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Abstract. Researchers are now accessing millions of Online Social Network 
(OSN) interactions. These are available at no or low cost through Application 
Programming Interfaces (APIs) or data custodians including DataSift and GNIP. 
Records held in Extensible Markup Language (XML) or JavaScript Object No-
tation (JSON) are well structured but often inconveniently formatted for use in 
popular Relational Database Management Systems (RDBMS) or Geographic In-
formation Systems (GIS) software. In contrast, emerging NoSQL (Not-only 
Structured Query Language) technologies are specially designed to ‘ingest’ un-
structured data. Extract/Transform/Load (ETL) procedures for the storage and 
subsequent analysis of two OSN datasets in SQL/NoSQL databases are exam-
ined. The fixed data model of the relational approach may prove problematic 
when loading unpredictable document-based structures arising from extended pe-
riods of data collection. Although relational databases are far from obsolete the 
spatial analysis community seems likely to benefit from experimentation with 
new software explicitly designed for handling spatio-temporal Big Data. 
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1 Introduction 

Massive recent growth in Online Social Network (OSN) usage, along with low or no-
cost data availability has prompted much new research, particularly in the social sci-
ences. JISC [1, p3] note that ‘Vast amounts of new information and data are generated 
everyday through economic, academic and social activities. This sea of data, predicted 
to increase at a rate of 40% p.a., has significant potential economic and societal value. 
Techniques such as text and data mining and analytics are required to exploit this po-
tential.’ The increasing use of ‘geo-tagged’ content on OSNs, now described by some 
as ‘Geo Social Networks’ [2–4], has resulted in growing interest [5, 6] and novel jour-
nals such as Mobile Media & Communication investigating the characteristics of this 
new ‘locative media’ [7]. Often derived from web sources – such as Twitter, Facebook 
or Flickr – these new forms of spatio-temporal data present particular computational 
challenges for researchers generally more familiar with the intersection of tabular da-
tasets/database systems and desktop Geographic Information Systems (GIS). Web-
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based OSN data are typically well structured, but are often inconveniently formatted 
for use in popular Relational Database Management System (RDBMS) or GIS mapping 
software. The Extensible Markup Language (XML) or JavaScript Object Notation 
(JSON) formats commonly used for data interchange store records in a leaf-node ‘doc-
ument’ model [8–10]. Extract/Transform/Load (ETL) procedures required to parse and 
normalize arbitrarily defined XML or JSON document data into a relational model us-
ing Structured Query Language (SQL) will a) require significant skill on the part of the 
operator and, b) may increase the possibility for introduced error during the import 
stages. Furthermore, with very large datasets, complex or long-running ETL processes 
require significant computing resources or may fail, requiring time-consuming re-cod-
ing, on all but the best computer hardware. Recent advances in Not-only SQL (NoSQL) 
databases, and the contrasting approaches to the storage and manipulation of social me-
dia data as ‘table’ or ‘document’ are considered with reference to ongoing research into 
the spatio-temporal characteristics of OSN interactions recorded during recent (US 
2012) and current (Scottish 2014) electoral events. NoSQL databases appear to offer 
an attractive alternative to traditional relational systems for the storage of fast-changing 
or potentially unpredictable document-based data structures arising from extended pe-
riods of web-based social media data collection 

2 Research background 

This research examines: 

 ~1.7m records sampled from a ‘Big Data’ corpus of ~75m Twitter Tweets and Fa-
cebook Posts made in the run-up to the 2012 US Presidential Election. 

 ~1.9m records consisting of Twitter Tweets made in the run-up to the Scottish Inde-
pendence Referendum forthcoming in September 2014. 

