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macrophage infiltration patterns. 
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ABSTRACT 
 

Duchenne muscular dystrophy (DMD) causes severe disability and death of young men due to 

progressive muscle degeneration aggravated by sterile inflammation. DMD is also associated with 

cognitive and bone-function impairments. This complex phenotype results from the cumulative loss of 

a spectrum of dystrophin isoforms expressed from the largest human gene. While there is evidence for 

the loss of shorter isoforms having impact in the CNS, their role in muscle is unclear. We found that at 

8 weeks, the active phase of pathology in dystrophic mice, dystrophin-null mice (mdxgeo) presented with 

a mildly exacerbated phenotype but without an earlier onset, increased serum CK levels or decreased 

muscle strength. However, at 12 months, mdxgeo diaphragm strength was lower while fibrosis 

increased, compared to mdx. The most striking features of the dystrophin-null phenotype were 

increased ectopic myofibre calcification and altered macrophage infiltration patterns, particularly the 

close association of macrophages with calcified fibres. Ectopic calcification had the same temporal 

pattern of presentation and resolution in mdxgeo and mdx muscles despite very significant intensity 

differences across muscle groups. Comparison of the rare dystrophin-null patients against those with 

mutations affecting full-length dystrophins only appears warranted. 

 

INTRODUCTION 

Duchenne muscular dystrophy (DMD) is a severely debilitating and invariably fatal X-linked neuromuscular 

disorder, which results from mutations in the DMD gene1. DMD is the largest human gene known, encoding 

multiple structurally diverse isoforms of dystrophin2. Three full-length transcripts comprising 79 exons, 

encode 427 kDa proteins while further intragenic promoters3 drive expression of progressively truncated 

variants (Figure 1A).  

The current central hypothesis states that Duchenne muscular dystrophy pathology is caused by the loss of the 

full-length dystrophin (Dp427) in myofibres, where it anchors the dystrophin-associated protein complex 

(DAPC), linking the extracellular matrix, the sarcolemma and the intracellular cytoskeleton. This assembly is 

considered critical for muscle function and survival. Therefore, all the current pre-clinical and clinical 

therapeutic approaches are aimed at dystrophin restoration in differentiated muscle cells.  

However, there is growing evidence that DMD mutations produce a range of significant cell-autonomous 

abnormalities in both human and mouse myogenic cells, suggesting a much earlier onset of pathology and 

explaining impaired muscle regeneration4–10. 

The severity of DMD-associated cognitive impairment correlates with the cumulative loss of dystrophin 

isoforms expressed in the CNS, thus suggesting a prominent functional role for these shorter isoforms in brain 

cells11,12. However, little attention has been given to the potential role of shorter dystrophins controlled by the 

intergenic promoters and few in-depth comparisons between the full-length and the dystrophin-null muscle 

phenotypes have been undertaken. Interestingly, the proportion of patients with a severe motor and cognitive 

phenotype has been shown to correlate with mutations affecting all dystrophins13
. Gene mutations causing 

DMD disrupt the reading frame and include large deletions (68%), duplications (11%) and also smaller re-



 

 

arrangements and point mutations (20%)14. Initial analyses indicated that the DMD gene mutation hotspots 

are located in the regions encoding the full-length isoforms. However, while large deletions and duplications 

have indeed a non-random distribution with the two identifiable hotspots, small insertions/deletions and point 

mutations are distributed along the entire gene15 thus affecting multiple isoforms. 

Interestingly, there is little data documenting the expression of the so-called ‘non-muscle’ dystrophin isoforms 

in muscle. Given that myogenic cells are affected by DMD mutations and are also known to express some of 

these truncated isoforms (e.g. Dp71), we hypothesized that null DMD mutations may alter functions of 

myogenic cells and thus affect the phenotype. Therefore, we investigated the consequences of total loss of 

DMD expression. We have compared the muscle pathology in the most widely used animal model of DMD - 

the mdx mouse, lacking full length isoforms due to point mutation in exon 2316, against the mdxgeo dystrophin-

null mouse with the reading-frame disruption downstream of exon 63, which is present in all dystrophins and 

therefore with all isoforms being ablated. This mouse, unlike models generated by chemical mutagenesis, is 

a true pan-dystrophin knockout with no revertant fibres present17.  

 

MATERIALS AND METHODS 

 

Animals 

The  male mdx, mdxgeo wild type (Wt)  control  mice (C57Bl10 and C57Bl6 respectively) were used 

in accordance with institutional Ethical Review Board and the Home Office (UK) Approvals. The C57Bl10 

and C57Bl6 strains derived from the common origin18 and it has been demonstrated that the mdx mutation on 

the C57Bl6 background shows the same pathology as the original Bl10 strain19. All mice were maintained 

under pathogen-free conditions and in a controlled environment (12hr light/dark cycle, 19-23◦C ambient 

temperature, 45-65% humidity). Mice were killed by CO2 inhalation and cells and muscles dissected and used 

for protein extraction, or frozen in isopentane pre-chilled in liquid nitrogen for cryosectioning.  

 

Antibodies and reagents 

The following antibodies were used at 1:1000: anti-dystrophin (ab15277, Abcam, Cambridge, UK) anti-actin 

(A2066, Sigma-Aldrich, Gillingham, UK), anti-F4/80 (Abcam, ab6640) and anti-CD68 (ab125212, Abcam). 

