
Strong Subgraph k-connectivity

Yuefang Sun1, Gregory Gutin2, Anders Yeo3,4 and Xiaoyan Zhang5∗

1 Department of Mathematics, Shaoxing University
Zhejiang 312000, P. R. China, yuefangsun2013@163.com

2 Department of Computer Science
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK, g.gutin@rhul.ac.uk
3Department of Mathematics and Computer Science

University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark, andersyeo@gmail.com

4Department of Pure and Applied Mathematics
University of Johannesburg

Auckland Park, 2006 South Africa
5 School of Mathematical Science & Institute of Mathematics

Nanjing Normal University
Jiangsu 210023, P. R. China, zhangxiaoyan@njnu.edu.cn

Abstract

Generalized connectivity introduced by Hager (1985) has been stud-
ied extensively in undirected graphs and become an established area in
undirected graph theory. For connectivity problems, directed graph-
s can be considered as generalizations of undirected graphs. In this
paper, we introduce a natural extension of generalized k-connectivity
of undirected graphs to directed graphs (we call it strong subgraph k-
connectivity) by replacing connectivity with strong connectivity. We
prove NP-completeness results and the existence of polynomial algo-
rithms. We show that strong subgraph k–connectivity is, in a sense,
harder to compute than generalized k-connectivity. However, strong
subgraph k-connectivity can be computed in polynomial time for semi-
complete digraphs and symmetric digraphs. We also provide sharp
bounds on strong subgraph k-connectivity and pose some open ques-
tions.

Keywords: Generalized k-connectivity; Strong subgraph k–connectivity;
Directed k-Linkage; Digraphs; Semicomplete digraphs; Symmetric di-
graphs.

∗Corresponding author.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/245882227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Connectivity is one of the most basic concepts in graph theory1, both
in combinatorial and algorithmic senses. The classical connectivity has
two equivalent definitions. The connectivity of an undirected graph G,
written κ(G), is the minimum size of a vertex set S ⊆ V (G) such that
G − S is disconnected or has only one vertex. This definition is called the
cut-version definition. The well-known theorem of Menger provides an e-
quivalent definition, which can be called the path-version definition. For
two distinct vertices x and y in G, the local connectivity κ{x,y}(G) is the
maximum number of internally disjoint paths connecting x and y. Then
κ(G) = min{κ{x,y}(G) | x, y ∈ V (G), x 6= y} is defined to be the connectivi-
ty of G.

The generalized k-connectivity κk(G) of a graph G which was introduced
by Hager [9] in 1985, is a natural generalization of the path-version definition
of the connectivity. For a graph G = (V,E) and a set S ⊆ V of at least two
vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which
is a tree with S ⊆ V (T). Two S-trees T1 and T2 are said to be internally
disjoint if E(T1) ∩E(T2) = ∅ and V (T1) ∩ V (T2) = S. The generalized local
connectivity κS(G) is the maximum number of internally disjoint S-trees in
G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity is defined
as

κk(G) = min{κS(G) | S ⊆ V (G), |S| = k}.

Observe that κ2(G) = κ(G). If vertices of S are placed in different com-
ponents, we have κS(G) = 0. Thus, κk(G) = 0 for a disconnected graph
G.

Both extremes for k in κk(G) relate to fundamental theorems in combi-
natorics. For k = 2, internally disjoint S-trees are internally disjoint paths
between the two vertices, and so the parameter is relevant to the well-known
Menger theorem. For k = n, internally disjoint S-trees are edge-disjoint s-
panning trees of the graph, and so this parameter is relevant to the spanning
tree packing problem [18, 19] and the classical Nash-Williams-Tutte theo-
rem [17, 25]. Generalized connectivity of graphs has become an established
area in graph theory, see a recent monograph [15] by Li and Mao on gener-
alized connectivity of undirected graphs, see also a survey paper [14] of the
area.

To extend generalized k-connectivity to directed graphs, note that an
S-tree is a connected subgraph of G containing S. In fact, in the defini-
tion of κS(G) we could replace “an S-tree” by “a connected subgraph of
G containing S.” Therefore, we define strong subgraph k-connectivity by
replacing “connected” with “strongly connected” (or, simply, “strong”) as
follows. Let D = (V (D), A(D)) be a digraph of order n, S ⊆ V a k-subset of
V (D) and 2 ≤ k ≤ n. Strong subgraphs D1, . . . , Dp containing S are said to
be S-internally disjoint or, simply, internally disjoint if V (Di)∩ V (Dj) = S
and A(Di) ∩A(Dj) = ∅ for all 1 ≤ i < j ≤ p.

1We refer the readers to [1,4] for graph theoretical notation and terminology not given
here. Note that all digraphs considered in this paper have no parallel arcs or loops.

2

Let κS(D) be the maximum number of internally disjoint strong digraphs
containing S in D. The strong subgraph k-connectivity is defined as

κk(D) = min{κS(D) | S ⊆ V (D), |S| = k}.

By definition, κ2(D) = 0 if D is not strong. Note that we define a digraph
with one vertex to be strongly connected. Strong subgraph k-connectivity
allows us to extend applications of generalized k-connectivity described in
[14,15] from undirected to directed graphs.

We will now overview results and conjectures on generalized k-connectivity
related to results and open problems of our paper. Li, Li and Zhou [13]
showed that given a fixed positive integer `, for any graph G the problem of
deciding whether κ3(G) ≥ ` can be solved in polynomial time. This was gen-
eralized by Li and Li [12] who proved that given two fixed positive integers
k ≥ 2 and `, for any graph G the problem of deciding whether κk(G) ≥ `
can be solved in polynomial time. For a fixed integer k, but an arbitrary (i.e.
part of input) integer `, Li and Li [12] showed that the complexity changes
provided P 6=NP: Let k ≥ 4 be a fixed integer. For a graph G, a k-subset
S of V (G) and an integer ` (` ≥ 2), it is NP-complete to decide whether
κS(G) ≥ `. Solving a conjecture of S. Li [11], Chen, Li, Liu and Mao [5]
proved that in the above result, the bound 4 on k can be replaced by 3
(which is the best possible provided P6=NP). Note that another conjecture
of S. Li [11] remains open [14]: for a fixed integer k ≥ 3, given a graph G
and an integer ` ≥ 2, it is NP-complete to decide whether κk(G) ≥ `. Thus,
the “global” analog of the generalized local connectivity intractability result
still remains open. Li and Li [12] proved an intractability result similar to
that of [5] given above when ` is fixed but k is arbitrary: For a graph G and
a subset S of V (G), it is NP-complete to decide whether κS(G) ≥ `, where
` ≥ 2 is a fixed integer.

