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Abstract

Gaze is an important non-verbal cue for speculating human’s attention, which

has been widely employed in many human-computer interaction-based applica-

tions. In this paper, we propose an improved Itracker to predict the subject’s

gaze for a single image frame, as well as employ a many-to-one bidirectional Long

Short-Term Memory (bi-LSTM) to fit the temporal information between frames

to estimate gaze for video sequence. For single image frame gaze estimation,

we improve the conventional Itracker by removing the face-grid and reducing

one network branch via concatenating the two-eye region images. Experimental

results show that our improved Itracker obtains 11.6% significant improvement

over the state-of-the-art methods on MPIIGaze dataset and has robust esti-

mation accuracy for di↵erent image resolutions under the premise of greatly

reducing network complexity. For video sequence gaze estimation, by employ-

ing the bi-LSTM to fit the temporal information between frames, experimental

results on EyeDiap dataset further demonstrate 3% accuracy improvement.

Keywords: Gaze estimation, CNN, RNN, LSTM

⇤Corresponding author: Shengyong Chen, Email: sy@ieee.org



1. INTRODUCTION

Gaze estimation is to speculate the gaze direction or a gaze point for a partic-

ular plane. It has been viewed as an important clue to speculate on the target’s

attention, which has been widely applied in many human-computer interaction-

based fields. Recently, many gaze estimation methods have been explored, how-5

ever, existing gaze estimation systems [1, 2, 3, 4, 5] have the following defects:

redundant calibration process, complex system settings, limitations of lighting

conditions and the non-universal calibration for di↵erent subjects as well as low

tolerance to head movement, which limit the application of gaze estimation.

Gaze estimation methods can roughly be classified into two categories: model-10

based methods and appearance-based methods. The model-based method-

s simulate the eye-gaze through a three-dimensional model and estimate the

gaze direction by applying the calibrated eye parameters to the gaze model

[1, 5, 6, 7, 8, 9]. The appearance-based methods try to map features extracted

from face or eye images to gaze direction or gazing point, which can be further15

classified into manual-feature-driven methods and data-driven methods.

Traditional manual-feature-driven gaze estimation methods [2] normally achieve

the position of gaze point by mapping the eigenvector formed by the local fea-

tures such as corneal reflections or eye corners as well as iris contours to the final

target. Cai et al. [10] replaced the infrared reflection point with the eye corner,20

hence reduced the complexity of the device. At the same time, they improved

the iris center localization method and simplified the di↵erential-operator. The

eigenvector composed of the eye corner and iris center was used for the estab-

lishment of subsequent regression equation. Feng et al. [3] preprocessed the

pixel values of the whole eye region to form the feature, and applied the eigen-25

vectors generated in the calibration process to linearly fit the eigenvectors in

real-time prediction. The fitted parameters were then combined with the cor-

responding calibration points to get the predicted result. Kacete et al. [11]

used random forest regression to perform gaze estimation and combined with

depth information to improve the result under large head pose. Wang et al. [12]30
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proposed a k-Nearest Neighbor (KNN) method based on the head pose and iris

center position. They used head pose and iris center position as the criterion

of classification and trained the class-independent regression model to fit the

mapping relationship on the corresponding data. Although some traditional

appearance-based methods can achieve high accuracy, they tend to be poorly35

tolerant to various head poses, illumination changes and need person-specified

calibration.

Recently, a number of datasets have been proposed to provide a unified

standard for gaze estimation evaluation as well as a reliable data source for

data-driven methods. These methods such as Convolutional Neural Network40

(CNN) based methods have great potential to handle with many traditional

challenges, since they use a data-driven o↵-line training instead of cumbersome

personal calibration and only use a web-cam to avoid tedious system setup.

Zhang et al. [13] used CNN to map the eye images and head poses to gaze

vector, which showed that the CNN-based method has higher accuracy than45

classic methods for various illumination and appearance di↵erences. Afterwards,

they improved the basic network in [13] from Alexnet to vgg16 [14], and put

the head pose information into the penultimate layer. It got a better estimation

result but increased the scale of the network. Ranjan et al. [15] proposed a

network based on Alexnet, maintained the previous network layers and trained50

the last two layers separately based on head pose. The final results indicated

that this network was more robust to various head pose without increasing the

network scale and inference complexity. Deng et al. [16] analyzed the over-

fitting problem between head pose and gaze vector and proposed a two-step

training structure. They first trained the separate model for head pose and55

eyeball movement, then aggregated them to estimate gaze vector from coarse

to fine. This method had less potential for head-correlation over-fitting, but

lacked evaluation on public datasets. Krafka et al. [17] separately input the

whole face image and eye images to the corresponding branch and used face

grid branch to locate face position in order to supply the location information60

