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Abstract— This work proposes a novel control strategy based
on broad fuzzy neural network (BFNN) by using impedance
learning, which is subjected to contact with the unknown
dynamic environment. Compared with the original fuzzy neural
network, this framework is provided the prominent feature
by taking the advantage of broad learning system (BLS) to
approximate the unknown dynamic model. Aiming at offering a
compliance contact scheme, this paper introduce the impedance
learning to establish the robot-environment interaction model.
Also, a stable controller, which is able to tackle the problems
related to the state constrain, is designed through Barrier Lya-
punov Function (BLF). The proposed method can achieve the
favourable tracking action while guaranteeing the stability of
closed-loop system. In the end, simulation study is performed to
verify the effectiveness of BFNN with a two-DOF manipulator.

I. INTRODUCTION
In the last few years, increasing robotic manipulator tech-

niques have been adopted into our daily life and industrial
appliances. One of the most difficulties in robotics researches
is how to achieve the desirable and friendly interaction con-
trol in its work-piece. Aiming to enable robot response like a
second order mass-spring-damper, it is important for robotic
system to have a capability to control not only in motion and
position but also in force aspect. The current trend of control
schemes in human-machine interaction control are force con-
trol [1] and impedance control [2-3] which can offer a desired
dynamic motor and force control behavior by regulating the
impedance parameters. Several researches have been done
on this field. In order to tackle the force tracking problem,
Cheah et al. [4] has proposed an iterative impedance learning
scheme to approximate the target impedance model by
taking actions repeatedly for robotic manipulators. In [5],
an adaptive model based impedance controller is designed
to achieve the desire physical interaction for human and
robot. Li et al. [6] proposed a learning procedure without
any identified model to achieve the manipulator compliant
interaction behavior. The aforementioned works can lead
to stable and desired tracking performance, but the robotic
dynamics is indispensable for these algorithms.
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In the field of impedance controller design for human-
machine interaction, uncertainties and unknown disturbance
is the crucial problems for the robotics system. Recent
researches have proven that adaptive Neural Networks(NN)
and fuzzy systems have a prominent learning capability to
approximate any nonlinear and continous functions to any
specific accuracy [7]-[9]. In [10], an NN impedance control
is designed with the presence of uncertainties by considering
a target impedance reference trajectory. Ping et al. [11] de-
signed an impedance control law by using the adaptive fuzzy
approximators to improve the interacted behavior for the
robot with the uncertain dynamics. However, fuzzy system is
inefficient to address the system’s uncertainty since it lacks
of any automatic learning capabilities. For this reason, further
researches, which incorporate the fuzzy logic to adaptive NN
control, have been proposed to improve the overall learning
performance. In [12], FNN is developed for a rehabilitation
exoskeleton robot controller such that the system is able to
satisfy the trajectory tracking accuracy under environmental
disturbances and parametric uncertainties. By considering the
uniform boundedness and state constraint, He et al. [13]
proposed an adaptive FNN control to address the interaction
problem of robot.

Nevertheless, a key problem in the aforemention algo-
rithms is that the neural nodes for NN or the logic rules
for fuzzy system are specified in terms of the expert ex-
periences. Once the motion trajectory or working environ-
ment is changed, they need to redesign which may result
in inefficient training process and poor generation ability.
Recently, inspiring by random vector functional-link neural
networks (RVFLNN) [15], a novel framework named broad
learning system [14] has been proposed and extensively
utilized for pattern recognition and classification [16]-[18].
By taking the advantages of RVFLNN, BLS can offer
acceptable generalization and expansion performance though
increasing the neural nodes dynamically. Herein, this inspires
us to bring a forward solution which incorporates BLS and
adaptive impedance control to enhance the capability of
FNN’s generalization.

In this context, we propose a broad fuzzy neural con-
trol framework and apply it to a constrained manipulator
which interact with the unknown environment. Particularly,
the problem of robot-environment interaction is tackled by
impedance learning and BFNN is utilized to approximate
the unknown dynamic model. Different from the existing
researches, the major contributions of this work are that the
proposed framework provides new insights into impedance
control from incorporating the BLS and FNN to handle
the unknown plant model. Further more, state constraint is
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achieved and the closed-loop stability in the process of train-
ing is satisfied by using a tan-type Lyapunov function [19].