It turns out that computing strong subgraph k-connectivity becomes in-
tractable much earlier with respect to k and ` above. Let k ≥ 2 and ` ≥ 2 be
fixed integers. In Theorem 2.1 by reduction from the Directed 2-Linkage
problem2 we prove that deciding whether κS(D) ≥ ` is NP-complete for a
k-subset S of V (D). Similarly to generalized k-connectivity, we do not know
whether the problem of deciding κk(D) ≥ ` is NP-complete for fixed k ≥ 2
and ` ≥ 2, but we conjecture that it is the case.

Thomassen [23] showed that for every positive integer p there are digraphs
which are strongly p-connected, but which contain a pair of vertices not
belonging to the same directed cycle. This implies that for every positive
integer p there are strongly p-connected digraphs D such that κ2(D) = 1.
Indeed, let x and y be vertices in a strongly p-connected digraph D such
that no cycle contains both x and y. Suppose κ2(D) ≥ 2. Then there are
{x, y}-internally disjoint subgraphs H1 and H2 containing x and y. But then
a path from x to y in H1 and a path from y to x in H2 form a cycle in D,
a contradiction.

The above negative results motivate studying strong subgraph k-connectivity
for special classes of digraphs. Arguably the most studied of them is the

2The Directed k-Linkage problem is formulated in the next section.

3

class of tournaments, see, e.g., a recent informative account [2] on tourna-
ments and semicomplete digraphs by Bang-Jensen and Havet. A digraph is
semicomplete if there is at least one arc between any pair of vertices. We
show that the problem of deciding whether κk(D) ≥ ` for every semicom-
plete digraphs is polynomial-time solvable for fixed k and ` (Theorem 2.4).
This result can be viewed as an analog of the corresponding result of Li and
Li [12] for κk(G). The main tool used in our proof is a recent Directed
k-Linkage theorem3 of Chudnovsky, Scott and Seymour [7].

A digraph D is called symmetric if for every arc xy there is an opposite
arc yx. Thus, a symmetric digraph D can be obtained from its underlying
undirected graph G by replacing each edge of G with the corresponding arcs
of both directions. We will say that D is the complete biorientation of G

and denote this by D =
←→
G . We will show that for any connected graph G,

the parameter κ2(
←→
G) can be computed in polynomial time (Theorem 2.5).

This result is best possible in the following sense, unless P=NP. Let D be
a symmetric digraph and k ≥ 3 a fixed integer. Then it is NP-complete
to decide whether κS(D) ≥ ` for S ⊆ V (D) with |S| = k (Theorem 2.8).
To prove Theorem 2.8, we use an NP-complete problem from [5]. If we
fix not only k ≥ 2 but also ` ≥ 2, the complexity changes again (unless
P=NP): in Theorem 2.10, we show that one can decide in polynomial time
whether κk(D) ≥ `. To prove Theorem 2.10, we use the celebrated result of
Robertson and Seymour [20] on the Undirected p-Linkage problem.

Some inequalities concerning parameter κk(G) were obtained in the lit-
erature, see e.g. [16, 22]. For a connected graph G of order n, Li, Mao and
Sun [16] obtained the following inequality for κk(G): 1 ≤ κk(G) ≤ n− dk2e,
where 2 ≤ k ≤ n. Moreover, the upper and lower bounds are sharp. In the
same paper, they also characterized graphs G with κk(G) = n− dk2e.

Let D be a strong digraph with order n. For 2 ≤ k ≤ n, we prove
that 1 ≤ κk(D) ≤ n − 1 (Theorem 3.5). The bounds are sharp; we also
characterize those digraphs D for which κk(D) attains the upper bound.
The main tool used in the proof of Theorem 3.5 is a Hamiltonian cycle
decomposition theorem of Tillson [24].

For a positive integer m, let [m] = {1, 2, . . . ,m}.
The paper is organized as follows. The next section is devoted to NP-

completeness results and polynomial algorithms discussed above. In Section
3 we prove sharp lower and upper bounds on strong subgraph k-connectivity
also discussed above. We conclude the paper with Section 4, where we
discuss further direction of research on strong subgraph k-connectivity and
state some open problems.

2 Algorithms and Complexity

For a digraph D with order n and S ⊆ V (D) with |S| = k and 2 ≤ k ≤ n,
it is easy to decide whether κS(D) ≥ 1: it holds if and only if D is strong.
Unfortunately, deciding whether κS(D) ≥ 2 is already NP-complete when k
is fixed.

3Another interesting recent result on Directed k-Linkage was published in [6].

4

x y

s1 t1 s2 t2 D

Figure 1: The digraph D′.

The well-known Directed q-Linkage problem [1] is of interest in the
next three theorems. The problem is formulated as follows: for a fixed inte-
ger q ≥ 2, given a digraph D and a (terminal) sequence ((s1, t1), . . . , (sq, tq))
of distinct vertices of D, decide whether D has q vertex-disjoint paths
P1, . . . , Pq, where Pi starts at si and ends at ti for all i ∈ [q].

Let us prove our main intractability result.

Theorem 2.1 Let k ≥ 2 and ` ≥ 2 be fixed integers. Let D be a digraph
and S ⊆ V (D) with |S| = k. The problem of deciding whether κS(D) ≥ ` is
NP-complete.

Proof: Clearly, the problem is in NP. To show it is NP-hard, we reduce
from the Directed 2-Linkage problem, which is NP-complete [8].

