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Abstract. Object grasp detection is foundational to intelligent robotic manipu-

lation. Different from typical object detection tasks, grasp detection tasks need 

to tackle the orientation of the graspable region in addition to localizing the re-

gion since the ground truth box of the grasp detection is arbitrary-oriented in the 

grasp datasets. This paper presents a novel method for single-grasp detection 

based on rotational region CNN (R2CNN). This method applies a common Re-

gion Proposal Network (RPN) to predict inclined graspable region, including 

location, scale, orientation, and grasp/non-grasp score. The idea is to deal with 

the grasp detection as a multi-task problem that involves multiple predictions, 

including predict grasp/non-grasp score, the inclined box and its corresponding 

axis-align bounding box. The inclined non-maximum suppression (NMS) 

method is used to compute the final predicted grasp rectangle. Experimental re-

sults indicates that the presented method can achieve accuracies of 94.6% (im-

age-wise splitting) and 95.6% (object-wise splitting) on the Cornel Grasp Da-

taset, respectively. This method outperforms state-of-the-art grasp detection 

models that only use color images. 

Keywords: Robotic Grasp, Convolutional Neural Network, Region Proposal 

Network, Faster-RCNN, Rotational Region CNN. 

1 Introduction 

With the advance of robotics and relevant applications in industry and daily life, re-

searchers pay more attention to robotic grasp which is foundational to robotic ma-

nipulation. When humans try to grasp an object for the first time, they can perceive, 

think, and probably figure out how to grasp it effectively. However, grasping a novel 

object is relatively challenging for robots as this task involves many subjects, includ-

ing computer vision, robot kinematics, control science and path planning. Nowadays, 

most of robotic grasp schemas highly rely on the predefined programs, which simply 

depend on repeating a series of predetermined basic motions. Obviously, such sche-

mas subject to a lack of generalization and robustness if objects or environments are 

varying. Therefore, practical robotic grasp manipulation requires more intelligent and 

robust strategies. 

For the task of grasp detection, many studies [1-7], [17-19] focused on predicting 

grasp rectangles. Compared with single grasp point, a grasp rectangle contains more 
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information including the graspable region as well as the orientation information. This 

orientation indicates a proper opening direction for parallel robotic gripper. Conse-

quently, the existence of the orientation makes the problem of grasp detection distin-

guishable from other general object detection algorithms. 

This paper aims to propose a new method to improve grasp rectangle detection us-

ing images for practical real-time robotic grasp. To achieve this goal, the authors em-

ploy convolutional neural network (CNN) and regional proposal network (RPN) to 

explore feasible models that can effectively determine inclined grasp region. By com-

bining inspirations from some state-of-the-art methods [8-10], a deep learning method 

is presented to detect the grasp region of objects for accurate robotic manipulation. 

Experimental results based on the Cornel Grasp Dataset are discussed as well as fu-

ture work to improve the presented method. 

The major contributions of this paper are summarized as below: 

(1) A new grasp detection method, which is specifically designed for inclined 

grasp region, is presented. This method considers the grasp detection problem as a 

triple-task problem by adding the axis-align box as well. It outperforms existing grasp 

detection methods that only use image information. 

(2) The smaller anchor scales is added to cover the tiny objects and the inclined 

non-maximum suppression (inclined NMS) is adopted to select the optimal grasp 

rectangle. 

2 Related Work 

As an elemental manipulation, the task of robotic grasp has been extensively studied 

[11]. Most research can be divided into two categories: heuristic method and machine 

learning methods.  

Ying Jiang et al. [1] adopted manually designed two-step color feature to achieve 

the detection result with 85.5% accuracy. Dogar and Goldfeder [12-13] used full 

physical simulation given 3D models to predict correct grasps. The results are not 

very satisfying whereas the process was very time-consuming. Traditional heuristic 

methods [1], [12-15] for feature extraction are not suitable enough for robotic grasp 

detection. 

With the advance of computer vision and deep learning, some researchers studied 

the robotic grasp problem using those new technologies, which significantly improved 

both accuracy and computational speed. Ian Lenz et al. [2] proposed a two-stage cas-

caded system for detecting robot grasps, wherein a small deep network was used to 

generate some potential rectangles and then a larger deep network was used to select 

the top-ranked rectangle from these candidates. Joseph Redmon et al. [3] conducted 

the detection based on RGB-D images with a neural network inspired by the AlexNet 

to address the same problem as the former researchers. Sulabh Kumra et al. [4] used 

two 50-layer deep convolutional residual neural networks in parallel for RGB-D fea-

ture extraction, one for RGB feature and the other for depth information. Then these 

features were fused and fed into the detection network. Their research showed that the 