II. PROBLEM FUNDAMENTALS

A. Dynamic and Impedance Model

In this paper, we discuss the problems of unknown plant
model approximation, state constraint and impedance con-
trol through investigating the adaptive control and robot-
environment interaction. Since the n-link manipulator is
controlled in the Cartesian space, we consider the dynamic
model based on Lagrange-Euler form as

Dx(q)ẍ+Cx(q, q̇)ẋ+Gx(q) = τx− τe (1)

where x ∈ Rd is the end-effector’s coordinators in Cartesian
space; q ∈ Rd is the joint angle vector; τx ∈ Rd is the
control torque regulated by the adaptive controller and τe ∈
Rd denotes the impedance force while interacting with the
environment at end-effector; Dx(q) ∈ Rd×d is a symmet-
ric and positive definite inertia matrix of the manipulator;
Cx(q, q̇) ∈ Rd×d and Gx(q) ∈ Rd represent the Coriolis and
centrifugal forces vector and gravity torques respectively
which are derived from joint space to Cartesian space as
follows:

Dx(q) = J−T D(q)J−1 (2)

Cx(q, q̇) = J−TC(q, q̇)J−1

− J−T M(q)J−1J̇J−1 (3)

Gx(q) = J−T G(q) (4)

where J ∈ Rd×d is a non-singular Jacobin matrix of plant.
For the purpose of this work, the manipulator is required to

respond to a desirable compliance behavior while contacting
with the unknown environment in the presence of model
uncertainties. The relationship between the target impedance
model and close-loop system can be defined as

Dm(ẍd− ẍ)+Cm(ẋd− ẋ)+Gm(xd− x) = τe (5)

where Dm,Cm and Gm denote the inertia, damping and
stiffness matrices which can be specified by user beforehand,
xd ∈ Rd denotes the desired reference trajectory. When the
manipulator works in free space, which means there is no
obstruction during the tracking of end-effector, it can be
obtained that x = xd ,∀t > 0 such that τe = 0.

B. Broad Learning System

Evolving from random vector functional-link neural net-
works, BLS has been demonstrated its efficient approxi-
mation and generation ability in recognition and classifi-
cation fields. Compared with the conventional RVFLNN,
the innovation of BLS is that a set of feature mappings
have been used to replace the input vector of the hidden
layer. Also, this framework has a capability of generation by
using the enhancement nodes which are generated and then
incremented in terms of the feature mappings.

The illustration of the BLS is shown in Fig. 1. In this
structure, the input and output variables are denoted as X

Fig. 1: Schematic diagram of BLS

and Y ∈RN×C respectively. For the n feature mappings, they
can be obtained by considering the input data X as

Fi = ψ(XWfi +β fi) i = 1 · · ·n (6)

where Wfi and β fi are generated randomly at the stage of
network initialization and then keep unchanged in the process
of network training. Then, the enhancement nodes can be
denoted as

E j = ξ (ZnWe j +βe j) j = 1 · · ·m (7)

where ψ(·) and ξ (·) are the transfer functions. Hence, the
network output is represented as

Y = [F1, · · · ,Fn|ξ (FnWe1 +βe1),

· · · ,ξ (FnWem +βem)]W
m

= [F1, · · · ,Fn|E1, · · · ,Em]W m

= [Fn|Em]W m

= GmW m

(8)

For the recognition and classification problems, the output
vectors are usually given beforehand and the neural weight
matrix W m can be yield by the pseudo-inverse of [Fn|Em],
i.e. W m = [Fn|Em]+Y . Furthermore, an enhancement node
can be inserted into the original network such that a higher
accurate approximation can be achieved. In this case, the
augmented layer is denoted as

Gm+1 = [Gm|Em+1]

= [Gm|ξ (ZnWe j+1 +βe j+1)]
(9)

Similarly, the incremented weights and biases which are used
to derive the m+1 enhancement node from mapped features
are generated randomly.