for predicting gaze point on the screen. However, this method was only limited
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to the 2D gaze estimation, the performance on 3D was not evaluated. Zhang

et al. [18] demonstrated that the entire face encoding the information of head

pose and illumination could be beneficial for the final result, so they directly

input the normalized face to the Alex-based network and proposed a spatial65

weights CNN to reduce redundant information in face region. This method

has demonstrated more robust result under significant variation in illumination

conditions but appears to be more complexity, which is not friendly enough to

di↵erent hardware.

In order to improve the 3D gaze estimation accuracy while keeping hardware70

friendly, we propose an improved Itracker as a static model to predict the final

result for a single image frame. For video sequence, we further employ a many-

to-one bidirectional Long Short-Term Memory (bi-LSTM) to fit the temporal

information bewteen frames. The main contributions of this paper are listed as

following.75

1) We improve the Itracker model [17] to predict the gaze of a single image

frame. We analyze the role of face grid module in 2D gaze estimation and

remove this module for our 3D gaze estimation. We concatenate the left and

right eye images into a unified input with 6 channels. We reduce the network

optimization parameters by nearly half without sacrificing accuracy.80

2) We introduce the bi-LSTM to simulate the temporal sequence information

and propose a gaze estimation method combining static and temporal models.

To the best of our knowledge, this is the first time that a bidirectional recurrent

neural network has been employed into gaze estimation to simulate temporal

information.85

3) We perform various evaluation on our proposed gaze estimation method

on two publically available datasets: MPIIGaze [13] and EyeDiap [19]. Without

any pretraining and data augmentation, we obtain a significant improvement of

11.6% over the recent state-of-the-art methods on MPIIGaze under the premise

of greatly reduction on network complexity. Moreover, experimental results90

show that our method has high accuracy to various resolution degradation.
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2. METHODOLOGY

In this section, we first introduce the steps of data preprocessing and then

describe the network architecture for the proposed method, and finally describe

the proposed temporal module as well as the implementation details. The overall95

architecture is shown in Fig.1.

Figure 1: The overall architecture of proposed 3D gaze estimation method.

2.1. 3D Gaze Estimation

Figure 2: The di↵erence between 2D gaze estimation and 3D gaze estimation.

The purpose of 3D gaze estimation is to learn a function f to map the

image I to a 3D gaze vector g, where g = f (I). This vector is originated from
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corneal center or a reference point of the face. The 2D case can be obtained100

by intersecting the 3D gaze vector g with the specific 2D target plane. The

di↵erence between these two cases is shown in Fig.2. In this paper, we focus on

estimating the 3D gaze vector g.

2.2. Data Preprocessing

Similar to [20], to weaken the e↵ects of di↵erent head poses and various105

camera parameters on the final gaze estimation result, we make a certain per-

spective transformation on the original images so that we only need to train the

model for gaze estimation under the specific virtual space. This process greatly

reduces the complexity of the fitting problem as well as the potential model size.

The main process of data normalization can be divided into two steps. The110

first step is to rotate the camera by a conversion matrix so that the face reference

point will be at the image center from a fixed distance, which could reduce the

appearance variance. The second step is to transform the face into an image

plane of a specific camera space through a transform matrix in order to reduce

the negative e↵ects of di↵erent camera configurations.115

Assuming that a is the coordinate of the face reference point under camera

space, we make the virtual camera face to the reference point by letting the

z-axis of the virtual space be vz = a
kak2

, and then assuming that H [hx, hy, hz]

is the rotation matrix of head pose, where hx, hy, hz denote the coordinate of

head in camera space. In order to make the x-axis parallel to the horizontal120

direction of head, we make vx = vy ⇥ vz, where vy = vz ⇥ hx. The rotation

matrix R between original camera space and virtual camera space is computed

as R = [rx, ry, rz]
T . We assume that the distance between the virtual camera

and the reference point is d. The conversion matrix M = SR is used for the

first step, where S = diag

⇣
1, 1, d

kak2

⌘
.125

The second step is implemented by the warp matrix W = CoMC
�1
n , where

Co is the intrinsic matrix of original camera and Cn is the intrinsic matrix of

virtual camera that is determined by the size of output image.