All other chemicals were purchased from Sigma or Fisher Scientific (Loughborough, UK). 

 

Serum creatine kinase (CK) level measurement 

Blood samples were collected, allowed to coagulate and centrifuged for 10 minutes at 2500g. Sera isolated 

immediately after centrifugation were analyzed for the CK levels using the Creatine Kinase Activity Assay 

Kit (Mak116-1kt, Sigma), according to manufacturer’s instructions. 

 

Force measurements in diaphragms ex vivo 

Whole diaphragms from 4 month Wt and dystrophic mice were excised and contractile force strength 

measured following the TREAT-NMD standard operating procedures (http://treat-



 

 

nmd.eu/research/preclinical/dmd-sops/) and as previously described8. Essentially, diaphragms were placed 

into Krebs-Ringer solution. Sutures were tied and muscle then attached to an immobile plastic clamp with the 

central triangular section of the diaphragm being used for testing. Contractile force was measured using a 

mechanical force transducer (ADInstruments, Oxford, UK), amplifier, and data acquisition setup. Excitation 

was achieved via local field potentials through platinum electrodes in oxygenated (95% O2, 5% CO2) Krebs-

Ringer solution, at a constant temperature (37°C). Following incremental stretching to establish the optimal 

excitation-to-force generation length and confirmation of the appropriate voltage twitch stimulus, diaphragm 

sections were subjected to a 140 V (2 ms) stimulus train at 100-Hz frequency for 0.5–1 s. The test regime 

involved collecting six twitch responses, followed by six tetanic trains, with a 2-min rest period between each. 

All forces were normalized to muscle wet weight and expressed as Newtons per gram of tissue (N/g).  

 

Grip strength test 

In this and all other in vivo tests, investigators were blinded with respect to the sample group allocation. The 

grip strength test was performed as previously described20 and according to the Treat NMD protocol 

(http://www.treat-nmd.eu/downloads/file/sops/sma/SMA_M.2.1.002.pdf). Essentially, mice were held by the 

tail and slowly approached to a metallic grid (6 × 6 cm) connected to a force sensor gauge (FG-5000A, Lutron 

Electronic, London, UK). Once the animal gripped the grid by its forelimbs, a gentle horizontal traction was 

applied to the tail until the animal let the grid go. The maximal force was recorded over two trials with a 1-

min inter-trial interval. Strength was estimated by the mean of both trials. 

 

RNA-Seq analysis 

Total RNA was extracted from tibialis anterior of 7 week old C57BL/10 and mdx male mice (n=4), quality 

controlled and sequenced as previously described8.  

Quality control of raw reads was performed using fastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed using trim-galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with parameters to remove adapter 

sequence and low-quality sequence tails. Trimmed reads were mapped against the GRCm38 Mus musculus 

genome from Ensembl using the STAR universal RNA seq aligner21 with the following parameters “--

outSAMmultNmax 300 --outSAMstrandField intronMotif”. Properly paired reads that mapped uniquely to 

the genome, with a mapping quality greater than 20, were retained for further analyses. 

Differential expression analysis was conducted using the DESeq2 package22 in R (http://www.R-project.org/). 

Gene models were taken from Ensembl version 91, and read counts over unique genes were quantified using 

the summarizeOverlaps() function in the GenomicAlignments package23 using parameters ‘mode = “Union”, 

singleEnd = FALSE, ignore.strand = FALSE, fragments = FALSE, preprocess.reads = “invertStrand”’. P 

values were adjusted for multiple testing by using the Benjamini and Hochberg false discovery rate 

correction24. The whole muscle RNA seq data can be accessed from Array Express with the Accession Code 

E-MTAB-7698: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7698/ 

 



 

 

Histological stains 

H&E, Alizarin Red, Periodic Acid Schiff, Von Kossa, Oil Red O and PicroSirius Red staining methodologies 

followed standard operating procedures from TREAT-NMD-recommended protocols available online 

(http://treat-nmd.eu/research/preclinical/dmd-sops/). All staining was carried out using 10-μm-thick 

cryosections, air-dried onto poly-L-lysine coated glass slides (Fisher Scientific). Slides were mounted in DPX 

or aqueous media, coverslipped and imaged (Axiozoom V.16, Zeiss). Representative images per genotype are 

shown while montages, where n = 30-40, were constructed and assessed using pre-existing ImageJ (Fiji; 

ImageJ2: https://fiji.sc/) counting tools25. 

 

Whole-body tissue clearing, imaging and analysis 

Clearing procedure was performed as described previously26. Briefly, animals were deeply anesthetized with 

intraperitoneal injection of lethal dose of sodium pentobarbital (100 mg/kg), subjected to cardiac perfusion, 

and fixation followed by 2-3 days of clearing with CUBIC reagent-127 or reagent-1A (deposited on 

http://cubic.riken.jp by Ueda and Susaki) clearing solutions and 1 day of 0,03% (wt/vol) AR staining dissolved 

in fresh clearing solution. Finally, specimens were placed for 2-3 days of gentle shaking with fresh clearing 

solution at 37°C in an incubator to remove the excess of unbound AR. Images were collected with customized 

light-sheet apparatus and analyzed according to also already described protocol26. 

