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Abstract: Class imbalance is a major problem in text classification,
the problem happens when the used machine learning algorithm bi-
ases towards the majority class, so this makes it incorrectly classifies
minority class instances. To get over this problem investigators use
the Synthetic Minority Oversampling Technique(SMOTE), it is pre-
processing algorithm which was proven as a very good solution for
handling imbalanced data sets. In this paper an empirical study have
been executed to handle three imbalanced data sets in text format
using SMOTE, the recall of all minority classes significantly improved
in addition of significant improvement in all models overall perfor-
mance.
Average classes’ recall was improved significantly, by 0.15, 0.09, 0.10
in classification of ASS, FDS, NASS data sets respectively. While the
recall for the minority class has significantly increased, ASS(0.23),
FDS(0.08, and NASS(0.15)
keywords: imbalanced data set, SMOTE, text feedback, text classifi-
cation

1 Introduction

Class imbalance is considered to be a big problem in text classification, the prob-
lem appears when classes do not make up an equal portion of a data-set. For
example, in a simple two classes case, a balanced state would have the class
priority of both classes approximately equal to each other.
In case of an imbalanced problem, the majority class has much more priority
than the minority class.
It is very important to correctly classify all instances in a data set whether they
belong to majority or minority class, in some cases, it is costly to dis-classify
minority instances such as in cancerous cells[1], breast and colon cancer[2], this
miss-classification can lead to wrongly diagnosis the illnesses, mess up and delay
efficient and quick treatment in both cases.
Wrong classification in Fraud detection[3,4], information retrieval[5], marketing
[6], and keyword extraction [7] can lead to frauds success, wrong decision and
results or marketing the wrong product. In addition, detecting oil-spill wrongly
can lead to environment pollution and harming the nature [8].
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Without considering imbalanced priorities, a classifier may learn to always pre-
dict the majority class. The cost of incorrectly classifying the minority class may
extremely high and not acceptable[9,10].
Approaches have been proposed to deal with class imbalance problem include
re-sampling techniques which changes the priors in the training set by either
generating more instances of minority class or omitting instances from majority
class.
More techniques for dealing with class imbalanced include appropriate feature
selection [11], cost-sensitive learners that consider miss-classification cost in the
learning phase[12], one class learner[13,10], and hybrid of the above techniques.
In this paper we are going to use re-sampling method because it showed a good
results [14], researches have shown a strong relation between re-sampling meth-
ods and cost-sensitive cost[12], and also re-sampling method is easy to imple-
ment.
The rest of the paper includes:Section 2 which outlines some related work that
deal with class imbalance, section 3 describes and illustrates the framework,
section 4 details the empirical study, and section 5 concludes the paper.

2 Related Work

Ferdenands and et al explained different techniques to deal with class imbalance
problem, two of them refer to oversampling and down sampling the data set [15].
oversampling methods have been proposed and adopted in different studies, Syn-
thetic Minority Oversampling Technique(SMOTE) is an oversampling technique,
in this technique more instances of minority class are generated.
Mohasseb and et al improved Naive bays classifier performance significantly[16]
by implementing such a method, while Sisovic and et al slightly improve their
clustering model performance [17]. Awad and et al enhanced the performance
of all models using SMOTE method[18]. LV and et al used SMOTE to improve
the recognition of their model which is to distinguish and recognize users who
steal electricity[19].
Down sampling technique is to take out a set of the the majority class to balance
the data set, this technique is used more often in image processing, Wang and
ec al used this technique to get image super-resolution [20], and Lin and ec al
used it to improve image compression at low bit rates [21].

3 Data Distribution

The used data set in this study was collected from school of computing/university
of Portsmouth between 2012-2016 as end of unit feedback, for more details about
the data set please see [22].
Figure. 1. shows the imbalanced class distribution(positive, negative), in the full
data set(FDS), assessment related(ASS), and not assessment related (NASS)
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Full Data Set (FDS) 979
Positive (563) Negative (416)

Not Assessment Related (NASS) 750

Positive (466) Negative (284)

Assessment Related (ASS) 229

Positive (97) Negative (132)

.