C. Broad Fuzzy Neural Network
In this part, the principle of the broad fuzzy neural network

framework will be described in detail. Previous subsection
has shown the approximation capability of the BLS. Fig. 2
illustrates the schematic diagram of the proposed BFNN.
There are four layers in this framework. Layer 1 contains the
network input vectors xn. Then the input variables transmit
to layer 2. In this technical note, we apply the Gaussian NN
as the transfer membership function, which is defined as the
following format from the robotic neural control point of
view:

ξi, j(xi) = exp[
−(xi− ci, j)

T (xi− ci, j)

η2 ] (10)



Fig. 2: Schematic diagram of broad fuzzy neural network

where ξi = [ξi,1,ξi,2, . . . ,ξi,k]
T . ci, j and η denote the center

and bias of the membership function respectively. In this
layer, the initial number of membership node is defined as
k = 1 which will be incremented dynamically in terms of the
input variables. First, we define the norm distance between
the input variables and Gaussian centers as the incremental
criterion

d(x,ci) = ‖x− ci‖ (11)

The membership nodes will be augmented to ξi,k+1 while the
distance d(x,co) is larger than the predefined threshold Θ,
where co represents the nearest center from the input vector.
The enhancement node is defined as a new tuple

ξi,k+1 =< ci,k+1,η > (12)

where ci,k+1 = β‖xi− c̄‖. Here, c̄= ∑
l
i=1 ci

k denotes an average
position related to the lth nearest centers ci.

Next, the rule nodes in layer 3 denote the fuzzy rules
which are calculated by m-norm product operation as follow:

s j =
n

∏
i=1

ξi, j(xi) (13)

Hence, the continuous function approximated by BFNN
can be represented as

f (x) =W ∗T ϑ(x)+ ε

=


∑

k
j=1 w js j

∑
k
j=1 s j

+ ε d(x, c̄)> Θ

∑
k+1
j=1 w js j

∑
k+1
j=1 s j

+ ε otherwise

(14)

where W ∗T is the desired broad fuzzy NN weight vector and
‖εi‖< ε∗i denotes the approximation error.

III. ADAPTIVE BFNN IMPEDANCE CONTROLLER DESIGN

In this section, the design of adaptive BFNN control
scheme by means of impedance learning under the unknown

environment is elaborated. Fig. 3 shows the configuration of
the proposed controller.

In general, we first define the Cartesian tracing error
signals as

z1 = x− xd (15)

z2 = ẋ−α1 (16)

where xd ⊂ Ωd is the reference trajectory, α1 is the virtual
controller which will be discussed hereinafter. For these
condition, the dynamic model (1) can be rewritten as the
state function

ẋ1 = x2

ẋ2 = D−1
x [τx− τe−Cx(q, q̇)x2−Gx(q)]

(17)

where x1 = x and x2 = ẋ. In practical term, robotic ma-
nipulator often works under many restrictions including the
constraints of position and velocity. For these reasons, a
Barrier Lyapunov Function, which is defined as follows [18],
is adopted to code with the state constraint problem in this
paper:

V =
µ2

π
tan(

πχ2

2µ2 ) (18)

where χ is the system state which is aimed to satisfy the
constraint with ‖χ‖< µ . According to the L’Hospital’s rule,
it can be concluded that (18) can be replaced by the quadratic
form as follow if the constraint is omitted:

lim
µ→∞

µ2

π
tan(

πχ2

2µ2 ) =
1
2

χ
2 (19)

Particularly, the Cartesian tracking error z1 is constrained
in a specific area through the tan-type Lyapunov function,
i.e.|z1i|< µi,(i= 1,2, · · · ,n). Thus, we can specify the virtual
control α1 in (15) as

α1 =−K1Φ+ ẋd (20)

where Φ = [φ1,φ2, · · · ,φn]
T is a nonsingularity matrix in

terms of L’Hospital’s rule with φn = µ2
n

2πz1n
sin(πz2

1n
µ2

n
), K1 =

diag[k11, · · · ,k1n] is a positive constant vector.
Note that the proposed scheme is used to contact with the

unknown environment. By taking the contact force τe into
account, the adaptive control torque is designed as

τx =−ρ + D̂xα̇1 +Ĉxα1 + Ĝx−Kpz2−Kr sgn(z2)+ τe (21)

where ρ = [ρ1, · · · ,ρn]
T with ρn = z1n/cos2(

πz2
1n

2µ2
n
), D̂,Ĉ and

Ĝ are the estimates of robotic dynamic models which is
approximated by BFNN (14) and