Let us first consider the case of ` = 2 and k = 2. Let (D, s1, t1, s2, t2) be
an instance of Directed 2-Linkage. Let us construct a new digraph D′

(see Figure 1) by adding to D vertices x, y and arcs

t1x, xs1, t2y, ys2, xs2, s2x, yt1, t1y.

Let S = {x, y}. It remains to show that (D, s1, t1, s2, t2) is a positive instance
of Directed 2-Linkage if and only if κS(D′) ≥ 2.

Let (D, s1, t1, s2, t2) be a positive instance of Directed 2-Linkage with
vertex-disjoint paths P1, P2 from s1 to t1 and from s2 to t2, respectively.
Then there are two internally disjoint strong subgraphs containing S of D′,
one induced by the arcs of P1 and t1x, xs1, t1y, yt1 and the other by the arcs
of P2 and t2y, ys2, xs2, s2x.

Let D′ have two internally disjoint strong subgraphs H1, H2 containing S.
Since the in-degree of x in D′ is 2, we may without loss of generality assume
that t1 ∈ V (H1) and s2 ∈ V (H2). As y has in-degree 2 and t1 ∈ V (H1) we
must have t2 ∈ V (H2). As the out-degree of x is 2, we analogously have
s1 ∈ V (H1) (as s2 ∈ V (H2)). So, for i = 1, 2, both si and ti are in Hi.
Therefore, there must be a path Pi from si to ti in Hi and by definition
of D′, Pi will not have vertices outside of D. As H1 and H2 are internally
disjoint, the paths are disjoint.

Now let us consider the case of ` ≥ 3 and k = 2. Add to D′ `− 2 copies
of the 2-cycle xyx and subdivide the arcs of every copy to avoid parallel
arcs. Let us denote the new digraph by D′′. Assume that there are `
internally disjoint strong subgraphs, H1, H2, . . . H`, containing S in D′′. As

5

the out-degree of y in D′′ is ` we can without loss of generality assume that
t1 ∈ V (H1), s2 ∈ V (H2) and the `− 2 (subdivided) arcs from y to x belong
to H3, H4, . . . ,H`, respectively. As t1 ∈ V (H1) and the in-degree of y is ` no
(subdivided) arc from x to y belongs to H1. Analogously, since s2 ∈ V (H2)
and the out-degree of x is `, no (subdivided) arc from x to y belongs to
H2. Therefore the (subdivided) arcs from x to y belong to H3, H4, . . . ,H`,
respectively. As in the case when ` = 2 we now note that s1 ∈ V (H1) and
t2 ∈ V (H2) and that there therefore exists disjoint paths from s1 to t1 and
s2 to t2 in D, respectively.

Conversely if there exists disjoint paths from s1 to t1 and s2 to t2 in D,
then it is not difficult to create ` internally disjoint strong subgraphs con-
taining S in D′′ using the same approach as when ` = 2 as each (subdivided)
2-cycle xyx also gives rise to a strong subgraph containing S. Thus, we have
proved the theorem in the case of k = 2 and ` ≥ 2.

It remains to consider the case of ` ≥ 2 and k ≥ 3. Add to D′′ (where
D′′ = D′ for ` = 2) k − 2 new vertices x1, . . . , xk−2 and arcs of ` 2-cycles
xxix for each i ∈ [k − 2]. Subdivide the new arcs to avoid parallel arcs.
Let S = {x, y, x1, . . . , xk−2}. It is not hard to see that the resulting di-
graph has ` internally disjoint strong subgraphs containing S if and only if
(D, s1, t1, s2, t2) is a positive instance of Directed 2-Linkage. 2

Recently, Chudnovsky, Scott and Seymour [7] proved the following pow-
erful result, which was already used in [3].

Theorem 2.2 [7] Let D be a digraph and let q and c be fixed positive inte-
gers. Given a partition of the vertices of D into c sets each inducing a semi-
complete digraph and a terminal sequence ((s1, t1), . . . , (sq, tq)) of distinct
vertices of D, the Directed q-Linkage for D and ((s1, t1), . . . , (sq, tq))
can be solved in polynomial time.

Now we will consider the problem of deciding whether κk(D) ≥ ` for a
semicomplete digraph D. We will first prove the following:

Lemma 2.3 Let k and ` be fixed positive integers. Let D be a digraph and
let X1, X2, . . . , X` be ` vertex disjoint subsets of V (D), such that |Xi| ≤ k
for all i ∈ [`]. Let X = ∪`i=1Xi and assume that for every v ∈ V (D) \ X
and every w ∈ V (D), there is an arc from v to w or an arc from w to v.
Then we can in polynomial time decide if there exist vertex disjoint subsets
Z1, Z2, . . . , Z` of V (D), such that Xi ⊆ Zi and D[Zi] is strongly connected
for each i ∈ [`].

Proof: Let C1
i , C

2
i , . . . , C

ri
i be the strongly connected components in D[Xi],

such that there is no arc from Cb
i to Ca

i for 1 ≤ a < b ≤ ri. We consider the
following two cases.

Case 1: D[Xi] has a unique initial and a unique terminal component
(which can be the same component) for all i = 1, 2, . . . , `.

Let T = ∅. For each i = 1, 2, . . . , `, do the following. If D[Xi] is strongly
connected then set Zi = Xi and delete Xi from D. Otherwise, contract every

6

strong component Cj
i to a vertex cji and look at all possible permutations of

all subsets of {c1i , c2i , . . . , c
ri
i } containing c1i and crii which start with crii and

end with c1i . Let Z = (z1, z2, . . . , zr) be such a permutation, where z1 = crii ,
zr = c1i and 2 ≤ r ≤ ri. Now duplicate every vertex za to zsa and zta, for all

a = 2, 3, . . . , r−1 and remove every cji that does not appear in the permuta-
tion. We now add the sequence Ti = ((crii , z

t
2), (z

s
2, z

t
3), (z

s
3, z

t
4), . . . , (z

s
r−1, c

1
i))

to our terminal sequence T .
We can use Theorem 2.2 for D in order to determine if there are vertex

disjoint paths satisfying our terminal sequence T (that is, for every (s, t) ∈ T
there is a path from s to t). Indeed, Theorem 2.2 can be used for D and
T since (i) k and ` are constants; (ii) D − X is a semicomplete digraph,
every vertex in X can be viewed a semicomplete digraph, and |X| ≤ k`;
(iii) |T | ≤ 2k`. If such a linkage exists (for the terminal sequence T of
some permutations above) then let Zi include all internal vertices on paths
between the pairs of vertices in Ti as well asXi itself. Now observe that D[Zi]
is strongly connected and all Z1, Z2, . . . , Z` are vertex disjoint, as desired.