Following the US Presidential Election of 2008 Barack Obama was described as the 
‘first Internet President’ [11–13] and in the run-up to the 2012 campaign ‘it was clear 
that the war for the White House would be heavily fought online’ [14, p1]. Rapid 
growth in OSNs and increasing online consumption of news and/or opinion before and 
during electoral campaigns [15–18] has prompted political parties to invest time, effort 
and money stimulating discussion and attempting to benefit from user interactions 
made over ‘Web 2.0’ social media channels [19]. Successful attempts have been made 
to raise funding, support levels and voter turnout using OSN sites such as Facebook 
and Twitter, particularly in the United States [20, 21]. Facebook, founded in 2004, now 
claims over 1.15bn active monthly users [22] whilst Twitter, founded in 2006, claims 
over 200m users posting over 400m Tweets per day [23]. During elections enormous 
numbers of messages regarding politics are spread amongst members of OSNs. The 
ability of candidates, such as Obama, to target communications with >29m Facebook 
Friends or >20m Twitter Followers is a remarkable innovation in the personalization of 
political communication. The potentially ‘Orwellian’ nature of these new forms of in-
teraction [24] have been highlighted by one of Obama’s campaign officials who has 



reportedly stated that ‘the information that is interesting to us is behavioral: we want to 
serve you with stuff that you are going to like’ [25]. 

Although elections have provided a rich seam of study for researchers over many 
years the ability to analyze mass sentiment of electorates and ‘political actors’ [26] is 
relatively new-found. The growth of OSNs, geo-tagging and the public availability of 
‘Big Data’ [27] have opened up new opportunities for research [1]. A‘61-million-per-
son experiment in social influence and political mobilization’ to determine whether 
specific prompts on Facebook influence voter turnout through ‘friend’ recommendation 
and ease of use in finding ‘local polling places’ has been reported in Nature [28]. The 
online geographic spread of interest in events following a riot in the US and ‘its mani-
festation within the geoweb’  [29, p130] has been studied. Increased geo-codability of 
Twitter data has been reported [30] through mining of content in the text and metadata 
of over 1.5bn Tweets. OSN data have been used to report on local traffic conditions 
[31], location based services have been analyzed [32] and Volunteered Geographic In-
formation (VGI) such as geo-coded Flickr photographs have been used to manage crisis 
events [33, 34]. There is growing interest in ‘neogeography’ [35, 36] and the study of 
individuals’ real or online interaction with space. 

Using an ‘exploratory analysis’ approach [37, p503] this study focuses on visualiza-
tion and investigation of spatio-temporal social media usage during electoral cam-
paigns. In line with published recommendations [29, p138] the research is intended to 
‘[move] beyond the simple mapping and analysis of user-generated online content 
tagged to particular points on the earth’s surface [to consider] the diversity of social 
and spatial processes, such as social networks and multi-scalar events, at work in the 
production, dissemination, and consumption of geoweb content.’ In order to do so a 
range of analytical techniques have been (or will be) applied such that the choice of 
data storage/manipulation software may impact directly on the range of possible results. 
Two contrasting data storage technologies have been used. The relative merits of each 
for handling large spatio-temporal datasets are discussed in more detail below follow-
ing a description of the data collection and extraction methodologies employed. 

3 Data collection and extraction 

Many of the major OSN operators provide Application Programming Interfaces (APIs) 
allowing web developers – or researchers – to query and collect feeds of publicly avail-
able social media ‘interactions’; the Tweets, Facebook posts, Flickr photographs, URL 
links or other media uploaded or exchanged by users of OSN web sites. The code used 
to control each operator’s API changes reasonably frequently [38] and may only pro-
vide access to a subset of the available data stream [39]. Access to full data streams, 
such as Twitter’s ‘Firehose’, may be ‘very hard to come by and potentially very expen-
sive to realistically consume’ [40]. As a result OSN operators have teamed with data 
aggregators who provide access to current and historic social media data. The two larg-
est operators are DataSift (www.datasift.com) and GNIP (www.gnip.com), both of 
whom manage upstream API integration and provide a single-point-of-access to up-
wards of twenty individual social media data sources.  