Similar to the transformation of the image, we also need to convert the
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corresponding gaze label during training procedure. Let gn = Rgo, where gn130

and go denote the normalized gaze label and the original gaze label, respectively.

Then, we represent it by Euler angle to release the constraint relationship of

unit vector. In test phase, for each prediction result, we need to convert them

from virtual space back to the original camera space, so the result is obtained

from go = R
�1

gn.135

2.3. Network Architecture

In this paper, we propose a network architecture combined with bidirectional

LSTM to incorporate temporal information for 3D gaze estimation. In [17], the

authors input the face and the left and right eyes separately to a single branch of

the network, and then mapped the merged features extracted from each branch140

to obtain the ultimate two-dimensional gaze point on the screen. We notice

that a face grid module has been added to the network structure in [17], which

had a greater impact on the final estimation results. Since the method in [17]

needs to obtain the exact gaze point on the device, in addition to predicting

the gaze direction, it is necessary to know exactly the head position in camera145

space. This information is primarily provided by the face grid module. Since we

mainly discuss how to e�ciently and accurately get the 3D gaze direction in this

paper, the face grid module can be ignored in our topology. In the datasets,

since each subject’s gaze direction has a constraint that the gaze point is on

the screen, which causes gaze direction be related to the relative position of the150

face and the camera. However, in the real-world application scenario, there is

no such constraint, so it is easy to conclude that the gaze direction and the

head position in camera space are independent. Therefore, we did not conduct

experiments with or without face-grid, since even if relevant evaluations were

performed on the datasets, the experimental results were meaningless to the155

final conclusions.

In order to reduce the network size as much as possible while ensuring ac-

curacy, we concatenate the left and right eye images to form a single 6 channels

input. In this way, we can successfully reduce nearly half the number of the net-
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work parameters (from approximately 3.6 million to 1.8 million) without any160

reduction in the final estimation performance.

In [18], the entire face already contains all the information needed for gaze

estimation. It can also be seen from [14] and [21] that the additional face

landmarks or head pose information has little impact on the final result. Because

of the rich combination of hyper parameters, we cannot conclude that this weak165

improvement is attributed to the introduction of these additional structured

information. So, in this paper, for simplicity we don’t include these extra shape

cues or head poses information in our network. All non-linear relationships are

directly encoded by the network. The final static feature module is depicted in

Fig.3.170

Figure 3: The static feature extraction module.

To the best of our knowledge, existing gaze estimation models rarely use

the temporal information. In this paper, we consider the correlation of gaze

direction between the consecutive frames. We use the bi-LSTM to simulate the

temporal relationship to increase the accuracy and robustness of the network.

The overall architecture is shown in Fig.1, which is divided into two modules:175

static module and temporal module. The static module learns features from the

separate face and eyes appearance. It consists of a two-branch CNN and unified
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FC layers. One branch CNN extracts the features from normalized face and the

other from concatenated eyes image. The FC layers combine these two parts

of features and learn a joint representation for the fused features. The learned180

features are then input to the many-to-one bi-LSTM. We finally use a linear

regression to get the predicted result in normalized space from the hidden units

in last time step.

2.4. Temporal Module Description

Figure 4: The temporal module. Figure 5: The structure of a single L-

STM cell.

The overall structure of temporal module is shown in Fig.4. The LSTM185

structure contains a series of repeated LSTM cells, and the structure of a single

LSTM cell is shown in Fig.5. Each LSTM cell contains three multiplicative

units that represent the forget gate, the input gate, and the output gate. These

multiplicative units allow LSTM memory cells to store and transfer information

over a long period of time. The c and h respectively indicate the cell and190

hidden state. In Fig.4, (xt, ct�1, ht�1) indicates the input layers and (ht, ct)

indicates the output layers. Next, we briefly introduce how a standard LSTM

cell generates outputs from inputs.

At time step t, the forget gate, the input gate and the output gate are repre-

sented as ft, it, ot respectively. The LSTM cell first uses the forget gate to filter195

out the information that needs to be discarded. The filtered information indi-

cates some partial features extracted from the previous frame which is related
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to the former gaze direction but obviously irrelevant with the current target.

ft = � (Wifxt + bif +Whfht�1 + bhf ) (1)

where (Wif , bif ) and (Whf , bhf ) respectively represent the weight matrix and

bias term mapping input layer and hidden layer to the forget gate. The � is the200

gate activation function, which is selected as the sigmoid function in this paper.