 

Immunolocalisation and morphological analyses 

Frozen muscle was transferred to a cryostat chamber and allowed to equilibrate to −20°C. Cryosections 10-

μm thick were then cut from the middle third of the sample and collected on poly-L-lysine (0.5 mg/ml)–coated 

glass slides. Sections were allowed to air dry for several hours. Samples were fixed in a 2%–4% w/v 

paraformaldehyde solution in TBST for 15 min at 4°C, followed by two washes in PBST. The primary 

antibody incubation in PBST containing 10% v/v serum was applied for 2 h at room temperature or overnight 

at 4°C. Three 5-min TBST washes were applied before secondary antibody incubation in PBST and 10% v/v 

serum containing Hoechst (1:1000) fluorescent nuclear counterstain for 1 h at room temperature. Sections 

were finally washed three times for 30 min before mounting in FluorSave (Merk Millipore, Watford, UK) 

fluorescence mounting medium. Either entire cross sections through the mid-portion of TA muscles were 

captured in their entirety using Axiozoom V.16 (Zeiss), or whole cross-sections were made of montaged 20× 

magnification fields of view. For quantification of immunofluorescent cells, a semi-automated (unbiased) 

method using a thresholding macro designed in ImageJ was used. Numbers were then expressed per unit of 

area. For diaphragms, counts per unit area for each animal were derived by averaging the counts from five 

fields of view encompassing a significant portion of each diaphragm cross-section. Counts were also made 

using the threshold and analyse particles functions of ImageJ. 

 

Western blotting 

Proteins were extracted, resolved and blotted as described previously20,28.  Blots were blocked in 5% w/v 

non-fat milk powder in 1x Tris buffered saline (TBST; 50 Mm Tris, 150 mM NaCl, 0.01% v/v Tween-20, 



 

 

Sigma), for 1 h prior to probing with primary antibody diluted in the same blocking buffer (overnight at 4°C 

or 2 h at room temperature), then washed (3 times) with 1 x TBST for 10 min and incubated with the 

appropriate horseradish peroxidase-conjugated secondary antibody; anti-mouse 1:10:000 (Sigma, A4416), 

anti-rabbit 1:5000 (Sigma, A6154) overnight at 4°C or 1 h at room temperature. Specific protein bands were 

visualized using Luminata Classico or Forte chemiluminescent substrates (Merck Millipore, WBLUC0500 

and WBLUF0500, respectively), images were obtained using a ChemiDoc MP system (Bio-Rad, 

Hertfordshire, UK). Densitometric analyses were performed using the integrated density measurement 

function of ImageJ software. All experiments were repeated at least 3 times in triplicate, throughout. 

 

X-ray micro computed tomography 

Quadriceps were placed within a 1.5 mL tube (Eppendorf, EU) and supported by a polyurethane foam 

saturated in 70% ethanol. Muscles were imaged using a Zeiss Xradia 520 Versa X-ray microscope (Zeiss, 

Cambridge, UK) operating at an energy of 50 kV, a power of 4 W, a tube current of 80 µA and a Zeiss LE1 

filter was positioned directly after the X-ray source. A 0.4x objective lens was used with an X-ray source – 

sample distance of 20 mm and a detector – sample distance of 105 mm. One thousand six hundred and one 

X-ray projection images were collected over 360° at equal intervals with an isotropic voxel size of 11 µm. 

The exposure time for each projection was 2 s. The projections were reconstructed using the manufacturer’s 

integrated software which utilizes a filtered back projection reconstruction algorithm. The individual 

tomography scans were quantified in using the threshold function in ImageJ25 and visualized in 3D using 

TXM3DViewer (Zeiss). 

 

Statistical analysis 

Results are reported as means +/- SD where n refers to number of independent experiments (3-6). Significance 

scores were based on Kruskal-Wallis with post-hoc Dunn’s test for non-parametric multiple comparisons; 

one-way ANOVA with post-hoc Tukey test for normal multiple comparisons; un-paired t-tests for individual 

comparisons, with Mann Whitney post-hoc test for non-parametric t-tests (GraphPad Prism8). F or  

cumulative frequency distribution Kolmogorov-Smirnov test was used. Differences were considered 

statistically significant at P <0.05. 

 

RESULTS 



Dystrophic pathology in mdxgeodystrophin-null mice. 

Muscle pathology in the mdx muscles begins to present at 2-3 weeks, reaching maximum intensity in leg 

muscles at about 8 weeks, before plateauing around 12-16 weeks29,30. However, the mdx mouse diaphragm 

shows progressive pathology31 and therefore this muscle closely represents the human condition. 

To identify the potential phenotypic differences resulting from the absence of all vs. full length isoforms we 

compared mdx and mdxgeo (dystrophin null) mice (Figure 1) following the TREAT-NMD standard operating 

procedures32,33. 



 

 

At 8 weeks (the peak of pathology), morphological analysis of leg muscles revealed a significant shift in 

myofibre cross-sectional area towards smaller fibres in dystrophic muscle in the order of Wt (BL10) > mdx > 

mdxgeo (Figure 2A & B). A significant reduction in the average ferret diameter followed the same trend 

(Figure 2C, Kruskal-Wallis with Dunn’s test, P < 0.0001). Central nucleation was significantly elevated in 

mdxgeo compared to mdx (Figure 2D, Mann-Whitney test, P = 0.0159). At 8 weeks, serum CK levels (Figure 

2E) were not significantly different (Mann-Whitney test, P = 0.4127) between the two dystrophic strains, 

indicating that loss of short dystrophins did not exacerbate sarcolemma damage. Grip strength in vivo (Figure 

2F) and diaphragm strength ex-vivo (Figure 2G) were equally reduced in both dystrophic strains at 8 weeks. 