In this study DataSift – which operates a ‘pay as you go’ billing model – has been 
used to collect ~1.7m social media interactions in the run-up to the US Presidential 
Election of 6 November 2012 together with a further ~1.9m (and growing) interactions 
in the run-up to the 18 September 2014 vote on Scottish Independence. DataSift’s Cu-
rated Stream Definition Language, CSDL [41], allows – at its simplest – social media 
messages to be filtered on the basis of content. The CSDL below, for example, will find 
all available social media interactions containing the phrase ‘computer science’. 

 interaction.content contains_any "computer science" 

More complex CSDL rules have been constructed to sample and extract records from 
Twitter and Facebook for US 2012 and Scottish 2014 elections using a range of text 
search terms (see http://tinyurl.com/appendix1-csdl) and controlling for explicit pres-
ence/absence of geographic coordinates, extent (country) and/or language. The interac-
tions output from these CSDL definitions may be recorded and stored on Datasift’s 
servers prior to download. The default data format used is JSON, ‘a lightweight, text-
based, language-independent data interchange format’ that ‘facilitates structured data 
interchange through a syntax of braces, brackets, colons, and commas’ [10]. JSON can 
represent ‘objects and arrays [which] nest [allowing] trees and other complex data 
structures [to] be represented’ [10, p ii]. The format has been widely adopted by major 
OSN sites including Twitter [42] and Facebook [43] and may be illustrated by way of 
example, using a snippet of a Tweet in raw JSON format sent from the Twitter account 
of Presidential Candidate Barack Obama (Fig. 1).  
 

{"interaction":{"author":{"ava-
tar":"http:\/\/a0.twimg.com\/profile_im-
ages\/2764236884\/90102995f6e328d7f90c43c8b337a0c7_nor-
mal.png","id":813286,"link":"http:\/\/twit-
ter.com\/BarackObama","name":"Barack 
Obama","username":"BarackObama"},"content":"Happening 
now: President Obama speaks in Ohio about the choice in 
this election. RT so your friends can watch, too. 
http:\/\/t.co\/d42qgdn8","created_at":"Mon, 05 Nov 2012 
21:39:41 +0000  
[…] 
} 

Fig. 1. Snippet of a JSON formatted Tweet from the account of Candidate Barack Obama cre-
ated on 05/11/2012 (full file downloadable from http://tinyurl.com/obama-json; use a browser-

based JSON viewer [44] to expand the data into a clear human-readable format) 

Raw data are represented by a sequence of Unicode code points, certain characters (e.g. 
the solidus character or forward slash ‘/’) are escaped and file encoding is UTF-8. The 
degree of nesting and the length of the arrays will vary from record to record. Around 
150,000 records with explicit geographic coordinates resulted from sampling during 



the run-up to the US 2012 Presidential Election. These records have another object 
(geo) nested within the Interaction object the data for which, in JSON, takes the form: 

 "geo":{"latitude":40.8183573,"longitude":-73.965401} 

The ability of JSON to systematically describe arbitrarily defined data makes it both 
extremely powerful and potentially difficult to handle in traditional, tabular RDBMS 
and GIS software. 

4 Data growth and value 

In 1970 E.F.Codd [38, p377] stated that ‘Future users of large data banks must be pro-
tected from having to know how the data is organized in the machine’ describing a 
relational framework designed to provide ‘the independence of application programs 
and terminal activities from growth in data types and changes in data representation'. 
Although well aware of the potential for ‘natural growth in the types of stored infor-
mation’ Codd and the early designers of RDBMS software would probably not have 
anticipated the recent step-change in volumes of stored data and diversity of data types. 
A 2011 McKinsey research report [46] estimated (p103) that the amount of new data 
stored worldwide in 2010 amounted to >6,750 petabytes with >3,500 petabytes added 
in the United States and >2,000 petabytes added in Europe. The report suggested that 
the rate of data storage growth would exceed 20% per annum and, indeed, it is now 
commonplace to speculate on the ‘whateverbyte problem’ [47] of naming the unit that 
will follow petabytes (10^15 bytes), exabytes (10^18), zettabytes (10^21) and yotta-
bytes (10^24) to describe the next scale of massive data storage. McKinsey’s [46, p2] 
report ‘finds that data can create significant value for the world economy, enhancing 
the productivity and competitiveness of companies and the public sector and creating 
substantial economic surplus for consumers.’ Examples of savings or efficiencies in 
healthcare, transportation and government are highlighted as a result of ‘the ability to 
generate, communicate, share, and access data [that] has been revolutionized by the 
increasing number of people, devices, and sensors that are now connected by digital 
networks.’ Locational data, which currently makes up only a small proportion of world-
wide data growth by volume, is seen by McKinsey [46, p38] as ‘a nascent domain’ of 
potentially high value ‘[cutting] across industry sectors from telecom to media to trans-
portation [and featuring] a hotbed of innovation that could transform organizations and 
the lives of individuals.’  