Then, the LSTM cell uses the input gate to incorporate valid information.

gt = tanh (Wigxt + big +Whght�1 + bhg) (2)

it = � (Wiixt + bii +Whiht�1 + bhi) (3)

ct = ftct�1 + itgt (4)

where (Wig, big) and (Whg, bhg) respectively represent the weight matrix and205

bias term mapping the input layer and hidden layer to the cell gate. (Wii, bii)

and (Whi, bhi) respectively represent the weight matrix and bias term mapping

the input layer and hidden layer to the input gate.

Finally, the LSTM cell gets the output hidden layer from the output gate.

ot = � (Wioxt + bio +Whoht�1 + bho) (5)
210

ht = ottanh (ct) (6)

where (Wio, bio) and (Who, bho) respectively represent the weight matrix and

bias term mapping the input layer and hidden layer to the output gate.

As shown in Fig.4, bi-LSTM contains a forward LSTM layer and a backward

LSTM layer. In this paper, a sequence is composed of three image frames. The

final gaze prediction is obtained by a fully connected layer. This layer maps the215

hidden layers got from forward and backward units of the last frame in time t

to the final two-dimensional gaze vector g.

g = fc (ht, htr) (7)
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2.5. Implementation Details

We use a reduced version of the convolution layers of Alexnet as the basic

network for each branch. Each basic network has 4 convolution layers. The face220

branch is connected to a 128-dimensional FC layer followed by a 64-dimensional

FC layer while the eyes branch is connected to a 64-dimensional FC layer. These

two parts of the features are then combined through a 64-dimensional FC layer

and regularized by a Dropout layer to prevent over-fitting problem. If it is a

static model, the final prediction results could be obtained directly through a225

2-dimensional FC layer. Else, the 64-dimensional features would be used as

input to the temporal model. In this paper, we use bi-LSTM as the temporal

model which has 1 LSTM layer and 32 hidden units.

In the temporal model, we use a stage-wise training approach. We first train

the static model from scratch and do not use any data augmentation processing230

to ensure the high reproducibility of the experimental results. We then treat

the static model as a deep feature extractor whose parameters are frozen and

no longer adjusted during the second training stage. We re-arrange the training

data by a sliding window fashion. Every successive three frames form a sequence

and the last frame of each sequence is treated as the ground truth.235

We train the model using the Euclidean loss with the Adam optimizer. The

basic learning rate is set to 0.0001 and the probability of dropout is set to 0.3.

The batch size is 100 while the epoch is 20 for both static and temporal models.

3. EXPERIMENTS AND RESULTS

To validate the e↵ectiveness of the proposed network for 3D gaze estimation,240

we evaluate the proposed method on two publicly available datasets: MPIIGaze

[13] and EyeDiap [19]. First, we conduct cross person/group evaluation to show

the basic performance of our method. Then, we conduct within person evalu-

ation to demonstrate the potential accuracy of our method. Next, we perform

ablation study to evaluate the role of each module in our network. Further, we245

conduct experiments with di↵erent resolutions to show the robust performance
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of our network to di↵erent resolution inputs. Finally, we combine the temporal

model to explore the impact of temporal information on the estimation results.

3.1. Datasets

(a) mean value(MPIIGaze) (b) mean value(EyeDiap)

Figure 6: Distribution of images mean values on the MPIIGaze and filtered

EyeDiap datasets.

(a) g(MPIIGaze) (b) h(MPIIGaze) (c) g(EyeDiap) (d) h(EyeDiap)

Figure 7: Distribution of ground truth eye gaze g and head orientation h on the

MPIIGaze and filtered EyeDiap datasets.

For the MPIIGaze dataset, we take the center of the six provided face land-250

marks as the start point of gaze vector as well as the facing point of the virtual

camera. In data preprocessing step, to reduce the illumination variance, we ap-

ply adaptive histogram equalization on each input image. Fig.6a shows the mean
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Figure 8: Some prediction results on the MPIIGaze dataset. Green and red

lines indicate the predictions and the ground truth, respectively.

value changes before and after the equalization process. MPIIGaze dataset has

a total of 15 participants. We perform leave-one-person-out cross validation on255

all participants to facilitate comparison with other methods. Fig.7a and 7b show

the distribution of ground truth gaze angle and head poses in the MPIIGaze

dataset.