Yet, there was an age-dependent difference between mdxgeo and mdx: In 12-month-old animals diaphragm 

contractile force strength showed small but significant increase in mdx preparations (unpaired t test, t = 6.572, 

df = 4, P = 0.0028), but no increase was found in mdxgeo (Figure 2G, unpaired t test, t = 0.6558, df = 4, P = 

0.5478). Furthermore, fibrosis (Figure 2I) and fat accumulations (Figure 2J) were both found elevated in 12-

month-old mdxgeo diaphragms compared to age matched mdx.  

 

Total dystrophin loss exacerbates ectopic calcification of dystrophic muscle fibres 

Muscles from mdxgeo mice do not express any dystrophin isoforms (Figure 1B) nor truncated variants in 

revertant fibres (Figure 3A). In contrast, at 8 weeks, striking opaque fibres, particularly prominent in 

diaphragms but detectable in all major skeletal muscle groups, were found to be notably more abundant in 

mdxgeo than in mdx mice (Figure 3B-D). The appearance of these fibres closely resembled ectopic 

calcification reported previously in the mdx, mdx/Utrophin double knock-out and the humanized-mdx mouse 

models34–37, in the GRMD dog38,39 and, importantly, DMD patients40. To confirm, we first verified the presence 

of calcium- and phosphorus-containing deposits in these opaque diaphragm fibres using Alizarin red (AR) 

(Figure 4A) and Von Kossa (Figure 4B) stains, respectively. SEM energy-dispersive X-ray spectroscopy 

electron back-scatter analysis (Figure 4C) confirmed the presence of mineral deposits containing both calcium 

(Figure 4D) and phosphate (Figure 4E) with a molar ratio of Ca:P of 3:2 (Figure 4F), consistent with tricalcium  

phosphate [Ca3(PO4)2]41
. 

The striated appearance of calcified fibres showed regions of calcification with distinct patterning, sometimes 

along the length of almost entire fibre, sometimes in short regions of otherwise unaltered fibre (Figure 3C, 

right panel [arrowed] & Supplementary Video 1). Muscle groups most severely affected with ectopic 

calcification were diaphragm (Figure 3B) and the proximal limb (quadriceps and gluteus) with a consistently 

milder phenotype in the distal groups (tibialis anterior (TA) and gastrocnemius (GC), Figure 3C). 

Importantly, this ectopic calcification was also found in cardiac muscles of mdxgeo (Figure 3D and 

Supplementary Figure 1) which, to our knowledge, is the first demonstration of this abnormality in a DMD 

model.  

 

Whole body musculature analysis of ectopic calcification in mdx and mdxgeo. 



 

 

The initial study revealed very significant differences in ectopic calcifications between various muscle groups, 

indicating the need for systematic comparisons. To screen for and quantify ectopic mineralization in various 

muscle groups of the entire animal we have applied previously optimized whole-body tissue optical clearing 

methodology26. Such an approach, when combined with AR staining, allowed us to demonstrate excessive 

accumulation of ectopic calcifications in mdxgeo vs. mdx and confirm complete absence of these in control 

animals (Figure 5A-D). Thereby, we observed calcified deposits particularly abundant within mdxgeo 

diaphragms (Figure 5B) but also in skeletal muscles of the laryngopharynx, forelimb, lumbar region, pelvic 

region, and hind limbs. Next, we utilized a customized light-sheet setup to perform detailed three-dimensional 

imaging of isolated muscles from three distinct body regions i.e. spinalis pars lumborum, biceps femoris and 

triceps brachii, (Figure 5E-F). When compared to mdx, every mdxgeo muscle was characterized by a higher 

percentage of tissue mineralization, differences being particularly striking in triceps brachii, where ectopic 

calcification reached 11.59% in mdxgeo and 0.36% in mdx (Figure 5F: percent of mineralization: unpaired t-

test t(4) = 5.32 P< 0.01). In contrast, the difference was not found statistically significant in spinalis pars 

lumborum (Figure 5F: unpaired t-test t(4) = 2.62 p = 0.058) and biceps femoris (Figure 5F: unpaired t-test t(4) 

= 0.97 p = 0.386). Cumulative frequency distribution analysis showed different distribution of calcified 

deposits in triceps brachii and spinalis pars lumborum muscles from mdxgeo  mice in comparison to mdx mice 

(Figure 5F).   

Further confirmation of muscle fibre calcifications was undertaken using AR staining of tibialis anterior (TA) 

(Figure 6C & D) and diaphragm (Figure 6A & B) sections and particle analysis-based quantification of 

thresholded images using ImageJ (Figure 6E). Significantly elevated numbers and percentages of calcified 

fibres were confirmed in diaphragms (Figure 6F) while TA was confirmed to be less affected by the ectopic 

calcification.  Finally, ectopic calcifications in isolated 8 week old quadriceps mdx and mdxgeo muscles were 

visualized in 3D under the X-ray microscope (Zeiss, Xradia, Figure 6G-J and also see Supplementary Video 

1).  

 

Age of onset and evolution of ectopic muscle mineralization in mdx and mdxgeo. 

