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Abstract

Numerous studies and experiments suggest that aspirations for desired

but perhaps unavailable alternatives influence decisions. A common

finding is that an unavailable aspiration steers agents to choose similar

available alternatives. We propose and axiomatically characterize a

choice theory consistent with this aspirational effect. Similarity is mod-

eled using a subjective metric derived from choice data. This model

offers implications for consumer welfare and its distribution between

rich and poor when firms compete for aspirational agents, and a novel

rationale for sales.
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1 Introduction

There is widespread evidence that decision makers do not always behave as

utility maximizers. While violations of rationality occur, they do not appear to

be random but often follow systematic patterns. To better understand these

patterns, the conditions under which they occur and their economic impli-

cations, a growing literature has proposed choice models that accommodate

departures from rationality. In this paper, we introduce a choice model that

focuses on the effect of unavailable alternatives.

The question of how unavailable alternatives influence decision making

has received scant attention in the decision theory literature, even though

numerous studies and experiments suggest that they have an important effect.

Some examples are: (1) The high price (and hence unavailability) of luxury

brands leads consumers to purchase similar and cheaper counterfeit products.

(2) Individuals may attempt to “keep up with the Joneses” and mimic the

choices of their neighbors, even though (or perhaps because) those alternatives

are not feasible for them. (3) A manager’s consumption-leisure decision is

unavailable to her subordinates due to wage differences, but can affect how

they trade off between the two. (4) An employer may change her ranking of job

applicants after interviewing a “superstar” who is clearly out of reach. (5) Past

consumption can create habits that influence current consumption, especially

when past consumption levels are no longer attainable. (6) Many advertised

products are intentionally unavailable (such as limited editions or vaporware)

in order to influence consumer choice among available alternatives.1

A number of experiments have found that the presence of a phantom

alternative, which is desired and unavailable, leads agents to choose a similar

available alternative. Farquhar and Pratkanis (1992, 1993) were the first to

conduct such experiments. Highhouse (1996) and Pettibone and Wedell (2000)

respectively found this aspirational effect to be equal in magnitude to the well-

known attraction and compromise effects.

1Vaporware refers to advertised software or hardware that is not available to buy.
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The above examples and experiments present a basic violation of rational-

ity because alternatives that are unavailable (and therefore irrelevant) affect

decisions. However, two systemic patterns appear and they are not accounted

for by existing models of bounded rationality: the unavailable alternatives

influencing these decisions are desired by the decision maker, and when a

highly desired alternative is unavailable, decision makers tend to choose similar

available alternatives. The first part of this paper proposes an axiomatic choice

model that captures the effect of unavailable alternatives. The second part

studies the economic implications.

A choice problem is a pair of sets: a set of observed alternatives and a

subset of those which are also available for choice. The observed alternatives

which are not in this subset are unavailable. For each choice problem, an agent

chooses a subset of the available alternatives, but her choice may depend upon

the unavailable alternatives.

We axiomatically characterize a choice procedure defined by two primitives:

a linear order over alternatives and an endogenous metric. A decision maker

focuses on the maximal element she observes according to the linear order,

which we call her aspiration. She selects the closest available alternative to this

aspiration where distances are measured using her metric. This procedure lines

up with basic intuition as well as the experimental findings that an unavailable

aspiration steers the agent to the most similar available option.

Three straightforward axioms characterize this procedure. First, in the

absence of unavailable alternatives, choices are rational. Second, the agent

behaves rationally across choice problems with the same observed alternatives.

Third, the agent’s most desired alternatives (aspirations) are revealed by her

choices when every observed alternative is also available. We assume that

the agent chooses the same alternatives from choice problems with the same

available alternatives and the same aspirations.

A key feature of the model is that agents’ choices reveal their similarity

judgements. This reflects the view that similarity (like utility) is subjective2

2After all, two diamonds may appear indistinguishable to one decision maker, but
couldn’t be further apart to another.
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and we prove that the metric that an agent uses to measure similarity is iden-

tified from the choice data, provided that the axioms are satisfied. The proof

is intricate because a metric must satisfy additional properties (reflexivity,

symmetry and the triangle inequality) that a utility function need not.

The notion that an aspiration towards a higher goal may influence behavior

is widespread across the social sciences. Notable examples from the economics

literature include Veblen (1899), Duesenberry (1949), Pollak (1976), Hopkins

and Kornienko (2004), and Ray (2006). More recently, Ray and Robson

(2012) and Genicot and Ray (2017) study risk-taking and consumption-savings

decisions of agents whose utility functions have inflection points at certain

aspirational levels.3

Our choice model is the first revealed preference theory of aspirations.

It resembles some of those above in that outcomes are assessed relative to

an aspiration, but aspirations are for unavailable alternatives rather than for

payoff or wealth thresholds. The main advantages of the revealed preference

approach is that the choice axioms can be empirically tested and the model

applies to many choice settings (including those with non-monetary outcomes

and non-Euclidean spaces).

Existing reference-dependent choice models do not account for aspirations.

For example, a status quo alternative is what the decision maker already

has (Samuelson and Zeckhauser 1988), the reference point in Kőszegi and

Rabin (2006, 2007) is what she expects, and an aspiration is what she wants.

Each reference point will have a different effect on choice. Status quos may

rule out alternatives from consideration (Masatlioglu and Ok 2005, 2014). In

Kőszegi and Rabin, an agent suffers loss-aversion relative to her expectations

determined in a personal equilibrium. On the other hand, aspirations steer

choices to similar options. We will illustrate these differences in Section 2.1.

3Satisficing thresholds that influence behavior (but not payoffs) are used in reinforcement
learning models (Borgers and Sarin 2000), repeated games (Karandikar, Mookherjee, Ray,
and Vega-Redondo 1998), and in network choice models (Bendor, Diermeier, and Ting 2016).
Outside of economics, aspirations are used to study a wide range of topics including poverty
traps (Appadurai 2004), occupational choice (Correll 2004), educational attainment (Kao
and Tienda 1998), general happiness (Stutzer 2004) and voter turnout (Bendor, Diermeier,
and Ting 2003).
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What is important to emphasize now is that the differences are not only

theoretical, but have consequences in economic settings. The second part

of the paper draws implications of similarity-based decision making in two

standard economic settings.

The first setting is a competitive market with profit-maximizing firms and

aspirational buyers. A “red” firm and a “blue” firm both sell a high- and low-

quality good to a continuum of wealth-constrained buyers. Firms engage in

price competition. Buyers that cannot afford the high-quality goods will aspire

to the choices of richer buyers who can. Thus, firms have an added incentive

to attract these richer buyers in order to create aspirations for its goods. In

the unique equilibrium, firms lose money on their aspirational good and cross-

subsidize these losses with profits from the low-quality market. We find that

welfare may increase or decrease in comparison to the rational benchmark, but

the distribution of welfare always changes in favor of richer buyers.

The second is a standard consumption setting where the agent may aspire

to previously consumed bundles. We focus on her response to price and income

shocks. For example, following a decrease in income, previously consumed

bundles are no longer affordable but will have an impact as aspirations. On

the other hand, following an increase in income, previously consumed bundles

remain affordable and therefore will not affect current consumption. Turning

to price changes leads to a rationale for sales: a low enough sale price will

increase the post-sale demand.

The rest of the paper is organized as follows: Section 2 presents the model,

the main representation result, and a discussion of the related experimental

and theoretical literature. Section 3 studies some economic implications of our

model. Section 4 concludes. Two appendices contain all proofs and extensions

of the main theorem.

2 The Choice Model

We begin with some preliminary definitions. A compact metric space X

(finite or infinite) is the grand set of alternatives. Let X denote the set of
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all nonempty closed subsets of X. X is endowed with the Hausdorff metric

and convergence with respect to this metric is denoted by
H→. A linear order

is a reflexive, complete, transitive and anti-symmetric binary relation.

A choice problem is a pair of sets (S, Y ) where S, Y ∈ X and S ⊆ Y . The

set of all choice problems is denoted by C(X) and a choice correspondence is

a map C : C(X) → X such that C(S, Y ) ⊆ S for all (S, Y ) ∈ C(X). When

an agent faces a choice problem (S, Y ), she observes the potential set Y , but

chooses from the feasible set S. For an alternative to be feasible, it must be

observed and hence S ⊆ Y .

Unavailable alternatives constitute part of the choice data. There are

various settings, including the examples mentioned in the introduction, where

this is the case. For instance, when a high school student applies to colleges or

a job seeker applies to jobs, both the schools or jobs applied to (the potential

set) and the schools or job offers (the feasible set) are externally observable.

A worker making consumption-leisure tradeoffs usually observes the decisions

of her co-workers and managers which may be unavailable due to wage differ-

ences. Firm-level data on wages, hours worked, and organizational hierarchy

is available. Online consumer searches are tracked and many alternatives are

unavailable due to financial or capacity constraints (e.g. a fully booked hotel

or a sold-out flight). There are advertised products which are intentionally

unavailable (luxury products, limited editions and vaporware).

We take an axiomatic approach and characterize a choice model that allows

for such unavailable alternatives to influence choice. At the same time, we

aim to keep the model as close as possible to the rational one. The next two

axioms limit the domains in which rationality violations can occur. The first

requires that agents behave rationally when all the observed alternatives are

also available. The second assumes rational behavior when a potential set is

held fixed.

Axiom 2.1. (WARP Without Unavailability) For any S, Y ∈ X such that

S ⊆ Y ,

C(S, S) = C(Y, Y ) ∩ S, provided that C(Y, Y ) ∩ S 6= ∅.
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Axiom 2.2. (WARP Given Potential Set) For any (S, Y ), (T, Y ) ∈ C(X) such

that T ⊆ S,

C(T, Y ) = C(S, Y ) ∩ T, provided that C(S, Y ) ∩ T 6= ∅.

Given the above two axioms, violations of rationality are due to unavailable

alternatives and can only occur when potential sets vary. These restrictions

allow for the experimental evidence that choice reversals may occur when

unavailable alternatives are introduced.

In the previously discussed examples and experiments, the unavailable

alternatives that influence choice are desired by the agent. We call these

alternatives “aspirations” and identify them by the choices made in ideal

situations without feasibility restrictions. Therefore, choices from problems

of the form (S, S) reveal an agent’s aspirations. The following axiom states

that if two potential sets generate the same aspirations, then they will influence

choices in the same way.

Axiom 2.3. (Independence of Irrelevant Unavailable Alternatives)

For any (S,Z),(S, Y ) ∈ C(X),

C(S,Z) = C(S, Y ), provided that C(Z,Z) = C(Y, Y ).

A choice correspondence is called aspirational if it satisfies Axioms 2.1-2.3.

The next two axioms are technical. The first guarantees a unique aspiration

in any given problem. The second is a standard continuity axiom, which

ensures the existence of maximums and trivially holds when the grand set is

finite. Appendix B considers relaxations of these two axioms.

Axiom 2.4. (Single Aspiration Point) |C(Y, Y )| = 1 for all Y ∈ X .