We will now show that if there exists Zi, such that D[Zi] is strongly con-
nected and all Zj ’s are vertex disjoint, then there exists a desired linkage. So,
assume that such Zi exist. As D[Zi] is strong, we note that it remains strong
after contracting all strong components of D[Xi] to vertices. Therefore there
exists a shortest path P from the terminal strong component of D[Xi] to the
initial strong component of D[Xi]. Let the vertices on P which correspond
to (contracted) strong components of D[Xi] be (z1, z2, . . . , zr) (in the order
they appear on P) and using this as the permutation in our algorithm for
the subpaths of P gives us the desired linkage between the zi’s. Doing the
above for all i = 1, 2, . . . , ` we see that our algorithm will indeed find the
desired linkage (when considering the permutations constructed above).

As k and ` are constants, we note that there are at most a constant
number of permutations to consider, so the algorithm runs in polynomial
time. This completes Case 1.

Case 2: Case 1 does not hold.
We will in this case transform the problem, such that we can solve it

using Case 1. For all i = 1, 2, . . . , ` proceed as follows. Initiate a set Q
as an empty set. If there is a unique initial strong component in D[Xi]
and a unique strong terminal component in D[Xi] then let X ′i = Xi. If
this is not the case, then let I = {I1, I2, . . . , Ip} denote the set of initial
strong components in D[Xi] and let T = {T1, T2, . . . , Tq} denote the set of
terminal strong components in D[Xi]. For every Ia ∈ I choose a vertex,
va ∈ V (D) \ (X ∪Q) such that va has at least one arc into the component
Ia. We allow repetition of vertices in the sequence v1, v2, . . . , vp. (Such
vertices vj must exist if there is a set Zi containing Xi such that D[Zi] is
strong.) Analogously, for each Tb ∈ T choose a vertex, wb ∈ V (D) \ (X ∪Q)
such that wb has at least one arc into it from the component Tb. Again
we allow w1, w2, . . . , wq to be not necessarily distinct. Now add vertices of
v1, v2, . . . , vp and w1, w2, . . . , wq to Q.

If for some i we cannot choose v1, v2, . . . , vp as above, we stop and consider
other choices for the previous values of i. Analogously, for w1, w2, . . . , wq.

7

If we have succeeded in choosing v1, v2, . . . , vp and w1, w2, . . . , wq for every
i ∈ [`], then for each i ∈ [`] we add the corresponding vertices v1, v2, . . . , vp
and w1, w2, . . . , wq to Xi and call the resulting set X ′i. Note that |X ′i| ≤
|Xi|+ (p+ q) ≤ 3k.

If C is a terminal component inD[X ′i] then C must contain a vertex not in
Xi, as otherwise C would be a terminal component of D[Xi] a contradiction
to X ′i containing a vertex (not in Xi and therefore not in C) that has an arc
into it from C. However, as all vertices not in Xi are adjacent, this implies
that there is a unique terminal strong component in D[X ′i]. Analogously,
there is a unique initial strong component in D[X ′i].

We now use the approach in Case 1, for all possible choices of vertices vj
and wj for all i ∈ [`]. As there are at most nk possible choices of vertices
vj and wj for each i observe that we have to use the approach in Case 1 at
most nk` times, which is a polynomial as k and ` are constants.

If the above algorithm finds the ` sets, Z1, Z2, . . . , Z`, then clearly they
exist. Conversely, if the sets do exist then when D[Xi] is not strong, observe
that each initial strong component in D[Xi] must have an arc into it from
a vertex in Zi and each terminal strong component in D[Xi] must have an
arc into out of it to a vertex in Zi. Picking these vertices as our vertices vj
and wj , observe that our algorithm will indeed find sets Z1, Z2, . . . , Z`, as
desired. 2

Theorem 2.4 For any fixed integers k, ` ≥ 2, we can decide whether κk(D) ≥
` for a semicomplete digraph D in polynomial time.

Proof: Let k, ` ≥ 2 be fixed and let S = {s1, . . . , sk} be a set of vertices of
a semicomplete digraph D. To prove this theorem it suffices to show that
deciding whether κS(D) ≥ ` can be done in polynomial time.

Let A1, A2, . . . , A` be a partition of the arcs in D[S], where some sets
may be empty. That is, every arc in D[S] belongs to exactly one Ai. Let D∗

be obtained from D by replacing every si by ` copies, i.e. replacing si with
Si = {x1i , x2i , . . . , x`i} for all i = 1, 2, . . . , k. Let Xi = {xi1, xi2, . . . , xik} for all
i = 1, 2, . . . , `. If siy is an arc from S to V (D) \ S, then xai y is in D∗ for all
a = 1, 2, . . . , `. Analogously, if ysi is an arc from V (D) \ S to S, then yxai
is in D∗ for all a = 1, 2, . . . , `. For each i = 1, 2, . . . , ` add the arcs of Ai to
D∗[Xi]. That is, if sasb ∈ Ai then add the arc xiax

i
b to D∗. This completes

the construction of D∗ (for a given partition A1, A2, . . . , A`).
We can now decide if there exist disjoint vertex sets Zi in D∗ such that

Xi ⊆ Zi and D∗[Zi] is strongly connected for all i = 1, 2, . . . , ` in polynomial
time by Lemma 2.3. If, for some partition, A1, A2, . . . , A`, such Zi’s exist
then we will show that κS(D) ≥ ` and if this is not the case then we will
show that κS(D) < `. As there are only a polynomial number of parti-
tions A1, A2, . . . , A` (as ` and k are constants), this gives us a polynomial
algorithm.

