interpretability of the inferred model, we minimized the number of changes in 
monotonicity for all marginal value functions.

The characteristic of the provided results is two-fold. On the one hand, we derive univocal assignments with a represen-
tative instance of the sorting model. The analysis of such a model allows capturing the trade-offs between different criteria, 
assessment of their relative importance, and indication of performance changes that can be viewed as the most advanta-
geous in terms of improving a comprehensive quality. On the other hand, we perform robustness analysis and quantify its 
results by means of possible assignments. They confirm which classes are admissible for a given alternative for at least one 
compatible instance of the sorting model. Moreover, they allow to reject the hypotheses concerning the assignments which 
are not confirmed by any model.

The proposed approach can be seen as a sorting counterpart of the method proposed by Rezaei [34]. However, it does not 
require to pre-define the exact shapes of marginal value functions, tolerating instead partial information on the monotonicity 
constraints. Moreover, it extends the algorithm introduced by Kliegr [25] to a broad family of shapes of marginal functions 
as well as to a robustness analysis which accounts for all compatible instances of the sorting model with the minimal 
possible complexity.

Apart from the methodological advances, the paper contributes to the literature by exhibiting its applicability to analysis 
of a real-world sorting problem. Specifically, we considered the problem of exposure management for engineered nano-
materials, and used expert judgments to develop a model for predicting precaution level while handling nanomaterials in 
certain conditions using a respirator. The model was able to capture the interrelations between ten criteria – including 
monotonic descriptors, a single increase-level criterion, and a pair of non-monotonic attributes – and the recommended 
assignments.

The analysis of a representative instance of the sorting model allowed to identify the criteria that significantly affected 
the recommended sorting. These descriptors involved detection limits, airborne capacity, and duration of exposure. On the 
contrary, quantity of nanomaterial, frequency of exposure, and engineering controls had the least share in the comprehensive 
values of exposure scenarios. The classes were well-separated due to a significant difference between the inferred thresh-
olds. In this way, each class accommodated multiple alternatives with diverse characteristics on the individual criteria that 
considered jointly could be holistically judged as required, optional, or absolutely redundant with respect to the precaution 
level. The case study also demonstrated how the representative and univocal results can be enriched with the outcomes of 
robustness analysis. Specifically, we showed the usefulness of possible assignments for capturing the uncertainty related to 
the recommended classification as a consequence of incompleteness of the DM’s preference information.

The potential extensions of the proposed method and the considered case study are five-fold. Firstly, the practical ap-
plicability of our approach is limited due to a high number of binary variables. In fact, it depends on the numbers of 
criteria and unique performances of alternatives. Hence, a potential revision of the method needs to control the mod-
el’s complexity and impose monotonicity constraints without incorporating binary variables. Secondly, we assumed that 
the model’s complexity can be adjusted to reproduce all assignment examples by increasing the number of changes in 
monotonicity. In case this is not possible, one can apply the standard procedures for eliminating the minimal number of 
assignment examples underlying the inconsistency [30,31]. However, since they are based on MILP and associate a unique 
binary variable with each assignment example, their applicability is also limited to few hundred of holistic judgments. Deal-
ing with larger sets of potentially inconsistent example assignments requires the development of some dedicated heuristic 
approaches.

Furthermore, the family of shapes of marginal value functions can be extended to account for polynomials and splines, 
whose interpretability is desirable in many real-world applications [40]. Moreover, the method can be easily adapted to 
multiple criteria ranking and choice. Instead of incorporating the DM’s assignment examples, it should accept pairwise 
comparisons of reference alternatives.

Finally, motivated by the peculiarity of exposure management of nanomaterials, the method can be enriched to account 
for a few decision attributes simultaneously. In this specific application, they would represent different risk management 
measures [32]. For each classification problem, one should construct a dedicated sorting model reproducing the provided 
assignment examples. However, the individual models should be interrelated to reflect the dependencies between classes 
desired for the same alternative on various decision attributes.
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Table A.3
Encoding of performances on ten criteria used for the management of exposure scenarios to nano-
materials.

g j Criterion Preference Performance Code

g1 Particle size (nm) increase-level < 2 1
2 − 10 2
10 − 100 3
100 − 500 4
500 − 1000 5
> 1000 6

g2 Toxicity cost Low 1
Moderate 2
High 3

g3 Airborne capacity cost None 0
Low 1
Moderate 2
High 3

g4 Detection limit gain None 0
Poor 1
Moderate 2
Good 3

g5 Exposure limit (fiber/cc) cost < 0.1 1
0.1 − 0.2 2
0.2 − 0.5 3
0.5 − 1.0 4
> 1.0 5

g6 Quantity (kg) cost < 1 1
1 − 100 2
100 − 1000 3
1000 − 10000 4
> 10000 5

g7 Engineering controls non-monotonic Open-PP 1
Open-NP 2
Closed 3
Closed-NP 4

g8 Number of employees non-monotonic 1 − 3 1
3 − 10 2
11 − 50 3
51 − 100 4
101 − 500 5

g9 Duration of exposure (h) cost incidental 1
< 0.25 2
< 1 3
1 − 5 4
5 − 8 5

g10 Multiple exposure (number) cost none 0
1 − 3 1
> 3 2
unknown 3
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Appendix A. Encoding of performances for the case study

Table A.3 summarizes the characteristics of ten criteria used for the management of exposure scenarios to nanomaterials 
as well as the encoding of respective performances.
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