Axiom 2.5. (Continuity) For any (Sn, Yn), (S, Y ) ∈ C(X), n = 1, 2, . . . and

xn ∈ Sn for all n such that Sn
H→ S, Yn

H→ Y and xn → x,

if xn ∈ C(Sn, Yn) for every n, then x ∈ C(S, Y ).
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The above axioms yield our main representation result:

Theorem 2.1. C satisfies Axioms 2.1-2.5 if and only if there exists

1. a continuous linear order � and

2. a continuous metric d : X2 → R+

such that

C(S, Y ) = argmin
s∈S

d(s, a(Y )) for all (S, Y ) ∈ C(X),

where a(Y ) is the �-maximum element of Y .

In the above procedure, from the choice problem (S, Y ) a decision maker

chooses the closest available alternative to her aspiration a(Y ). Her aspiration

is the maximum element (according to the linear order �) that she observes

and closeness is measured using her metric d. This metric is derived endoge-

nously and need not coincide with the metric that the grand set is originally

endowed with. Generally, agents making different choices will be represented

with different metrics. Notice that if an aspiration is available a(Y ) ∈ S, then

it is uniquely chosen C(S, Y ) = a(Y ), because an alternative is always closest

to itself.

Identification: The two primitives, d and �, are uniquely identified from

choice data up to order-preserving transformations. That is, � is uniquely

identified by observing the agent’s choices from problems of the form C(S, S).

The metric d cannot be uniquely identified because it is cardinal and choice

is ordinal, but the distance order is unique. That is, if a � x, y, then whether

d(x, a) < d(y, a) or d(y, a) < d(x, a) is identified by observing C ({x, y}, {x, y, a}).

Example - Choice from a Budget Set: To illustrate the model, we now

present a standard consumption example which will serve as a running example

throughout the paper. An agent chooses a pair (x, y) from the budget set

S = {(x, y) : px+ y = I} where x is a quantity of a nondurable good, p is the

price of the good, y is the expenditure on all other goods, and I is income.
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Good x

Good  y

c

1

2

c’

r

- If the aspiration is in Region 1, she
will choose a point on the budget line
below c.

- If the aspiration is in Region 2, she
will choose a point on the budget line
above c.

- Otherwise, she will choose c.

Figure 1: The Effect of an Aspiration on Budget Consumption

Let point c in Figure 1 denote the choice of a rational agent with continuous,

strictly monotonic and strictly convex preferences. An aspirational agent with

the same underlying preferences will only aspire to unavailable alternatives in

Regions 1 or 2. Furthermore, if she measures distances using the Euclidean

metric, then her choices will be affected as in Figure 1. That is, an aspiration

in Region 1 influences the agent to purchase more of good x than the rational

agent and vice-versa for an aspiration in Region 2.

Remark 1: In this framework, for an alternative to be choosable it must

be observable, and therefore S ⊆ Y . An equivalent formulation would drop

the subset restriction and take aspirations to be drawn from S ∪ Y . In this

formulation, if S and Y do not intersect, then Y is the set of unavailable

alternatives. Subject to relabeling, the main representation theorem holds.

In our model, S and Y are externally observable and so constitute the

choice data. A natural extension of our model would be to a setting with less

rich choice data, such as when only S is externally observable. Unfortunately,

this leads to an “anything goes” result. Consider, for example, choice from

a budget set where the agent uses the Euclidean metric. Then, the choice

z = C(S) implies that the agent’s aspiration lies northeast of z on the line

perpendicular to S. That is, any choice from S can be rationalized by an

appropriately chosen aspiration. If the external observer is aware of the metric,

then she can make inferences about aspirations: the choice from a budget set
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pins down a line on which the aspiration must lie. But even with this additional

knowledge, the anything goes result still applies.

Remark 2: A rational agent who maximizes a single continuous utility func-

tion over all available alternatives satisfies the above axioms and therefore, the

rational model is nested. Representing this agent’s choices through distance

minimization is straightforward as the order � is uniquely identified and

the distance metric must be ordinally identified with the utility distance,

d(a, b) = |U(a) − U(b)|. However, when agents are irrational, potential sets

influence choices and such a trivial representation does not exist.

Remark 3: The rational model is strictly nested in ours and our model is

strictly nested in the more general class of reference-dependent utility max-

imization models. To see this nesting, the reference point in our model is

r = max(Y,�) and we can define a reference-dependent utility function U

as U(s, t) = −d(s, t), so C(S, Y ) = argmaxs∈SU(s, r). To see that the nest-

ing is strict, if U : X2 → R is a reference-dependent utility function and

C(S, Y ) = max
s∈S

U(s,max(Y,�)), then there may be no distance-minimization

representation because Axiom 2.3 may not hold.4 Furthermore, for a grand set

of n alternatives, a reference-dependent utility model has n2 degrees of freedom

whereas our model only has n(n − 1)/2 because it is based upon distances.

Thus, the distance-based model is better identified from choice data.

Remark 4: Theorem 2.1 represents choices as C(S) = argmin
s∈S

d(s,max(Y,%))

where d is a metric. A metric satisfies four properties: non-negativity, reflexiv-

ity, symmetry, and the triangle inequality. Of these properties, non-negativity

and reflexivity are fundamental for the model, but the symmetry and triangle

inequality properties do not restrict the model. To see this, take a choice

correspondence defined as C ′(S) = argmins∈Sφ(s,max(Y,%)) where φ is non-

negative and reflexive. Axioms 2.1 and 2.4 rely upon φ being non-negative and

reflexive. Axioms 2.2 and 2.3 follow from the use of a minimization procedure

and do not rely upon any properties of φ. As C ′ satisfies all of our axioms,

4Suppose U(a, z) > U(y, z) > U(b, z) > U(z, z), U(a, y) > U(b, y) > U(y, y) and a ≺ b ≺
y ≺ z. Then C(abyz, abyz) = C(aby, aby) = a, but C(by, aby) = b, C(by, abyz) = y.
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then there is an equivalent representation using a metric d. Thus, the essential

features of the minimizing function are that it is non-negative and reflexive, but

the proof demonstrates that we can always find a metric d which additionally

satisfies symmetry and the triangle inequality.

Remark 5: According to our procedure, if an aspiration is available, then

it must be chosen. There are interesting cases where an available alternative

which we wouldn’t choose may still affect choice. For example, suppose that

an agent faces the option of eating at a Michelin restaurant and emptying his

bank account. Even if the agent does not choose this option, he may still

be influenced by its presence. One way to extend our model in the spirit of

Kalai and Smorodinsky (1975) is that the presence of the available alterna-

tive (Michelin Star, empty bank account) can bring to mind an unavailable

aspiration (Michelin Star, bank account) which in turn influences the agent’s

choice.

Remark 6: The representation relies upon the single aspiration axiom as

each alternative is assessed relative to a unique aspiration. Relaxing this

assumption raises questions regarding how to generalize the above procedure,

as it is not immediately obvious how an agent should assess a considered

alternative relative to a set of aspirations. For example, she may select the

alternative that is closest to any of the aspirations or she may consider the

average distance of an alternative to each of her aspirations.

In the appendix we axiomatically characterize an aggregation method: For

each considered alternative, the agent aggregates the distance to the aspiration

point into a single score and selects the minimum score alternative. This

aggregator agrees with the distance when an agent faces a single aspiration

and thus agrees with the above representation. Several different aggregators

are plausible, such as using the minimum distance, maximum distance, or the

sum of distances faced. It is possible to focus on a specific aggregator and

refine the representation by imposing additional technical restrictions which

characterize it. This is left for future work.

Remark 7: The conjunction of Axioms 3.4 and 3.5 has implications for the

space X. Nishimura and Ok (2014) show that the existence of a continuous
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choice function on a compact metric space implies that it is of topological

dimension at most 1. This dimensionality restriction has no impact when X

is a finite set, but has consequences when X is a larger path-connected space.

In Appendix B, we relax these axioms so that this dimensionality restriction

no longer applies. Note that Section 4 considers several economic settings and

the choice domains therein satisfy this dimensionality restriction.

2.1 Related Literature

As mentioned in the introduction, the present paper is the first to axiomatically

study the effect of unavailable alternatives on choice. Aspiration based choice

also differs from existing reference dependent choice models in two important

ways: how the reference point is determined and how it affects choices. We

will use the previous example of choice from budget sets (depicted in Figure

1) to illustrate the behavioral differences between our model and others in the

literature. When appropriate, we consider extensions of these choice models

to incorporate unavailable alternatives. Throughout this example, we assume

that the agent’s metric is the standard Euclidean one.

Figure 2(i) depicts the aspirational effect when choices are made from a

budget set and the agent also observes the unavailable alternative r. The agent

aspires to r because it is the maximal observed alternative and it leads her

to purchase more x. Figure 2(ii) depicts the regions in which an unavailable

aspiration will influence her choice. Any reference point that lies outside the

shaded regions is inferior to c, and hence has no influence on choice. In Figures

2(ii) and throughout this section, a reference point in Region 1 influences the

agent to consume more x and a reference point in Region 2 influences her

towards more y.

The most closely related papers to ours are the axiomatic works of Masatli-

oglu and Ok (2005, 2014) and Ok, Ortoleva, and Riella (2015) on status quo

bias. The former two papers take a choice problem to be a set of available

alternatives plus a status quo alternative and the latter paper endogenizes the

selection of the status quo. In all three papers, the status quo alternative is

available for choice and it may rule out other alternatives from consideration,
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Good x

Good  y

c

c’

r

Good x

Good  y

c

1

2

c’

r

i. The Aspirational Effect ii. The Aspirational Regions

c’

Good  y

Good x
xmax

ymax

r

Good  y

Good x
xmax

ymax

c

1

2

iii. Status Quo Effect iv. Status Quo Regions

Figure 2: Aspirations and Status Quos

but it does not change the ranking of considered alternatives. In contrast, as-

pirations are desired unavailable alternatives and they may change the ranking

of the available alternatives by similarity. Notice that when all the alternatives

are available, the aspirational agent behaves rationally, unlike the status quo

bias models.

One common method by which the status quo rules out alternatives is

dominance. That is, only alternatives which dominate the status quo are

considered. An unavailable status quo which lies above the budget line is

inappropriate here because it would rule out all available alternatives. Figure
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2(iii) depicts the effect of an available status quo r. Since the agent only

considers alternatives which dominate r, she selects c′ instead of c. Figure

2(iv) depicts the regions where a status quo may change choice. If r lies

outside the shaded region, then the agent still chooses c, her most preferred

alternative. Otherwise, if r is in Region 1 (Region 2) will influence her to

choose more x (y resp.).

In the canonical reference dependent preferences model of Tversky and

Kahneman (1991), the agent assesses each alternative relative to the reference

point with loss aversion, and therefore any reference point will influence choice.

Since their value function is S-shaped for gains and losses, reference points

which dominate (in each dimension) all available alternatives lead to concave

indifference curves, and so the agent chooses a corner. The corner selected

is as in Figure 3.2. For other reference points, the effect will depend on the

specific functional form. In Kőszegi and Rabin (2006, 2007), the reference

point is endogenously selected in a personal equilibrium and also influences

choice through loss-aversion. In particular, the reference point is undominated

and therefore lies on the budget frontier in the budget set example.

Our model is also related to the recent literature on context-dependent

choice (Kőszegi and Szeidl 2013, Bushong, Rabin, and Schwartzstein 2015,

Bordalo, Gennaioli, and Shleifer 2013). In these models, alternatives are

multi-dimensional and an agent assigns a weight to each dimension which

is determined by the choice set. Formally, for a bundle x, an agent’s utility

function is U(x) =
∑
i

ωixi where ωi depends upon the choice set and perhaps

on xi as well.