Fig. 1. Data Set Distribution[22]

4 Proposed framework

Figure 2 illustrates the proposed framework of dealing with imbalanced data set
using SMOTE method.
The proposed framework first transforms the text documents into structured
data, there is an imbalanced problem regarding sentiment classes (positive, neg-
ative) as illustrated in figure 1 section 2, so the framework has two routes, first
follows the ’yes’ route after binary question whether the data set is balanced or
not (the black arrows) to conclude result 1, and second follows the gray arrows
to conclude result 2 .
Text pre-processing can include remove numbers, punctuation marks, stop words
and words that less than three letters in addition to apply the SMOTE algo-
rithm. SMOTE method works better with binary labels[16], this make it perfect
for our data sets, it runs an oversampling approach to re-balance the original
training set. it applies a simple reproduction of the minority class instances. The
main task of SMOTE is to introduce artificial and unreal examples. This new
data is created by insertion between several minority class instances that are
within a defined neighborhood.
In this paper, Support vector machine algorithm was used to build the classi-
fication model, it is a powerful tool for text classification, it has the power to
determine an optimal separating point that labels records into different cate-
gories.
The final Phase is to evaluate models in both routes to see and compare their
performance using recall precision, accuracy, and F-Measure.



4 Zainab Ibrahim et al.

Fig. 2. Proposed Framework for Handling imbalanced data set

5 Empirical Study

In all experiments to build the needed models, a computer desktop was used
with quad 2.33 GHZ CPU, 4GB RAM, and windows 7 operating system.
WEKA a graphic user interface(GUI) was used to pre-proccess, classify, and re-
sample our data sets.
Support Vector Machine(SVM) was used as a machine learning algorithm for
automatic text classification, it was applied using data set and its subsets that
used in[22] to build three models, the performance of these models evaluated us-
ing Accuracy ,Precision, Recall, and F-Measure measurements, the study used
10-fold cross validation.

This study results show the success of handling imbalanced data of classi-
fication models’ performance using SMOTE technique, first this paper shows
the results of applying SVM algorithm in classification process without using
SMOTE, results were listed in [22] and second rerun the experiment using smote
technique, see table 1

5.1 Results

Table 1 presents overall classification performance details of SVM classifier using
the SMOTE algorithm and without using it.The results show better classifier
performance when handling the class imbalance.
To shed the light in how did the classifier classify the minority class in the above
data sets we need to have a look at the recall results which are illustrated in
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SVM without SMOTE SVM with (SMOTE)

Data set Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

ASS 0.69 0.70 0.70 0.69 0.85 0.88 0.85 0.84
FDS 0.76 0.76 0.74 0.74 0.83 0.83 0.83 0.83
NASS 0.76 0.75 0.73 0.74 0.85 0.88 0.85 0.84

Table 1. Overall SVM classifier performance without/with the implementation of
SMOTE algorithm

table 2. The results shows that classification of the minority class in all data set
has improved, in FDS data set, the recall increased by 0.08, in the NASS data
set case the recall increased by 0.15 while in ASS data set the recall significantly
increased by 0.23 in total.

SVM without SMOTE SVM with (SMOTE)

FDS NASS ASS FDS NASS ASS

P/N 563/416 466/284 97/132 563/416 466/284 97/132

P 0.85 0.84 0.64 0.92 0.75 0.87
N 0.63 0.70 1 0.71 0.85 0.79

Table 2. Recall SVM classifier performance without/with the implementation of
SMOTE algorithm P=Positive,N=negative

6 Conclusion and Future Work

This study proposed a framework for handling class imbalance issue using SMOTE
algorithm and utilizing Uni gram feature.
Empirically, results have shown that the proposed framework worked well for
the used data set classification, and improved all models in terms of accuracy,
precision, recall, and F-measure.
Average classes’ recall was improved significantly, by 0.15, 0.09, 0.10 in classifi-
cation of ASS, FDS, NASS data sets respectively.
The recall for the minority class has significantly increased using SMOTE for
all data sets, the best recall improvement was in ASS data set(positive class),
it increased by 0.23, the second was in NASS(negative class) data set which in-
creased by 0.15, and finally FDS (negative class) by 0.08.
Future work include apply more techniques for dealing with class imbalanced
such as appropriate feature selection, cost-sensitive learners that consider mis
classification cost in the learning, and the SMOTE algorithm with different fea-
ture representations such as bi-gram and Part of Speech(PoS).
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