First assume that such Zi’s exist for some partition, A1, A2, . . . , A`. Then
the subgraph in D on vertex set Zi and with the arcs (A(D[Zi])\A(D[S]))∪
A` is strongly connected and as all Zi’s are vertex disjoint (and the arc sets
Ai’s are disjoint) observe that κS(D) ≥ `, as desired.

8

Conversely if κS(D) ≥ `, then there exists strongly connected subgraphs
Y1, Y2, . . . , Y` such that V (Yi) ∩ V (Yj) = S for all i 6= j. Without loss of
generality, we may assume that every arc of D[S] belongs to some Yi (as
otherwise just add it to some Yi). Letting Ai = Yi[S] and Zi = V (Yi) ob-
serve that our algorithm does find the desired Zi’s and we are done. 2

Now we turn our attention to symmetric graphs. We start with the
following structural result.

Theorem 2.5 For every graph G we have κ2(
←→
G) = κ(G).

Proof: We may assume that G is a connected graph. Let D be a digraph
whose underlying undirected graph is G and let S = {x, y}, where x, y are
distinct vertices of D. Observe that κS(G) ≥ κS(D). Indeed, let p = κS(D)
and let D1, . . . , Dp be S-internally disjoint strong subgraphs of D. Thus, by
choosing a path from x to y in each Di, we obtain p internally disjoint paths
from x to y, which correspond to p internally disjoint paths between x and

y in G. Thus, κ(G) ≥ κ2(D) and it suffices to show that κS(
←→
G) ≥ κ(G).

Let κS(
←→
G) = κ2(

←→
G) for some S = {x, y} ⊆ V (

←→
G). We know that

there are at least κ(G) internally disjoint paths connecting x and y in G,
say Pi (i ∈ [κ(G)]). For each i ∈ [κ(G)], we can obtain a strong subgraph

containing S, say Di, in
←→
G by replacing each edge of Pi with the correspond-

ing arcs of both directions. Clearly, any two such subgraphs are internally

disjoint, so we have κ2(
←→
G) = κS(

←→
G) ≥ κ(G) and we are done. 2

Theorem 2.5 immediatly implies the following positive result, which fol-
lows from the fact that κ(G) can be computed in polynomial time.

Corollary 2.6 For a graph G, κ2(
←→
G) can be computed in polynomial time.

Theorem 2.5 states that κk(
←→
G) = κk(G) when k = 2. However when

k ≥ 3, then κk(
←→
G) is not always equal to κk(G), as can be seen by κ3(

←→
K3) =

2 6= 1 = κ3(K3). Chen, Li, Liu and Mao [5] introduced the following
problem, which turned out to be NP-complete.

CLLM Problem: Given a tripartite graphG = (V,E) with a 3-partition
(U, V ,W) such that |U | = |V | = |W | = q, decide whether there is a partition
of V into q disjoint 3-sets V1, . . . , Vq such that for every Vi = {vi1 , vi2 , vi3}
vi1 ∈ U, vi2 ∈ V , vi3 ∈W and G[Vi] is connected.

Lemma 2.7 [5] The CLLM Problem is NP-complete.

Now restricted to symmetric digraphs D, for any fixed integer k ≥ 3,
the problem of deciding whether κS(D) ≥ ` (` ≥ 1) is NP-complete for
S ⊆ V (D) with |S| = k.

Theorem 2.8 For any fixed integer k ≥ 3, given a symmetric digraph D, a
k-subset S of V (D) and an integer ` (` ≥ 1), deciding whether κS(D) ≥ `,
is NP-complete.

9

Proof: It is easy to see that this problem is in NP. We divide our proof into
two steps:

In the first step, let G be a tripartite graph with 3-partition (U, V ,W)
such that |U | = |V | = |W | = q. We will construct a graph H, a k-subset
S ⊆ V (H) and an integer ` such that there are ` internally disjoint S-trees
in H if and only if G is a positive instance of the CLLM Problem.

We define H as follows: let V (H) = V (G)∪{xj | 1 ≤ j ≤ k} and E(H) =
E(G) ∪ {xju | 1 ≤ j ≤ k − 2, u ∈ U} ∪ {xk−1v | v ∈ V } ∪ {xkw | w ∈ W}.
Set S = {xj | 1 ≤ j ≤ k} and ` = q.

If there are ` internally disjoint S-trees in H, then each tree contain-
s exactly a vertex from U , a vertex from V and a vertex from W since
degH(xi) = ` for all i ∈ [k]. Furthermore, in each such tree, elements
of {xi | 1 ≤ i ≤ k − 2} have exactly one common neighbor in U . Since
these ` trees are internally disjoint, there is a partition of V (G) into q = `
disjoint sets V1, V2, · · · , Vq each having three vertices, such that for every
Vi = {vi1 , vi2 , vi3} we have that vi1 ∈ U, vi2 ∈ V , vi3 ∈ W , and G[Vi] is
connected.

If there is a partition of V (G) into q = ` disjoint sets V1, V2, · · · , Vq each
having three vertices, such that for every Vi = {vi1 , vi2 , vi3} we have vi1 ∈
U, vi2 ∈ V , vi3 ∈W , and G[Vi] is connected, then let Ti be a spanning tree of
G[Vi] together with the edge set {xjvi1 | 1 ≤ j ≤ k−2}∪{uk−1vi2}∪{ukvi3}.
It is easy to see that T1, T2, · · · , T` are the desired internally disjoint S-trees.