5 Data input, manipulation and storage 

It has been stated [48, p v] that ‘Big data are often differentiated from traditional large 
databases using the three Vs: volume, variety, and velocity.’ The 3Vs have posed sig-
nificant challenges to computer science in terms of storage (tabular or document-based, 
magnetic or solid state disk, vertical or horizontal scaling, private or public cloud), ma-



nipulation and analysis (SQL or NoSQL, XQuery, SPARQL, Hadoop and MapRe-
duce). Many technical responses, including several of those mentioned above, have re-
sulted from ‘open-sourcing’ of projects such as Google’s Bigtable [49] ‘distributed 
storage system’, the foundation for Apache HBase [50], and related technologies such 
as the Hadoop Distributed File System (HDFS) [51] adopted and often improved upon 
by major technology companies or web site owners such as Facebook [52]. The pace 
of change in ‘Big Data’ technology is extremely rapid and since ‘increasingly, location-
aware datasets are of a size, variety, and update rate that exceeds the capability of spa-
tial computing technologies’ the difficulty of handling ‘Spatial Big Data (SBD)’ [53, 
p81] presents a particular use-case. The implications of moving away from a traditional 
RDBMS/GIS approach towards handling spatio-temporal Big Data are examined. Find-
ings based on the manipulation of ~4m OSN interactions (in ~6GB of raw JSON data 
space) are presented below. The dataset is not big enough to be representative of some 
of the very major storage, manipulation or analysis problems occurring in significantly 
larger datasets but usefully highlights technical, workflow and scale issues of relevance 
to individual researchers or research teams. 

5.1 Tabular data storage 

Despite fairly early (1998) acknowledgement by the industry of the need ‘to radically 
broaden [the database systems] research focus to attack the issues of capturing, storing, 
analyzing, and presenting the vast array of online data’ [54, p74] tabular/relational da-
tabase systems have, since Codd’s [45] pioneering work, provided the foundation for 
much data storage, manipulation and analysis over the last thirty years or more. Tables 
of data ‘normalized’ into relationships have formed the basis of many existing research-
ers’ professional training and operational experience. Commercial RDBMS software 
such as Oracle, DB2 or Microsoft SQL Server and more recent open-source products 
such as PostgreSQL or MySQL have been prevalent in both academia and the work-
place for quite some time. GIS software from vendors including ESRI, MapInfo, Inter-
graph and others also typically relate tabular ‘attribute’ data to geometric features 
(points, lines or polygons) in order to provide processing capabilities which may query 
both spatial data and values stored in database rows and columns. More recently, rela-
tional systems have integrated ‘spatial’ data as a type in their own right, extending SQL 
capabilities in this direction and using Binary Large Objects (BLOBS) or similar to 
store otherwise ‘unstructured’ data including documents, images or video within the 
database management system. 

RDBMSs are generally characterized by the need for a database schema defining 
relationships between tables. With ‘clean-sheet’ designs schemas may be created, typ-
ically in advance, using a range of Information Technology (IT) workflow practices 
such as ‘Unified Modelling Language’ (UML) [55] or ‘PRojects IN Controlled Envi-
ronments’ (PRINCE or PRINCE2) [56]. These approaches have been designed to cap-
ture and document processes, flows and data usage following a period of skilled anal-
ysis. However, much of the web-based data available today forms an awkward fit with 
‘designed-in-advance’ schemas or models based on understandings of current business 
or data consumption practices. 



