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The aim of the licentiate’s thesis was to understand the colloidal behaviour of phospholipids in 
vegetable oils and to study the adsorption of phospholipid nanostructures onto the surface of 
cellulose nanofibrils.  
 
Water concentration, temperature and free fatty acid had an effect on the formation of reverse 
micelles of phospholipids in vegetable oil. At low water concentration, phospholipids formed 
solubilized reverse cylindrical micelles above critical micelle concentration (cmc) in the oil. 
Increasing temperature decreased the cmc of phospholipids in oil. Addition of moderate amount of 
water into oil caused solubilized phospholipids to form lamellar liquid crystal structures that were 
precipitated from the oil and formed separate phase. Oleic acid in rapeseed oil increased the 
solubility of lecithin and suppressed the formation of phospholipid reverse micelles at low water 
content. In presence of more water, the oleic acid stabilized the reverse micelles and consequently 
more water was needed to induce the phase separation. Thus it could be concluded that moderate 
amounts of oleic acid (5 wt.-%, 10 wt.-% and 20 wt.-%) in the oil delayed the removal of 
phospholipid reverse micelles upon addition of water, and the formation of lamellar structures 
required more water. This was caused by the increased solubility of lecithin into oil due to the co-
solvent effect of oleic acid. 
 
Nanocellulose has shown many potential applications in foods, such as emulsifiers, fillers, 
structuring agents and cholesterol binders. An interesting application for nanocellulose would be 
the replacement of saturated fats in foods to decrease the fat content and the energy content of the 
products. To increase the compatibility of nanocellulose with the vegetable oil, the adsorption of 
phospholipid nanostructures was studied by immersing cellulose nanofibril film into the oily 
liquid containing phospholipid lamellar structures.  
 
The contact angle measurement seemed not to be an optimal way to measure the adsorption of 
phospholipids onto the surface of nanocellulose due to the variation in the results. Some of the 
contact angle measurement results indicated that the addition of the oily liquid containing 
phospholipid lamellar structures onto the surface of nanocellulose decreased the hydrophilicity of 
the surface after rinsing it with chloroform. In addition, two measurements indicated that the 
addition of oily liquid containing phospholipid lamellar structures decreased the hydrophilicity of 
the surface.  
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Tiivistelmä 

Lisensiaatin työn tarkoituksena oli ymmärtää fosfolipidien kolloidaalista käyttäytymistä 
kasviöljyissä sekä tutkia fosfolipidien muodostamien nanorakenteiden kiinnittymistä 
selluloosananofibrillien pintaan. 

 
Vesipitoisuudella, lämpötilalla ja vapailla rasvahapoilla oli vaikutus käänteisten 

fosfolipidimisellien muodostumiseen kasviöljyssä. Matalassa vesipitoisuudessa fosfolipidit 
muodostivat liukoisia käänteisiä sylinterinmuotoisia misellejä kriittistä misellipitoisuutta (cmc) 
korkeammassa pitoisuudessa öljyssä. Lämpötilan nousu madalsi fosfolipidien cmc:tä öljyssä. 
Kohtuullisen vesimäärän lisäys öljyyn sai liukoiset fosfolipidit muodostamaan lamellaarisia 
nestekristallirakenteita jotka saostuivat öljystä ja muodostivat erillisen faasin. Oleiinihappo 
rypsiöljyssä nosti lesitiinin liukoisuutta ja madalsi fosfolipidien käänteisten misellien muodostusta 
matalassa vesipitoisuudessa. Korkeammassa vesipitoisuudessa oleiinihappo tasapainotti 
käänteisiä misellejä ja sen seurauksena enemmän vettä tarvittiin käynnistämään faasien 
erottuminen. Näin ollen voitiin päätellä, että kohtalaiset oleiinihappomäärät (5 paino-%, 10 paino-
% ja 20 paino-%) öljyssä hidastivat fosfolipidien käänteisten misellien poistamista veden 
lisäyksessä ja lamellaaristen rakenteiden muodostuminen vaati enemmän vettä. Tämä johtui 
lesitiinin suuremmasta liukoisuudesta öljyyn jonka aikaansai oleiinihapon yhteisliuotusvaikutus.  

 
Nanoselluloosalla on monia potentiaalisia sovellutuksia elintarvikkeissa kuten emulgaattoreina, 

täyteaineina, rakenneaineina ja kolesterolin sitojina. Yksi kiinnostava sovellutus nanoselluloosalle 
olisi tyydyttyneiden rasvojen korvaamisessa elintarvikkeissa vähentämään tuotteiden 
rasvapitoisuutta ja energiapitoisuutta. Lisätäkseen nanoselluloosan yhteensopivuutta kasviöljyn 
kanssa, fosfolipidinanorakenteiden kiinnittymistä tutkittiin kastamalla selluloosananofibrillikalvo 
öljyiseen nesteeseen joka sisälsi fosfolipidien lamellaarisia rakenteita.   

 
Kontaktikulmamittaus ei vaikuttanut olevan paras tapa mitata fosfolipidien kiinnittymistä 

nanoselluloosan pintaan tulosten suuren hajonnan vuoksi. Eräät kontaktikulmamittaustulokset 
osoittivat että fosfolipidien lamellaarisia rakenteita sisältävän öljyisen nesteen lisäys 
nanoselluloosan pinnalle vähensi pinnan hydrofiilisyyttä sen jälkeen kun se huuhdeltiin 
kloroformilla. Lisäksi kaksi mittausta osoitti että fosfolipidejä sisältävän öljyisen nesteen lisäys 
vähensi pinnan hydrofiilisyyttä.  
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1. Introduction  
 

Nanomaterials have potential to enhance the food and beverage production and products. 

However, novel nanomaterials have not been used directly in human foods. The only exception is 

food pigment titanium dioxide and food colorant iron oxide (He et al., 2019). Nanotechnology refers 

to the technology that deals with materials which have at least one dimension in nanometer-scale. 

Nanocellulose has potential to be used to produce low-fat food products and to reduce their energy 

density. One of the interesting applications for nanocellulose is the replacement of saturated fats 

that are part of an atherogenic diet (high in saturated fats and low in vegetables, fruits, and whole 

grain), which was one of the major risk factors for cardiovascular disease, namely coronary heart 

disease (Rolfes et al., 2009). The saturated fat replacement can be applied in food products such 

as in salad dressings, bakery products and chocolate products by using a combination of low-

calorie, plant-based nanocellulose and lipids, more specific phospholipids. The fat-replacer should 

have similar textural properties as the saturated fat such as firmness and mouthfeel. Depending on 

the consumer product, the temperature profile should allow melting at mouth temperature.  

Nanocellulose has hydrophilic surface due to the functional groups (e.g. hydroxyl groups). This 

limits its compatibility with hydrophobic food matrices such as vegetable oils. A potential way to 

decrease the hydrophilicity of nanocellulose would be the adsorption of amphiphilic phospholipids 

onto the surface. The hydrophilic head groups of the phospholipids would be adsorbed onto the 

surface of nanocellulose leaving the hydrophobic tails of the phospholipids exposed to the 

surroundings. Phospholipids are food grade ingredients, and thus they are excellent for covering 

the surface of nanocellulose for food applications. 

The aim of the thesis is to understand the colloidal properties of phospholipids in vegetable oils 

that affect their usage in applications such as plant oils, emulsifiers and oleogels and to discuss 

about food applications of nanocellulose. The combination of phospholipids and nanocellulose was 

studied in order to establish the starting point for the usage of nanocellullose as food additive in 

lipid environments. 

 

 

 



 

2 
 

2. Literature 

2.1. Phospholipids 
 

Phospholipids are sometimes referred as polar lipids as they are composed of polar head group 

and hydrophobic hydrocarbon tails. Phospholipids are constituents of cell membranes, and active 

participants in metabolic processes. Phospholipids are concentrated in the organs such as the 

brain, liver and kidney in human and animals, and in plants the amount is highest in seeds, nuts 

and grains (Szuhaj, 2005). Phospholipids are constituents of serum lipoproteins (Oncley and 

Harvie, 1969) and part of the bladder bile (Isaksson, 1951).  There are two main groups of 

phospholipids: the glycerophospholipids that are derived from glycerol and the 

sphingophospholipids that are derived from sphingosine. The glycerophospholipids are derivatives 

of glycero-phosphoric acid. They contain hydrophilic group and one or two O-acyl, O-alkyl or O-(1-

alkenyl) chains attached to the glycerol. The sphingophospholipids contain group R and R´. The 

most common sphingophospholipid is sphingomyelin in which the R is replaced by –

CH2CH2N
+(CH3)3 (choline) (Walde et al., 1990). Phosphoglycerides are closely related to fats and 

oils in that they contain a glycerol backbone linked by ester bonds to two fatty acids and one 

phosphoric acid. The phosphate group at C3 is also bonded by an ester link to an amino alcohol 

such as choline (in phoshatidylcholine, a lecithin) or ethanolamine (in phosphatidylethanolamine, a 

cephalin). The sphingolipids have sphingosine or a related dihydroxyamine as their backbones and 

are constituents of plant and animal cell membranes. Sphingolipids are particularly abundant in 

brain and nerve tissue, where compounds called sphingomyelins are major constituent of the 

coating around nerve fibers. (McMurry and Simanek, 2007) 

Phospholipids can be divided into four classes according to their water-solubility. The first class 

was the water-insoluble phospholipids that did not adsorb water (e.g. waxes). The second class 

was the phospholipids with low water-solubility that swell in presence of water (e.g. long-chain 

phosphatidylcholine, phosphatidylethanolamine or sphingomyelin). The third class included water-

soluble phospholipids, which could be divided into two subclasses. The first subclass consisted of 

water-soluble phospholipids that formed lyotropic liquid crystals at low water content (e.g. 

lysolecithins). The second subclass consisted of the water-soluble phospholipids that formed 

micelles in water above critical micelle concentration (cmc) while not forming crystalline structure 

(e.g. saponins). (Pichot et al. 2013) 

Lecithin is a commonly used phospholipid rich material. According to Szuhaj (2005), the term 

lecithin referred to a complex, naturally occurring mixture of polar lipids obtained by water-

degumming of crude vegetable oils and separating and drying the hydrated gums. According to the 
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author, the phospholipid portion of lecithin was mainly responsible for giving form and function to 

commercial lecithin. The phospholipid composition of soy and egg lecithin presented differences, 

as shown in Table 1. The author also reported that the plant/legume (e.g. soy) had higher 

unsaturated fatty acid content compared to the lecithin in egg yolk and no cholesterol. McMurry 

and Simanek (2007) reported that the fatty acid residues in phosphoglycerides could be any of the 

C12–C20 units, and the acyl group at C1 was usually saturated and that at C2 was usually 

unsaturated. The fatty acid compositions of soy and egg are shown in Table 2.  