The onset and progression of muscle pathology in the mdx muscle are well documented with cycles of 

degeneration and regeneration and significant sterile inflammation between 3 and 12 weeks of age, followed 

by a significant reduction of symptoms from 12 weeks onwards. The exception is diaphragm, where the 

pathology is progressive and thus resembles human disease29,30. Aforementioned exacerbation of ectopic 

mineralization in mdxgeo led us to assess whether total dystrophin ablation triggers an earlier onset of 

dystrophic damage with ectopic calcification. To test this hypothesis, we analyzed AR staining intensities in 

2 and 4-week-old mdx and mdxgeo diaphragm muscle sections. We found 2 week muscles to be visually 

devoid of detectable calcifications (Figure 7A-C), but at 4 weeks white striations were clearly beginning to 

form in limb and diaphragm muscles (Figure 7D-F). Quantification of AR staining in diaphragm sections 

confirmed first calcified fibres to appear somewhere between 2-4 weeks of age but equally in both mdx and 

mdxgeo animals (Figure 7J). Given the nature of the ectopic calcification, it could be expected to worsen with 



 

 

age, particularly in diaphragms. However, analyses in 3 month and 6 month old mice showed the calcified 

fibres could no longer be found (Figure 7K). The diaphragm appearance, with thickening and opacity (Figure 

7H-I) may be due to ongoing inflammation and emerging fibrosis, which are pathological hallmarks of 12-

month-old diaphragms. Indeed, PicroSirius Red staining for collagen (Figure 2H) revealed the presence of 

fibrosis.  

 

Differences in macrophage distribution and association with mineralized fibres in mdx vs. mdxgeo 

diaphragms. 

Inflammation is the well-known pathological hallmark of DMD. It affects muscle regeneration but also 

degeneration and fibrosis42,43. Of the inflammatory cells found in mdx muscles, macrophages play a very 

significant yet complex role: Their depletion results in the reduction or exacerbation of pathology depending 

on the stage of disease43,44, 34. Our RNASeq data (Array Express Code E-MTAB-7698) identified very 

significant contribution of macrophage genes to the altered inflammatory gene expression profile in mdx 

muscles (Supplementary Figure 2).  Furthermore, a recent study has demonstrated that inorganic phosphate 

can specifically activate macrophages to prevent ectopic calcification45. Given that the evolution of calcified 

muscle fibres mirrored the onset and cessation of inflammation in mdx muscle, we analyzed the immune cells 

in muscle sections.  F4/80 staining for macrophages was markedly different in the two dystrophic strains: mdx 

muscle showed scattered staining with numerous macrophage puncta spread throughout the tissue and only 

some larger puncta of intense staining (Figure 8C & G). In contrast, mdxgeo muscles displayed large F4/80 

positive puncta, which co-localised perfectly with mineralized fibres and appeared almost uniquely and 

intricately associated with them (Figure 8A, B, D, E, F & H). Often, macrophages were tightly associated with 

what appeared to be partially degraded fibres (Figure 8B, arrowed). The CD68 and osteopontin staining co-

localisation in these macrophages indicated their predominantly M1 phenotype (Figure 8J &K).    

In conclusion, we have found that total loss of dystrophin expression in the mouse model of DMD specifically 

exacerbates ectopic myofibre calcification, alters macrophage infiltration and aggravates the subsequent 

fibrosis.  

 

DISCUSSION 

 

There is evidence that absence of the full-length (427 kDa) dystrophin in the fully-differentiated myofibres 

may not necessarily cause the dystrophic phenotype46,47. In contrast, Dp427 has been shown to play a role in 

satellite cells4,5,9,48,49 and there are clear data that a lack of DMD gene expression affects various important 

functions of myoblasts, including cell proliferation, differentiation, energy metabolism and signaling 6,8,50. 

These and other findings indicate that dystrophic pathology starts much earlier than has been suggested51 and 

point at the importance of the loss of dystrophin expression in myogenic cells, dysfunction of which 

determines abnormalities of muscle regeneration and therefore disease progression. Given that the Dp71 

dystrophin has been found in undifferentiated myogenic cells52 we hypothesized that Dmd gene mutations 

eliminating expression of this isoform may further alter functions of myogenic cells and thus affect the 



 

 

dystrophic phenotype. Therefore, we have compared the muscle pathology in the most widely used animal 

model of DMD - the mdx mouse, lacking full length isoforms due to a stop mutation in exon 2316, against the 

mdxgeo dystrophin null mouse17. The latter DMD model is interesting as it has no observed dystrophin positive 

revertant fibre clusters44 and also allows complex phenotypes to be investigated. Notably, mutation hotspots 

of large deletions and duplications are located in the regions encoding the full-length isoforms. However, 

small insertions/deletions and point mutations are distributed along the entire gene15 and these would affect 

the full spectrum of dystrophins. However, there is little data evaluating the role of the shorter dystrophin 

isoforms in muscle.  

Our analyses revealed a slightly exacerbated phenotype in mdxgeo, especially in older mice. However, these 

dystrophin-null mice did not show an earlier onset of the dystrophic pathology, which might have been 

expected given that Dp71 was found expressed in muscle development17,53. The muscle pathology being 

similar to that in mdx mice was in agreement with the previous study in Cre-loxP mouse, in which DMD gene 

was deleted54. Moreover, no increase in serum CK levels, indicative of sarcolemma permeability, suggested 

a different role for this short isoform. Interestingly, the most striking alteration in mdxgeo, was the ectopic 

calcification. Ectopic calcifications have been reported previously in mdx34,55 and were found particularly 

abundant in mdx/Utrophin dKO, mdx/-sarcoglycan dKO56 and the humanized-mdx mouse models34–37, which 

all present with an exacerbated dystrophic phenotype. Notably, ectopic calcifications are  also found in human 

DMD patients40.  