In the second step, we construct a symmetric digraph D from H by re-
placing each edge with the corresponding arcs of both directions. If there
are ` internally disjoint S-trees in H, then for each such tree, we can get
a strong subgraph containing S in D by replacing each edge with the cor-
responding arcs of both directions. Clearly, all these subgraphs of D are
internally disjoint and contain S. If there are ` internally disjoint strong
subgraphs containing S, say Di (1 ≤ i ≤ `), in D, then each Di contain-
s exactly a vertex from U , a vertex from V and a vertex from W since
|U | = |V | = |W | = `. For every i ∈ [`], let Ti be a spanning tree of the
underlying undirected graph of Di. Observe that T1, . . . , T` are internal-
ly disjoint S-trees in H. We now have that there are ` internally disjoint
S-trees in H if and only if there are ` internally disjoint strong subgraphs
containing S in D.

Now, by Lemma 2.7 and the two steps above, we are done. 2

The last theorem assumes that k is fixed but ` is a part of input. When
both k and ` are fixed, the problem of deciding whether κk(D) ≥ ` for a
symmetric digraph D, is polynomial-time solvable. We will start with the
following technical lemma.

Lemma 2.9 Let k, ` ≥ 2 be fixed. Let G be a graph and let S ⊆ V (G) be
an independent set in G with |S| = k. For i ∈ [`], let Di be any set of arcs
with both end-vertices in S. Let a forest Fi in G be called (S,Di)-acceptable

if the digraph
←→
Fi +Di is strong and contains S. In polynomial time, we can

decide whether there exist edge-disjoint forests F1, F2, . . . , F` such that Fi is
(S,Di)-acceptable for all i ∈ [`] and V (Fi)∩V (Fj) ⊆ S for all 1 ≤ i < j ≤ `.

10

s1 s2 s3 s4 s5 s6 s7

x1 x2

x3 x4 x5 x6 x7 x8

The forest Fi

s1 s2 s3 s4 s5 s6 s7

x1 x2

x3 x4 x5 x6 x7 x8

The skeleton of Fi

Figure 2: An example of the skeleton of a forest Fi, where S =
{s1, s2, s3, s4, s5, s6, s7}.

Proof: Assume that there exists a set F = {F1, F2, . . . , F`} of required
forests. Observe that if there is a leaf v 6∈ S in a forest Fi, v can be deleted
from Fi and F will remain the required set. Thus, we may assume that all
leaves in F are vertices of S.

Below we will use the fact that in a tree without degree-2 vertices, the
number of internal vertices is smaller than the number of leaves. This fact
can be easily proved by induction by deleting a leaf. Let T be a tree in a
forest of F and let T ′ be the tree obtained from T by suppressing all degree-2
vertices not belonging to S. We will call T ′ the skeleton of T . Note that T ′

may contain edges, that are not edges of G (see Figure 2 for an example).
By producing the skeleton of every tree of Fi, we obtain the skeleton of the
forest Fi.

We will now bound the number of possible skeletons obtained from Fi’s.
By Cayley’s formula, the number of distinct trees on n labeled vertices is
bounded by nn−2. By considering every tree on nT ≤ 2|S| − 1 = 2k − 1
vertices, then assigning the nT vertices to vertices of G and finally deleting
a subset of edges in the tree, we obtain a forest in G. Note that after
deleting isolated vertices every skeleton obtained from an Fi is created this
way. Therefore the number of possible skeletons is bounded by

nF = (nT)nT−2 × |V (G)|nT × 2nT−1.

Note that the above number is a polynomial in |V (G)| as k is considered
constant, which implies that nT is constant. Thus, the number of distinct
skeletons for the set F is bounded by n`F , which is still a polynomial in
|V (G)| as ` is also considered to be a constant.

We now consider a set of skeletons F ′ = {F ′1, F ′2, . . . , F ′`} where F ′i is
(S,Di)-acceptable and V (F ′i) ∩ V (F ′j) = S for all 1 ≤ i < j ≤ `. It remains
to show that there is a polynomial-time algorithm for deciding whether
there exists a set Q = {Q1, Q2, . . . , Q`} of required forests such that F ′i is
the skeleton of Qi. To obtain such an algorithm, we will use the celebrated
result of Robertson and Seymour [20] that the Undirected p-Linkage
problem is polynomial-time solvable.

For every forest F ′i ∈ F ′ and every x ∈ V (F ′i) make dF ′i (x) copies of x in
G, such that all copies have the same neighbourhood as x. If x belongs to
several forests in F ′ (which can happen if x ∈ S) then do the above for every

11

forest, implying that we increase the number of copies of x several times.
Let Ux denote all copies of x. Note that if xy ∈ E(G) then all vertices in
Ux are adjacent to all vertices in Uy. Finally, for each edge uv, add a new
vertex zuv and replace every edge ab between Ux and Uy by path azxyb. Let
us denote the resulting graph by G∗.

It remains to solve the instance of the (polynomial-time solvable) Undi-
rected p-Linkage problem given by G∗ and the terminal sequence {(x, y) :
xy ∈ E(F1) ∪ · · · ∪E(F`)}. If the instance is a Yes-instance, then the found
vertex-disjoint paths correspond to vertex-disjoint paths in G (as guaran-
teed by vertices zxy) and vice versa. Therefore, if all of these vertex-disjoint
paths exist, then they give us the desired set Q and if they do not exist then
the desired set Q does not exist. 2

Now we can prove the following:

Theorem 2.10 Let k, ` ≥ 2 be fixed. For any symmetric digraph D and
S ⊆ V (D) with |S| = k we can in polynomial time decide whether κS(D) ≥ `.

Proof: Let k, `, D and S be defined as in the statement of the theorem.
Let AS be the set of arcs in D[S]. As |S| = k we note that |AS | ≤ 2

(
k
2

)
.

Let P = {P1, P2, . . . , P`} be any partition of AS (i.e., all sets of P are
disjoint and their union is AS ; some sets of P may be empty). Let GS be
the underlying undirected graph of D − AS . We can now use Lemma 2.9
to determine if there exist edge-disjoint forests F1, F2, . . . , F` in GS such
that Fi is (S, Pi)-acceptable for all i ∈ [`] and V (Fi) ∩ V (Fj) ⊆ S for all
1 ≤ i < j ≤ `.