Dx =W ∗TD ϑD + εD

Cx =W ∗TC ϑC + εC

Gx =W ∗TG ϑG + εG

(22)

Here, we assume that ˜(·) = ˆ(·)− (·)∗. The error dynamic is
calculated as follow by substituting the control torque (21)
into the robotic model (1):

Dxż2 =−ρ−Cxz2 + D̃xα̇1 +C̃xα1 + G̃x

−Kpz2−Kr sgn(z2)+Ex
(23)



Fig. 3: Control diagram of the BFNN controller

where Ex = εDα̇1 + εCα1 + εG with Kr > ‖Ex‖.
Next, the Lyapunov approach is used to design a stable

controller and adaptive updated law of BFNN (14) by
considering the following Lyapunov function:

V1(t) =
n

∑
i=0

µ2
i

π
tan(

πz2
1i

2µ2
i
)+

1
2

zT
2 Dxz2

+
1
2

W̃ T
D W̃D +

1
2

W̃ T
C W̃C +

1
2

W̃ T
G W̃G

(24)

Since [Ḋx− 2Cx] is a skew-symmetric matrix, we take the
derivative of the candidate function by means of the error
dynamic (23) which result in

V̇1(t) =−
n

∑
i=0

k1iµ
2
i

π
tan(

πz2
1i

2µ2
i
)− zT

2 Kpz2

+ zT
2 (Ex−Kr sgn(z2))

+ zT
2 (W̃

T
D ϑDα̇1 +W̃ T

C ϑCα1 +W̃ T
G ϑG)

+W̃ T
D

˙̂WD +W̃ T
C

˙̂WC +W̃ T
G

˙̂WG

(25)

The adaptive updated laws are designed as

˙̂WD =−ϑDα̇1z2−δDŴD

˙̂WC =−ϑCα1z2−δCŴC

˙̂WG =−ϑGz2−δGŴG

(26)

where δD,δC,δG are the robust items for the BFNN
impedance controller. Substituting the update laws (26)
into (25), the differential Lyapunov function (25) can be
rewriten as

V̇1(t) =−
n

∑
i=0

k1iµ
2
i

π
tan(

πz2
1i

2µ2
i
)− zT

2 Kpz2

−δDW̃ T
D ŴD−δCW̃ T

C ŴC−δGW̃ T
G ŴG

(27)

Taking the equality −W̃ TŴ = −W̃ T (W ∗ + W̃ ) and the
Young’s inequality −W̃ TW ∗ 6 1

2 (W̃
TW̃ +W ∗TW ∗) into ac-

count, we can get

V̇1(t)6−
n

∑
i=0

k1iµ
2
i

π
tan(

πz2
i

2µ2
i
)− zT

2 Kpz2

− 1
2
(W̃ T

D W̃D +W̃ T
C W̃C +W̃ T

G W̃G)

+
1
2
(W ∗TD W ∗D +W ∗TC W ∗C +W ∗TG W ∗G)

6−γV1(t)+ν

(28)

where γ =min(2k11,2k12, · · · ,2k1n,
2λmin(Kp)
λmax(Dx)

) with λ respects
the eigenvalue of (·), ν = 1

2 (W
∗T
D W ∗D +W ∗TC W ∗C +W ∗TG W ∗G).

Hence, the control parameters should be specified as |Kp|> 0
and |K1|> 0 such that the differential Lyapunov candidate is
negative definite. Multiplying (28) by eγt , we have

d(V1(t)eγt)

dt
6 νeγt (29)

Computing the integral of (29) and yields

V1(t)6 e−γtV1(0)+
ν

γ
(1− e−γt)

6V1(0)+
ν

γ

(30)

Considering z1, we can get

1
2

zT
1 z1 6V1(0)+

ν

γ
(31)

In other words, ‖z1‖ 6 2(V1(0) + ν

γ
). It can be concluded

from (29)- (31) that the dynamics system (17) and control
signal (21) are bounded. The tracking error z1 is bounded and
converges to the specific compact set Ωz1 in terms of (31).
Once choosing the reasonable design parameters, it is able to
further shown that the target impedance can be achieved and
the tracking errors are uniformly ultimately bounded (UUB).
In this way, the proposed controller can enable the control
system stable in sense of Lyapunov.