use of deep residual layers can extract better features from the input images than the 
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ordinary convolutional layers. Di Guo et al. [5] associated each grid cell with several 

reference rectangles in different scales and ratios and then these reference rectangles 

were refined to their corresponding predicted rectangles. In follow-up study [6], they 

proposed a hybrid system that combined the vision and tactile information for robotic 

grasping. Furthermore, a new THU grasp dataset which contained the visual, tactile 

and grasp configuration information was collected, and the results showed that the 

tactile data can help improve the accuracy for grasp detection. Although the result 

was relatively outstanding, it was hard and too complex to conduct the grasp experi-

ment as it required plenty of experiment instruments. Fu-Jen Chu et al. [7] presented a 

system that can be applied to both single-grasp and multi-grasp detection situation. In 

their research, they converted the problem of regression for grasp orientation into a 

problem of classification. The system quantitated the orientation into 19 categories 

and assigned the predicted rectangles to the corresponding classes. The prediction 

accuracy on RGB model was 94.4% and 95.5% on image-wise and object-wise split-

ting, respectively. 

3 Rotated-RCNN for Single-Grasp Detection 

3.1 Grasp Configuration 

Similar to the previous work [1-7], [17-19], the five-dimensional grasp configuration 

is applied to this paper. The configuration consists of both position information and 

orientation information. The ground truth rectangle is defined as: 

  , , , ,G x y w h   (1) 

wherein, the (x, y) represents the coordinate of the center point, w and h mean the 

width and height of the rectangle respectively. The angle θ symbolizes the angle be-

tween the rectangle and the horizontal x-axis and the gripper can get close the object 

in this direction. Fig. 1 shows an example of the grasp configuration. 

Different from normal object detection which the bounding box is axis-align, the 

ground-truth box of grasp detection is normally inclined. So how to tackle the orienta-

tion problem is the key for grasp detection. 
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Fig. 1. Five-dimensional grasp configuration 

3.2 Network Architecture 

Different from the horizontal ground truth box, grasp rectangles are normally arbi-

trary-orientated since the object is placed on the platform randomly. Under the cir-

cumstances, the Rotated-RCNN is applied to tackle the orientation problem in the 

grasp detection problem. Fig. 2 shows the whole network architecture of the grasp 

detection system. The input images pass through multiple convolutional layers to 

produce the feature maps. The RPN is used to generate axis-align bounding boxes that 

encircle the graspable region. Considering about the diversity of the sizes and aspect 

ratios of the grasp rectangles, a smaller anchor scale is applied to the model. Experi-

mental result shows the smaller anchor is effective in the grasp detection. 

Fig. 2. The whole architecture of the grasp detection network 
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Two fully-connected layers are used for classification and regression in parallel. The 

region proposal produced by RPN is classified as grasp or non-grasp. The inclined 

bounding box and its associated axis-aligned bounding box get refined as well. The 

regression loss of the axis-align bounding box is considered in the whole loss func-

tion, the evaluation of [8] confirmed the effectiveness of this idea. 

As the subject of the grasp detection is oriented rectangle, the inclined non-

maximum suppression is utilized to post-process detection candidates as to obtain the 

output grasp rectangle. 

3.3 Loss Function 

The loss function in this paper contains two parts, the loss of the region proposal net-

work LRPN and the loss of grasp configuration detection LGCD. The RPN generates 

axis-align region proposals that encircle the inclined graspable region. The loss func-

tion of the RPN consists of the classification loss and regression loss, defines as: 

      _ 1 _, , ,RPN i i RPN cls i i i RPN reg i i

i i

L p t L p p p L t t      (2) 

wherein, 𝐿RPN_𝑐𝑙𝑠 defines the log loss of the proposal classification and 𝐿RPN_reg is the 

smooth L1 loss of the proposal regression. pi is the probability of the anchor belong-

ing to the foreground. The ground truth label pi
*
 is 1 if the anchor is positive and is 0 

if the anchor is negative [9]. The regression loss is calculated only when the anchor is 

assigned to the foreground. ti represents the four-dimensional coordinate vector of the 

predicted axis-align bounding box and ti
*
 means that of the horizontal box rotated 

from the inclined ground truth box. 