Table 1. Composition of soy lecithin and egg lecithin (Adapted from Szuhaj, 2005) 

Polar lipids Soy Egg 

Phosphatidylcholine 20–22 68–72 

Phosphatidylethanolamine 21–23 12–16 

Phosphatidylinositol 18–20 0–2 

Phosphatidic acid 4–8 - 

Sphingomyelin - 2–4 

Other phospholipids 15 10 

Glycolipids 9–12 - 
 

Table 2. Fatty acid composition (%) (Adapted from Szuhaj, 2005) 

Type of acid Soy Egg 

Saturated     

Palmitic 15–18 27–29 

Stearic 3–6 14–17 

Unsaturated     

Oleic 9–11 35–38 

Linoleic 56–60 15–18 

Linolenic 6–9 0–1 

Arachidonic 0 3–5 

2.1.1. Water adsorption of phospholipids 
 

Phospholipids form different structures depending on the water-to-phospholipid ratio (w/w). For 

example Lei et al., (2003) reported that the effective head group area of the phospholipid was 

enlarged by increasing the water concentration in phospholipid-soybean oil system due to the 

swelling of the phospholipid that led to the formation of insoluble phospholipid aggregates. 

According to Hauser et al. (1981) the polar region of the phospholipid consisted of three parts: the 

head group (e.g. choline), the glycerol moiety and two carboxylic ester groups. Jendrasiak et al. 

(1996) reported that water adsorbed to the polar head group of phospholipid caused 

rearrangement of the lipid molecular organization upon hydration or dehydration. The water 
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adsorption characteristics were dependent on the total head group structure including hydrophobic 

moieties and the electrical charge of the head group. Depending on the phospholipid type, the 

water adsorption capacity ranged from 6.5 to 100 water molecules per one phospholipid molecule. 

For example, total 9 water molecules was adsorbed by per L-α-dipalmitoyl-phosphatidylcholine 

molecule, 17 water molecules per L-α-dioleoyl-phosphatidylcholine molecule and 21.5 water 

molecules per L-α-dilinoleoyl-phosphatidylcholine molecule. Water hydration of 

phosphatidylcholine was reported to increase with increasing number of double bonds in the 

hydrocarbon chains and with bound cholesterol. It was shown that three different types of water 

were adsorbed with the phospholipid molecules: (1) tightly bound water, (2) intermediately bound 

water and (3) free water. However, only one type of adsorbed water before the free water zone 

was reported for egg phosphatidylethanolamine, egg lyso-phosphatidylethanolamine, bovine 

phosphatidylserine and bovine lyso-phophatidylserine (Jendrasiak and Hasty 1974 and Jendrasiak 

et al., 1996). The water adsorption capacities of some phospholipid as well as other lipids are 

shown in Table 3. 
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Table 3. Number of adsorbed water molecules per phospholipid molecule at 22 °C. (Adapted from Jendrasiak and Hasty, 1974 and Jendrasiak 

et al., 1996) 

Phospholipid Water molecules 

Egg phosphatidyl choline 13.5 

Egg lyso-phosphatidyl choline 17.0 

Cholesterol 1.0 

Egg phosphatidyl choline- cholesterol complex (1:1) mol 18.8 

Dipalmitoyl phosphatidyl choline 9.0 

Dioleoyl phosphatidyl choline 17.0 

Dilinoleoyl phosphatidyl choline 21.5 

Egg phosphatidyl ethanolamine 9.0 

Egg lyso-phosphatidyl ethanolamine 10.0 

Bovine phophatidyl serine 6.5 

Bovine lyso-phosphatidyl serine 100.0 

Bovine heart cardiolipin 36.0 

Egg  phophatidic acid 14.7 

Egg phosphatidyl choline-phosphatidic acid complex (7:4 M/M) 17.0 
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2.1.2. Phospholipid structures in nonpolar liquids 
 

Water-to-phospholipid ratio (w/w) can be used to control the phospholipid self-aggregation in 

vegetable oil. The water-to-phospholipid ratio affects the shape of the phospholipid aggregates 

(Table 4). The phospholipid structures described in the literature were phospholipid spherical 

reverse micelles (Elworthy, 1959), cylindrical reverse micelles (Schurtenberger et al., 1990), 

lamellar structures, reverse hexagonal phase, cubic liquid-crystalline phase (Angelico et al., 2000), 

spheroidal reverse micelles (Danino et al., 2002) and rodlike reverse micelles. (Cirkel and Koper, 

1998)
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  Table 4. Colloidal phospholipid structures in nonpolar solvents. (Elworthy, 1959, Gupta et al., 2001, Subramanian et al., 2001, Danino et al., 2002, 

Angelico et al., 2000, Schurtenberger et al., 1990, Cirkel and Koper, 1998, Angelico et al., 2000, Lei et al., 2003) 

Colloidal structure Amount of water Amount of phospholipid Reference 

Smaller and larger reverse micelles ~0 wt.-% 0.083 wt.-% Elworthy, 1959 

Spherical reverse micelles (size = 0.70 nm) 0.30 % 5 % Gupta et al., 2001 

Reverse micelles (Diameter = 3.56 nm) 0.07 wt.-% 0.89 wt.-% Subramanian et al., 2001 

Spheroidal reverse micelles ~0 % 5 % Danino et al., 2002 

Reverse hexagonal phase Max. ~40 wt.-% 34-77 wt.-% Angelico et al., 2000 
Reverse hexagonal lyotropic liquid crystalline 
phase ~0 wt.-% 1.7 % Danino et al., 2002 

Cylindrical reverse micelles 
Vary (For example at 
~1.23 wt.-%) Vary (For example ~17.64 wt.-%) Schurtenberger et al., 1990 

Rodlike reverse micelles Vary Vary Cirkel and Koper, 1998 

Reverse wormlike aggregates Vary Vary Angelico et al., 2000 

Cubic Liquid-Crystalline phase Vary Vary Angelico et al., 2000 

Lamellar phase Max. 45 wt.-% 50-100 wt.-% Angelico et al., 2000 

Lamellar phase Vary Vary Lei et al., 2003 
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2.1.2.1. Phospholipid spherical reverse micelles 
 

The first group of phospholipid aggregates is phospholipid reverse micelles (Figure 1) that had 

been reported to be present at low water concentration. The shape of the reverse phospholipid 

micelles is spherical (Gupta et al., 2001) or spheroidal, that is approximately spherical (Danino et 

al., 2002). A study of Kanamoto et al., 1981 reported that phospholipids aggregated into reverse 

micelles in vegetable oils at concentration above the cmc at very low water concentration. They 

also reported that the cmc of phospholipids decreased with increasing hydrophilicity of the polar 

head group due to the polar-non-polar interactions between the oil phase and polar headgroup. For 

example, the cmc of phosphatidyl choline, phosphatidyl ethanolamine and phosphatidic acid were 

reported to be 0.085 mM, 0.84 mM and 2.6 mM in soybean oil, respectively. A study of Cui et al., 

2014 reported that an increase in temperature from room temperature to 45 °C decreased the cmc 

of 1,2-Dioleoyl-sn-glycero-3-phosphocholine and 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine 

from 50 µM to 20 µM and from 800 µM to 200 µM, respectively. 

 

Figure 1. Illustration of phospholipid spherical reverse micelle inspired by Gupta et al. (2001) 

Subramanian et al., 2001 reported that phospholipid reverse micelles were present in vegetable oil 

systems with traces of water or slightly more. Elworthy (1959) pointed out that dried lecithin was 

transferred into dry benzene and reverse micelles were formed. However, the study did not prove 

experimentally that the lecithin and the solvent were anhydrous. Thus, it remains unclear whether 

phospholipid reverse micelles could form in anhydrous conditions. The size of reverse phospholipid 

micelles was smaller at low water concentrations as minimal water was present pool inside the 

micelles. The diameter of reverse phospholipid micelles was reported to be between 5.0 to 9.2 nm 

at 24 °C in varying ratios of hexane-oil mixture. The reverse phospholipid micelles were able to 

take up some water which caused them to swell. The water was presumably adsorbed into the 

small water pool inside the reverse phospholipid micelle surrounded by the polar head groups. The 

size of the reverse micelles increased from 7.0 to 8.7 nm when water concentration increased from 

0.3 to 1.5 wt.-% in system with 5 % phospholipids in hexane-soybean oil (70/30) mixture. 

Correspondingly, the water-to-phospholipid ratio increased from 0.06 to 0.30 (Gupta et al., 2001). 

On the other hand, the authors reported that an increase in temperature from 24 to 65 °C had an 
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insignificant effect on the size of micellar aggregates of phospholipids in soybean oil-hexane 

solution, yet generally smaller micellar aggregates were reported at 65 °C. Size increasing trend 

was also reported in a study of Subramanian et al. (2001) in which the diameter of reverse micelles 

of phospholipids increased from 3.56 to 4.60 nm when the water-to-phosphatidylcholine ratio 

increased from 0.079 to 0.112 in system with 8900 mg/kg (0.89 wt.-%) phosphatidylcholine in 

triolein. The size of the reverse phospholipid micelles also increased with increasing phospholipid 

concentration. When phosphatidylcholine concentration increased from 0.89 to 1.77 %, the 

diameter of reverse phospholipid micelles increased from 3.56 nm to 3.70 nm in triolein with 700 

mg/kg water. The diameter increased from 4.22 to 4.70 nm in triolein when the increase in 

phosphatidylcholine concentration was much higher (from 4.52 to 9.13 %) at constant water 

concentration of 600 mg/kg. 

2.1.2.2. Phospholipid cylindrical reverse micelles 
 

The second group of phospholipid structures is elongated cylindrical reverse micelles (Figure 2). 

These structures have been reported to be present in several organic solvents, including 

cyclohexane, isooctane and n-decane. Such cylindrical reverse micelles were formed when small 

amount of water was added to the phospholipid-isooctane system (Schurtenberger et al., 1990). 

According to a study of Imai et al. (2013), water molecules attached to the phosphate group of the 

neighboring phospholipids in spherical reverse micelles through hydrogen bonding. This increased 

the volume of the polar head group and thus reduced the interface curvature of the reverse 

micelles. As a result, spherical or ellipsoidal reverse micelles elongated into long and narrow 

reverse cylindrical micelles showing worm-like appearance. Palazzo (2013) reported that the 

length and branching of the cylindrical reverse micelles were controlled by a delicate energy 

balances between the micelle endcaps and the branches.  

 

 

 

Figure 2. Illustration of phospholipid cylindrical reverse micelle. 
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Imai et al. (2013) reported that cylindrical reverse micelles entangled to each other and formed a 

three-dimensional network within the oil. A study of Palazzo (2013) explained that the cylindrical 

micelles were under thermodynamic control and their contour length distribution was not fixed by 

chemical synthesis as was in polymer networks. The contour length varied reversibly with 

concentration and temperature. The entanglement induced a transformation from liquid oil to an 

organogel with viscosity up to few thousands poise (Scartazzini and Luisi, 1988). A study of 

Schurtenberger et al. (1990) reported an increase of zero shear viscosity of 200 mM soybean 

lecithin in isooctane system when small amounts of water were added to the system at 20 °C. The 

authors reported that the zero shear viscosity of the system increased by more than a factor of 106 

when the water/lecithin molar ratio (w0) increased from 0 to 3 by addition of water from the syringe. 

Further increase of w0 from 3 to above 5 decreased the zero shear viscosity. At w0 > 5, the system 

separated into two macroscopical phases that were optically clear.  