If such a set of forests exist then we will show that κS(D) ≥ ` and if
such a set of forests do not exist for any partition P then we will show
that κS(D) < `. Lemma 2.9 and the fact that the number of partitions
is bounded by |AS |` and |AS | ≤ 2

(
k
2

)
would imply the desired polynomial

algorithm (as k and ` are fixed).

First assume that the set of forests, F1, F2, . . . , F`, exist. Let Hi =
←→
Fi +

Pi. By definition of (S, Pi)-acceptability we observe that Hi is strongly
connected and S ⊆ V (Hi). Furthermore we observe that V (Hi)∩V (Hj) = S
and A(Hi) ∩A(Hj) = ∅ for all 1 ≤ i < j ≤ ` and therefore κS(D) ≥ `.

We will now show that if κS(D) ≥ ` then the forests F1, F2, . . . , F` do
exist for some partition P. This will complete the proof. Assume that
κS(D) ≥ ` and let H1, H2, . . . ,H` be strong subgraphs in D such that
V (Hi) ∩ V (Hj) = S and A(Hi) ∩ A(Hj) = ∅ for all 1 ≤ i < j ≤ `. Let
P ∗i be the arcs from AS that belong to Hi. Let H ′i = Hi − P ∗i and let Li

be the undirected underlying graph of H ′i. In each connected component of
Li choose a spanning tree. It remains to observe that union of the complete
biorientations of the trees plus P ∗i is strong since Hi is strong and each s-
panning tree “preserves” connectivity of its component of Li. 2

12

3 Sharp Bounds

To prove the main result of this section, Theorem 3.5, we will use the
following three assertions. While the first is obvious, the second is simple,
but the third is quite a non-trivial result.

Observation 3.1 If D′ is a strong spanning digraph of a strong digraph D,
then κk(D′) ≤ κk(D).

Lemma 3.2 For all digraphs D and k ≥ 2 we have κk(D) ≤ δ+(D) and
κk(D) ≤ δ−(D).

Proof: Let x ∈ V (D) be a vertex of minimum out-degree. Let S ⊆ V (D)
be arbitrary with |S| = k and let x ∈ S. As there are κk(D) arc-disjoint
strong components containing S and in each of these x has out-degree at
least one, we must have δ+(D) = d+(x) ≥ κk(D). Analogously we can prove
that κk(D) ≤ δ−(D). 2

Theorem 3.3 (Tillson’s decomposition theorem) [24] The arcs of
←→
K n can

be decomposed into Hamiltonian cycles if and only if n 6= 4, 6.

The following result concerning the exact values of κk(
←→
K n) will be used

in the proof of the main result of this section.

Lemma 3.4 For 2 ≤ k ≤ n, we have

κk(
←→
K n) =

{
n− 1, if k 6∈ {4, 6};
n− 2, otherwise.

Proof: We first consider the case of 2 ≤ k = n. By Theorem 3.3, we

clearly have κn(
←→
K n) ≥ n − 1 for n /∈ {4, 6}. Furthermore, by Lemma 3.2,

we have κn(
←→
K n) ≤ δ+(

←→
K n) = n − 1 so κn(

←→
K n) = n − 1 for n /∈ {4, 6}.

For n = 4, since Kn contains a Hamiltonian cycle, the two orientations

of the cycle imply that κn(
←→
K n) ≥ 2 = n − 2. To see that there are at

most two arc-disjoint strong spanning subgraphs of
←→
K n, suppose that there

are three arc-disjoint such subgraphs. Then each such subgraph must have

exactly four arcs (as |A(
←→
K n)| = 12), and so all of these three subgraphs are

Hamiltonian cycles, which means that the arcs of
←→
K n can be decomposed

into Hamiltonian cycles, a contradiction to Theorem 3.3. Hence, κn(
←→
K n) =

n−2 for n = 4. Similarly, we can prove that κn(
←→
K n) = n−2 for n = 6, as Kn

contains two edge-disjoint Hamiltonian cycles, and therefore
←→
K n contains

four arc-disjoint Hamiltonian cycles.
We next consider the case of 2 ≤ k ≤ n − 1. Let S = {ui | 1 ≤ i ≤ k}

and V (
←→
K n) \ S = {vj | 1 ≤ j ≤ n − k}. Let A be a maximum-size set

of internally disjoint strong subgraphs containing S in
←→
K n. Let A1 be

the set of strong subgraphs whose vertex set is S and let A2 be the set of
strong subgraphs in A for which S is a proper subset of the vertex set of
each of such strong subgraph. Hence, A = A1 ∪ A2. Since every strong

13

subgraph in A2 contains at least one vertex belonging to V (
←→
K n) \ S, we

have |A2| ≤ |V (
←→
K n) \ S| = n − k and furthermore, |A1| ≤ b

2(k2)
k c = k − 1

since each strong subgraph containing S must have at least k arcs. Hence,

|A| = |A1| + |A2| ≤ n − 1 and so κk(
←→
K n) ≤ κS(

←→
K n) = |A| ≤ n − 1 for

2 ≤ k ≤ n − 1. In fact, for the case of k ∈ {4, 6}, by the argument of the

first paragraph, we have |A1| ≤ k−2, and so κk(
←→
K n) ≤ n−2 for k ∈ {4, 6}.

If k /∈ {4, 6}, then in D[S], there are k − 1 edge-disjoint Hamiltonian
cycles by Theorem 3.3. For 1 ≤ j ≤ n−k, let Gj be a strong subgraph with
vertex set V (Gj) = {vj} ∪ {ui | 1 ≤ i ≤ k} and arc set A(Gj) = {uivj , vjui |
1 ≤ i ≤ k}. So there are at least n− 1 internally disjoint strong subgraphs

containing S in
←→
K n, and then κk(

←→
K n) ≥ n − 1. Hence, κk(

←→
K n) = n − 1

for k /∈ {4, 6} and 2 ≤ k ≤ n− 1.
Otherwise, we have k ∈ {4, 6}. With a similar argument, we can ob-

tain n− 2 internally disjoint strong subgraphs containing S in
←→
K n. Hence,

κk(
←→
K n) = n−2 for k ∈ {4, 6} and 2 ≤ k ≤ n−1. This concludes our proof.