The loss function of the grasp configuration detection consists of three parts: the 

grasp/non-grasp classification loss, the loss of the axis-align box that encircles the 

graspable region and the loss of the inclined box. The loss function defines as:  

 

     

 

_ 2 _

3 _

, , , ,

,

GCD i i i GCD cls i i i GCD regh i i

i i

i GCD regi i i

i

L L L

L

        

   

  

 

 



 


 (3) 

wherein, 𝐿𝐺𝐶𝐷-𝑐𝑙𝑠 means the log loss of the grasp classification. Grasps are labeled as 1 

and others are assigned background. The parameter β=(βx, βy, βw, βh) means the pre-

dicted regression for axis-align bounding box for the graspable class and 𝛽∗ means the 

true regression target. The parameter δ=(δx, δy, δw, δh, 𝛿𝜃) means the predicted regres-

sion vector for the inclined bounding box and δ∗ is the corresponding ground truth 

grasp bounding box vector. Similarly, the regression loss is considered only when the 

proposal is assigned to the graspable class. The parameter λ2 and λ3 are used to bal-

ance these three kinds of loss. It should be noted that in all the experiments of this 

paper λ2 and λ3 are set 1. 

The total loss for the end-to-end training of the grasp detection defines as: 
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Total RPN GCDL L L   (4) 

4 Experiment 

4.1 Dataset 

In order to evaluate the performance of the network compared with existing studies, 

the network is trained and tested on the standard Cornel Grasp Dataset. The Cornel 

Grasp Dataset applied to this research contains 885 images of 244 graspable objects 

and each object in these images is associated with several positive grasp rectangles 

and negative rectangles. In this research, the positive rectangles are defined as 

ground-truth box. 

The five-fold cross-validation is conducted in the experiments and the dataset is 

divided in two different ways: 

(1) Image-wise splitting divides the images into training set and validation set at 

random. This aims to test the generalization ability of the network to the new position 

and orientation of an object. 

(2) Object-wise splitting divides the dataset at object instance level. The training 

and test dataset does not share the images of the same instance. This method aims to 

test the generalization ability of the network to the novel object. 

In practice, both splitting methods give comparable performance. This may due to 

the similarity between different objects in the dataset [3]. 

4.2 Data Preprocessing 

The training process for the deep neural network needs a large amount number of 

labeled data. Since the amount of the Cornel Grasp Dataset is insufficient, a process 

of data augmentation is required before the dataset is fed into the network. Several 

methods of data augmentation such as rotation, translation and crop have been adopt-

ed before the experiments. Firstly, a region of 320*320 pixels is center cropped from 

the original image. Secondly, the cropped region is padded with 50 pixels in both x 

and y directions. Then the padded image is translated with random pixel between -50 

and 50 pixels in both x-axis and y-axis. Then the rotated image is rotated with a ran-

dom angle between 0º to 360º. Lastly, the image is resized to 512*512 pixels. Each 

original image extends to 25 images after the augmentation and these processed im-

ages will be sent to the input of the network. The label of the ground truth box is 

transformed as well. 

4.3 Training 

To improve the efficiency of the training process and avoid overfitting, the transfer 

learning is applied to this research. The network is initialized by the ResNet-50 pre-

trained on the ImageNet. 
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The model is based on the GPU version of TensorFlow framework with cuda-8.0 

and cudnn-5.1.0 package. The whole network is trained end-to-end for 200 epochs 

and the whole training and test process runs on a single NVIDIA GTX1080Ti. The 

initial learning rate is 0.001 with a weight decay of 0.0005 and the momentum of 0.9. 

4.4 Evaluation Metric for Detection 

The point metric and rectangle metric [3]-[4] are the most popular evaluation metrics 

in grasp detection on the Cornel Grasp Dataset. For the point metric, the distances 

between the center point of ground-truth grasps and center point of predicted grasp 

are considered. If any of these distances is less than the predefined threshold, the pre-

dicted grasp is regarded as a correct prediction. 

Obviously, the point metric cannot comprehensively evaluate predicted grasp. This 

kind of metric does not evaluate the size and orientation of the predicted grasp and 

thus may overestimate the performance of the algorithm for grasp detection. 

In this paper, the rectangle metric is chosen as the evaluation metric. In this metric, 

the predicted grasp is regarded to be correct if it satisfies both conditions: 

(1) The angle difference between the predicted grasp and the ground-truth grasp is 

within 30°. 

(2) The Jaccard index of the ground-truth grasp and the predicted grasp is larger 

than 0.25. 

The Jaccard index is defined as: 

  
 
 

,
Area G G

J G G
Area G G











 (5) 

The Jaccard index is similar to the Intersection over Union (IoU) threshold [7] for 

object detection. The G means the area of the top-ranked predicted grasp rectangle in 

this algorithm and G
*
 denotes the area of the ground-truth rectangle. G∩G

*
 is the 

intersection of these two rectangles and G∪G
*
 denotes the union of these two rectan-

gles. Note that as the ground-truth grasp rectangles cannot be labeled exhaustively, 

the Jaccard index is 25 percent rather than 50 percent used in the normal object detec-

tion. A rectangle with the right orientation that only overlaps by 25 percent with one 

of ground truth boxes can still be considered as a reliable prediction. All the experi-

ments are performed using this kind of rectangle metric. 