2.1.2.3. Phospholipid lamellar structures 
 

Phospholipids may form lamellar liquid crystals with liquid like chains (Lα) in presence of water 

(Small, 1986). Water changes the phospholipid structures from isotropic liquid phase (L2 phase) 

into lamellar structures that are insoluble in oil (Lei et al., 2003). The phospholipid lamellar 

structure is illustrated in Figure 3. According to Angelico et al. (2000) the contour length of the 

wormlike micelles increased with increasing the value of water/lecithin molar ratio (w0) up to 10-12. 

The cylindrical reverse micelles had high aspect ratio. When w0 increased to moderate values (13-

15), the cylindrical reverse micelles were present together with swollen spherical micelles. When 

more water was added, the spherical reverse micelles dominated the system up to the phase 

separation into third phase that was a lamellar phase. At higher water concentrations, an aqueous 

phase separated. Similar phenomenon was also reported in a study of Lei et al. (2003) with water 

saturation level of phospholipid lamellar phase around 40 %.  

 

 

Figure 3. Illustration of phospholipid lamellar structure. 

Several studies describe the characteristics of the phospholipid bilayer structure measured from 

crystallized phospholipid material at low water content. Hauser et al., (1980) reported that the 3-
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dodecanoyl-propandiol-1-phosphorylcholine · H2O bilayer structures had a close resemblance to 

the gel state of lysophosphatidyl choline and diacylphosphatidyl choline, which would allow the 

interpretation of the molecular conformational and packing principles of the fully hydrated lamellar 

structures of membrane lipids. In the same study, the authors also claimed that the phospholipid 

lamellar structures were formed both in presence and absence of water.  

According to Pascher et al. (1981) the 3-palmitoyl-DL-glycerol-1-phosphorylethanolamine or 

lysophosphatidyl ethanolamine molecules packed in a bilayer arrangement in a solid crystalline 

form. The phosphatidyl ethanolamine groups had an orientation parallel to the layer of the surface. 

The packing consisted of unit cells. The unit cell contained four molecules, two enantiomers on 

each layer side. The unit cell dimensions were 7.66, 9.08 and 37.08 Å in a, b, and c directions, 

respectively, where the latter one represented the bilayer thickness. The a and b direction were 

along the bilayer surface and perpendicular to each other. The c direction was perpendicular to the 

bilayer surface. Each head group took an area of 34.8 Å2 in the bilayer surface. The cross-section 

of each hydrocarbon chain perpendicular to its long axis had a size of 18.7 Å2. Hydrocarbon chains 

had an extremely large tilt angle ( 57.5°) with respect to the layer normal because they had to 

accommodate the much larger area of the head groups. The angle of the tilt was close to the 

maximum that chains could have in bilayer structure. In the case that the area per head group 

increased to twice the area of cross-section of the hydrocarbon chains, the hydrocarbon chains 

would interdigitate with the opposite layer. However, this was not the case with 3-palmitoyl-DL-

glycerol-1-phosphorylethanolamine or lysophosphatidyl ethanolamine. The 

phosphorylethanolamine groups were linked to each other by hydrogen-bond system. The lateral 

packing of the molecules was indirectly affected by the free glycerol hydroxyl group that formed an 

intramolecular hydrogen bond (2.80 Å) with the unesterified phosphate oxygen that affected the 

conformation and orientation of the phosphorylethanolamine group. The intermolecular bonds were 

formed between the molecules involving three hydrogen atoms in the ammonium group of 

molecules and unesterified phosphate oxygen atom in the neighbouring molecules. Each 

ammonium group formed two bonds to lateral neighbor molecules in a and b directions and one 

bond to a molecule of the next bilayer in the c direction. The headgroups of different enantiomers 

were linked into double rows by the hydrogen bonds extending in the ab plane. In lateral direction, 

there were no hydrogen bonds between the double rows of phosphatidyl ethanolamine groups. In 

the adjacent bilayer surface, the head groups were located so that the double rows were located 

over the gaps. The linkage between the double rows was induced by the hydrogen bonds across 

the layer surface. 

According to Small (1986) both water concentration and temperature had an effect on the Lα 

consisting lecithin. Lα phase was reported to occur in lecithin-water system with water 

concentration above 10-20 wt.-% depending on temperature. Above 10-20 wt.-% water 
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concentration, Lα phase was present in temperature range from approximately 2 to 225 °C. When 

water concentration was increased above 40-44 wt.-% a second phase appeared in the system. At 

lower water concentration, lecithin was reported to form different crystalline phases, for instance, 

lamellar crystals with stiff chains (Lβ), crystalline lecithin, cubic crystals with liquidlike chains (Qα), 

rhombohedric crystals with liquid like chains, and hexagonal crystals with liquid like chains (Hα). At 

higher temperature (>220-232 °C) lecithin crystals would melt to an isotropic liquid below 

approximately 35 wt.-% water concentration. The isotropic liquid phase coexisted with water phase 

if there was more water present at the elevated temperatures.  

2.1.3. Phase separation of phospholipids  
 

Phase separation of solubilized phospholipids from vegetable oil is an important phenomenon 

because it is a potential way to produce phospholipid lamellar structures. The separation of 

phospholipid from vegetable oil could be carried out by adding moderate amount of water into the 

system. The formation of lecithin lamellar structures in vegetable oil was discussed in detail in the 

publication. (Lehtinen et al., 2017) 

A study of Angelico et al. (2005) reported that with water loadings above critical hydration resulted 

in a phase separation between a birefringent liquid-crystalline phase and a less dense isotropic 

phase in system that composed of lecithin in isopropylpalmitate and ethyloleate. The phase 

boundary was reported to occur at w0 of ~5.2 for isopropylpalmitate with total lecithin concentration 

5 % and 15 %. In ethyloleate, the phase boundary was reported to occur at w0 of ~6.6 with total 

lecithin concentration 5 %. The isotropic phase was reported to be not very viscous and contained 

lecithin and water. The dense phase was reported to reveal the same textures as usually 

associated with a lamellar phase according to crossed polarizer and small-angle X-ray scattering 

(SAXS) spectra.  

Studies of Lei et al. (2003) and Angelico et al. (2000) reported that the phase separation of the 

phospholipid-vegetable oil-water system occurred at water saturation approximately 40 %. This 

was seen as a phase separation of 2-phase system of soluble phospholipid reverse micelles and 

vegetable oil into a 3-phase system of insoluble phospholipid liquid crystals, vegetable oil and 

water phase. The precipitate of lecithin consisted of lamellar phospholipid structures and the 

effective head group area of the phospholipid was enlarged by increasing the water concentration 

in phospholipid-soybean oil system due to the swelling of the phospholipid that lead to the 

formation of insoluble colloidal phospholipid aggregates. (Lei et al., 2003) 
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2.2. Motivation for nanocellulose-phospholipid applications  
 

Nanomaterials have been researched as emulsifiers, fillers and cholesterol binders for food 

applications. An interesting nanomaterial is the plant-based nanocelluloses that are extracted from 

wood, cotton, natural fibers and lignocellulosic materials. Nanocellulose has been widely used to 

manufacture a range of different cellulose-based nanomaterials that are one-dimensional in the 

nanometer range. These include whiskers, microfibrillated cellulose, nanofibrillated cellulose and 

cellulose nanofibrils or microfibrils. (Gómez et al., 2016) 

The surface of nanocellulose is hydrophilic due to the large amount of hydroxyl groups. The 

hydrophilicity of the surface generates repulsion towards hydrophobic vegetable oil. A potential 

way to modify the surface of nanocellulose would be the adsorption of surfactants onto the surface. 

Surfactants usually consist of both hydrophilic head group and hydrophobic tail. The hydrophilic 

head groups would be adsorbed onto the hydrophilic groups of nanocellulose having the 

hydrophobic tail exposed to the surroundings. This would render the outer most surface and 

reduce the repulsion towards the vegetable oil. Potential surfactants for surface modification are 

food grade phospholipids from natural sources (e.g. soy or egg). Certain phospholipid structures, 

such as lamellar phospholipid structures, have beneficial orientation so that the hydrophilic groups 

are readily exposed for adsorption onto the nanocellulose surface.  

2.2.1. Properties of nanocellulose 
 

Nanocellulose can be produced from lignocellulosic material (e.g. wood) or as a product from 

micro-organisms (e.g. bacterial cellulose). Different types of nanocellulose include microfibrillated 

cellulose (MFC), cellulose nanocrystals (CNC) and bacterial nanocellulose (BC). Dufresne (2012) 

reported that the hierarchical structure of natural fibers could be disintegrated using a top-down 

deconstruction method by mechanically submitting slurries of cellulose fibers to high shearing 

forces. This produced MFC that was composed of nanosized cellulose fibrils with a high aspect 

ratio. The microfibrils or microfibril bundles showed diameters in the order of 10-100 nm and the 

length could be in the micrometer scale. There were alternative terms used in the literatures to 

describe the MFC including cellulose microfibrils (CMF), cellulose nanofibers, cellulose nanofibrils 

(CNF), nanofibrillated cellulose, and microfibrillar cellulose. Bleached pulps can be used to 

produce MFC and otherwise it is necessary to submit the material to a purification step using 

chemical treatments to remove the non-cellulosic components. The preparation of second type of 

nanocellulose, CNC, involved a chemical acid hydrolysis process to dissolve amorphous chains 

from the cellulose fibers and to release crystal domains that remain intact after acid hydrolysis. 

Fibers are first alkali treated and bleached followed by hydrolysis with H2SO4 or HCl reflux. The 
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material is then purified through dialysis following with sonication to obtain CNC. In the acid 

hydrolysis treatment, the amorphous regions surrounding and embedded within CMF were 

disrupted. During the acid hydrolysis process, the hydronium ions could penetrate the cellulose 

chains in the amorphous domains and promoted the hydrolytic cleavage of the glycosidic bonds 

and released individual crystallites. Different terminology used in the literature to refer the 

crystalline rod-like nanoparticles included cellulose nanocrystals, cellulose nanowhiskers or 

nanocrystalline cellulose to name the few. Third type of nanocellulose could be produced as 

microbial extracellular polymer called bacterial cellulose or microbial cellulose. It belongs to 

specific products of primary metabolism and constitutes mainly a protective coating. The most 

studied and used bacterium species for production of BC was Acetobacter xylinum, formerly known 

as Acetobacterium xylinum and Bacterium xylinodes, reclassified as the genus Gluconacetobacter. 

One of the important features of BC is the chemical purity that distinguished it from the plant-based 

cellulose that was usually associated with lignin and hemicelluloses. BC is associated with the 

production of vinegar, Kombucha tea and the Philippine dessert, nata de coco.  

Nanocellulose can be used as an emulsifier due to its amphiphilic properties. Nanocelluloses can 

produce oil-in-water (o/w) Pickering emulsions. Nanocelluloses can also produce water-in-oil (w/o) 

Pickering emulsions when the surface of the nanocellulose is modified (Reviewed by Fujisawa et 

al., 2017). An article of Costa et al. (2018) reported that cellulose nanofibers could be used as 

Pickering emulsifiers in o/w emulsions. The o/w emulsions were prepared by homogenizing 10 wt.-

% sunflower oil and 90 wt.-% aqueous phase containing 0.01 wt.-% cellulose nanofibers. 