In the models of Kőszegi and Szeidl (2013) (KS) and Bushong, Rabin, and

Schwartzstein (2015) (BRS), the weights that an agent assigns to each good

depends upon its observed range. An unavailable alternative can influence

choice only if it changes this range. Therefore, when an agent chooses from a

budget set, unavailable alternatives in the white region of Figures 3(i) & 3(ii)

do not influence an agent’s choice. According to KS, good x is given more

weight when the x-range is larger than the y-range. Therefore, an unavailable

alternative in Region 1 will increase the consumption of x because the x-range

14
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Figure 3: Context Dependent Choice

is now relatively larger (Figure 3(i)). Similarly, an unavailable alternative in

Region 2 will increase the consumption of y. According to BRS, good x is

given less weight when the x-range is larger and thus the influence regions are

reversed. That is, in Figure 3(ii), an unavailable alternative in Region 1 will

increase the consumption of x because the x-range is now relatively smaller.

Of these two models, KS is closer to ours whereas BRS makes the opposite

predictions.

In salience theory (Bordalo, Gennaioli, and Shleifer 2013), for a bundle

(x, y), the weight assigned to good x depends upon a comparison between the

ratios x/y and x̄/ȳ where x̄ is the average x in the choice set (similarly for

ȳ). Thus, for a symmetric finite budget set, a decoy below the 45◦ line will

increase the ratio of the average bundle and it follows5 that the decoy will

distort the weights in favor of good y, the opposite of the aspiration effect.

To sum up the differences, the above models do not possess the two key

features of aspirations – that only desired unavailable alternatives influence

choice and that they influence choice through similarity. Our model is ax-

iomatic and distances are endogenously derived from choice data. Thus, the

model applies to a variety of settings. Of the models depicted above, only

the status quo bias models are axiomatic (Masatlioglu and Raymond (2016)

further axiomatize the Kőszegi and Rabin models).

Rubinstein and Zhou (1999) axiomatize a bargaining solution which selects

5From their assumptions of ordering and diminishing sensitivity.
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from a utility possibility set the point closest to an external reference. The

bargaining setting is specific and their solution resembles our choice procedure

except that the metric and reference point are exogenous. This model and the

context-dependent choice models above require clear measures of distance and

therefore are applied to monetary outcomes, probabilities, or vectors in RN.

The current model may prove useful for extending distance-based theories to

settings without such clear-cut distances.

Finally, the choice framework that we develop consists of choice problems

with frames, as in Rubinstein and Salant (2008) and Bernheim and Rangel

(2009). The procedure that we characterize can be thought of as taking place in

two stages, and thus tangentially relates to other two-stage choice procedures,

such as: triggered rationality (Rubinstein and Salant 2006), sequential ratio-

nality (Manzini and Mariotti 2007), limited attention (Masatlioglu, Nakajima,

and Ozbay 2012) and the warm glow effect (Cherepanov, Feddersen, and

Sandroni 2013). The current model differs significantly from these models

with respect to both framework and procedure.

2.2 Experimental Evidence

Farquhar and Pratkanis (1992, 1993) were the first to experimentally examine

how a desired unavailable alternatives affect choice. They let subjects chose

between two alternatives T and R as in Figure 4, and found that the addition

of a phantom P increased the proportion of subjects that chose T (the closest

alternative to P ), as predicted by our model.6

Highhouse (1996) compares this aspiration effect to the well-known

attraction effect that introducing a decoy D which is dominated by exactly one

alternative increases the choice share of that dominating alternative (Huber,

Payne, and Puto 1982).7 His experiment varies which alternative is targeted

(T or R in Figure 4) and how it is targeted: either with a dominating phantom

6 In our notation, an aspirational effect occurs when C(S, S) = R and C(S, Y ) = T
where S = {R, T}, Y = {P,R, T}, P � R � T and d(T, P ) < d(R,P ).

7Aspirations do not offer an explanation for the attraction effect as the addition of inferior
alternatives do not influence choice. For recent theoretical explanations of the attraction
effect, see Natenzon (2018) and Tserenjigmid (2017).
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Figure 4: Two Choice Alternatives, a Phantom, and a Decoy

P (the aspiration effect), or with a dominated decoy D (the attraction effect).

He finds that targeting an alternative (with either a decoy or a phantom)

increases the frequency with which it is chosen and he finds no statistically

significant difference in the magnitude of the two effects.

Pettibone and Wedell (2000) similarly compare the aspiration effect to

the compromise effect. In their treatments, the unavailable alternative either

dominates the target alternative or is placed so that the target becomes a

compromise alternative. Like Highhouse (1996), they find that both treat-

ments significantly increase the proportion of agents who choose the target T

and there is no statistically significant difference in the magnitude of the two

effects.

Recently, Guney and Richter (2015) find additional evidence of the aspi-

rational effect in a deterministic bundle choice setting. Soltani, De Martino,

and Camerer (2012) study the impact of unavailable alternatives on choices

over lotteries. They find evidence of the attraction effect, but do not find

evidence for the compromise and aspiration effects. In the previously discussed

experiments mentioned, the alternatives were deterministic. Choice behavior

is often different in lottery settings and further experimental research is needed

to elucidate the specific factors which are relevant for the aspiration effect.8

8The strength of the endowment effect in a deterministic setting may differ from that of
a lottery setting, e.g., Kahneman, Knetsch, and Thaler (1991), Camerer, Chapman, Dean,
Ortoleva, and Snowberg (2017), and Isoni, Loomes, and Sugden (2011).
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3 Economic Implications

This section studies equilibrium implications of our choice model in two stan-

dard economic environments. The first is a market where firms compete for

aspirational buyers. The second is a standard consumption setting where

agents aspire to previously consumed bundles.

3.1 Competition over aspirational buyers

In this subsection, we study a competitive market with profit-maximizing firms

and aspirational buyers. Each firm sells goods of two different quality levels

qH > qL with costs 1 > cH > cL > 0 and qL − cL > 0. Some firms can

differentiate themselves by brand and others cannot. There are at least two

firms of each type. For expositional clarity, we consider two branded firms

“red” and “blue” and refer to the generic firms as “colorless”. Firms engage

in price competition.

There is a continuum of buyers with wealth w distributed uniformly on

[0, 1], each of whom cannot pay more than their wealth. Buyers are aspirational

and each observes the choices of all others. Therefore, a buyer’s feasible set

consists of the goods that she can afford and her potential set also includes the

goods chosen by others. The aspirational ranking is determined by u = q − p
and each buyer breaks ties randomly. Similarity is lexicographic first by color

and then by utility (that is, two goods of the same color are always closer to

each other than to a third good of a different color). A buyer who aspires to

a red good will always purchase a red good if one is affordable and if not, will

purchase a maximal utility good amongst those that are affordable.

An aspirational market is the tuple < qH , qL, cH , cL > where qH > qL,

1 > cH > cL > 0, and qL − cL > 0.

As a benchmark, consider rational buyers with the utility function u = q−p.
In equilibrium, Bertrand-competition drives prices down to marginal costs and

firms break even. If the high-quality good is more efficient, qH − cH > qL− cL,

then both goods are sold at marginal costs, cH and cL. If the low-quality good
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is more efficient, then only this good is sold at cL.

However, when buyers are aspirational, both goods being sold at marginal

cost is not an equilibrium. The reason is that buyers who cannot afford the

high-quality good will aspire to it, and therefore the red firm can profitably

increase the price of its low-quality good without losing all of these buyers.

In fact, the firm can do even better by slightly decreasing the price of its

high-quality good to capture the entire high-quality market and consequently

monopolize the low-quality market. The following proposition characterizes

the equilibrium prices when buyers are aspirational.

Proposition 3.1. In an aspirational market, generically there is a unique

pure strategy NE. There exists a number ∆ > 0 (which depends only upon the

costs) such that

1. If qH − qL > ∆, the red and blue firms charge the same prices p∗L, p
∗
H

where cL < p∗L < p∗H < cH , the uncolored firms sell only the low-quality

good at price cL, and all firms break even.

2. If qH−qL < ∆, then only the low-quality good is sold and the price is cL.

Furthermore, cH − cL > ∆ .

We use the term generically because in the measure 0 case where qH−qL =

∆, there may be multiple NE and ties. To understand the proposition, consider

two cases. First, when the high-quality good is more efficient, then case 1 holds

because qH−qL > cH−cL > ∆. In equilibrium, both goods are sold and prices

are jointly determined by:

(i) Monopoly pricing of the low-quality good pL = (pH + cL)/2.

(ii) Zero-profit condition (1− pH)(pH − cH) + (pH − pL)(pL − cL) = 0.

The prices p∗L, p
∗
H are the unique admissible solution to the above equations.

Given these prices, neither firm has a profitable deviation. If a firm were

to decrease the price of their high-quality good, then they would monopolize

the high-quality market and all agents would aspire to them. In this case,

it is optimal for the firm to charge the monopoly price for their low-quality
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good (i). By charging a lower price for their high-quality good, they make

less money per unit on their high-quality goods and less per-unit money on

their low-quality goods as well. This would not be profitable by (ii). If a firm

were to increase the price of the high-quality good, they would lose all of their

high-quality customers and no agent would aspire to their good. Then, for

such a firm to have any customers, it cannot charge more than the colorless

firms do for the low-quality good and hence this firm cannot make a profit on

their low-quality good

The driving force behind the above equilibrium is the demand externality

of the richer buyers on the poorer ones: the red and blue firms compete

for aspirations by lowering the price of their high-quality good in order to

monopolize the low-quality market. This process settles when the losses in

the high-quality market are exactly offset by the monopoly profits in the low-

quality market.

Buyers with wealth above p∗H purchase the red or blue high-quality good

(regions III & IV, Figure 5). Buyers with lower wealth cannot afford these

high-quality goods, but aspire to them. Buyers in region II purchase either

the red or blue low-quality goods at the price p∗L and buyers in region I purchase

a colorless low-quality good at the price cL.

	

		I																				II																					III																					IV	
!!   	 0   	 1 	!!  	 !!∗ 	 !!∗  	

Figure 5: Competition for aspirational buyers

Second, when the low-quality good is more efficient, whether both goods

are sold depends upon the quality gap qH − qL. If only the low-quality good

is sold, it must be sold at cost. Notice that the red firm may still introduce a

high-quality good to monopolize the low-quality market. To create aspirations,

the red firm must price its high-quality good low enough to attract some buyers

(incurring losses), and this deviation is profitable when there are sufficiently

many buyers in the low-quality market. When the quality gap is small (case

2), any price which attracts buyers to the high-quality market will cannibalize

the low-quality market and this deviation is not profitable. But, when the gap
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is large (case 1), this is a profitable deviation.

We now compare the social welfare of the aspirational and rational equi-

libria. Notice that they differ only when the quality gap is large. In the

aspirational equilibrium, poorer buyers who purchase the red or blue low-

quality goods cross-subsidize richer buyers who purchase the red or blue high-

quality goods. The utility gains of the richer buyers are larger than the utility

losses of the poorer buyers exactly when the high-quality good is more efficient.