For the EyeDiap dataset, we take the midpoint of the provided two iris

centers as the origin of gaze vector as well as the facing point of the virtual260

camera. Similar with MPIIGaze, we apply adaptive histogram equalization to

reduce illumination variance. Fig.6b shows the changes of pixel mean value

after this operation. The gaze targets on this dataset fall into two categories:

screen targets and floating targets. In order to facilitate comparison, we only

use the screen targets for evaluation and sample one image per 15 frames from265

4 VGA videos of each participant. We filter out frames that meet the following

conditions: (1) The participant is not looking at the screen; (2) The annotation

is not provided properly; (3) The gaze angle is violating the physical constraints
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(|✓|  40o, |�|  30o). We divide 14 participants into 4 groups and perform

leave-one-group-out cross validation on all groups. Fig.7c and 7d show the270

distribution of gaze angle and the distribution of head poses in the EyeDiap

dataset.

3.2. Cross Person/ Group Evaluation and Within Person Evaluation

Table 1: COMPARISON RESULT WITH THE STATE-OF-THE-ART METH-

ODS ON MPIIGAZE DATASET.

Methods 3D degrees error

Baltrusaitis T et al. 2016 [21] 9.96

Wood E et al.2016 [22] 9.58

Shrivastava A et al. 2016 [23] 7.8

Nie S et al. 2018 [24] 7.1

Zhang X et al. 2015 [13] 6

Krafka K et al. 2016 [17] 5.6

Zhang X et al. 2017 [14] 5.4

Zhang X et al. 2017 [18] 4.8

our static model 4.18

Table 2: COMPARISON RESULT WITH THE STATE-OF-THE-ART METH-

ODS ON EYEDIAP DATASET.

Methods 3D degrees error

Krafka K et al. 2016 [17] 8.3

Park S et al.2018 [25] 7.4

Zhang X et al. 2017 [18] 6.0

Palmero C et al. temporal model 2018 [26] 3.4

Our static model 6.02

Our static + bi-LSTM model 5.84
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In order to demonstrate the basic performance of our method, we perform a

comparative experiment on the above-mentioned datasets. Table 1 and Table 2275

show the comparison between our method and other state-of-the-art methods on

the MPIIGaze and EyeDiap datasets, respectively. The 3D degrees error refers

to the angular di↵erence between ground truth and prediction. From Table

1, we can see that our method has achieved excellent result on the MPIIGaze

evaluation. MPIIGaze dataset covers significant variation in illumination. Fig.8280

shows some part of frames and prediction results in MPIIGaze dataset. It can be

seen that our method can guarantee high accuracy against various illumination

challenges. From Table 2, our method ranks the 2nd on the EyeDiap evaluation,

but it still has a significant advantage in network complexity over the ranked

1st method. Network parameters comparison: ranked 1st (about 130 million) vs285

ournet (about 1.8 million). It indicates that our method needs to be improved to

better balance the complexity and accuracy under large head pose environment.

We have selected two state-of-the-art face-based gaze estimation methods

for further comparison: (1) AlexSW, a state-of-the-art full-face-based method

proposed in [18];(2) Itracker, a fundamental method used in this paper proposed290

in [17]. For a fair comparison, the image normalization process is the same as

used in this paper, and the final output is resized to a resolution of 224⇥ 224.

Fig.9a shows the comparison result between our method and other state-of-

the-art methods on MPIIGaze dataset. Since it is a 3D gaze estimation, we use

the angle error between the prediction value and ground truth to indicate the295

prediction accuracy. As can be seen from the figure, our method has a significant

11.6% improvement over the state-of-the-art methods on the MPIIGaze dataset.