According to the authors the emulsions were prepared through pre-emulsification and subsequent 

double-stage homogenizer or an ultrasonication emulsification processes. The charge density of 

the cellulose nanofibers was reported to be an important parameter to control the kinetic stability of 

Pickering emulsions due to the electrostatic repulsion between the cellulose nanofibers. Zeta 

potential of the cellulose nanofibers was reported to decrease from initial -24.3 to -55.5 mV after 

using the high-pressure homogenizer with 70 MPa or ultrasound treatments with 675 W. This can 

be likely attributed that the high-pressure homogenizer and ultrasound probably promoted better 

agitation of the suspension and greater contact between cellulose nanofibers and oxygen, favoring 

the generation of negative charge on the surface of the cellulose nanofibers due to the partial 

oxidation of the particles. The preparation methods were also reported to have different effect on 

the stability of emulsions. The high-pressure homogenization was reported to cause coalescence 

phenomenon due to a less pronounced effect of shear stress on the cellulose nanofibers breakup 

and a reduced accommodation of cellulose nanofibers onto the oil droplet while the ultrasound 

caused enough particles to recover the oil droplets interface and prevented the coalescence 

phenomenon. 
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An article of Andresen and Stenius (2007) reported that surface modified MFC could be used to 

prepare water-in-toluene emulsions that have stability against coalescence and to increase the 

stability of emulsion against gravity induced sedimentation. They reported that MFC with varying 

hydrophobicity were prepared through surface silylation. The emulsion stability index (defined as 

the leveling-off ratio of the volume of the emulsified phase to the total volume, after storage in room 

temperature for five days) was reported to decrease when increasing the degree of surface 

substitution of MFC from 0.6 to 1.1, meaning that emulsion stability decreased with increasing 

hydrophobicity of the MFC. The droplet size was reported to be smallest for the degree of surface 

substitution of MFC of 0.6, which can be ascribed that the higher stability enabled from small 

droplet size would result in the decrease of the sedimentation velocity. When the authors 

compared the stability to sedimentation with increasing concentration of hydrophobic MFC, they 

noticed that the stability increased with increasing concentration of MFC, which was likely 

attributed to the increased viscosity of the continuous oil phase. The increase of the viscosity of the 

continuous phase could be caused by the interactions of the fibrils and microfibrils, which would 

promote the formation of three-dimensional MFC network in the continuous phase surrounding the 

drops and then reduced the extent of sedimentation. 

A study of Beatrice et al. (2017) reported that cellulose nanofibers were used as composites with 

other polysaccharides to produce water-retaining foam for use as novel food structuring agents. 

Xylan was reported to act as a surfactant during mixing of the cellulose nanofibers and 

polysaccharides, which created a significant volume of air bubbles (40-60 %) in the suspension. 

The sizes of the bubbles were reported to range from tens to hundreds of micrometers. They also 

reported that the coarsening of foam due to merging bubbles was slowed down by the stabilizing 

polymers and cellulose nanofibers network. 

2.2.2. Nanocellulose in food applications 
 

For food applications, nanocellulose (cellulose nanofibrils, CNF) has been studied for ice cream 

formulation (Velásquez-Cock et al. 2019).  They studied the influences of 0.15 and 0.3 wt % CNF 

from banana rachis on the structural elements of ice cream with two different fat concentrations. 

The studied structural elements included fat destabilization, melting rate, hardness, thermo-

rheology, and ice crystal size. The authors reported that melting rate of ice cream with 10 wt % fat 

decreased to 0.43 ± 0.04, 0.28 ± 0.03 and 0.18 ± 0.03 g min-1 when the CNF concentration in the 

ice cream increased from 0 to 0.15 and to 0.30 wt %, respectively. The authors also reported that 

the ice cream reinforced by the cellulose nanofibrils was more creamy and smoother than the 

unreinforced ice cream, possibly due to the capability of CNF to initially reduce the melting 

sensation and improve the body of the ice cream. Another study (Sun et al., 2015) reported the 
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effect of mixture of soybean protein isolate (SPI) and cellulose nanofiber on properties of ice 

cream. The authors replaced 10, 20 and 30 % cream in the ice cream by SPI-cellulose nanofiber 

mixture with ratio of 7:1, and found out that the melting rate of ice cream decreased from initial 

51.38 to 21.98 % when the replacement of cream with SPI-cellulose nanofiber mixture increased 

from 0 to 30 %. There were no differences in textural profile analysis attributes of the ice cream 

except for adhesiveness, which decreased with increasing replacement of cream from 0 to 30 %.   

An article of Golchoobi et al. (2016) studied the interactions between nanofibrillated cellulose, guar 

gum and carboxy methylated cellulose in low-fat mayonnaise (30 % lipids). The authors concluded 

that addition of nanofibrillated cellulose and guar gum to low-fat mayonnaise improved the physico-

chemical, rheological and organoleptic characteristics of the product. Khorasani and Shojaosadati 

(2017) evaluated the effect of microencapsulation of the probiotic Bacillus (B.) coagulans using 

composites of pectin with nanochitin, nanolignocellulose and bacterial nanocellulose. They 

concluded that bionanocomposite formulated with 50 % pectin, 25 % nanochitin and 25 % 

nanolignocellulose was promising matrix for microencapsulation. The microencapsulation 

protected the probiotic cells in the low pH environment (pH 3.6 peach juice) over 5-week storage at 

4 and 25 °C. Bacterial cellulose also increased the cooking loss and softening effects on the 

structure of Chinese-style meatballs (Lin and Lin, 2004) and enhanced the quality of bread, 

promoting higher specific volume, porosity, luminosity, moisture retention and tender crumb (Corral 

et al., 2017). An article of DeLoid et al. (2018) reported the ability of ingested nanocellulose 

materials to reduce digestion and adsorption of ingested fats. Additionally, bacterial cellulose was 

reported to partially adsorb cholesterol-esters in solution and with some assurance of success to 

act as cholesterol binder in the mammalian digestive track (Stephens et al., 1990).   

2.2.2.1. Patent applications of nanocellulose for foods 
 

An article of Gómez et al. (2016) reported applications of nanocellulose on various foods. For 

example, a patent of Turbak et al. (1982) reported the usage of MFC in food products. The 

invention stated that it was possible to prepare a wide variety of food products with MFC in a single 

stage operation in which the MFC is prepared in situ. The method converted the cellulose into MFC 

and produced a food product in the form of a homogeneous, stable suspension containing MFC. 

Food products included fillings, crushes, soups, gravies, puddings, dips, toppings, and other food 

products. The authors reported that the process of the invention comprised mixing the cellulose 

swelling edible liquid (water or edible lower alcohols such as ethyl alcohol, glycerine and propylene 

glycol), a food additive and fibrous cellulose to form a liquid suspension. The suspension was 

repeatedly passed through a small diameter orifice in which the mixture was subjected to a 

pressure drop of at least 3000 pounds per square inch gauge, a high velocity shear and a high 
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velocity decelerating impact. Another patent (Turbak et al., 1983) reported the usage of MFC to 

increase the stability of the suspension. The authors reported that the MFC was prepared by 

repeatedly passing a liquid suspension of fibrous cellulose through a high pressure homogenizer 

until the suspension became stable. The MFC was prepared in situ in the suspension in a single 

stage operation by passing the liquid suspension through a small diameter orifice or alternatively 

by mixing the liquid which swells cellulose, the finely divided material suspended in the liquid and 

the separately prepared microfbirillated cellulose. The amount of MFC used in the preparing the 

suspensions were from about 0.25 % to about 5 %. One of the examples that the authors 

mentioned for MFC was the use as a substituent for oil to produce low calorie salad dressings. The 

other examples included the usage as an additional ingredient in sausage or hamburger. A patent 

of Innami and Yoshitaka (1987) reported the usage of MFC and water-soluble saccharide to 

produce a composition being effective in treating intestinal disorders. The composition was 15 wt.-

% to 65 wt-% of MFC and 85 wt.-% to 35 wt.-% of water-soluble saccharide. The additional water-

soluble saccharide was natural saccharide or water-soluble cellulose-derivative, such as sucrose, 

pectin, guar gum, mannan, xanthane gum, carboxymethylcellulose, sodium alginate, and 

hydroxymethylcellulose. A powdery composition could be prepared by adding the water-soluble 

saccharides to MFC suspended in water at a ratio of from 85/15 to 35/65 on solid basis, and then 

mixing them and drying. It was readily dispersed to give a stable aqueous suspension when added 

to water. The powdery composition was used as food additive in the form of paste or slurry by 

mixing it with water or taken separately as a drug when molded into tablets. A patent of Koh and 

Hayama (1997) reported the usage of MFC as an ingredient in emulsifier system to emulsify 

whipped cream. A patent of Cantiani et al. (2002) reported that dried CMF could be used in food 

formulations. They reported that it was known from practice that dried microfibrils were not 

redispersible in formulations due to the strong hydrogen bonds between the fibrils, and thus such 

additives were required in the drying. The subject of the invention was the use of combination of 

essentially amorphous cellulose CMF having a degree of crystallinity of less than or equal to 50 % 

with at least one polyhydroxylated compounds as an additive. The total amount was from 0 to 20 % 

of the total weight of the food formulation. They reported that the CMF have a cross section from 

approximately 2 to 10 nm. The microfibrils could be used as additives in formulations intended to 

be rendered in an overrun state (whipped creams, chantilly creams, toppings and ice-creams). 

Additionally, the combined microfibrils could similarly be used in compositions including 

mayonnaises, vegetable mousses, mousses comprising proteins, meat mousses, fish mousses 

and mousses comprising albumin. They reported also that the combined microfibrils had a 

capability to control and inhibit crystal growth. This was desired for foods that undergo temperature 

cycles (freezing, heating), such as ice cream and frozen foods as the formation of ice crystals 

would otherwise give the food an undesirable texture. Some other food applications of combined 

CMF included the replacement of animal gelatin. Also, the combined microfibrils were especially 
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good as stabilizers and thickeners of emulsions and/or dispersions of the formulations of 

vinaigrettes, additives in fruit juices, vegetable juices and milk-based drinks. The dried combined 

CMF were compatible with the milk-based media and reduced the sedimentation of the chocolate 

in chocolate-flavored milk-based drinks. According to the authors, the combined CMF could also 

modify the viscosity in yoghurts. A patent of Kleinschmidt et al. (1988) reported the usage of 

cellulosic fibrils and microfibrils in filling containing, dough-based products. The network of fibrils 

and microfibrils functioned as a flow control agent, which permitted the filling, and dough forming 

the crumb, to be co-baked. The surface of the fibrils usually had exposed microfibrils that were 

believed to cause fibrils to adhere together to form network. The authors indicated that the 

microfibrils were generally shorter than the fibrils and had a length of from approximately 1 to t 100 

microns. The authors wrote that fibrils had a diameter of from about 0.1 to about 2 microns and the 

microfibrils had a diameter of from about 0.025 to about 0.1 microns.  One of the claims was the 

flavored-filling which comprised an aqueous phase, dissolved sugar, network of cellulose fibrils and 

microfibrils dispersed in the aqueous phase, dissolved edible polyol humectant and selected from 

the group consisting of glycerol, sorbitol, propylene glycol and 1,3 butanediol and  high methoxy 

pectin.  