One explanation for the different phenotypes could be the protection afforded to the mdx muscle by the 

revertant, dystrophin positive fibres. These revertants are thought to arise through splicing events, and occur 

at varying frequencies in different muscle groups; approximate average values of  2-7% in TA and 1-4% in 

diaphragm have been reported previously in the mdx mouse57. These fibres are completely absent from mdxgeo 

muscles. Given that ~15% dystrophin-positive fibres appear sufficient to protect against contraction-induced 

injury58, revertant fibres could perhaps have some impact. 

Another important question is: which cells are affected by the lack of short dystrophins? Given that myofibres 

do not express Dp71, it is likely that these are satellite cells or myoblasts. However, the loss of DMD gene 

expression in non-muscle cells cannot be excluded, as indicated by the purinergic phenotype found in DMD 

patients’ lymphoblasts59. Therefore, disease phenotypes in DMD patients with mutation affecting all 

dystrophins should be re-evaluated. 

Importantly, there were very significant differences in ectopic calcifications between different muscle groups. 

This finding may shed new light on the mechanism behind the absence of damage in some and the progressive 

pathology in other muscle groups that are observed in both DMD patients and mouse models of this disease. 

This diversity in ectopic calcification was confirmed using a combination of methods including X-ray 

microscopy and our newly developed whole-body optical tissue clearing approach30. The latter method allows 

to perform highly reproducible and quantitative assessment of mineralization without a need for highly 

specialized and expensive equipment thus permits such unbiased complete comparisons to be performed in 

numerous laboratories. SEM energy-dispersive X-ray spectroscopy electron back-scatter analysis of 

mineralized fibers revealed the presence of calcium and phosphate with a molar ratio of 3:2, consistent with 



 

 

tricalcium phosphate [Ca3(PO4)2]34. NMR-based approaches would be more conclusive but difficulties in 

obtaining entirely organic-free material without sample damage prevented further investigations. Therefore, 

while the presence of hydroxyapatite previously described in mdx muscle cannot be ruled out, this material 

was reported between rather than within fibres, what was documented here34.  

Calcified muscles have been linked to increased inorganic phosphate (Pi) levels and serum Pi was found 

elevated in mdx mice45. Furthermore, dietary Pi intake has been shown to increase muscle calcifications while 

reduced Pi diet alleviated ectopic calcifications in mdx mouse muscle in vivo44,60. In turn, calcium precipitate 

inhibition with pyrophosphate and bisphosphonate have already showed therapeutic promise in DMD61–63. 

However, it is not clear whether ectopic calcification is linked to the intracellular calcium accumulation, which 

resulted in the “calcium hypothesis” of DMD damage. Assuming that these events are connected, the 

exacerbated calcification in the dystrophin-null muscle suggests that the calcium influx via permeable 

sarcolemma solely due to the absence of Dp427 is an insufficient explanation64. Indeed, while elevated 

calcium levels in muscle fibres are sufficient to induce dystrophic-like changes65, this can occur independently 

of membrane instability66. 

Ectopic calcification was also found in mdxgeo hearts but without obvious histological deterioration compared 

to mdx. This data also agree with observations of cardiac histopathology not being significantly different 

between mdx and the Cre-loxP DMD null mice12. Interestingly, Dp71 in cardiomyocytes is located exclusively 

to the T-tubules12. Given that the majority of the calcium enters the cell via T-tubules, absence of Dp71 could 

affect this function and contribute to ectopic calcification. 

Ectopic calcifications in dystrophic muscle appeared at 3-4 weeks in both mdx and mdxgeo mice, increasing 

in number up until 8-12 weeks, beyond which calcified myofibres were replaced by fibrosis, which is one of 

the hallmarks of this disease. Thus, calcification follows the course of mdx pathology in limb muscles and in 

the diaphragm, one mdx muscle that most closely reproduces disease progression in humans. The timing of 

calcified fibres being replaced by fibrosis was also around week 12. Therefore, calcification seems to have 

the same temporal pattern of presentation and resolution in all dystrophic muscle despite very significant 

differences in intensity across different muscle groups (see Fig 5).  

The cycles of degeneration and regeneration in mdx muscle are concomitant with immune cell infiltrations. 

These immune cells are attracted by the DAMPs released from damaged muscle and they play important roles 

in the pathology: They can contribute to damage but are also involved in clearing the cellular debris and 

releasing factors facilitating satellite cell activation and therefore promoting muscle regeneration. Moreover, 

in the chronic disease, inflammation is also linked to fibrosis31,32. 