2

We now obtain a sharp lower bound and a sharp upper bound of κk(D)
for 2 ≤ k ≤ n.

Theorem 3.5 Let 2 ≤ k ≤ n. For a strong digraph D of order n, we have

1 ≤ κk(D) ≤ n− 1.

Moreover, both bounds are sharp, and the upper bound holds if and only if

D ∼=
←→
K n, 2 ≤ k ≤ n and k 6∈ {4, 6}.

Proof: The lower bound is clear by the definition of κk(D), and for the
sharpness, a cycle is our desired digraph. The upper bound and its sharpness
hold by Observation 3.1 and Lemma 3.4.

If D is not equal to
←→
K n then δ+(D) ≤ n− 2 and by Lemma 3.2 we note

that κk(D) ≤ δ+(D) ≤ n − 2. Therefore, by Lemma 3.4, the upper bound

holds if and only if D ∼=
←→
K n, 2 ≤ k ≤ n and k 6∈ {4, 6}. 2

4 Open Problems

We have obtained certain complexity results, in particular, showing that
strong subgraph k-connectivity is, in a sense, harder to compute than gen-
eralized (undirected) k-connectivity. Several interesting open questions re-
main. We conjecture that it is NP-complete to decide for fixed integers
k ≥ 2 and ` ≥ 2 and a given digraph D whether κk(D) ≥ `. Recall that
the same question is open for undirected graphs, too. We believe that fur-
ther non-trivial polynomial algorithms can be obtained for computing strong
subgraph k-connectivity in certain classes of digraphs. The Directed k-
Linkage problem is polynomial-time solvable for planar digraphs [21] and
digraphs of bounded directed treewidth [10]. However, we cannot use our

14

approach in proving Theorem 2.4 directly as the structure of minimum-size
strong subgraphs in these two classes of digraphs is more complicated than
in semicomplete digraphs. Certainly, we cannot exclude the possibility that
computing strong subgraph k-connectivity in planar digraphs and/or in di-
graphs of bounded directed treewidth is NP-complete.

Acknowledgements. We are grateful to the reviewers’ comments and
suggestions, which helped to significantly improve our manuscript. Yue-
fang Sun was supported by National Natural Science Foundation of China
(No.11401389) and China Scholarship Council (No.201608330111). Grego-
ry Gutin was partially supported by Royal Society Wolfson Research Merit
Award. Xiaoyan Zhang was supported by National Natural Science Foun-
dation of China (No.11871280,11471003) and Qing Lan Project. The au-
thors are very grateful to Jøergen Bang-Jensen, Alex Scott and Magnus
Wahlström for useful discussions.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Ap-
plications, 2nd Edition, Springer, London, 2009.

[2] J. Bang-Jensen and F. Havet, Tournaments and Semicomplete Digraph-
s, in J. Bang-Jensen and G. Gutin (eds.), Classes of Directed Graphs,
Springer, 2018.

[3] J. Bang-Jensen, T.M. Larsen and A. Maddaloni, Disjoint paths in de-
composable digraphs, J. Graph Th. 85(2) 2017, 545–567.

[4] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.

[5] L. Chen, X. Li, M. Liu and Y. Mao, A solution to a conjecture on
the generalized connectivity of graphs, J. Combin. Optim. 33(1), 2017,
275–282.

[6] M. Chudnovsky, A. Scott and P.D. Seymour. Disjoint paths in tourna-
ments, Adv. Math., 270, 2015, 582–597.

[7] M. Chudnovsky, A. Scott and P.D. Seymour. Disjoint paths in unions
of tournaments, J. Combin. Theory Ser. B, to appear.

[8] S. Fortune, J. Hopcroft and J. Wyllie, The directed subgraphs homeo-
morphism problem, Theoret. Comput. Sci. 10, 1980, 111–121.

[9] M. Hager, Pendant tree-connectivity, J. Combin. Theory Ser. B 38,
1985, 179–189.

[10] T. Johnson, N. Robertson, P.D. Seymour and R. Thomas, Directed
Tree-Width, J. Combin. Th. Ser. B 82(1), 2001, 138–154.

[11] S. Li, Some topics on generalized connectivity of graphs, PhD thesis,
Nankai University, 2012.

15

[12] S. Li and X. Li, Note on the hardness of generalized connectivity, J.
Combin. Optim. 24(3), 2012, 389–396.

[13] S. Li, X. Li and W. Zhou, Sharp bounds for the generalized connectivity
κ3(G), Discrete Math. 310, 2010, 2147–2163.

[14] X. Li and Y. Mao, A survey on the generalized connectivity of graphs,
arXiv:1207.1838, v10, Aug 2015.

[15] X. Li and Y. Mao, Generalized Connectivity of Graphs, Springer,
Switzerland, 2016.

[16] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of
graphs, Australas. J. Combin. 58(2), 2014, 304–319.

[17] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs,
J. London Math. Soc. 36, 1961, 445–450.

[18] K. Ozeki, T. Yamashita, Spanning trees: a survey, Graphs Combin.
27(1), 2011, 1–26.

[19] E. Palmer, On the spanning tree packing number of a graph: a survey,
Discrete Math. 230, 2001, 13–21.

[20] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint
paths problem, J. Combin. Theory Ser. B 63, 1995, 65–110.

[21] A. Schrijver, Finding k partially disjoint paths in a directed planar
graph. SIAM J. Comput. 23(4), 1994, 780–788.

[22] Y. Sun and X. Li, On the difference of two generalized connectivities
of a graph, J. Combin. Optim. 33(1), 2017, 283–291.

[23] C. Thomassen, Highly Connected Non-2-linked Digraphs, Combinator-
ica 11(4) (1991) 393–395.

[24] T.W. Tillson, A Hamiltonian decomposition of K∗2m, 2m ≥ 8, J. Com-
bin. Theory Ser. B 29(1), 1980, 68–74.

[25] W. Tutte, On the problem of decomposing a graph into n connected
factors, J. London Math. Soc. 36, 1961, 221–230.

16