2.2.2.2. Nanocellulose and food safety 
 

According to a study of He et al. (2019) novel nanomaterials have not been used in human food 

except titanium dioxide and iron oxide, which have been used as food pigment and colorant, 

respectively. The reason is that the regulation and the legislation is limited regarding nanofood, 

especially due to the complexity of nanomaterials and case-by-case legislating procedure. An 

article of Gómez et al. (2016) reported that nanocelluloses exhibit unknown properties and may 

expose human and the environment to unknown risks. The authors claimed that in nanomaterials, 

one could not evaluate the biological impacts merely on their chemical characteristics. For 

example, the size, shape, aggregation properties may affect the interactions of nanocelluloses with 

cells and other living organism. A study of Vartiainen et al. (2011) studied the health and 

environmental safety aspects of microfibrillated cellulose. The authors reported that the viability of 

mouse macrophages did not decrease after exposure to the friction ground microfibrillated 

cellulose for 24 hours exposure time. Neither inflammatory effect was shown on human monocyte 

derived macrophages, nor mouse macrophages after 6 hours exposure.  A study of Endes et al. 

(2016) reported that 10 out of 19 various biological systems showed cytotoxicity response of 

nanocellulose. According to the article, the importance of relevant exposure system (cell type), 

dose, nanocellulose type/treatment/origin together with a clear material characterization was 

especially highlighted relating to the cytotoxicity of nanocellulose. As for inflammatory response, 
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the authors pointed out five out of seven references in which positive inflammatory response of 

nanocellulose occurred and two references in which negative inflammatory response was reported. 

Additionally, six out of nine references showed oxidative stress response caused by nanocellulose 

and three showed no oxidative stress response. For genotoxicity, the authors reported that four out 

of seven references, showed a genotoxicity response caused by nanocellulose and three 

references were it was not shown. The article finally stated that clarity must be obtained as to the 

health implications of low dose, chronic and repeated exposure to nanocellulose in its many 

different forms. Overall, the authors reported that the data seemed to suggest that under realistic 

doses and exposure scenarios, nanocellulose had limited associated toxic potential, even though 

certain forms of nanocelluloses could be associated with more hazardous biological behavior due 

to their specific physical characteristics.  

2.3. Adsorption of phospholipids on nanocellulose 
 

Nanocellulose has a hydrophilic surface due to the large amount of hydroxyl groups on the surface. 

Adsorption of phospholipids on the surface of nanocellulose is a potential method to increase the 

hydrophobicity of nanocellulose and to increase the compatibility of nanocellulose with vegetable 

oil. A study of Kostritskii et al. (2017) reported that there existed strong interaction between polar 

lipid head groups and the hydrophilic surface of crystalline cellulose. The authors identified two 

major types of interactions between palmitoyl-oleoyl-phosphatidyl choline (POPC) molecules and 

cellulose chains, including direct attractive interaction between lipid choline groups and oxygens of 

hydroxyl (hydroxymethyl) groups of cellulose, as well as the hydrogen bonding between phosphate 

groups of lipids hydroxymethyl/hydroxyl groups of cellulose. The authors reported that the water 

concentration at the phospholipid-cellulose interface decreased the interaction energy. At the 

highest water concentration (30 water molecules), the interaction energy was almost zero, which 

indicated the absence of lipid-cellulose interactions. For lower water concentrations (20, 10 and 

zero water molecules), the lipid-cellulose interactions were negative. The authors reported that the 

absolute interaction energy values became more attractive with dehydration. They divided the 

interaction energies into electrostatic (Coulomb) and Lennard-Jones components, and noticed that 

at lower water concentrations, the Coulomb interaction prevailed the interactions. The authors also 

reported that the hydrophobic lipid chains did not interact with a cellulose chain directly. They 

claimed that the only impact of support on hydrophobic acyl chains of lipids was dehydration of the 

lipid bilayer, which led to the decrease of the area per lipid and correspondingly to the enhanced 

ordering of lipid acyl chains. Kostritskii et al. (2017) observed that the chain ordering when the 

hydration decreased from 30 to 10 water molecules per lipid was not altered. The authors 

concluded that the exocyclic hydroxymethyl groups O6(O16) of cellulose showed better access to 
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choline and phosphate groups of phospholipids as compared to hydroxyl groups. In the meanwhile, 

at a very close juxtaposition between a lipid bilayer and a cellulose crystal, the contribution of the 

hydroxyl groups O2(O12) into the lipid/cellulose interactions became comparable with that of the 

hydroxymethyl groups O6(O16). Thus the chemical modification that inhibits the ability of the 

hydroxymethyl/hydroxyl groups of cellulose to form hydrogen bonds with lipids could weaken the 

adhesive interactions between cellulose-based materials and cell membranes. 

Gurtovenko et al. (2018) reported that the phospholipid-cellulose binding was energetically 

favorable. They normalized the free energy by the number of dimers on the surface of cellulose 

crystal, and the free energy of binding of a cellulose dimer to POPC and palmitoyl-oleoyl-

phosphatidyl ethanolamine (POPE) lipid bilayers were estimated to be -1.89 ± 0.03 and -1.96 ± 

0.03 kJ/mol, respectively. They reported that the binding of cellulose had a strong effect on the 

structure of the lipid bilayer that resulted in a pronounced asymmetry in the density profiles of the 

opposite bilayer leaflets. The distal leaflet was reported to be largely unaffected by the binding of 

cellulose and the proximal leaflet that was next to the cellulose crystal surface underwent 

considerable structural changes. They also reported that the interactions of the O6(O16) oxygen 

atom of the exocyclic hydroxymethyl groups of cellulose chains with lipid head groups could be 

stronger compared to the oxygen atoms O2(O12) and O3(O13) of the hydroxyl groups of cellulose 

chains. They reported that the phosphate groups of POPE lipids established larger number of 

hydrogen bonds with the cellulose than POPC lipids. This result can likely be attributed to the 

smaller size of NH3-groups of the POPE lipid head groups than the choline groups of the POPC 

lipids, so that the NH3-groups of the POPE lipid head groups hindered the access to the phosphate 

groups to a lesser extent compared to the POPC lipids. As a result, the cellulose hydroxyl groups 

came closer to the POPE phosphate groups. They also reported that the POPE head groups were 

capable of hydrogen bonding with other lipids in the monolayer which made it more horizontally 

oriented with respect to the bilayer surface, promoting the contact between cellulose and POPE 

phosphate groups. The NH3-groups of the POPE lipids could also serve as donors of hydrogen 

bonds between POPE lipids and oxygen atoms of hydroxyl (hydroxymethyl) groups of cellulose, 

which was reported to be absent in the POPC-cellulose system. They reported that a positive 

increase in the energy due to dehydration of the interfacial region for the POPE-cellulose system 

exceeded that for the POPC counterpart, and an excess in the number of formed POPE-cellulose 

hydrogen bonds was balanced by the breakage of POPE-water and cellulose-water hydrogen 

bonds, which led to the similar values in the free energy of binding for both POPC and POPE lipid 

bilayers. 
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An article of Zhang et al. (2015) reported that lecithin could be immobilized on bacterial cellulose 

nanofibers via immersing into alcohol solutions of lecithin. The immobilization of lecithin by treating 

the bacterial cellulose pellicles in alcohol was studied at various lecithin concentrations, and the 

lecithin was cross-linked with proanthocyanidin. Without crosslinking, the morphological differences 

of the fibers with lecithin were hardly observed in scanning electron microscope (SEM) at lower 

lecithin concentrations in the alcohol solution, however, the adsorbed lecithin was indeed identified 

at higher lecithin concentration. With cross-linked lecithin, lecithin spheres were observed on the 

surface of bacterial cellulose. It has been found that bacterial cellulose nanofibers were wrapped 

with continuous lecithin layer at 2.0 wt.-% lecithin concentration with cross-linking. They also 

reported that the contact angle of bacterial cellulose increased with increasing lecithin 

concentration in the treatment solution from 50.0° for bacterial cellulose to 70.0° after treating with 

2.0 wt.-% lecithin in alcohol. 

3. Experimental 
 

The experimental section consists of two parts: first, the summary of the published paper in which 

the effect of different control parameters on the reverse micelle formation of phospholipids in 

vegetable oil were studied; second, the supplementary experiments of the surface modification of 

nanocellulose. The aim of the supplementary experiments is to attach the phospholipid structures 

onto nanocellulose. Later, we may use phospholipid-nanocellulose materials as structuring agent 

or filler in vegetable oil. From now on in the thesis, the word lecithin is used to refer the 

phospholipid material used in the laboratory experiments and the word phospholipid is used to 

refer phospholipids generally. 

3.1. Summary of the publication 
 

The publication describes the influence of temperature, water concentration and free fatty acid on 

the aggregation of phospholipids and free fatty acids in vegetable oil. This is especially important 

for the vegetable oil purification process called degumming in which water is used to remove 

phospholipids and other surface-active components from the oil. Very few investigations had used 

vegetable oil as the nonpolar media when studying the phospholipid reverse micelles in organic 

solvents. The examined parameters affected the self-assembly of the phospholipids in oil, but the 

most remarkable effect was the combined effect of free fatty acids and water. The publication leads 

to a better understanding to control the self-assembly of phospholipids in vegetable oils systems. 

The influence of different parameters including, temperature, water and free fatty acids on the 

phospholipid aggregation in rapeseed oil was studied using the 7,7,8,8–tetracyanoquinodimethane 
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dye (TCNQ) solubilization method. The principle of the TCNQ solubilization method is that the 

reverse micelles solubilize the TCNQ, which can lead to a sharp rise in absorbance around cmc. 

The shape of the lecithin aggregates were investigated using SAXS and cryogenic transmission 

electron microscopy (Cryo-TEM). Molecular simulations were performed to further investigate the 

influence of oleic acid on the reverse micelle formation of lecithin in rapeseed oil.  

Results showed that phospholipids acted as surface-active molecules in oil and they formed 

reverse cylindrical micelles above cmc in the oil with small amount of moisture (~0.03 wt.-%). 

Increasing temperature from room temperature to 70 °C decreased the cmc of lecithin in vegetable 

oil at low water concentrations. No conformational changes of lecithin in rapeseed oil occurred 

between 10 to 90°C according to differential scanning calorimeter and thus it can be concluded 

that conformational changes had an insignificant effect on the aggregation of lecithin between 

room temperature and at 70 °C. In agreement with our findings, an article of Cui et al. (2014) 

reported that the cmc of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine in soybean oil decreased with increasing temperature. Effect of free fatty 

acids on the aggregation of lecithin reverse micelles in rapeseed oil was studied by adding different 

concentrations of oleic acid into the system. Oleic acid itself did not form reverse micelles in 

rapeseed oil with 0.3 wt.-% added water at any of the studied concentration (0.03-80 wt.-%) at 

room temperature. The cmc of lecithin was determined in rapeseed oil with different oleic acid 

concentrations. The cmc of lecithin increased from 0.055 wt.-% to 0.20 wt.-% at 70 °C when oleic 

acid concentration of the system increased from 0 wt.-% to 20 wt.-%. At a concentration of oleic 

acid above 20 wt.-%, the cmc could not be detected below 3 wt.-% lecithin and higher 

concentration of lecithin could not be solubilized in the oil. The cmc of lecithin also seemed to 

increase with increasing oleic acid at room temperature. However, the cmc of lecithin could be 

determined only at oleic acid concentration from 0 wt.-% to 10 wt.-% as at higher oleic acid 

concentration, the cmc of lecithin was above 3 wt.-% that was more than could be solubilized into 

oil. 