The role of macrophages in these processes has been well-documented: Pathology in immunocompromised 

mdx mice that retained functional macrophages was largely unaltered33, whereas macrophage depletion before 

the onset of muscle damage resulted in significant improvement34,35 while total ablation exacerbated the 

disease43. Furthermore, a recent study demonstrated that inorganic phosphate can activate macrophages to 

adopt a phenotype allowing them to prevent ectopic calcification36. Given that the evolution of calcified 

muscle fibres mirrored the onset and cessation of inflammatory cell infiltrates in mdx muscle and the important 

role of macrophages, we analyzed these cells in relation to calcification. The distribution of macrophages was 



 

 

markedly different in mdx vs. mdxgeo muscles, with a very close co-localisation of F4/80 staining puncta with 

mineralized fibres in the latter. Moreover, the staining often appeared crescent-shaped, around what looked 

like partially digested fibres (Figure 8B, arrow). In view that that Pi-induced macrophages can evoke anti-

calcification actions, which are mediated by increased availability of extracellular ATP and pyrophosphate36, 

the dystrophic muscle would offer ideal conditions for their activation. However, markers expressed on cells 

in mdxgeo muscles suggested that these had predominantly the M1 phenotype while the Pi induces 

macrophages were shown to adopt a phenotype resembling the M2 subtype36. Of course, macrophages are 

known for their ability to change phenotype in response to environmental signals so functional interplay 

between populations preventing calcification and eliminating calcified deposits is possible. Manipulating 

macrophage functions should provide further insight into their role in this process.  

Understanding these phenomena may also aid in identifying new therapeutic approaches. Furthermore, ectopic 

calcifications are associated with pathological outcomes in many human disorders apart from  DMD, including 

osteoarthritis67, atherosclerosis60, sarcoma68, renal disease69, fibrodysplasia ossificans progressiva70 and soft 

tissue impact trauma71, where macrophage-specific roles are already established.  

Given our mouse model data and the correlation of severity of patients’ cognitive impairment with the loss of 

shorter dystrophins both suggesting a prominent functional role for these isoforms, comparison of muscle 

pathology in dystrophin-null patients against those with mutations affecting full-length dystrophins only is 

clearly warranted. Mouse with selective ablation of Dp71 is not dystrophic53 but presents with retinal channels 

abnormality72, early cataract formation73 and vomeronasal nerve defasciculation74. In contrast, transgenic 

overexpression of Dp71 resulted in more severe muscle disease75,76. Therefore, it may not be the absence of 

Dp71 but altered expression of dystrophin isoforms at a critical time point or/and at a specific location that 

causes the pathology. 

Understanding the mechanism of this abnormality may contribute to the development of more effective 

treatments not only for DMD but a range of diseases. 
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FIGURE LEGENDS 

 

Figure 1: Dystrophin isoform expression in mdx vs mdxgeo muscle. (A) DMD mutation location and their 

effects on predicted isoform expression in mdx and mdxgeo. The mdx mouse carries a point mutation in exon 

23, whereas mdxgeo harbours an insertion disrupting the reading frame downstream from exon 63. Isoforms 

predicted to be expressed or not are shown in green or red, respectively. (B) Western blot analysis of 

dystrophin protein expression in 8 week muscles showing loss of the Dp427 isoform in mdx samples and loss 

of all isoforms from mdxgeo, which confirmed it to be a complete dystrophin KO. Triplicate bands shown 

represent lysates from three different animals and actin is shown as a protein loading control. 

 

Figure 2: Morphological and functional alteration in mdx vs mdxgeo muscle. Morphometric analysis of 

8 week TA muscles revealed a significant shift in (A) fibre size in the order of: Wt > mdx > mdxgeo, which 

was found to be consistent for the average fibre area (B) and ferret diameter (C). Insets in A depict example 

of fibre thresholding and the analysis using ImageJ. Numbers of centrally nucleated fibres were significantly 

elevated: mdxgeo > mdx > Wt (D). Serum CK levels indicative of sarcolemma stability were not significantly 

altered in mdxgeo compared to mdx (E). Grip strength at 8 weeks was reduced by around 50% in both mdx and 

mdxgeo compared to Wt (F) and diaphragm contractile force was also low in both mdx and mdxgeo. In contrast, 

at 12 months, increases in maximum force were recorded in both Wt and mdx, but not in mdxgeo diaphragms, 

which remained at a basal level (G). Picro Sirius Red staining for collagen (H) and Oil Red O staining for fat 



 

 

(I) in 8 week vs. 12 month diaphragms revealed significant increases in older animals: mdxgeo > mdx > Wt. 

Data are presented as the mean ± SD, n = 3-5, *P < 0.05, ***P < 0.001, ****P < 0.0001. Scale bars (shown in 

H and I):  250 m.   

 

Figure 3: Muscle fibre mineralisations linked to loss of dystrophin expression in mdx and mdxgeo. 

Immunohistochemistry staining for dystrophin in 8 week TA muscle sections (A) confirmed the mdx to 

express dystrophin in a small number of revertant fibres. In contrast, mdxgeo animals displayed no revertant 

fibres, in keeping with the molecular alteration in these animals. (B) Upon dissection, significant white 

striations (red arrows) were observed in the diaphragms of mdxgeo, which were also found in mdx albeit at 

much lower levels but not in controls. Heightened diaphragm hypercontraction was also consistently observed 

in the order of: mdxgeo > mdx > Wt, represented by the enlarged region of translucent connective tissue in the 

centre. Striations were found in all skeletal muscle groups of dystrophic mice but at different levels, with 

proximal muscles (quadriceps and gluteus) being affected more than distal muscles such as TA (C). Heart 

muscles were also found to be affected, albeit showing slightly different striation patterns than skeletal 

muscles (D & Supplementary Figure 1). Scale bar (shown in A): 100m.  

 

Figure 4: Histolochemical and mineral analyses in 8-week-old mdx and mdxgeo muscles.  