Proposition 3.2. Social welfare is higher in the aspirational equilibrium than

in the rational equilibrium if and only if qH − cH > qL − cL.

In both the rational and aspirational models firms break even and therefore

a welfare comparison can focus solely on the change in allocations. When the

high-quality good is more efficient, allocations change only for buyers with

wealth in region III (Figure 5). These buyers purchase the more-efficient high-

quality good instead of the less-efficient low-quality one and welfare increases.

Conversely, when the high-quality good is less-efficient, since buyers in regions

III and IV switch their purchases to it, welfare decreases.

Thus, overall welfare may increase or decrease, but the welfare distribution

always changes to the benefit of richer buyers. Of course, wealthier buyers are

better off because they have more options, but we find that competition for

aspirations amplifies their advantage, increasing the welfare gap between rich

and poor.

There are a number of anecdotal examples of “premium loss leaders”,

high-quality goods sold beneath costs in order to increase demand for other

products. Examples include: high-end low-volume cars produced alongside

more affordable and similar options,9 designer dresses given to celebrities

which positively impact their mass market offerings, and restaurant empires

anchored by a money-losing highly-rated flagship which is subsidized by prof-

itable cheaper franchises. An article in Fortune10 explains:

9In 2000, 1,371 BMW Z8s were sold while about 40,000 Z3s were sold (BMW’s
2000 Annual Report which can be accessed at https://bib.kuleuven.be/files/ebib/

jaarverslagen/BMW_2000.pdf).
10“The Curse of the Michelin-Star Restaurant Rating”, Fortune, December 11, 2014.
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“For many Michelin star restaurateurs, the restaurant is a loss

leader whose fame allows the chef to charge high speaking or private

cooking fees; others start lines of premade food or lower priced

restaurants. In a recent interview, David Muñoz of DiverXo told

me that 2015 would be the first breakeven year in his company’s

eight-year existence, and then only because of the expansion of his

street-food chain, StreetXo.”

To sum up, there is a unique equilibrium with the following features: (1)

for a good to serve as an aspiration, it need not only be better, but the quality

gap must be sufficiently large; (2) firms lose money on their aspirational good

and cross-subsidize these losses with profits from the low-quality market; and

(3) whether competition for aspirations increases or decreases welfare depends

upon the relative efficiency of the goods, but the distribution of welfare always

changes in favor of the richer buyers.

Welfare: In markets with sophisticated firms and boundedly rational con-

sumers, it is natural to expect that manipulation of consumers leads to welfare

losses, (e.g. Gabaix and Laibson (2006), Spiegler (2006), and Spiegler (2011)).

Proposition 3.2 proves that this need not always be the case. A market with

aspirational consumers may have higher social welfare (even when judged using

the rational utility function) due to equilibrium effects.

Another welfare approach is to compare agents’ opportunities. In the ratio-

nal equilibrium, the available quality-price bundles are {(qL, cL), (qH , cH)} and

in the aspirational equilibrium, they are {(ql, cL), (qH , cH), (qH , p
∗
H), (qL, p

∗
L)},

where the last two bundles are offered by the branded firms. Thus, respecting

agents’ autonomy, the aspirational equilibrium Pareto-dominates the rational

one because all agents have weakly more opportunities.

It is also possible to consider welfare criteria which explicitly take the

agents’ aspirations into account. For example, an agent might suffer a utility

loss from failed aspirations, that is, when observing other agents consume a

desired unavailable good. On the other hand, an agent may have a utility gain

from “dressing like a celebrity”.
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Related Literature: Kamenica (2008) studies buyers whose preferences

depend upon a global taste parameter which the firm knows but buyers may

not. The firm offers a menu of goods and the buyers make inferences about the

parameter through the firm’s menu choice. In equilibrium, firms may introduce

unprofitable loss leaders to influence the beliefs of uninformed buyers. In

another recent paper, Kircher and Postlewaite (2008) consider an infinitely

repeated search model where firms vary in unobservable quality and prices are

fixed. Since wealthy buyers consume more frequently, they are better informed,

and as a result, the poor have an incentive to imitate the rich. In equilibrium,

firms offer higher quality to wealthier buyers in order to attract other buyers.

In both models, firms may produce superior goods for the sake of influencing

less informed buyers. In our model, the high-quality good is subsidized for a

different reason, to create aspirations.

3.2 Aspirations for Previously Consumed Bundles

This application analyzes the consumption example of Section 2 where agents

may aspire to previously consumed bundles. In period t, an agent chooses a

pair (x, y) from a budget set Bt = {(x, y) : ptx+ y = It} where pt is the price

of the good x at time t, y is the expenditure on all other goods, and It is the

agent’s income at time t.

We are interested in the influence of previous consumption on the choice of

an aspirational agent who uses the Euclidean distance. Suppose that income

increases. Then across two periods t = 0, 1 the budget sets are ordered as

B0 ⊂ B1. In this case, previous bundles are still affordable and therefore

will not affect the decision of an aspirational agent. In contrast, if income

decreases, past consumption bundles are no longer affordable and will affect

decisions. Thus, an aspirational agent responds rationally to positive income

shocks but may respond irrationally to negative income shocks. A similar

logic applies to price changes. Figure 6 depicts a price change in the good

x. Suppose that both an aspirational and a rational agent choose c′ from the

larger budget set. Then, following a price increase of good x, the aspirational
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agent will consume more x than the rational agent.

Good x

Good  y

c

1

2

c’

Figure 6: The Influence of Price Changes

We analyze the post-sale demand for a good. A number of empirical studies

document a difference between pre-sale and post-sale consumption levels of a

good (see, Van Heerde, Leeflang, and Wittink (2000), Hendel and Nevo (2003)

and DelVecchio, Henard, and Freling (2006)). During a sale, an agent’s budget

set expands and her choice will change. After the sale ends, her budget set

returns to what it was and an aspirational agent’s choice will depend upon

her consumption during the sale. This aspirational effect can go either way in

that the sale may be beneficial or harmful for the agent’s future consumption

of the sale good. But, the following proposition proves that if the sales price

is sufficiently low, post-sales consumption of the sale good will increase.

Proposition 3.3. There is always a sale price p′ < p such that a temporary

sale will increase the post-sale consumption level of the good.

To determine the direction of the aspirational effect, suppose that an

agent with demand x(p, I), y(p, I) undergoes an infinitesimal income or price

shock. If income increases or price decreases, then the behavior of the rational

agent and aspirational agent coincide. Otherwise, the aspirational agent will

consume more x than her rational counterpart precisely when:

24



If incomes decreases:

(
I

p
,−I

)
·
(
∂x

∂I
,
∂y

∂I

)
> 0

If price increases:

(
I

p
,−I

)
·
(
∂x

∂p
,
∂y

∂p

)
< 0

Remarks: First, while the analysis here uses the Euclidean metric, if the

agent were to employ a different metric, then the shape of the regions in

Figure 6 could be suitably altered. Second, we make the standard Walrasian

convexity assumptions which guarantee the existence of a unique aspiration.

Third, in habit formation models, an agent’s choices may depend upon her

past consumption in various forms (for example, see Pollak (1970)), but the

aspiration effect has a distinctive one-sided feature: only superior previously

consumed bundles may affect choices.

4 Conclusion

This paper introduced a novel choice framework where choices may depend

upon observed but unavailable alternatives. There are two important features

to any positive choice theory: the axioms which provide necessary and suf-

ficient conditions on individual choice and the economic implications when

accounting for equilibrium effects. Our analysis focused on both.

First, we posited three simple conditions on an agent’s choice behavior:

(1) she behaves rationally across choice problems without unavailable

alternatives, (2) she behaves rationally across choice problems with the same

observed alternatives, and (3) across choice problems with the same available

alternatives and aspirations, she makes the same choices. We showed that

these conditions along with single aspirations characterize the aspirational

choice procedure: the agent focus on her aspiration and chooses the closest

available alternative to it.

Second, we applied the aspirational model and addressed several economic

issues including the welfare gains and losses of competition over aspirational
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buyers; and how previously consumed bundles may influence choice as aspira-

tions.

Part of our contribution is technical. To our knowledge, this is the first

axiomatic characterization of a distance-based procedure where the metric is

endogenously derived. This “revealed similarity” approach may also prove

useful for other models that rely upon exogenously specified distances.

There are several questions that may be of interest for future work. The

current model assumes that agents behave rationally when unavailable

alternatives are not present. This can be relaxed to allow for other biases. One

possibility is an axiomatic theory that simultaneously incorporates both the

attraction and aspiration effects. In this vein, an experiment that investigates

both effects together, rather than separately as in Highhouse (1996), may

shed light on both of them. Another interesting avenue is to extend the

first application to study the choices of aspirational agents who may only

observe each other through a network. Finally, it may be worth analyzing a

dynamic consumption-savings problem where aspirations are drawn from all

past consumption bundles.
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5 Appendix A

For all proofs below, a preference relation is a reflexive and transitive binary

relation.

Proof of Theorem 2.1

[⇒] Suppose C is a choice correspondence that satisfies Axioms 2.1-2.5. Define

a(Z) := C(Z,Z). By Axioms 2.1 and 2.4, there exists an anti-symmetric total

order � such that a(Z) = max(Z,�). Notice that x � y if and only if

{x} = C({x, y}, {x, y}). Moreover, by Axiom 2.5, � and a are continuous.

Suppose x, y, z ∈ X. For each z, we define the aspiration based preference

as x �z y if x ∈ C({x, y}, {x, y, z}) and C({x, y, z}, {x, y, z}) = {z}. A rank-

ing over pairs �∗ is defined on X2 as: (x, y) �∗ (z, y) if x �y z. Note that both

of these preferences are generally incomplete. To obtain a representing utility

function, we could appeal to Levin (1983)’s Theorem 1, but for readability, we

instead rely upon Corollary 1 of Evren and Ok (2011). That corollary requires

�∗ to be closed-continuous and T := {(x, y) : y � x} to be a locally compact

separable metric space (which is an implication of T being a compact metric

space). Below we show that �∗ and T meet these conditions.

First, �∗ is closed-continuous. To see it, take any x, y, z, xn, yn, zn ∈ X and

n = 1, 2, . . . such that xn → x, yn → y, zn → z and (xn, yn) �∗ (zn, yn) for all n.

By the definition of �∗, we have xn �yn zn, i.e. xn ∈ C({xn, zn}, {xn, yn, zn})
and {yn} = C({xn, yn, zn}, {xn, yn, zn}). By Axioms 2.4 and 2.5, we have that

x ∈ C({x, z}, {x, y, z}) and {y} = C({x, y, z}, {x, y, z}). Therefore x �y z ⇒
(x, y) �∗ (z, y).

Second, T is compact. To see this, notice that the Axioms 2.4 and 2.5 imply

that T is a closed subset of the compact metric space X2. Therefore, there

exists a continuous u : T → R so that if (x, y) �∗ (z, y), then u(x, y) ≥ u(z, y)

and likewise for the strict relation. Define the similarity measure d̂ as

d̂(x, y) :=

u(y, y)− u(x, y) if y � x,

u(x, x)− u(y, x) otherwise
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This similarity measure represents an agent’s choices, that is,

C(S, Y ) = argmins∈S d̂(s, a(Y )).