Small amounts of water hydrated lecithin cylindrical reverse micelles into lamellar crystalline 

structures. The lamellar structures precipitated from the vegetable oil. The precipitation of lecithin 

was observed to occur with small addition of water and the removal of solubilized lecithin 

aggregates was indicated by the decrease in absorbance as shown in Figure 4A.  The precipitation 

was seen clearly already at water-to-lecithin ratio 13.7 wt.-% at room temperature (Fig. 4B) and 

20.9 wt.-% at 70 °C (Fig. 4C). As seen from Figure 4A, the lowest absorbance was at water-to-

lecithin ratio of 43.2 wt.-%. After the lowest absorbance value, the precipitate reached the water 

saturation point (indicated as “X” in the Fig. 4A). At higher water-to-lecithin weight ratio (52.7 wt.-

%), the sample became turbid, due to the formation of small water droplets in the supernatant 
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phase. At 70 °C, the absorbance values were not in the spectrophotometer absorbance limit (<1) 

as the reaction between the lecithin and the fluorescence dye TCNQ led to very dark colors (Fig. 

4C). The absorbance data that was above value 1 is not shown because it does not represent the 

true quantity for absorbance. However, the precipitation of lecithin aggregates was observed at the 

water-to-lecithin weight ratio of 20.9 wt.-% at 70 °C as indicated by the photograph of the samples 

in Fig. 4C. Thus, it could be concluded that the trend at elevated temperatures was qualitatively 

similar to the response at room temperature. The maximal water adsorption capacity of lamellar 

crystalline structures was at water-to-lecithin weight ratio of 43.2 to 103.6 wt.-% and 121.9 to 140.1 

wt.-% at room temperature and 70 °C, respectively. In excess water above the water saturation 

concentration of the lecithin precipitate, water droplets appeared into the oil and caused turbidity. 

In close agreement with our measurements, previous studies had reported that excess water 

phase separates above 34-47 wt.-% (water-to-lecithin) in various solvents (Lei et al., 2003 and 

Angelico et al., 2000). 

 

Figure 4. Absorbance using TCNQ-dye as a function of water-lecithin weight ratio (wt.-%) in 

rapeseed oil with 1 wt.-% lecithin at room temperature (RT) (A). X refers to the water saturation 

point. A photograph of the sample tubes at room temperature (B) and sample tubes at 70 °C (C). 

The numbers above the sample tubes in B and C corresponds to water-to-lecithin weight ratio (wt.-

%). (Lehtinen et al., 2017) 

The morphology and structure of lecithin aggregates, in other words reverse micelles and 

precipitate, were further studied using small-angle SAXS measurements and cryogenic 

Transmission electron microscopy (cryo-TEM) imaging at room temperature. Cryo-TEM and SAXS 
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analyses of the solubilized sample (corresponding to the second sample tube from the left in Fig. 

4B but without the TCNQ dye) are shown in Figure 5. According to the SAXS pattern, the sample is 

amorphous (non-crystalline) (Fig. 5B). In the cryo-TEM image (Fig. 5A), some of the lecithin 

micelles were perpendicular to the plane of the image and hexagonally packed according to the 

Fast Fourier Transform (FFT).  This indicated that the lecithin reverse micelles had long narrow 

shape and the structures were cylindrical rather than spherical.  

 

Figure 5. Cryo-TEM images (A) and SAXS patterns (B) of the 1 wt.-% lecithin in rapeseed oil 

containing 0.03 wt.-% water at room temperature (Inset figure: Fast Fourier Transform (FFT) of 

cylindrically packed structure). (Lehtinen et al., 2017) 
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Analysis of the sample of 1 wt.-% lecithin in rapeseed oil with water 0.21 wt.-% at room 

temperature showed two phase system: the upper supernatant phase and the lower precipitate 

phase (Figure 6). The sample corresponds to the fifth sample tube from the left in Fig. 4B but 

without the TCNQ dye. According to the SAXS measurement, there was a crystalline phase 

present in the upper phase indicating a presence of lamellar structures (Fig. 6B). The SAXS 

measurement of the lower phase revealed that there were lamellar structures present with higher 

intensity than in the upper phase indicating that the lamellar structures were concentrated in the 

lower phase (Fig. 6A). The Bragg peaks of the lamellar structures at 1:2 relative positions lead to a 

distance between the lamellar planes of 5.03 nm (d =2π/q) according to SAXS. The cryo-TEM 

image of the precipitate phase confirmed that the structures were lamellar (Fig. 6A), with a 

distance between the layers of approximately 5 nm according to the FFT. A possible explanation 

for the formation of lecithin lamellar liquid crystalline structures with addition of water was that the 

adsorption of water increased the volume of phospholipid-head groups in lecithin which had an 

effect on the packing parameter of the phospholipid molecules at the water-oil interface. With 

swollen head groups, the lecithin could not maintain the reverse cylindrical shape that was soluble 

to oil due to the energetically unfavorable packing and they were forced to form lamellar liquid 

crystal structures with lower interfacial curvature and lower solubility in rapeseed oil. 
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Figure. 6. SAXS patterns of (A) the lower precipitated phase and (B) the upper soluble phase of 1 

wt.-% lecithin in rapeseed oil at room temperature at water-to-oil weight ratio of 0.21 wt.-%. Inset 

figures: cryo-TEM and Fast Fourier Transform (FFT). (Lehtinen et al., 2017) 

The influence of water concentration on lecithin in rapeseed oil with varying oleic acid 

concentrations is shown in Figure 7 at room temperature and at 70°C. Lecithin concentrations that 
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were studied were 1 wt.-% at room temperature and 0.2 wt.-% at 70 °C both concentrations which 

contained abundantly lecithin reverse micelles without addition of water or oleic acid (Fig. 7A and 

7C).   According to TNCQ experiments, oleic acid in rapeseed oil increased the solubility of lecithin 

into the oil, and suppressed the formation of lecithin reverse micelles at low water content at room 

temperature. In presence of more water, oleic acid stabilized the reverse micelles and 

consequently more water was needed to induce the phase separation (Fig. 7A). Lower lecithin 

concentration (0.2 wt.-%) at 70 °C was chosen due to the reaction of lecithin reverse micelles with 

TCNQ at higher temperature that lead to very dark colors with 1 wt.-% lecithin concentration and 

almost all the experimental points had absorbance above 1 that was above the correct 

measurement range for spectrophotometer. In Fig. 7A, the absorbance of the lecithin reverse 

micelles decreased with increasing oleic acid concentration when there was only a trace amount of 

water (water-to-lecithin ratio 3.2-3.6 wt.-%) that originated from the materials. The decrease in 

absorbance with increasing oleic acid concentration correlated with the trend discovered in the cmc 

experiments of lecithin in rapeseed oil with increasing oleic acid concentrations. With absence of 

oleic acid, the addition of small amount of water (water-to-lecithin ratio approximately 8.6 wt.-%) 

caused a significant decrease in absorbance indicating the removal of solubilized reverse micelles 

from the oil. In Fig. 7A, the dashed lines were used to mark the absorbance above 1 that was 

beyond the reliable measurement range of the spectrophotometer and the absorbance values 

above 1 can be used only as indicative data points. The absorbance was much more stable in 

systems containing oleic acid when increasing the water-to-lecithin ratio (wt.-%). In presence of 5 

wt.-%, 10 wt.-% and 20 wt.-% oleic acid the water-to-lecithin weight ratio required to induce the 

decrease in absorbance was above approximately 14 wt.-%. This indicated that a moderate 

amount of oleic acid enhanced the solubility of lecithin into the oil and thus more water is required 

for the lamellar structures to be formed. The Fig. 7B shows the water saturation points of lecithin at 

various oleic acid concentration. The water saturation point of lecithin was the concentration of 

water at which the turbidity of the system started to increase causing an increase of absorbance. 

The water saturation range of lecithin is seen in a range of water-to-lecithin weight ratios between 

43.2 wt.-% and 103.6 wt.-% depending on the oleic acid concentration. Above water saturation 

concentration, lecithin became fully hydrated and water droplets were formed into the oil in all 

measured oleic acid concentrations which was seen as increase in absorbance. Somewhat similar 

trends were observed when adding water into rapeseed oil that contained lecithin (0.2 wt.-%) at 70 

°C. The measurement points above the absorbance value 1 are also shown but they should be 

used only as a qualitative indication of the presence of lecithin reverse micelles. At 70 °C (Fig. 7C, 

an increasing oleic acid concentration decreased the amount of initial lecithin aggregates and the 

water saturation point was between water-lecithin ratios 121.9 wt.-% to 140.1 wt.-% depending on 

the oleic acid concentration.  Above the water saturation point, water droplets appeared into 

rapeseed oil causing turbidity and a rapid increase in absorbance. In contrast to systems at room 
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temperature, moderate oleic acid concentrations at 70°C did not seem to have peculiar effect on 

aggregation of lecithin and the amount of lecithin aggregates decreased independently from water 

concentration in all systems with oleic acid. The exception was the system with no oleic acid in 

which the suppression of the lecithin reverse micelles was clearer and the decrease of absorbance 

started above water-lecithin ratio 41.1 wt.-%. Thus, it could be concluded that moderate amounts 

of oleic acid in the oil (5, 10 and 20 wt.-%) could delay the removal of lecithin reverse micelles 

upon addition of water, and the formation of lamellar structures required more water. According to 

the molecular simulations, the oleic acid bound dominantly to the phosphate group and formed a 

shell around the lipid head group. Water molecules could hydrogen bond with the oleic acid 

molecules already bonded with the lipid head group. This leads to the enhanced solubilization of 

phospholipid in vegetable oil in accordance with the experimental data.  
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Figure 7. TCNQ absorbance as a function of water-to-lecithin weight ratio (wt.-%) in rapeseed oil 

containing (A) 1 wt.-% of lecithin at room temperature, (B) a zoom in on the system at room 

temperature and (C) 0.2 wt.-% of lecithin at 70◦C. UV absorbance values >1 are shown for 

qualitative comparison as dashed lines. X refers to the water saturation point for the system 

without added oleic acid. (Lehtinen et al., 2017) 
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3.2. Supplementary experiments 
 

The supplementary experiments were conducted in Aalto University, Espoo, Finland. The 

experiments involved the preparation of lecithin structures in vegetable oil and the surface 

treatment of cellulose nanofibrils (CNF) using the lecithin structures.  