In this research three streams of social media data covering the same event (the 2012 
US Presidential Election) were collected using the same data extraction engine 
(DataSift CSDL [41]) over a roughly two month period. Although the three resultant 
datasets were JSON-based the extraction engine allowed for download in Comma-Sep-
arated Values (CSV) format, converting the leaf/node document structure to a series of 
rows and commonly named columns. Consequently – and as a result of established 
working practice, preference and expediency – initial ETL processes read data from 
these three CSV files into the Microsoft SQL Server RDBMS. Fig. 2 shows the CSV 
field commonality (over 146 fields, effectively the number of unique JSON key/value 
pairs) across the three streams collected. 

 

 

Fig. 2. CSV field commonality across three OSN data streams (A: US_2012_GEO, B: 
US_2012_NON_GEO and C: US_2012_NON_GEO_HISPANIC) collected using DataSift dur-

ing the US 2012 Presidential Election 

Only stream B’s CSV file provided the superset of all fields. Crucially, however, 
stream A (US_2012_GEO) was the first to be defined in DataSift CSDL with OSN 
recording commencing on 4 September 2012. Had the number of fields in stream A 
(n=67) been used to define a fixed database schema for data storage at that time then 
neither streams B (n=146, commenced 6 September 2012) nor C (n=138, commenced 
5 October 2012) would have fitted the data model. 

As a result of this incongruity across data streams – a result of the ability of JSON 
to systematically describe arbitrary data, the transformation of this data from JSON to 
CSV and the possibility that upstream API changes during the period of data collection 
had altered the number of fields – a sustained effort was required to import the three 
US 2012 CSV files containing the data streams recorded and to bring them all into a 
common table-based relational model. Fig. 3 shows a high level representation of the 
several stages involved in this ETL process. Altogether 57 SQL scripts were written 
(over a period of around one month) to import, check, convert or re-tabulate data. The 
purpose of each script cannot be covered in depth but some of the key findings are 
worth highlighting: 

 Initial imports using the ‘Import Data Wizard’ of an older version of SQL Server’s 
Data Transformation Services (DTS) resulted in field truncation and data loss. 

 Two import attempts failed to correctly handle UTF-8 encoded strings resulting in 
data loss both of international characters (e.g. Spanish diacritics) and emoticons etc. 

 The transformation of JSON arrays to delimited strings in CSV fields (e.g. 
[‘‘var1’’, ‘‘var2’’, ‘‘var3’’]) required row-based normalization. 

 Various post-processing CAST or CONVERT statements were required following 
data import e.g. to correctly handle long date formats. 
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Fig. 3. Schematic representation of process stages and tables in the US_2012 SQL database 

Problems with handling UTF-8 encoded text have subsequently been overcome using 
SQL Server (2012) Data Transformation Tools (SSDT) [57] and changed working prac-
tice [58]. However, the many import steps required, the effort involved in designing 
SQL statements to reformat data and the slow-running nature of some UPDATE queries 
on a long/wide table (all of which would have been magnified considerably with a much 
larger dataset) prompted the search for database software able to natively handle JSON 
formatted data. 

5.2 Document data storage 

As the amount of unstructured or semi-structured data generated by human, web or 
sensor-based activities has grown technologists have developed a raft of software prod-
ucts designed to store and interrogate ‘documents’. This work is not new [59] but has 
come of age alongside the ‘extraordinary information explosion [seen] over the last 
decade’ [48, p v]. Around 150 different document store approaches are available [60] 
including those based around the Hadoop/MapReduce ‘ecosystem’ [61] or NoSQL da-
tabase products such as MongoDB [62] or MarkLogic Server [63].  