“C(S, Y ) ⊆ argmins∈S d̂(s, a(Y ))”

For ease of notation, denote a(Y ) by a. Take y ∈ C(S, Y ) and suppose

y /∈ argmins∈S d̂(s, a). Then, there exists z ∈ S s.t. d̂(z, a) < d̂(y, a). As a is

the aspiration alternative in Y , a � z, y. By the definition of d̂, it is the case

that u(z, a) > u(y, a). So, z �a y which implies that {z} = C({z, y}, {z, y, a})
and {a} = C({z, y, a}, {z, y, a}). Axiom 2.2 guarantees that y ∈ C({z, y}, Y ).

By Axiom 2.3, it is the case that C({z, y}, Y ) = C({z, y}, {z, y, a}). This is a

contradiction as y ∈ C({z, y}, Y ) = C({z, y}, {z, y, a}) = {z}.

“argmins∈S d̂(s, a(Y )) ⊆ C(S, Y )”

Consider z ∈ argmins∈S d̂(s, a) and assume z 6∈ C(S, Y ). As C is non-

empty valued, there must exist y ∈ C(S, Y ). By Axioms 2.2 and 2.3, it is

the case that {y} = C({z, y}, {a, z, y}). Then y �a z by the definition of �a.
Thus, d̂(z, a) > d̂(y, a) by the definition of d̂, a contradiction.

By construction, d̂ is continuous, reflexive and symmetric, but need not

satisfy the triangle inequality. Lemma 5.1 shows that there exists a continuous

metric d : X2 → R+ with the same distance ordering, that is,

d̂(x, y) ≤ d̂(z, w) if and only if d(x, y) ≤ d(z, w).

Thus, C(S, Y ) = argmin
s∈S

d(s, a(Y )) for all (S, Y ) ∈ C(X).

[⇐] Axioms 2.1, 2.2, 2.3, 2.4 all follow trivially.

To show Axiom 2.5, suppose xn ∈ C(Sn, Yn) for all n, where Sn
H→ S,

Yn
H→ Y and xn → x. Since Sn

H→ S, we know that ∀s ∈ S, there exist

sn ∈ Sn for n = 1, 2, . . . such that sn → s. By xn ∈ C(Sn, Yn), we have

that d(xn, a(Yn)) ≤ d(sn, a(Yn)) for all n. Continuity of a(·) guarantees that

a(Yn) → a(Y ) and taking limits of both sides gives d(x, y) ≤ d(s, y). Since

s was chosen arbitrarily, it is the case that x ∈ argmins∈S d(s, y) and thus

x ∈ C(S, Y ). 2
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The previous theorem constructs a semimetric (a distance function without

the triangle inequality) and the following lemma shows that any semimetric

can be transformed into a metric while preserving its distance ordering over

pairs.

Definition: A function φ : X2 → R is a semimetric if

1. ∀x, y ∈ X, φ(x, y) = 0⇔ x = y (Reflexivity)

2. ∀x, y ∈ X, φ(x, y) = φ(y, x) (Symmetry)

3. ∀x, y ∈ X, φ(x, y) ≥ 0 (Non-Negativity)

Lemma 5.1. Take (X,D) a compact metric space and suppose φ : X2 → R+

is a semimetric. Then, there exists a continuous metric Dφ : X2 → R+ such

that

φ(x, y) ≤ φ(z, w) if and only if Dφ(x, y) ≤ Dφ(z, w) for any x, y, z, w ∈ X.

Around the same time we proved this lemma, Ben Yaacov, Berenstein,

and Ferri (2011) independently proved an equivalent result (Theorem 2.8) in a

mathematics journal. Our proof is different and relies upon more elementary

techniques. To keep the analysis to a minimum, we omit it from the current

appendix and provide it in the online appendix.
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Figure 7: Continuity argument for Proposition 3.3.

Proof of Proposition 3.3:

Let c denote the consumed bundle with price p and income I. Denote

the Regions R1 = {x : x2 ≤ I, U(x) > U(c), (x − c) · (p,−1) > 0} and

R2 = {x : x2 ≤ I, U(x) > U(c), (x − c) · (p,−1) < 0}. Take a sequence

of prices less than p so that p1, p2 . . . → 0. Let xn = C(B(I, pN)). For

each n, choose yn in R1 so that pn · yn = I and so that lim
n→∞

yn = y∗ is in

R1 with y2 = I. Suppose that xn ∈ R2 infinitely often. Then, passing to

that subsequence, by compactness lim
n→∞

xn = x∗ exists and xn � yn for all n.

Therefore, continuity implies that x∗ % y∗, but monotonicity stipulates that

y∗ is strictly preferred to all members of R2, including x∗, a contradiction.

Therefore, xn must eventually lie in R1 and then any such pn represents a

sales price which will have consumption in R1 and consequently a positive

impact on x consumption after the sale ends. 2
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Proof of Proposition 3.1

Denote the chosen prices of the blue and red firms as pBH , p
B
L , p

R
H , p

R
L and

the price of the generic firms as pcolorlessL , pcolorlessH . Recall that 0 < cL < cH

and 0 < qL − cL. The following notation will be used extensively. Let

Π(p) = (1− p)(p− cH) +
(p− cL)2

4
(1)

denote the profit that a firm would obtain if it sold its high-quality good for p

and acts as a monopolist for buyers with w < p and charges (p+ cL)/2 for its

low-quality good.

First, in any equilibrium, the low-quality good is sold by the colorless firms

at price pcolorlessL = cL. If it were not, then some firm is selling a good at a

price beneath cL, which cannot happen.

Second, all firms selling only the low-quality good (at marginal cost) is an

equilibrium if and only if qH − qL < ∆ where ∆ is to be defined.

To see it, suppose that all firms follow the above strategy. Clearly, the

colorless firms have no profitable deviation. If the red firm introduces a high-

quality good at price p, then p ≤ qH − qL + cL. Otherwise, qH − p < qL − cL
and no buyer would purchase it. Any such price attracts buyers in the high-

quality market, and through aspirations, the red firm becomes a monopolist

for all buyers with wealth below p. This deviation is profitable when Π(p) ≥ 0.

Notice that the function Π is a hump-shaped parabola with left root

ρ =

(
2 + 2cH − cL − 2

√
1− cH + c2H − cL − cHcL + c2L

)
/3.

Thus, a deviation p is profitable exactly when ρ ≤ p ≤ qH − qL + cL and there

are no profitable deviations exactly when

∆ := ρ− cL > qH − qL.

Finally, Π(cL) < 0 < Π(cH), so cL < ρ < cH and 0 < ∆ < cH − cL.

We now show that when qH−qL < ∆ this equilibrium is unique. Notice that

the high-quality good is never sold in equilibrium, because there is no price

for that good which is both attractive to agents and which can be profitably
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cross-subsidized by monopoly pricing of the low-quality good. Thus, only the

low-quality good is sold and Bertrand competition drives the price of this good

down to marginal cost.

Third, when the valuation gap is large, that is qH − qL > ∆, the following

strategies constitute an equilibrium: The generic firms only sell the low-quality

good at marginal cost, cL. The red and blue firms sell both the high and the low

quality goods and charge the same prices given by pH = ρ and pL = (ρ+cL)/2.

These prices are the unique admissible solution to i) Monopoly price of low-

quality, pL = (pH + cL)/2 and ii) Zero profits, Π(pH) = 0 and are given by:

pH =

(
1

3

)(
2 + 2cH − cL − 2

√
c2H − cHcL − cH + c2L − cL + 1

)
= ρ

pL =

(
1

3

)(
1 + cH + cL −

√
c2H − cHcL − cH + c2L − cL + 1

)
At the above prices, agents prefer the high-quality good to the generic low-

quality good because the gap is large. That is, qH − pH > qL − cL because

qH − qL > ∆ = ρ − cL = pH − cL. Furthermore, the above strategy is not

an equilibrium when the gap is small because agents will not purchase the

high-quality good.

The colorless firms clearly have no profitable deviations. The red firm

cannot profit by increasing its price for the high-quality good because no agent

would purchase it. If the red firm loses the high-quality market, then it is

essentially no different from the colorless firms and cannot profit in the low-

quality market. Following a deviation to a lower price p′H < pH , the red firm

captures the entire high-quality market and has profit Π(p′H) < 0. Therefore,

the above prices constitute an equilibrium.

Uniqueness is established by the following points.

1. When the gap is large, the high-quality good is sold in equilibrium.

Only the low-quality good being sold is not an equilibrium because

qH − qL > ∆ and as shown in the low-gap case, the red firm would then

have a profitable deviation.

2. Both the red and blue firms must charge the prices given above.
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WLOG assume that pRH ≤ pBH . If pRH < pH , then its profit is either Π(pRH)

or Π(pRH)/2, both of which are negative. If pH < pRH , then the blue firm can

profitably undercut either the red firm or the generic firm (depending upon

which minimally prices the high-quality good). Finally, if pH = pRH < pBH , then

the red firm can profitably increase pRH . 2

Proof of Proposition 3.2

As firms make zero profit in both the rational and aspirational equilibria,

the following focuses on social welfare but covers consumers’ welfare as well.

In the rational and aspirational equilibria, welfare respectively is

WR = (1− cH)(qH − cH) + (cH − cL)(qL − cL)

WA = (1− p∗H)(qH − cH) + (p∗H − cL)(qL − cL).

Then WA −WR = (cH − p∗H)(qH − cH − (qL − cL)). As cH > p∗H , the first

term is positive and thus WA > WR if and only if the high-quality good is

more efficient, that is, qH − cH > qL − cL. 2
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Appendix B -FOR ONLINE PUBLICATION

Lemma 6.1. Take (X,D) a compact metric space and suppose φ : X2 → R+

is a semimetric. Then, there exists a continuous metric Dφ : X2 → R+ such

that

φ(x, y) ≤ φ(z, w) if and only if Dφ(x, y) ≤ Dφ(z, w) for any x, y, z, w ∈ X.

Proof of Lemma 5.1

If X is a singleton, then φ is the constant 0 function and D = φ satisfies

all of the above properties.

If X is not a singleton, then WLOG, assume max
x,y∈X

φ(x, y) = 1. This is

because max
x,y∈X

φ(x, y) exists since X2 is a compact space and φ is a continuous

function on that space. Therefore ψ :=
φ

maxx,y∈X φ(x, y)
is an order-preserving

transformation where max
x,y∈X

ψ(x, y) = 1.

The nature of the problem is that φ may fail the triangle inequality and

the goal is to find a continuous increasing transformation f on the distances

so that the triangle inequality will be satisfied. As in the figure, it could be

the case that φ(x, y), φ(x, z) are very small (but not equal to 0) and φ(y, z)

is close to 1 and it must be that f(φ(x, y)) + f(φ(x, z)) ≥ f(φ(y, z)).


I[\

I[]

I\]

 







I\]I[\

I[]

Figure 8: Converting a triangle to satisfy the triangle inequality.

To further analyze the problem, define the operator ∆ by ∆(ψ) : X3 → R3
+

(x,y,z)→(ψ(x,y),ψ(x,z),ψ(y,z))

.
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This map, for any triple outputs the length of the edges according to ψ of

the triangle defined by the triple. Additionally, notice that the operator ∆’s

output is ordered, so in general ∆ is not invariant to permutations of its inputs.