3.2.1. Materials and methods 

3.2.1.1. Materials 
 

Food-grade rapeseed oil (Keiju rypsiöljy, Bunge Finland Oy, Raisio, Finland) was purchased from a 

local super market. Granular L-Alpha-Lecithin, extracted from soybean oil, was purchased from 

Acros Organics (New Jersey, USA). The composition of lecithin was approximately 23 wt.% 

phosphatidylcholine, 20 wt.% phosphatidylethanolamine, 14 wt.-% phosphatidylinositol, 8 wt.-% 

phosphatidic acid, 8 wt.-% minor phospholipids, 8 wt.% sugars, 15 wt.% glycolipids, 3 wt.% 

triglycerides and 1 wt.% moisture. Cellulose nanofibrils were from Aalto University (Espoo, 

Finland). CNF was prepared by disintegrating never-dried, fully bleached and fines-free sulfite 

hardwood (birch) fibers obtained from a Finnish pulp mill, as described previously (Bai et al., 2018). 

The fibers were disintegrated through a high-pressure microfluidizer (M110P, Microfluidics Int. Co., 

Newton, MA) using 6 passes. No chemical or enzymatic pretreatment was used prior to 

microfluidization. The average width of CNF was ∼20 ± 8 nm, as shown in a recent study (Huan et 

al., 2019). The dry mass concentration of the CNF was 2.0 wt.-%. The silica substrates were 

prepared from WaferShipper™ by scratching and fractionating it to pieces showing approximately 

one centimeter height and approximately one centimeter width. Poly(ethyleneimine) (PEI) solution 

was purchased from Sigma-Aldrich (St. Louis, Missouri, USA) and was diluted to 0.25 wt.-% 

concentration prior to use. Millipore water was purified using a Synergy UV water purification 

systems (Millipore SAS, Molsheim, France). 

3.2.1.2. Preparation of lecithin lamellar structures 
 

The lipid materials including rapeseed oil and lecithin were dried prior to solubilization. A stock 

solution of lecithin (2 wt.-%) in rapeseed oil was obtained by stirring the lipids and increasing the 

temperature from room temperature to 70 °C in 1 hour and then the temperature was kept constant 

for 2 h at 70 °C. The stock solution of lecithin was diluted using rapeseed oil to obtain solution of 1 

wt.-% lecithin in oil. Then the solution was precipitated by adding 0.175 wt.-% Millipore water and 
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rotating it at room temperature for 2 h. After the precipitation the oil became turbid. The oil was 

stored at 6 °C overnight until the lecithin precipitate (LP) was observed at the bottom. The lecithin 

precipitate was centrifuged at 800 g for 20 min, and both supernatant and the precipitate were 

collected. The lecithin precipitate was diluted by adding 125.0 g of oil supernatant into 124.3 g of 

lecithin precipitate to obtain sufficient volume for the Langmuir-Blodgett (LB)-deposition trough. 

3.2.1.3. Preparation of CNF-lecithin films 
 

The interaction of lecithin with CNF was studied by preparing lecithin-CNF thin films on silica 

substrate. First, CNF solution was diluted to 0.12 % based on dry mass content using deionized 

water. The CNF suspension was then dispersed using an ultrasonication tip (Branson sonifier S-

450 D) at 25 % amplitude for 1 min. Next, the CNF solution was centrifuged at 8000 relative 

centrifugal force (rcf) for 30 min at 20 °C, and the supernatant was collected for further use. Then 

the silica substrates were covered with cationic PEI solution settled for 10 min before rinsing with 

deionized water. Two types of substrate were prepared for CNF spin-coating: substrates with no 

pressurized air treatment leaving varying amounts of rinsing water on the PEI surface (type 1) and 

substrates with pressurized air treatment leaving no rinsing water on the PEI surface (type 2). The 

aim is to study the effect of dilution of CNF on the adsorption so that the air blowing step may be 

dismissed in the future experiments. Then drops of CNF were placed onto the substrates and the 

substrates were spin-coated (Laurell spin-coater WS-650SX-6NPP-Lite) at 4000 rpm for 1 min. 

After spin-coating, the substrates were stored under controlled humidity (~50 %). Then the 

substrate surfaces were dipped into the diluted lecithin precipitate using LB-trough. The contact 

time of the substrate surface with the diluted lecithin precipitate in the LB-trough was approximately 

30 s after which the substrates were stored under controlled humidity (~50 %). After this, the 

substrates were rinsed with chloroform or ethanol to remove the lecithin precipitate. Due to the 

slight loss of lecithin precipitate during the LB-trough depositions, the lecithin precipitate was 

slightly diluted for the second and third repeats using the oil supernatant to obtain sufficient volume 

to fill the LB-trough.  

3.2.1.4. Measurement of contact angle 
 

The hydrophobicity/hydrophilicity of the substrates was characterized by the contact angle 

measurement. The contact angle of drops of water deposited on the substrates were measured 

using CAM 200 device (KSV Instruments). The used droplet was water, so higher contact angle 

indicated that the surface was hydrophobic and low contact angle value that the surface was 

hydrophilic.  
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3.2.1.5. Optical microscopy of vegetable oils 
 

The vegetable oil samples were studied using an optical microscope. The samples included 

rapeseed oil and 2 wt.-% lecithin in rapeseed oil. Additionally, lecithin precipitate that was already 

used in LB-trough depositions, the oil supernatant and the lecithin precipitate that was used in LB-

trough depositions with centrifuged again at 800 g for 20 min were imaged. Also, the supernatant 

of the second centrifugation was imaged.  

3.2.2. Results and discussion 

3.2.2.1. Yield of lecithin precipitate 
 

The composition for current system is 98.825 wt.-% rapeseed oil, 1.000 wt.-% lecithin and 0.175 

wt.-% added water. The total mass is 1320.11 g after three subsequent centrifugations. A 

centrifuged sample is shown in Figure 8. The yield of oil supernatant and lecithin precipitate was 

1161.39 g and 130.94 g, respectively, and the loss of material was 27.78 g.  

 

Figure 8. (A) Centrifuged rapeseed oil, lecithin, water mixture, and (B) oil supernatant (left bottle) 

and lecithin precipitate (right bottle) separated after centrifugation. The system composition was 

1.000 wt.-% lecithin, 98.825 wt.-% rapeseed oil and 0.175 wt.-% added water. 
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3.2.2.2. Optical microscopy imaging 
 

The aim of the optical microscopy was to evaluate the solubilization of lecithin into rapeseed oil 

and to investigate the morphology of the lecithin precipitate. Figure 9 shows the vegetable oil 

samples for optical microscopy imaging. By visual observation rapeseed oil (sample A), 2 wt.-% 

lecithin in rapeseed oil (sample B), oil supernatant (sample D) and oil supernatant from additional 

centrifugation of lecithin precipitate (sample F) were transparent. Lecithin precipitate diluted with oil 

supernatant (sample C) was turbid. Lecithin precipitate diluted with oil supernatant and being 

treated with additional centrifugation (sample E) was turbid and semi-solid.  

 

Figure 9. Vegetable oil samples for light microscopy imaging: (A) rapeseed oil, (B) 2 wt.-% lecithin 

in rapeseed oil, (C) lecithin precipitate diluted with oil supernatant, (D) oil supernatant, (E) lecithin 

precipitate diluted with oil supernatant and being treated with additional centrifugation, (F) oil 

supernatant from the additional centrifugation of lecithin precipitate. 

Figure 10 shows the optical microscopy images of vegetable oil the samples. The sample of 

rapeseed oil (Fig.10A) showed no aggregates and very few particles. The sample of 2 wt.-% 

lecithin in rapeseed oil (Fig. 10B) showed very few tiny particles. This was an indication that 

lecithin was solubilized into the rapeseed oil. The sample of oil supernatant (Fig. 10D) showed 

some scattered particles. The sample of oil supernatant from additional centrifugation (Fig. 10F) 

showed few scattered particles. In the sample of lecithin precipitate that was diluted with oil 

supernatant (Fig. 10C), there were dispersed aggregates present that had diameters mostly above 

50 μm. The edges and surfaces of the aggregates appeared to be uneven. There were longer 

appendages seen on some of the aggregates. The sample of lecithin precipitate with additional 

centrifugation (Fig. 10E), showed an image of full of grainy shapes. This indicated that the 

aggregate density was increased compared to diluted lecithin precipitate (Fig. 10C). 
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Figure 10. Optical microscopy images of vegetable oil samples: (A) rapeseed oil, (B) 2 wt.-% lecithin in rapeseed oil, (C) lecithin precipitate 

diluted with oil supernatant, (D) oil supernatant, (E) lecithin precipitate diluted with oil supernatant and being treated with additional 

centrifugation, (F) oil supernatant from additional centrifugation of lecithin precipitate. 
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3.2.2.3. Contact angle measurement 
 

The lecithin precipitate could be potentially be adsorbed onto the surface of CNF and to form 

phospholipid bilayer (Figure 11). The purpose of the solvent rinsing was to investigate whether the 

adsorption of lecithin would be strong enough to sustain the rinsing, and thus giving an indication 

of the strength of the physical bond between CNF and phospholipids.  

  

 

Figure 11. Illustration of the adsorption of different material layers on to the silica substrate in the 

experiments. PEI = poly(ethyleneimine), CNF = cellulose nanofibril. The surface charge of the 

material is shown in brackets.  

Figures 12 and 13 show the first CA measurement round of substrates with different chemical 

treatments of type 1 and type 2, respectively. In Figures 12 and 13, the same substrate with no 

chemicals (CA value of 25.8 °) was used as a reference. This was suitable as the reference 

substrate was not treated with PEI solution that would be rinsed off and then air blown or not-air 

blown deciding whether it would be included to either type 1 or type 2.  

In Figure 12, CA of the substrate treated with PEI+CNF+LP+ethanol 5 mL was 35.9 °. Compared 

to the CA of the substrate treated with no chemicals, the increase of CA value indicated that the 

addition of PEI+CNF+LP+ethanol 5 mL decreased the hydrophilicity of the surface as a water 

droplet did not wet the surface. When comparing the CA of the substrates treated with 

PEI+CNF+LP+chloroform 1 mL from the murky side (19.5 °) and PEI+CNF+LP+chloroform 1 mL 

from the clear side (34.1 °) to the PEI+CNF+LP+ethanol 5 mL (CA value of 35.9 °), it seemed that 

the rinsing with chloroform increased the hydrophilicity of the surface compared to ethanol rinsing. 
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It is not clear why the murky side would have increased the hydrophobicity as the murkiness was 

believed to be caused by the insufficient rinsing effect, which left thicker layer of lecithin precipitate 

onto the surface that would decrease the hydrophilicity. The highest CA of 39.9 ° was measured 

for the substrate treated with PEI+CNF+LP+chloroform 5 mL, indicating that 5 mL chloroform 

rinsing would be the most efficient in increasing the hydrophobicity of the surface. The visual 

appearances of sample surfaces treated with PEI+CNF+LP+chloroform 5 mL were clear, indicating 

that the rinsing removed excess lecithin precipitate. 

 

Figure 12. Contact angles of water on the substrates in the first measurement round of type 1. PEI 

= poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate.  