In this research MarkLogic Server was used. The software is comparatively well-
established in its sector, having first been developed in 2001 to handle multi-terabyte 
XML document data storage and interrogation using XQuery [64]. Although a com-
mercial product MarkLogic is, like Microsoft SQL Server, available with a free and 
fully functional developer license. The Server software runs on several flavours of 



Unix/Linux, on 64-bit Windows and as an Amazon Machine Image in Amazon’s Elas-
tic Cloud Compute (EC2) architecture [65]. Fig. 4 shows a high level representation of 
the comparatively few stages (c.f. Fig. 3) involved in the MarkLogic ETL (and appli-
cation deployment) process. 
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Fig. 4. Schematic representation of process stages and tables in the US_2012 NoSQL database 

In this test: 

 Both US 2012 (three) and Scottish 2014 (one) data streams were re-exported from 
DataSift servers, this time using the JSON file format. 

 Examination of these files showed UTF-8 encoding with one JSON record on each 
row the row terminator being the Line Feed (LF) character. 

 For convenience of ‘ingestion’ each of the four JSON files (~4m rows in all) were 
split into n individual JSON files using the Linux command split -dl 1 --
additional-suffix=.json [SOURCE.JSON] record to create n output 
files (e.g. recordc9999028134.json) in the file directory system.  

 A new blank database was created in MarkLogic Information Studio and a Data Flow 
task defined to ingest the files in these directories, using the optional switch to trans-
form JSON to XML. 

 A number of Element Range indices and a GeoSpatial Element Pair index were built 
to facilitate ‘faceted search’ on certain fields and mapping of Latitude/Longitude 
geo-referenced records. 

 A web-based MarkLogic visualization application was built and deployed using the 
Application Builder tool within Information Studio. 

Subsequent work has determined that the SPLIT stage shown in Fig. 4 is unnecessary. 
Using the MarkLogic Content Pump (MLCP) software it is possible to ingest line feed-
delimited files either from the file system or compressed (.ZIP or .GZ) archives [66]. 
As MarkLogic Server runs an embedded web server, JSON data may also be ingested 
in real time over Hypertext Transfer Protocol (HTTP) using RESTful APIs. 



6 Data analysis and outputs 

Both approaches to the input, manipulation and storage of spatio-temporal OSN data 
proved successful. However, the operator experience and workflows proved very dif-
ferent. The tabular/SQL approach used CSV files and required multiple import at-
tempts, checks and extensive post-processing to create a workable ‘clean’ database us-
ing familiar tools. The document/NoSQL approach provided straightforward ingestion 
of JSON formatted data into a schema-agnostic document database offering ‘out of the 
box’ web-based application development using less familiar tools. 

Thus far most analysis has been performed using RDBMS SQL queries with spatial 
analysis performed in the MapInfo desktop GIS. This represents a ‘traditional’ ap-
proach to analysis and visualization that will be familiar to many practitioners; using 
different software packages and moving data between packages best suited or most 
commonly used to count, plot, overlay, graph (see http://tinyurl.com/US2012-
presentation) or visualize records (see http://tinyurl.com/US2012-animation). Whilst 
these activities reflect the exploratory research design [37] and help to reveal geo-
graphic patterns of spatio-temporal OSN usage there are several shortcomings: 

 The software ‘stack’ is not tightly integrated. 
 The approach is unlikely to scale well with very large datasets. 
 There is little possibility to interactively step forward or back through time. 
 The words in OSN text are easy to count but difficult to interpret. 