Meanwhile, the overall complexity of our network is much smaller than [18],

which is the first bar on the chart showed in Fig.9a. The third bar shows

the result of two separate eyes part network structure. It can be seen that300

the combination of the two eyes does not reduce any accuracy but even give a

slight improvement. The last bar is the result of within-person evaluation. The

evaluation of this part is mainly for the purpose of demonstrating the potential

(upper bound) of our network. The results indicate that our network still has
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(a) MPIIGaze (b) EyeDiap

Figure 9: Cross person and person specific evaluation results on MPIIGaze and

EyeDiap datasets.

space for improvement in the cross-person evaluation.305

Fig.9b shows the comparison result on EyeDiap dataset. Similarly, our

method has a small improvement in accuracy compared to the baselines. How-

ever, it should be noted that for the method in [18], the result given in our chart

are not as good as that mentioned in the original paper. The 3D degree error on

EyeDiap in [18] is 6.0, that is to say, our method has similar accuracy compared310

with [18]. But our method has great advantages in terms of network size. It can

be seen from the second and third bars that even better results are obtained

after the eye parts have been concatenated. The last bar demonstrates that our

method performs poor even in within person evaluation on EyeDiap dataset

compared to the result on MPIIGaze dataset, which indicates that our method315

degrades when encountering large head pose but has robust result responding

to various illumination conditions.

3.3. Network Parts Evaluation

In this session, we split the network into two separate branches (eye module

and face module) to verify the role of each network module. Fig.10a shows320

the results of our evaluation on MPIIGaze. It shows that the final prediction

accuracy is mainly depending on the eyes branch network and the face part
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(a) MPIIGaze (b) EyeDiap

Figure 10: Ablation study on MPIIGaze and EyeDiap datasets.

also contributes a bit. Similarly, Fig.10b shows the results of our evaluation

on EyeDiap. It demonstrates that the face branch is less important on the

EyeDiap evaluation, which means that we may design a more e�cient way to325

get the prediction that only requires the eyes part as input.

3.4. Resolution Evaluation

Gaze estimation system is normally required to maintain accuracy over a

wide range of distances. Although the normalization process can greatly reduce

the input variance caused by di↵erent distances by rescaling the image to the330

proper resolution, it still cannot avoid the loss of useful information which would

result in a decline in the final estimation. In order to simulate this information

loss due to various distances, down-sampling is performed on the input images

as follows: (1) Input image 224⇥ 224 is downscaled to 168⇥ 168 and upscaled

to 224⇥224; (2) Input image 224⇥224 is downscaled to 112⇥112 and upscaled335

to 224⇥ 224.

Fig.11a and Fig. 11b show the results of resolution experiments performed

by our method on MPIIGaze and EyeDiap, respectively. The results illustrate

that our method is very robust to di↵erent distances. Even if the image distance

is twice as far as the origin, the result of our method still not degrade.340
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(a) MPIIGaze (b) EyeDiap

Figure 11: Resolution study on MPIIGaze and EyeDiap datasets.

3.5. Temporal Model Evaluation

In this session, we evaluate the contribution of adding the temporal model

to the static model. Since the MPIIGaze dataset is a discontinuous single image

format, we only do evaluation on EyeDiap dataset. Fig.12 shows our evalua-

tion results. The first bar is the result of our static model and the second to345

fifth bars are the results of the four di↵erent Recurrent Neural Network (RN-

N) models combined with the static model, while the sixth and seventh bars

are the results of the network model where the left and right eyes are input

as separate branches. From the figure, we can see that no matter which basic

network used, the evaluation result always be improved when combining with350

the temporal model. In all the RNN models used in this paper, the bi-LSTM

model contributes the most by improving the accuracy of the static model by

about 3%. What’s more, all bidirectional RNN models have better results than

common RNN models. It shows that we can better improve the final estimation

accuracy when adding the backpropagation information to the RNN temporal355

model. Although, we can see that the accuracy improvement brought by this

part is subtle. It is mainly caused by the training data. As described in Section

3.1, the video frames after filtration are no longer continuous video sequences,

resulting in a serious loss of temporal information.
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Figure 12: RNN evaluation on EyeDiap dataset.

4. CONCLUSION360

In this paper, we have analyzed the relationship between the Itracker model

and 3D gaze estimation task. We have e↵ectively modified the Itracker mod-

el to not only improve the estimate accuracy, but also e↵ectively reduce the

network complexity. We have evaluated the proposed static model at di↵erent

resolutions. The results have showed that our network is robust to images with365

di↵erent resolutions, which is a great property to the final practical application.

Furthermore, we have introduced a bidirectional RNN model (bi-LSTM) to fit

the temporal information. To the best of our knowledge, this is the first time

that bi-LSTM is used to fit temporal information in the field of gaze estimation

to improve the final estimation result. In contrast to the state-of-the-art meth-370

ods, our method not only significantly improves the accuracy, but also greatly

reduces the network size. In the future, we will consider how to e↵ectively im-

prove the performance of our method under a larger head posture application

environment.
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