In Figure 13, the CA of substrate with no chemicals was 25.8 ° and the CA of substrate treated 

with PEI+CNF was 19.3 °, which indicated that treating the surface with PEI+CNF increased the 

hydrophilicity of the surface as the wetting was improved. The CA of the substrate with 

PEI+CNF+LP+ethanol 5 mL was 28.4 °. This indicated that LP+ethanol 5 mL decreased the 

hydrophilicity of the substrate compared to the substrate treated with PEI+CNF. In the case of 

substrate treated with PEI+CNF+LP+chloroform 1 mL and PEI+CNF+LP+chloroform 5 mL, the CA 

was 23.2 ° and 27.3 °, respectively, which indicated that in both cases the hydrophilicity decreased 

compared to the substrate treated with PEI+CNF. This also means that the mixture of lecithin 

precipitate rinsed by ethanol 5 mL or chloroform 1 mL or 5 mL made the surface more 

hydrophobic. The visual observations of the substrates showed the surfaces of silica substrates 

treated with no chemicals, PEI+CNF and PEI+CNF+LP+chloroform 5 mL were clear, indicating the 

presence of thin film of chemicals on the surface of the silica substrate. On the other hand, the 
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appearance of surfaces of silica substrates treated with PEI+CNF+LP+ethanol 5 mL and 

PEI+CNF+LP+chloroform 1 mL were murky and shiny+colorful, respectively, indicating that the 

rinsing with 5 mL ethanol or 1 mL chloroform were not sufficient to remove the excess lecithin 

precipitate from the surface of the substrate.  

 

 

Figure 13. Contact angles of water on the substrates in the first measurement round of type 2. PEI 

= poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate.  

Figures 14 and 15 show the second measurements round of CA measurements of substrates with 

different chemical treatments of type 1 and type 2, respectively. Figures 14 and 15, the same 

substrate with no chemicals (CA value of 42.5 °) was used as a reference because the reference 

substrate was not treated with PEI solution that would be rinsed off and then air blown or not-air 

blown deciding whether it would be included to either type 1 or type 2. 

In Figure 14, the CA of the substrate treated with PEI+CNF was 54.0 °, which indicated that the 

PEI+CNF decreased the hydrophilicity of the surface compared to the substrate treated with no 

chemicals. This was contrary to the first measurement round of type 2 (Figure 13), which indicated 

that PEI+CNF increased the hydrophilicity compared to the substrate treated with no chemicals. 

The CA of the substrate treated with PEI+CNF+chloroform 5 mL was 46.2 °. This was lower than 

for the substrate treated with PEI+CNF, which indicated that chloroform increased the 

hydrophilicity. The CA of the substrate treated with PEI+CNF+LP+chloroform 5 mL was 38.1 °. 

When comparing this CA value to the substrate treated with PEI+CNF+chloroform 5 mL (CA value 

of 46.2 °), it seems that the LP increased the hydrophilicity. Additionally, when comparing the CA 
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of the substrate treated with PEI+CNF+ethanol 5 mL to the CA of the substrate treated with 

PEI+CNF+LP+ethanol 5 mL, it seems that the LP increased the hydrophilicity.  

 

 

Figure 14. CA of water on the substrates in the second measurement round of type 1. PEI = 

poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate.  

In Figure 15, the CA of substrate with no chemicals was 42.5 °. The CA of substrate treated with 

PEI+CNF was 29.6 °, which indicated that PEI+CNF increased the hydrophilicity as the wetting 

was enhanced. This was in agreement with the first measurement round of type 2 (Figure 13). The 

CA of substrates treated with PEI+CNF+chloroform 5 mL and PEI+CNF+LP+chloroform 5 mL were 

34.8 ° and 35.5 °, respectively, which indicated that LP decreased hydrophilicity. The CA of the 

substrates treated with PEI+CNF+ethanol 5 mL and PEI+CNF+LP+ethanol 5 mL were 27.7 ° and 

38.0 °, respectively, which indicated that LP decreased the hydrophilicity. According to the visual 

observation of the silica substrates treated with PEI+CNF+LP+ethanol 5 mL, the surface areas 

were ~2/3 murky and colorful, ~1/3 shiny and looked like nonrinsed liquid in two out of three 

substrates, and in one out of three substrates the surface area was ~2/4 murky and colorful, ~1/4 

murky, ~1/4 shiny liquid looking, which indicated that the lecithin precipitate was only partially 

rinsed off using ethanol 5 mL in all the three substrate repeats in the second measurement round. 

The lecithin precipitate that would have only partially been rinsed off would have increased the 

contact angle though it would not have given an indication that the lecithin precipitate would have 

been adsorbed to the surface. 
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Figure 15. CA of water on the substrates in the second measurement round of type 2. PEI = 

poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate. 

Figures 16 and 17 show the third measurement round of CA measurements of substrates with 

different chemical treatments of type 1 and type 2, respectively. In Figure 15, the CA of the 

substrate treated with PEI+CNF was 47.0 °. Comparing this CA value to the CA value of the 

substrate treated with PEI+CNF+chloroform 5 mL (50.0 °), it indicated that the chloroform 5 mL 

decreased the hydrophilicity. The CA value of the substrate treated with PEI+CNF+LP+chloroform 

5 mL was 45.2 °, which indicated that the LP increased the hydrophilicity when comparing the 

value to the CA value for the substrate treated with PEI+CNF+chloroform 5 mL (50.0 °). The CA 

values for the substrates treated with PEI+CNF+ethanol 5 mL and PEI+CNF+LP+ethanol 5 mL 

were 45.5 ° and 24.4 °, respectively, which indicated that the LP increased the hydrophilicity.  The 

CA value for the substrate treated with PEI+CNF+chloroform 1 mL was 46.5 °, which indicated that 

the chloroform 1 mL increased the hydrophilicity compared to the CA of the substrate treated with 

PEI+CNF. The CA value for PEI+CNF+LP+chloroform 1 mL was 50.5 °, which indicated that 

LP+chloroform 5 mL increased the hydrophilicity of the surface when compared to PEI+CNF. 

When comparing the substrate with PEI+CNF+chloroform 1 mL (CA value of 46.5 °) to the 

substrate with PEI+CNF+LP+chloroform 1 mL (CA value of 50.5 °), it indicated that the LP 

decreased the hydrophilicity.  
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Figure 16. CA of water on the substrates in the third measurement round of type 1. PEI = 

poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate. 

In Figure 17, the CA for silica substrate treated with PEI+CNF was 32.4 °. The CA for substrate 

treated with PEI+CNF+chloroform 5 mL was 38.3 °, which indicated that chloroform decreased the 

hydrophilicity. The CA of the silica substrate treated with PEI+CNF+LP+chloroform 5 mL was 29.3 

°, which indicated that LP increased the hydrophilicity of the surface. Increase of hydrophilicity of 

LP was seen also when comparing the CA of substrates treated with PEI+CNF+ethanol 5 mL and 

PEI+CNF+LP+ethanol 5 mL that had the CA of 29.0 ° and 27.0 °, respectively. The CA of 

PEI+CNF+chloroform 1 mL was 47.0 °C. The CA for the substrate treated with 

PEI+CNF+LP+chloroform 1 mL was 21.8 °, which indicated that LP increased the hydrophilicity of 

the substrate. 

 

 

Figure 17. CA of water on the substrates of the third measurement round of type 2. PEI = 

poly(ethyleneimine), CNF = cellulose nanofibrils and LP = lecithin precipitate. 
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As a conclusion, the CA in type 2 should be evaluated to be more trustworthy compared to the type 

1. This was due to the air blowing step of the wet substrates in type 2 prior to addition of CNF 

solution. This resulted in constant concentration of CNF. In type 2, two out of three measurements 

indicated that the addition of PE+CNF+LP+chloroform 5 mL to the silica surface increased the 

hydrophobicity of the substrate compared to the silica substrate treated with PEI+CNF. In type 2, 

two measurements indicated that addition LP increased the hydrophobicity of silica substrate. 

Overall, the immersion of the substrate into the LP, subsequent rinsing and CA measurement did 

not seem to be the optimal way to measure the adsorption of phospholipids on to the surface of the 

CNF due to the variation of the results. The hydrophilicity of the CNF may have been resulted by 

the surface hydroxyl groups that would have inhibited the wetting of the surface of the fiber when 

contacting it with the lecithin precipitate that contained hydrophobic vegetable oil and thus 

preventing the adsorption of phospholipid lamellar structure on the CNF surface. 
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3.3. Summary of the supplementary experiments 
 

Optical microscopy studies revealed that lecithin could be solubilized into rapeseed oil, and 

the solubilized lecithin aggregates could be precipitated by adding moderate amount of 

water. Lecithin precipitate seemed to be a semi-solid material indicating that lecithin acted as 

a structuring agent together with water in rapeseed oil. The surface modification of 

nanocellulose was studied by contacting the surface with the lecithin precipitate. The 

hydrophobization effect of lecithin on nanocellulose surface was not clear. Several contact 

angle measurements indicated that the addition of LP+ethanol or chloroform to the silica 

surface with PEI+CNF decreased the hydrophilicity of the substrate and two measurements 

indicated that the addition of oily liquid containing phospholipid lamellar structures decreased 

the hydrophilicity of the surface. The contact angle measurement seemed not to be the 

optimal way to measure the adsorption phospholipids onto the surface of nanocellulose due 

to the variation in the results that made the interpretation difficult. More laboratory 

experiments should be conducted to ascertain the adsorption of phospholipids on the 

surface of nanocellulose. This would require for example the use of quartz crystal 

microbalance measurements.  
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4. Conclusions and future plans 
 

The tendency of phospholipids to interact with water and free fatty acids in vegetable oil is 

now well understood. It was clearly shown that phospholipids are surface-active molecules, 

and they form different structures in vegetable oil. The properties of the structures could be 

controlled by changing the parameters such as temperature of the system, water 

concentration and free fatty acid. The most critical parameter for the solubilization of lecithin 

into vegetable oil seemed to be the water concentration. The solubilization of lecithin into the 

vegetable oil was affected by the delicate hydrophilic-hydrophobic interplay of phospholipid 

with water and vegetable oil together with free fatty acids. The evidence of the presence of 

spherical phospholipid reverse micelles in vegetable oil is still lacking, however, it can be 

assumed that the initial moisture of lecithin could cause the phospholipids to form elongated 

cylindrical reverse micelles in the oil instead of spherical reverse micelles. The solubilized 

phospholipids cylindrical reverse micelles in vegetable oil were shaped into lamellar 

phospholipid structures due to the favorable packing energetic upon addition of moderate 

amount of water into the vegetable oil.  

It has been shown that phospholipids might be used to render the surface of nanocellulose 

more hydrophobic. However, according to the results, the hydrophobization effect of the 

surface using lecithin precipitate was not clear when performing it with contact angle 

measurement due to the variation in the results. For the future plans, it is recommended to 

study the interactions of phospholipids and nanocellulose using quartz crystal microbalance 

measurements. The dispersion of nanocellulose into vegetable oil should also be evaluated. 

In addition, the usage of nanocellulose in food products requires the evaluation of the health 

impacts of nanocellulose.   
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