5 Results and Discussion 

Different from many methods adopted in the image augmentation for training dataset, 

the test dataset only uses the center crop. The model is evaluated by the metric men-

tioned above. 

The result of self-comparison of the proposed algorithm with different parameters 

shows in Table Ⅰ and Table Ⅱ shows the comparison of this model and other previ-

ous works on the Cornel Grasp Dataset with the same evaluation metric. It should be 
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noted that all of the results only consider about the single grasp of the object. In other 

words, the inclined bounding box with the highest confidence is set as the output 

grasp rectangle. It is clear that smaller anchor scale and inclined NMS can improve 

detection accuracy. In Table Ⅱ, the result shows the proposed model outperforms 

previous works with RGB images. On image-wise splitting, the accuracy is up to 

94.8%, which is 0.4% higher than the up-to-date 94.4% accuracy [7] in grasp re-

search. While on the object-wise splitting, the detection accuracy is 95.6%, which is 

0.1% higher than the 95.5% accuracy of Chu’s [7] work. Both Chu’s work [7] and 

this approach are generated on the basis of the Faster-RCNN, wherein Chu’s work 

converts the problem of the regression over the orientation to the problem of discreti-

zation orientation classification and this paper deals with this problem in a continuous 

manner. Moreover, this paper applies smaller anchor to improve the accuracy at the 

cost of little additional runtime. 

Table 1. Result of network with different parameters 

Anchor Scale Inclined NMS 
Prediction Accuracy(%) 

Image-wise Object-wise 

(8,16,32) 
No 92.5 94.2 

Yes 93.4 95.1 

(4,8,16,32) 
No 93.2 94.8 

Yes 94.8 95.6 

Table 2. Single grasp evaluation 

Approach 
Prediction Accuracy(%) speed 

Image-wise Object-wise fps 

Jiang et al. [1] 60.5 58.3 0.02 

Lenz et al. [2] 73.9 75.6 0.07 

Redmon et al. [3] 88.0 87.1 3.31 

Wang et al. [18] 81.8 N/A 7.10 

Asif et al. [19] 88.2 87.5 - 

Kumra et al. [4] 89.2 88.9 16.03 

Mahler et al. [20] 93.0 N/A ~1.25 

Guo et al. [5] 93.2 89.1 - 

Chu et al.(Res50 RGB) [7] 94.4 95.5 8.33 

Chu et al.(Res50 RGB-D) [7] 96.0 96.1 8.33 

Ours(Res50 RGB) 94.8 95.6 7.25 

As shown in Fig. 3, some positive rectangles were generated from the grasp detection 

system. The top row shows the ground truth grasp rectangles which are obtained from 

the Cornel Grasp Dataset. The red line in these pictures indicates the gripper’s orien-

tation. As shown in the picture, the number and the size of the grasp rectangles are 

varying and some of the rectangles are even small. Therefore, it is necessary to add 

smaller size to the anchor scale. The second row displays the top-ranked inclined 

grasp rectangle predicted by the detection system. The last row reveals all the inclined 

rectangles output from the detection system. The black line in the picture of the sec-

ond and last rows means the gripper’s orientation and the number in these pictures 
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represents the number of the output rectangles. The results indicate that the detection 

network can accurately predict position and orientation of the grasp rectangles. 

 

Fig. 3. Some positive examples from the network 

Besides, some incorrect grasp rectangles are shows in Fig.4. The first row is the 

ground truth box and the other row shows the wrong results. It should be noted that 

the wrong results here means that the inclined rectangle does not meet the rectangle 

metric mentioned above. Although the left two pictures in the second row are as-

signed to be incorrect, as the grasp rectangle cannot be labeled completely, these out-

puts can be thought as proper prediction as well. 

 

Fig. 4. Some incorrect prediction from the network 
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6 Conclusion 

In this paper, a robust and accurate robotic grasp detection method based on CNN and 

RPN is presented. The architecture of the network is adapted from the R
2
CNN which 

was originally designed to detect inclined scene text, which redefines the meaning of 

the network and shows the generalization of the network when it is comes to the grasp 

problem. Many modifications have been made to solve the grasp detection tasks, and 

the presented method is verified to effectively improve the accuracy of the grasp de-

tection. The experimental results show that this novel network achieves an accuracy 

of 94.6% (image-wise splitting) and 95.6% (object-wise splitting), respectively. The 

network outperformed previous work with the same evaluation metric. Granted, the 

computational speed of the algorithm is not satisfactory enough and further work need 

to be conducted on the problem of shortening time as well as the practical grasp ma-

nipulation. 
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