Let q denote a constant such that q ∈
(

1

2
, 1

)
.

Definition of D:

Now, we will define an increasing sequence of Dn such that their limit

defines D. The approach that we take fixes triangles with a “long” side first,

and fixes more and more triangles as n → ∞. Formally, at stage n; Dn will

be such that all triangles with longest side at least qn will satisfy the triangle

inequality according to Dn.

For the base case, let D0 = φ.

To proceed with the inductive construction of Dn, we define a few auxiliary

functions hi, gi, ki, and fi such that Di = fi ◦Di−1 .

• hi(a) := max
{
a, c− b : ∃x, y, z ∈ X3 s.t. (a, b, c) = ∆(Di−1)(x, y, z) and a ≤ b ≤ c

}
.

Define hi(a) := a if 6 ∃(a, b, c) ∈ ∆(Di−1) where a ≤ b ≤ c.

• gi(a) := min

(
hi(a),

qi−1

2

)
on [0, qi). Define gi(q

i) = qi.

• ki : [0, qi] → [0, qi] to be the Upper Concave Envelope of gi. Recall

that the upper concave envelope of another function is the least concave

function that dominates the specified function.

• fi(a) :=

a a ∈ (qi, 1]

ki(a) a ∈ [0, qi]

The motivation for the preceding functions is as follows. hi guarantees

that hi(Di−1(x, y)) + hi(Di−1(y, z)) ≥ Di−1(x, z). So, hi is enough to fix an

unsatisfied triangle inequality if it is to be applied to only the two shorter sides

of the triangle. But hi presents two difficulties: i) it may be that one of the

two augmented sides may now be longer than the sum of the other two sides

and ii) hi cannot be applied to only two of the triangle’s sides. gi addresses the

first difficulty as gi(a) ≤ qi,∀a ≤ qi. Then, ki addresses the second difficulty
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as it transforms gi into a continuous concave positive increasing function so

that ki(q
i) = qi and ki(Di−1(x, y)) + ki(Di−1(y, z)) ≥ Di−1(x, z) whenever

Di−1(x, z) ≤ qi−1. Notice that this could not be done directly to hi because

hi(x) may be greater than qi. Finally, fi applies k to “small distances” and

leaves “large distances” unchanged.

Formally, we next prove that the following inductive properties hold true:

1. Di is continuous on X2.

2. ∀i ≥ 1 ∀x, y ∈ X, Di(x, y) ≥ Di−1(x, y).

3. ∀i, j ≥ 0, ∀x, y ∈ X, φ(x, y) ≥ qmin(i,j) ⇒ Di(x, y) = Dj(x, y).

4. If x, y, z ∈ X and Di−1(y, z) ≥ qi, then Di(y, z) ≤ Di(x, y) +Di(x, z).

5. ∀i ≥ 1, Di ∼X Di−1

6. ∀i ≥ 0, Di : X2 → R+ is symmetric, reflexive, and non-negative.

Proof of Properties 1,2,5:

Suppose (0, b, c) = ∆(Di−1)(x, y, z). Then 0 = Di−1(x, y) ⇒ x = y by the

reflexivity of Di−1.

Therefore hi(0) = maxDi−1(z, x)−Di−1(z, x) = 0.

So, gi(0) = min(0,
qi−1

2
) = 0 and gi(q

i) = qi.

Moreover, ∀z < qi, gi(z) ≤ qi−1

2
= qi

(
1

2q

)
< qi.

Claim: hi is upper semi-continuous. Thus gi is upper semi-continuous as

well.

Consider an → a such that hi(an) → z. If it is the case that hi(an) = an

infinitely often, then z = a and by definition hi(a) ≥ a. On the other hand, if it

is the case that hi(an) > an infinitely often, then there exist triangles xn, yn, zn

such that Di−1(xn, yn) = an and Di−1(yn, zn)−Di−1(xn, zn) = hi(an). By the

compactness of X and the continuity of Di−1, one can pass to convergent
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subsequences of xn, yn, zn and thus hi(an) = Di−1(yn, zn) − Di−1(xn, zn) →
Di−1(y, z)−Di−1(x, z) ≤ hi(a) where the last inequality is becauseDi−1(x, z) =

a. The claim is proven.

Importantly, non-negativity of gi, hi, gi(0) = hi(0) = 0, and upper semi-

continuity of gi, hi guarantee full continuity of gi, hi at 0. So, it is the case that

ki is strictly increasing, concave, and continuous on [0, qi] where ki(0) = 0 and

ki(q
i) = qi. Thus fi is strictly increasing, continuous on [0, 1] which implies

that Di ∼X Di−1 (Properties 1 & 5).

By the concavity of ki on [0, qi] and ki(x) = x for x ∈ {0, qi}, it is the

case that ki(x) ≥ x ∀x ∈ (0, qi). Therefore fi(a) ≥ a on [0, 1] which implies

∀x, y ∈ X, Di(x, y) ≥ Di−1(x, y) (Property 2).

Proof of Property 6:

Di(x, y) ≥ Di−1(x, y) ≥ 0 implies that Di is non-negative.

Di(x, y) = fi ◦ Di−1(x, y) = fi ◦ Di−1(y, x) = Di(y, x) where the middle

equality follows from the symmetry of Di−1.

Finally 0 = Di(x, y) ⇔ 0 = fi(Di−1(x, y)) ⇔ 0 = Di−1(x, y) ⇔ x = y

where the second implication comes from fi being a strictly increasing (hence

invertible) function on [0, 1] with fi(0) = 0 and the third implication is due to

the reflexivity of Di−1.

Proof of Property 3:

Let i < j. Then φ(x, y) = D0(x, y) ≤ . . . ≤ Di(x, y) ⇒ qi ≤ Di(x, y) =

Di+1(x, y) = . . . = Dj(x, y).

Proof of Property 4:

Take x, y, z such that Di−1(y, z) ≥ qi.

Case 1: Suppose Di−1(y, z) ≥ qi−1.

Then, by the inductive hypothesis, definition of Di and property 2, it is

the case that

Di(y, z) = Di−1(y, z) ≤ Di−1(x, y) +Di−1(x, z) ≤ Di(x, y) +Di(x, z)
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Case 2: Suppose Di−1(x, y), Di−1(x, z), Di−1(y, z) ≥ qi and Di−1(y, z) <

qi−1.

Then Di−1(x, y) + Di−1(x, z) ≥ 2qi = 2q(qi−1) > qi−1 > Di−1(y, z) where

the second to last inequality holds because q > 1/2.

Case 3: Suppose qi ≤ Di−1(y, z) < qi−1 and WLOG both of the following

hold: Di−1(x, y) ≤ Di−1(x, z) and Di−1(x, y) < qi.

If hi(Di−1(x, y)) ≥ qi−1

2
, then Di(x, y) = ki(Di−1(x, y)) ≥ gi(Di−1(x, y)) =

qi−1

2
. By Property 5), it is the case that Di(x, z) ≥ Di(x, y) ≥ qi−1

2
, hence

Di(x, y) +Di(x, z) ≥ 2

(
qi−1

2

)
= qi−1 > Di−1(y, z).

If hi(Di−1(x, y)) <
qi−1

2
, then hi(Di−1(x, y)) = gi(Di−1(x, y)) ≤ ki(Di−1(x, y)) =

Di(x, y). So Di(x, y) + Di(x, z) ≥ hi(Di−1(x, y)) + Di−1(x, z) ≥ Di−1(y, z) =

Di(y, z) where the last inequality is due to the definition of hi.

D is well-defined:

Define D(x, y) := lim
n→∞

Dn(x, y).

Notice that Dn ≤ Dn+1 ≤ 1 where the first inequality is due to property 2

and the last inequality is by definition.

Additionally, notice that D could instead be defined as D = f ◦ φ where

f = . . .◦f2◦f1. The function f is well-defined because fi(x) ≥ x, and fi(x) = x

if x ≥ qi. Thus, each x > 0 is touched by at most dlogq(x)e iterations of f and

fi(0) = 0⇒ f(0) = 0.

D is continuous:

By properties 3 and 5, it is the case that ||Di − Dj||∞ < qmin(i,j) which

implies that Di converges uniformly. Property 1 stipulates that each Di is

continuous and thus D is continuous because the uniform limit of a sequence

of continuous functions is continuous.

D(x,y) < D(z,w) iff φ(x,y) < φ(z,w):

If φ(x, y) < φ(z, w), then ∀i, it is the case that Di(x, y) < Di(z, w) by

Property 5. Moreover, if x 6= y, then ∃n such that qn < φ(x, y). By
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the definition of D and property 3). one finds that D(x, y) = Dn(x, y) <

Dn(z, w) = D(z, w). On the other hand, if x = y, then ∀i, Di(x, y) = 0 by the

definition of fi and therefore D(x, y) = 0. Moreover, D(x, y) = 0 < φ(z, w) =

D0(z, w) < D1(z, w) < . . . < Di(z, w) < Di+1(z, w) < . . . < D(z, w). The

above argument holds exactly the same for the case where φ(x, y) ≤ φ(z, w).

D satisfies symmetry, reflexivity and non-negativity:

This is immediate from properties 2, 6 and the definition of D.

D satisfies the triangle inequality:

Suppose y 6= z, then ∃n s.t. qn < φ(y, z). Then, by Property 3, qn <

Dn(y, z) and by the definition of D and Properties 3-5, it is the case that

D(y, z) = Dn(y, z) ≤ Dn(x, y) + Dn(x, z) ≤ D(x, y) + D(x, z). If y = z, then

D(y, z) = 0 ≤ D(x, y) +D(x, z) by the reflexivity and non-negativity of D. 2
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The main representation relies upon five axioms, three of which captured

our notion of aspirations: WARP Without Unavailability, WARP Given Po-

tential Sets and Independence of Irrelevant Unavailable Alternatives (2.1 -

2.3). The other two, Single Aspiration Point (2.4) and Continuity (2.5), were

technical and necessary to derive the specific representation. In this section,

we consider relaxations of the technical axioms. A preference relation is a

reflexive and transitive binary relation.

5.1 Relaxing the Continuity Axiom

Axiom 2.5 required upper hemi-continuity of the choice correspondence when

both the feasible and potential sets vary independently. We relax this assump-

tion by requiring upper hemi-continuity when (i) only the feasible sets vary

and (ii) both the feasible and potential sets are the same and vary together.

Axiom 5.1. (Upper Hemi-Continuity Given Aspiration) For any (S, Y ) ∈
C(X) and x, x1, x2, . . . ∈ Y with xn → x, if xn ∈ c(S ∪ {xn}, Y ) for each n,

then x ∈ C(S ∪ {x}, Y ).

Axiom 5.2. (Upper Hemi-Continuity of the Aspiration Preference) For any

Y, Yn ∈ X , xn ∈ X, n = 1, 2, . . . such that Yn
H→ Y and xn → x,

if xn ∈ C(Yn, Yn) for each n, then x ∈ C(Y, Y ).