As the research progresses the ability to analyze text is expected to be a key require-
ment. The US 2012 dataset consists of ~1.7m time-stamped OSN messages, many of 
which may be geo-referenced directly or indirectly through text matching. The corpus 
contains >30m words with ~1.4m distinct words. The Scottish 2014 dataset consists of 
~1.9m OSN messages and rising and will inevitably comprise a broadly similarly sized 
corpus. It is clear that ‘the huge amount of free-form unstructured text in the blog-
osphere, its increasing rate of production, and its shrinking window of relevance, pre-
sent serious challenges to the […] analyst who seeks to take public opinion into ac-
count’ [67]. Technology comparisons in other disciplines, such as the largely text-based 
world of clinical data storage [68], have suggested that ‘while NoSQL and XML tech-
nologies are relatively new compared to the conventional relational database, both of 
them demonstrate potential to become a key database technology.’ Relational databases 
offer fully-developed facilities such as SELECT…GROUP BY… or SELECT…ORDER 
BY… to query, aggregate, count or order data but most were never designed for the 
detailed analysis of free-form text. In contrast NoSQL databases have, in many cases, 
been explicitly designed to handle free text or web-based mark-up languages. Prelimi-
nary investigations have been made using the MarkLogic Server database in order to 
evaluate the applicability of a NoSQL/XML approach to the storage, spatio-temporal 
and textual analysis of opinion-rich social media data. Relevant features include: 

 Ease of ‘ingestion’ – Experience has shown that loading large numbers of OSN 
documents in JSON format into MarkLogic is straightforward. For those interested 



in real-time analysis the software may also ingest records (e.g. from Twitter) through 
a RESTful API direct to the database. 

 Alerting – Alerts may be used to highlight text by re-writing XML content or may 
fire a cascade of other events to find or enrich entities or build semantic relationships. 
Alerting of this type is widely used in the intelligence community, one of the early 
adopters of NoSQL technology. 

 Entity extraction and enrichment – Can be used to find, e.g., all matches of ‘Chi-
cago’ re-writing content to add XML tags such as <placename lat=41.88 
lon=-87.62>Chicago</placename> which can be used in subsequent tex-
tual or geospatial analysis. 

 Semantic enrichment – Individual records may be linked to Resource Description 
Framework (RDF) triples enabling subject-predicate-object analysis with SPARQL. 
Triple store relationships describing, e.g., Town to State geographies, should enable 
query and analysis of OSN records at multiple geographic scales. 

 Text handling – MarkLogic has well-developed facilities for text handling and 
search; custom dictionaries, custom thesauri, word stemming, near word matching 
and so on. Features such as thesaurus expansion can, e.g., be used in sentiment anal-
ysis to match synonyms of ‘good’ or ‘bad’ within n words of a candidate’s name. 

 Tight database/web integration – MarkLogic is both a database and web server, 
capable of clustering/load-balancing at data and application levels and providing 
public or restricted access to content and functionality through scripts written in 
XQuery without the need for separate database and webserver/middleware layers. 

 Horizontal scaling and multi-tiered storage – With the dataset sizes under consid-
eration it is unlikely that MarkLogic’s horizontal scaling (using, e.g., multiple Am-
azon Machine Images in Amazon EC2) or multi-tiered storage (e.g. archival on Am-
azon S3, recent on magnetic disk, latest on solid state disk) will be used. The ability 
to ‘spin up’ multiple instances to parallelize analysis may prove more useful. 

Although the features above have been identified largely for their potential to im-
prove upon RDBMS’ capabilities for text-based analysis of spatio-temporal OSN mes-
sages it is somewhat unlikely that any one database, or database technology, will pro-
vide a panacea for all data-related storage or analysis requirements. Users must frame 
the questions and write the code to extract maximum analytical benefit from the under-
lying technology; the choice of technology simply sets the bounds of what is possible 
– or, more accurately, what is possible most easily or straightforwardly based on oper-
ator knowledge and experience of the system. The entity enrichment and semantic pos-
sibilities offered by MarkLogic Server appear particularly useful but even here some 
have warned [67] that ‘while the structural elements of Web 3.0 lend themselves quite 
well to graph-theoretical identification of communities or communicating blogs […] 
they have done relatively little to identify the content of blog posts and comments by 
topic so as to permit classification and clustering.’ Self-organizing maps (SOMs), sup-
port vector machines (SVMs) and other emerging machine learning technologies at-
tempt to automate text classification through statistical means and are most often mod-
ular add-ons to mathematical or statistical analysis software. Elsewhere open source 