IV. SIMULATION STUDIES

In this section, a comparative simulation both in interac-
tion case and free movement case to verify the effectiveness
of the proposed algorithm is conducted. Without loss of



TABLE I: Parameters of the manipulator

Parameter Description Value Unit

m1 Mass of link 1 10.0 kg
m2 Mass of link 2 10.0 kg
l1 Length of link 1 1.0 m
l2 Length of link 2 1.0 m
I1 Inertia of link 1 0.83 kgm2

I2 Inertia of link 2 0.83 kgm2

g Gravity acceleration 9.8 m/s2

generality, the end-effector a two-DOF manipulator equipped
with a force sensor to detect the disturbance force is inves-
tigated to move in the free space and then interacted with a
fixed wall as shown in Fig. 4. In this scenario, the wall is
simply treated as a rigid object which can be modelled as

fw =

[
fwx
fwy

]
=

[
kw(x(1)− xw)

0

]
(32)

where kw denotes rigid of the wall, xw is wall’s coordinate
at x-axis. Simply, we assume that there is no friction dis-
turbance while the manipulator is sliding along y-axis at the
wall such that fwy = 0.

Fig. 4: Simulation scenario for two-DOF manipulator

As the system has no information about the wall and
dynamic of manipulator, the purpose of designing such
scenario is to examine the proposed controller’s capability
for tackling the tracking problem both in free space and in
constraint space ,i.e. contacting with the unknown wall.The
format of Lagrange-Euler dynamic matrices Dx,Cx and Gx in
(1) can be found in [20]. Specifically, the model parameters
is specified as Table I.

In this test, the desired trajectory is design as

xd(t) =
[

1−0.3cos(t)
1+0.3sin(t)

]
(33)

which denotes a circle located at [1,1] with 0.3m ra-
dius. The initial position of the manipulator is specified
as [0.58π,−0.58π] in joint space and the wall is located
at xw = 1.1m. In this simulation, the target impedance
model is designed as Dm = diag[0.1], Cm = diag[20] and
Gm = diag[100]. The adaptive impedance control parameters
are specified as K1 = diag[40,60], Kr = diag[20,20], Kp =
diag[80,80] and µ = [0.5,0.5]T . Furthermore, the BFNN
updated law is specified as (26) with δD = 1.5, δC = 1.5 and

Fig. 5: Simulation of trajectory in Cartesian space

δG = 2.0. The distance threshold Θ for incremental nodes is
chosen as ΘD = 0.3, ΘC = 0.5 and ΘG = 0.2 respectively.

In order to verify the effectiveness of the proposed frame-
work, the manipulator is required to move in free space
and then slide along the unknown wall which will produce
a contact force while contacting. Fig. 5 shows the result
of tracking simulation. It shows that the adaptive BFNN
impedance controller can provide a smooth tracking perfor-
mance and has an ability to tackle the interaction problem
while the environment is changed.

Fig. 6 gives the comparison of tracking performance and
control torque signal. From Fig. 6(a), the manipulator is
able to track the desired trajectory in free space perfectly.
However, there are a few oscillations occurring due to the
change of environment while the end-effector is starting to
contact with the wall. However, fast convergence can be
achieved towards the proposed control.

In addition, the number of membership nodes for D̂x,
Ĉx and Ĝx approximation which are incremented adaptively
during the training phase is shown in Fig. 7. Instead of
specifying the parameters of neuron nodes beforehand which
mainly depend on the expert experience and tend to be
inconvenient, the proposed network has an ability to expand
automatically in terms of the state variables. At the same
time, the growing number of incremental nodes can be
limited by the distance threshold Θ.

V. CONCLUSION

In this paper, we have proposed an adaptive broad fuzzy
NN control to improve the performance of robot-environment
interaction by adopting the impedance learning. The en-
hancement membership nodes are expanded dynamically by
considering the input variables and the uncertainty of robotic
dynamic model is addressed by using the proposed BFNN
framework. The stability and convergence of the closed-
loop system has been proven rigorously by the Lyapunov



(a) Position tracking

(b) Control torque

Fig. 6: Control performance with BFNN

Function. We demonstrate from the simulation results that the
proposed methodology is valid for the adaptive impedance
control system and it can also provide the favourable tracking
performance.
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