The main representation given in Theorem 2.1 is based upon a stronger

continuity axiom than those above. The following theorem characterizes a

similar representation under the weaker continuity conditions and from a

technical point of view, it is much simpler.
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Theorem 5.1. C is an aspirational choice correspondence that satisfies

Axioms 2.4, 5.1 and 5.2 if and only if there exist

1. a continuous linear order �,

2. a metric d : X2 → R+, where d(·, a) is lower semi-continuous on L�(a)

such that

C(S, Y ) = argmin
s∈S

d(s, a(Y )) for all (S, Y ) ∈ C(X), (2)

where a(Y ) is the �-maximum element of Y .

The difference between the two representations is that in Theorem 2.1 the

metric is continuous whereas here it is lower semi-continuous on the appropri-

ate domain.

Proof of Theorem 5.1

[⇒] Define a(Z) := C(Z,Z). By Axiom 2.1, we have that there exists a total

order � such that a(Z) = max(Z,�). By Axiom 2.4 we have � is a total anti-

symmetric order. Moreover, by Axiom 5.2, this order and a are continuous.

Consider S ⊆ L�(z). For any z ∈ X define Cz(S) := C(S, L�(z)). By

Axiom 2.2, Cz is rationalizable on C(L�(z)) by a complete preference rela-

tion �z. Alternatively, notice that x �z y iff x ∈ C({x, y}, {x, y, z}) and

C({x, y, z}, {x, y, z}) = z. This preference relation �z represents the agent’s

aspiration-dependent preference when he has aspiration z. We need to show

that �z satisfies the conditions for Rader’s Representation Theorem (1963) on

L�(z). X is compact, hence separable, so its topology has a countable base.

Also, �z is upper hemi-continuous on L�(z) by Axiom 5.1.

Hence, Rader’s Representation Theorem guarantees that there exists

uz : L�(z) → R an upper semi-continuous function representing �z. WLOG,

take y � x. Define d̂(x, y) := −uy(x) + uy(y). Define other points sym-

metrically, i.e. if x � y, then d̂(x, y) := d̂(y, x). We point out here, that

since a(·) is a choice function, we have that x ∼ y ⇒ x = y and therefore

d̂(x, y) = d̂(x, x) = −ux(x) + ux(x) = 0. Finally let us notice that since uz is

47



upper semi-continuous on L�(z), we have that d̂(·, z) is lower semi-continuous

on L�(z).

While d̂ satisfies reflexivity and symmetry, the triangle inequality may not

hold for d̂. However, if we define d = f ◦ d̂ where f is the lower semi-continuous

transformation defined below, then d will satisfy the triangle inequality.

f(x) =

0 if x = 0,

1 +
x

1 + x
otherwise

Notice that d trivially satisfies the triangle inequality. Consider x, y, z all

distinct. Then d(x, y) +d(y, z) ≥ d(x, z) for the trivial reason that 2 is a lower

bound for the left hand side and an upper bound for the right hand side. If

x = z, then the right hand side is equal to 0 and we are trivially done. Finally,

if x = y or y = z, then both sides equal d(x, z) and we have shown the triangle

inequality in all cases. Lastly, note that this is an increasing transformation,

so as long as d̂ represents the preferences, so does d.

Finally, for representability, we need that C(S, Y ) = argmins∈Sd(s, a(Y )) =

argmins∈S d̂(s, a(Y )). For notational ease, let a = a(Y ). Note that d̂(a, ·) is

lower semi-continuous on L�(a) and S is a compact subset of L�(a(Y )) and

hence the above argmin will exist.11

“C(S, Y ) ⊆ argmins∈S d̂(s, a(Y ))”

Take y ∈ C(S, Y ), suppose ∃z ∈ S s.t. d̂(z, a) < d̂(y, a). Substitut-

ing, we get ua(z) > ua(y) ⇒ z �a y ⇒ {z} = C({z, y}, {z, y, a}) and

{a} = C({z, y, a}, {z, y, a}). Axiom 2.2 tells us that y ∈ C(S, Y ) ⇒ y ∈
C({z, y}, Y ) and Axiom 2.3 yields y ∈ C({z, y}, Y ) = C({z, y}, {z, y, a}) =

{z}, a contradiction.

“argmins∈S d̂(s, a(Y )) ⊆ C(S, Y )”

Consider z ∈ argmins∈S d̂(s, a(Y )) and assume z 6∈ C(S, Y ), y ∈ C(S, Y ).

By Axioms 2.2 and 2.3 we must then have {y} = C({z, y}, {a, z, y})⇒ z ≺a y
⇒ d̂(z, a) > d̂(y, a).

11By definition, a(Y ) = argmax(Y,�) and therefore L�(a(Y )) ⊇ Y ⊇ S.
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[⇐] Axioms 2.2, 2.1, 2.3, 2.4 all follow trivially. Axiom 5.2 follows from the

continuity of the aspiration map, a(·).
To show Axiom 5.1, we first have that S, {xn} ⊆ L�(y). By continuity of

�, we therefore have that x ∈ L�(y). By our representation, we have that

∀s ∈ S, d(xn, y) ≤ d(s, y). Finally, by the lower semi-continuity of d(·, y)

on L�(y), we have that ∀s ∈ S, d(x, y) ≤ liminfn→∞d(xn, y) ≤ d(s, y) ⇒
x ∈ argmins∈S∪xφ(s, y). 2

5.2 Multiple Aspiration Points

We now also relax the Single Aspiration Point Axiom. As C(Y, Y ) need no

longer be a singleton, we refer to it as the agent’s aspiration set. We will

characterize a choice procedure based upon a subjective notion of distance d

and an aggregator φ. When there is a single aspiration point, the procedure

coincides with our main theorem: the agent chooses the closest feasible al-

ternatives to her aspiration according to d. However, when an agent aspires

to a set of alternatives, each feasible alternative is associated with a vector of

distances to each aspiration point. For each feasible alternative, the aggregator

translates the vector of distances into a score and the agent chooses the feasible

alternative(s) with the minimal score.

This characterization relies on the following axiom:

Axiom 5.3. (Aggregation of Indifferences) For any Y ∈ X and x, z ∈ Y ,

if C({x, z}, {x, y, z}) = {x, z} ∀y ∈ C(Y, Y ), then C({x, z}, Y ) = {x, z}.

The above axiom stipulates that if an agent is indifferent between x and z

with respect to every alternative in her aspiration set, then she is indifferent

between x and z when considering that aspiration set as a whole. The axiom

provides a link between problems with a single aspiration point and choice

problems with multiple aspirations. Note that if the Single Aspiration Point

Axiom holds, then the above axiom is trivially satisfied.

A vector of distances ~d ∈ R|X| between an alternative x and a set Z ⊆ X

is defined as follows:
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~dz(x, Z) :=

d(x, z) if z ∈ Z

∞ otherwise

The zth entry of the vector takes the value d(x, z) if z is in Z and ∞
otherwise.

Definition 5.1. A function f : RX
+ → R is single-agreeing if f(~v) = va for

all ~v = (vx)x∈X such that vb =∞ whenever b 6= a.

If there are several aspirations, then there are several distances to consider

and the agent uses an aggregator to assign a score. However, when there is

only one aspiration point, there is a single distance to consider and we require

that the aggregator coincide with the distance function in that case. The

single-agreeing property guarantees this.

Theorem 5.2. C is an aspirational choice correspondence that satisfies

Axioms 5.1, 5.2 and 5.3 if and only if there exist

1. a continuous complete preference relation �,

2. a metric d : X2 → R+, where d(·, a) is lower semi continuous on L�(a)

and

3. a single-agreeing aggregator φ : RX
+ → R+ where φ ◦ ~d(·,A(Y )) is lower

semi-continuous on L�(A(Y )) for any Y ∈ X ,

such that

C(S, Y ) = argmin
s∈S

φ(~d(s,A(Y ))) for all (S, Y ) ∈ C(X), (3)

where A(Y ) is the �-maximal elements of Y and φ ◦ ~d is such that

A(Y ) = argmin
s∈Y

φ(~d(s,A(Y ))) for any x ∈ X and Y ∈ X .

Proof of Theorem 5.2

[⇒] Step 1: We define the aspiration preference � and aspiration map A.
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Define x � y if x ∈ C({x, y}, {x, y}). Since every pair {x, y} is compact,

we get that � is a total order. Moreover, by Axiom 5.2, the defined aspiration

choice correspondence A(Y ) := max(Y,�) is upper hemi-continuous and the

aspiration preference � is continuous.

As before, we will define preferences relative to a single aspiration point.

This definition will differ than the one given before because there may in fact

be multiple aspiration points for a given choice problem. However, in the case

of a single aspiration point, these definitions will be the same.

Step 2: We define the aspiration-based preferences �A and show that they

represent choice.

Definition: For any A ∈ X , we define

x �A y if x ∈ C({x, y}, {x, y} ∪ A) and A ⊆ C({x, y} ∪ A, {x, y} ∪ A).

Claim: For any (S, Y ) ∈ C(X), C(S, Y ) = max(S,�A) where A = A(Y ).

Proof : Let x ∈ C(S, Y ) and y ∈ Y . By Axioms 2.1, 2.2 and 2.3, we get

x ∈ C({x, y}, {x, y}∪A). By Axiom 2.3, we have A = C({x, y}∪A, {x, y}∪A).

Hence, by definition of �A, we obtain x �A y. As y is an arbitrary element

in Y , we get x ∈ max(S,�A). For the other inclusion, let x ∈ max(S,�A)

and suppose further that x /∈ C(S, Y ). Then there must exist y ∈ C(S, Y ).

By definition of �A, we have x ∈ C({x, y}, {x, y} ∪ A) and A ⊆ C({x, y} ∪
A, {x, y}∪A). Applying Axioms 2.1 and 2.3 gives x ∈ C({x, y}, Y ). By Axiom

2.1, we get x ∈ C(S, Y ), which is a contradiction. 2

Step 3: We show that �z are upper semi-continuous and define the

distance function.

Consider the case where xi �z y for all i and suppose xi → x. Then,

xi ∈ C({xi, y}, {xi, y, z}) and z ∈ C({xi, y, z}, {xi, y, z}). First, we notice that

z ∈ C({x, y, z}, {x, y, z}) by Axiom 5.2. Now, if xi ∈ C({xi, y, z}, {xi, y, z})
happens infinitely often, then by Axiom 5.2, we have x ∈ C({x, y, z}, {x, y, z}),
which implies that x ∈ C({x, y}, {x, y, z}) by Axiom 2.2. If xi /∈ C({xi, y, z}, {xi, y, z})
infinitely often, then {z} = C({xi, y, z}, {xi, y, z}) infinitely often because if

y ∈ C({x, y, z}, {x, y, z}), then y ∼ z ⇒ y ∈ C({xi, y, z}, {xi, y, z}) and then
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by Axiom 2.2 xi ∈ C({xi, y, z}, {xi, y, z}) for all i which is a contradiction

to xi /∈ C({xi, y, z}, {xi, y, z}) infinitely often. So, we can pass to a subse-

quence where it is only the case that {z} = C({xi, y, z}, {xi, y, z}). Finally,

either x ∈ C(
∞
∪
i=1
{xi} ∪ {y, z, x},

∞
∪
i=1
{xi} ∪ {y, z, x}) or {z} = C(

∞
∪
i=1
{xi} ∪

{y, z, x},
∞
∪
i=1
{xi} ∪ {y, z, x}). If the previous case holds, then we are done

since x ∈ C({x, y, z}, {x, y, z}) by Axiom 2.2 and 2.3. If the latter case holds,

then by Axiom 2.3, we get xi ∈ C({xi, y},
∞
∪
i=1
{xi} ∪ {y, z, x}) and Axiom 5.1

implies that x ∈ C({x, y},
∞
∪
i=1
{xi} ∪ {y, z, x}). Then, by Axiom 2.3, we obtain

x ∈ C({x, y}, {x, y, z}).
X is compact, hence separable and therefore L�(x) is separable (because

subspaces of separable spaces are separable). Upper semi-continuity of �x
was just shown above and �x is a complete preference relation. Therefore,

by Rader’s Theorem, there is a U : X2 → R+ such that U(·, z) is upper-semi

continuous on L�(z) and represents �z for any z ∈ X. Hence, U(x, z) ≥
U(y, z) if and only if x �z y.12 Finally, define

d(x, y) =



0 if x = y,

1 x 6= y and x ∼ y

2− U(x, y)

1 + U(x, y)
x ≺ y

2− U(y, x)

1 + U(y, x)
x � y

The above d is symmetric, reflexive, satisfies the ∆-inequality and d(·, y)

is lower semi-continuous on L�(y).