text analysis ‘ecosystems’– such as Sheffield University’s open source General Archi-
tecture for Text Engineering (GATE) – offer extremely advanced features to analyze 
massive amounts of text stored in files, in RDBMSs such as Oracle or PostgreSQL or 
in the GATE cloud service [69]. These systems must also be examined to determine 
which approach offers the most successful and efficient means of deriving meaning 
from millions of words of spatio-temporally referenced text. This ‘plumbing’ or ‘knit-
ting together a patchwork of different components into integrated workflows’ [70] is 
one of the key challenges of Big Data mining and will, today, almost certainly involve 
the use of multiple technologies. 

At this stage in the research programme it is not possible to state whether a SQL or 
NoSQL database represents the best (or only) fit with the requirement to quantify, map, 
visualize and explain differences between ‘geographic’ and ‘non-geographic’ users of 
OSN sites during electoral periods. Both technologies have pros and cons; many fea-
tures in tabular/SQL databases are extremely well-understood and fully developed 
whereas document/NoSQL approaches are currently less widely adopted and hence 
somewhat less well-understood. Neither of the database technologies enable the full 
range of sophisticated geographic analyses possible in a GIS, but neither does a GIS 
provide capabilities for potentially massive data storage. Either technology may inte-
grate with other desktop or server software (e.g. MatLab, GATE, Tableau, R) or with 
web-based Software as a Service (SaaS) offerings such as OpenCalais semantic enrich-
ment or GATEcloud.net text analysis. Some of these SaaS products may even obviate 
the need for a large-scale user data store altogether by ingesting files themselves and 
returning metadata, reports and analysis as the output. Therefore, as is so often the case 
in Information Technology, competing products offer differing approaches to problem-
solving which – depending upon a range of factors including input format, dataset size, 
availability/cost, preference and expediency – may present equally valid, or at least 
viable, solutions for given use cases. Unless or until a high performance, large scale 
and potentially all-encompassing ‘CyberGIS’  is developed [71] it seems likely that 
those managing, analyzing and visualizing text heavy spatio-temporal OSN data will 
continue to integrate a number of products or technologies to fulfil their individual op-
erational or research objectives.  

7 Summary 

Contrasting approaches to the storage, manipulation and analysis of spatio-temporal 
Online Social Network data have been described with reference to ongoing research 
into the use of social media during electoral events. The two OSN datasets discussed in 
this study are sized well within the capabilities of the SQL, NoSQL and GIS software 
products used. However, even at this scale, it is apparent that a data model fixed at 
design time may prove problematic when handling fast-changing or potentially unpre-
dictable document-based data structures arising from extended periods of social media 
data collection. If the datasets were 100x, 1,000x or 10,000x larger or the data were 
fast-changing or streaming in real-time, the various challenges already identified would 
be magnified considerably. ‘Ease of ingestion’ would, in this case, quite probably tip 



the balance in favour of the NoSQL approach, even if lack of familiarity with the tech-
nology required time for learning in order to carry out effective downstream analysis. 
Capturing high volume, highly variable and high velocity data will at least allow later 
analysis whereas a broken parsing or import routine to a pre-defined RDBMS schema 
will simply result in data loss. 

More work is required to benchmark contrasting SQL and NoSQL approaches to Big 
Data ETL, storage, analysis and total cost of ownership [48]. It also seems likely that 
operator and workflow experiences will require just as much research. Long-term fa-
miliarity with SQL/RDBMS software, allied to the cost and complexity of setting up 
clustered cloud environments running the latest ‘bleeding-edge’ software, may limit the 
uptake of new NoSQL technologies outside all but the most highly technical research 
or computer science departments. Nonetheless, there is much the spatial analysis com-
munity can learn, even using virtual machines running on commodity laptop of desktop 
hardware, through experimentation with new Big Data technologies explicitly designed 
to handle extremely large, often web-based, spatio-temporal datasets. 
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