Alizarin red (A) and Von Kossa staining (B) demonstrated that the white striations in diaphragm sections 

contained calcium and phosphate, respectively. (C) Electron backscatter diffraction (EBSD) analysis of 

diaphragm sections from 8 week mdxgeo identified co-localisation of calcium (D) and phosphate (E) in 

electron-dense fibres, with the Ca:P ratio of 1.50 (4F), consistent with the presence of Tricalcium Phosphate 

[Ca3(PO4)2] or hydroxyapatite, which has a ratio of 1.6729; n = 3 mice. Scale bar = 250 m. 

 

Figure 5:  Whole body and 3D muscle analysis of ectopic calcifications in mdx and mdxgeo. 

Whole-body tissue clearing and AR staining show distribution of ectopic calcification across the entire 

musculature. Representative bright-field and epifluorescent images (A, upper and lower, respectively) reveal 

sites of myofibre calcification and allow detailed comparative imaging of the affected body regions. (B) 

Epifluorescent images of the selected planes from A demonstrate higher prevalence of calcifications in mdxgeo 

vs. mdx with a complete absence of deposits in the control mouse. Arrowheads indicate clusters of calcium 

deposits in laryngopharynx (1-3), forelimb (4-6), diaphragm (7-9), lumbar region (10-12) and hind limb (13-

15). Spinalis pars lumborum from macroscopically pre-screened mice were isolated and imaged in crossed 

polarized light (C) and light-sheet fluorescence microscopy (D), scale bar = 5mm. 3-dimensional light-sheet 

data allows to reconstruct distribution of sites of ectopic calcification (E) and quantify its pattern in muscles 

of mdxgeo and mdx - presented here as % mineralization and cumulative frequency distributions in triceps 

brachii, spinalis pars lumborum and biceps femoris (F). Unpaired t-test; two-sample Kolmogorov-Smirnov 

test, *P < 0.05, **P < 0.01, n = 3 mice per group, mean ± SD.  

 



 

 

Figure 6: Quantification of muscle fibre mineralisations in mdx vs mdxgeo. Alizarin Red staining was 

quantified in mdx (A) and mdxgeo (B) diaphragms at 8 weeks of age. Representative images of TA sections 

from mdx (C) and mdxgeo (D) are shown to illustrate the difference in severity between different muscle 

groups. Alizarin Red images were thresholded, a mask was generated in ImageJ (E) and fibres displaying an 

arbitrarily assigned positive value at or above the threshold level were counted using the ImageJ particle 

analysis function. (F) A significant increase in absolute numbers and % of mineralized muscle fibres was 

found in mdxgeo compared to age-matched mdx diaphragms. Striations along the entire length of fibres were 

analyzed in whole muscle mineralization analysis using 3D X-ray imaging (G-J), scale bar = 5 mm. 

Quadriceps from 8-week-old mdx (G) and mdxgeo (H) in 3D rendering revealed two different patterns of 

mineralization; one diffuse and globular and the other striated (left and right side of tissue shown in H, 

respectively). Representative Z- sections for mdx and mdxgeo are shown in (I) and (J), respectively. Data are 

presented as the mean ± SD, n=3, ****P < 0.0001. 

 

Figure 7: Timing and evolution of muscle fibre mineralization in mdxgeo muscles. At 2 weeks, muscles 

appear normal with no visible striations (A-C). By 4 weeks (D-F), light striations begin to appear (arrowed). 

Following a peak at around 2 months (G), calcium containing fibres (arrowed) disappear at around 10-12 

weeks (H), and are replaced by connective tissue (I). Note the increased opacity of the diaphragm with 

increasing age (G to I progression). (J) Quantification of AR-positive fibres across ages and (K) Quantification 

of AR staining in 2, 3 and 6 month old diaphragm sections confirming the absence of mineralization. Data are 

presented as the mean ± SD, n=3, ****P < 0.0001. 

 

Figure 8: Differential macrophages distribution and association with mineralized fibres in mdx and 

mdxgeo muscles. (A) Confocal image showing F4/80 (red) macrophage marker and cell nuclei (blue) staining 

combined with mineral deposits visualized in bright-field in mdxgeo diaphragms. Calcified fibres can be seen 

saturated with macrophages (B, arrowed). Macrophage distribution differs between mdx and mdxgeo muscles: 

In mdx diaphragm (C), macrophages can be seen distributed throughout the tissue with some areas of increased 

infiltration while in mdxgeo macrophages appear to be predominantly associated with calcified fibres (D). (E-

H) Confocal images of F4/80 staining without brightfield corresponding with (A-D). Higher magnification 

images (I-K) showing CD68 (red) marker co-localisation with osteopontin (green) indicating the 

predominantly M1 phenotype of macrophages associated with calcified fibres. (L) ImageJ-based 

quantification of images showing the CD68 staining to localize to fewer (left panel) but larger (middle) 

‘puncta’ in mdxgeo, confirming macrophage clustering at sites of mineralization. Significant differences in 

CD68 puncta number and size were found between mdx and mdxgeo (M, left and centre), but total CD68 

intensity in mdxgeo was not found significantly different to that of mdx (M, right). Data are presented as the 

mean ± SD, n=3, ****P < 0.0001. Scale bars (shown in A, C & D): 250 m, (shown in B): 50 m, (shown in 

I): 100 m. 
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