Step 4: We show that �A are upper semi-continuous and define a set-

based aggregator function.

Notice that we are only concerned with A such that ∀a, b ∈ A, a ∼ b. For

any Y , consider the situation where A = A(Y ) and we have a sequence xi → x

12Rader’s theorem does not guarantee non-negativity of U . If U takes negative values, we
can always consider eU instead of U , which is non-negative and order-preserving. Hence,
WLOG, we assume non-negativity of U function.
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and a z such that ∀i, xi �A z. Suppose there exists a ∈ A such that z � a.

Then, it must be the case that xi � z � a and xi ∈ A(Y ∪ xi ∪ z). Then by

Axiom 5.2, we have x ∈ A(Y ∪x∪z) and x �A z. Otherwise, consider the case

where xi � a � z infinitely often. Then, again by Axiom 5.2, we have that

x � a and x �A z. Finally, suppose that A(Y ∪ {xi, z}) = A infinitely often.

Then, by Axiom 5.2, we have that A(Y ∪ x) = A or A ∪ x. In the first case,

we can apply Axiom 5.1 and in the second, by virtue of x being an aspiration

alternative, we have x �A z.

Now, for any set A of this type, �A is upper semi-continuous and satisfies

the other conditions for Rader’s Representation Theorem on L�(A) by analo-

gous arguments to those in the previous paragraph where A = {z}. Also, by

our last claim, we have uA representing C(·, Y ) whenever A(Y ) = A.

Hence, Rader’s Representation Theorem guarantees that there exists

uA : L�(A)→ R+ an upper semi-continuous function representing �A.13

Suppose that A = C(Y, Y ) for some Y ∈ X and x, y ∈ Y . Define φ̂(·) as

follows:

φ̂((x,A)) =



d(x, y) A = {y}

d(x, y) |A| = 2, x, y ∈ A, x 6= y

1 x ∈ A, |A| > 2

5− 1

1 + uA(a)− uA(x)
x /∈ A, a ∈ A and |A| 6= 1

Notice that uA(a) is constant across all a ∈ A, so the fourth case above

is well-defined. It can be checked that the above function is lower semi-

continuous due to the upper semi-continuity of uA and the fact that 0 ≤
d ≤ 2 < 4 ≤ 5− 1

1 + uA(a)− uA(x)
.

Now, we have only defined φ̂ for certain tuples (x,A). This is because only

certain choice problems arise. More formally we make the following definition.

13For the non-negativity of uA, please refer to footnote 12.
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Step 5: We show that if two alternatives generate the same distance

vectors, then they have the same set-based aggregate score.

Definition: Let CP = {(x,A) : x ∈ Y for some Y ∈ X such that A(Y ) = A}

Claim: For any (x,A), (y,B) ∈ CP , where A = A(Y ), B = A(Z), if
~d(x,A) = ~d(y,B), then φ̂(x,A) = φ̂(y,B).

Proof : First, if ~d(x,A) = ~0 = ~d(y,B) then φ̂(x,A) = φ̂(y,B) = 0. Next,

we show that A = B. Suppose not. Then, WLOG, ∃z ∈ B\A. Since,

1z∈A = 0, 1z∈B = 1, it must be the case that y = z. So, there can be at

most one alternative in B\A. If B contains only one alternative, then we

are in the previous case, so, let’s take another alternative b ∈ B ∩ A. Now,

y = z ∼ b⇒ d(y, b) = 1. Therefore, it must be the case that d(x, b) = 1. Thus

x ∼ b. But, then 0 = d(x, x) = d(y, x) when we consider the (now known to

be aspirational) alternative x which implies that y = x. But, now we have a

contradiction because z ∈ B\A and z = x ∈ A.

If x = a for some a ∈ A, then 0 = d(x, a) = d(y, a) ⇒ x = y. Otherwise,

x, y ≺ a and ~d(x,A) = ~d(y, A), means d(x, a) = d(y, a) for any a ∈ A. This

means that A({x, y, a}) = a and {x, y} = C({x, y}, {x, y, a}). If |A| = 1, then

φ̂(x,A) = d(x, a) = d(y, a) = φ̂(x,A) for A = {a}. Otherwise, by Axiom 5.3,

{x, y} = C({x, y}, A ∪ {x, y}) ⇒ x ∼A y ⇒ uA(x) = uA(y) and the last case

of φ̂ applies, so φ̂(x,A) = φ̂(y, A). 2

Step 6: We construct a distance based aggregator and show that it satisfies

the single-agreeing property.

So, we now know that φ̂ : CP → R and ~d : CP → RX and the equivalence

relations defined by the inverse image of ~d is a refinement of φ̂. So, by a

standard argument, there exists a φ : RX → R that makes the diagram above

commute.

Therefore φ(~d(x,A)) = φ̂(x,A). The case when a vector has one finite

entry is if |A| ≤ 1. Then φ̂ and hence φ is defined by the first case to agree

with the distance function. Thus, φ has the “single-agreement” property.

Step 7: We show that the constructed objects represent the choice corre-

spondence.
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Figure 9: Commuting Graph

For representability, we must show that C(S, Y ) = argmin
s∈S

φ(~d(s,A(Y ))).

First, let us note that φ ◦ ~d is lower semi-continuous, S is compact and

S ⊆ L�(A(Y )). Hence the above argmin will exist.14 For notational ease, let

A = A(Y ).

“C(S, Y ) ⊆ argmin
s∈S

φ(~d(s,A(Y )))”

Take y ∈ C(S, Y ), suppose ∃z ∈ S s.t. φ(~d(z, A)) < φ(~d(y, A)). We

consider the following cases:

1. A = {x}. Then the above reduces to d(z, x) < d(y, x). But, then

y /∈ C(S, Y )  

2. A = {z, y}. Then the above becomes d(z, y) < d(y, z)  

3. A = {w, y}, w 6= z. Then the above becomes 4 < 5− 1

1 + uA(y)− uA(z)
<

d(w, y) < 2  

4. z ∈ A, y /∈ A, then y /∈ C(S, Y )  

5. z, y ∈ A, |A| > 2, then 1 < 1  

6. z /∈ A, y ∈ A, |A| > 2. Then the above becomes φ(~d(z, A)) < 1  
14By definition, recall A(Y ) = argmax(Y,�) and therefore L�(Y ) ⊇ Y ⊇ S.
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7. y, z /∈ A, |A| > 2. Then the above becomes

5− 1

1 + uA(a)− uA(z)
< 5− 1

1 + uA(a)− uA(y)
⇒ uA(y) < uA(z)  

“argmins∈Sφ(~d(s,A(Y ))) ⊆ C(S, Y )”

Consider z ∈ argmins∈Sφ(~d(s,A(Y ))) and assume z 6∈ C(S, Y ), y ∈ C(S, Y ).

We consider the following cases:

1. Suppose z ≺ a ∈ A, |A| > 1. Then, it must be y ≺ a ∈ A and

5 − 1

1 + uA(a)− uA(z)
≤ 5 − 1

1 + uA(a)− uA(y)
⇒ uA(y) ≤ uA(z) and

therefore y ∈ C(S, Y ) = max(S,�A)⇒ z ∈ max(S,�A) = C(S, Y )  

2. Suppose z ∈ A, then by Axioms 2.1 and 2.3, z ∈ C(S, Y )

3. Suppose z /∈ A, |A| = {a}. Then we have d(z, a) ≤ d(y, a)⇒ z �a y and

since y was chosen generically, we have z ∈ max(S,�a)⇒ z ∈ C(S, Y )

[⇐] Axioms 2.1, 2.2, 2.3, 5.3 all follow trivially. Axiom 5.2 follows from the

continuity of the aspiration preference �.

To show Axiom 5.1, let us consider the situation xn ∈ C(S ∪ {xn}, Y ) and

xn, x ∈ Y and xn → x, we have ∀s ∈ S, φ(~d(xn,A(Y ))) ≤ φ(~d(s,A(Y ))). By

lower semi-continuity of φ(~d(·,A(Y ))) we have that φ(~d(x,A(Y ))) ≤
lim inf
n→∞

φ(~d(xn,A(Y ))) ≤ φ(~d(s,A(Y ))). Therefore x ∈ C(S ∪ {x}, Y ).

2

We interpret the above representation in the following manner. When a

decision maker is confronted with a choice problem (S, Y ), she first forms her

set of aspiration points A(Y ) by maximizing her aspiration preference � over

Y . For each feasible alternative s, she considers its distance to each aspiration,

giving rise to the vector ~d(s,A(Y )). She aggregates this vector and chooses

the alternative with the lowest score. The aggregator φ can be interpreted as

a measure of dissimilarity between alternatives and aspiration sets.

When the agent always has a single aspiration point, the single-agreeing

property implies that choices are made only according to the distance function

56



as in the main representation. This is best illustrated with an example.

Consider an agent with a single aspiration a and three alternatives to choose

from: x, y, z. The generated distance vectors are then:
d(x, a)

∞
∞
∞

 ,

d(y, a)

∞
∞
∞

 ,

d(z, a)

∞
∞
∞


and single-agreement requires that φ takes these vectors to d(x, a), d(y, a), and

d(z, a), respectively. Formally, φ(~d(s, a)) = d(s, a) and therefore minimizing

the former is equivalent to minimizing the latter. Put differently, the agent

uses her distance function d whenever she can and aggregates otherwise.

A wide range of aggregators are permitted, but desirable properties, such

as monotonicity, could be imposed through additional axioms:

Axiom 5.4. (Monotonicity) For any Y ∈ X and x, z ∈ Y ,

(i) x ∈ C({x, z}, {x, y, z}) for all y ∈ C(Y, Y ) implies x ∈ C({x, z}, Y ).

(ii) C({x, z}, {x, y, z}) = {x} for all y ∈ C(Y, Y ) implies C({x, z}, Y ) = {x}.

The representation makes clear that Axiom 5.3 is the minimal assumption

necessary. If an agent is indifferent between two alternatives with respect to

each aspiration in the aspiration set, then both of these alternatives generate

the same vector of distances with respect to that aspiration set and thus they

must be assigned the same aggregate score.
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