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The main purpose of this thesis to examine the controllability and observ-

ability of the linear discrete fractional systems. First we introduce the problem and

continue with the review of some basic definitions and concepts of fractional calculus

which are widely used to develop the theory of this subject. In Chapter 3, we give the

unique solution of the fractional difference equation involving the Riemann-Liouville

operator of real order between zero and one. Additionally we study the sequential

fractional difference equations and describe the way to obtain the state-space repre-

sentation of the sequential fractional difference equations. In Chapter 4, we study the

controllability and observability of time-invariant linear nabla fractional systems.We

investigate the time-variant case in Chapter 5 and we define the state transition

matrix in fractional calculus. In the last chapter, the results are summarized and

directions for future work are stated.
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Chapter 1

INTRODUCTION

Fractional calculus is a branch of mathematics that generalizes the derivative

and integral of a function to any real order. Nowadays, the various tools of fractional

calculus are used in several areas including mathematics, engineering, and finance [10,

11, 12, 13, 54, 55]. Due to the existence of the singular kernel in continuous fractional

operators, the study of discrete fractional calculus provides a more practical and

complete view of certain mathematical models than continuous fractional calculus.

Thus, in this work, we focus on discrete fractional calculus.

The study of control systems has become significant and promising in our

modern society. From devices as simple as a calculator to complex systems like

airplanes and space shuttles, control engineering is a part of our everyday life. There

are several methodologies to examine control systems such as classical control theory,

modern control theory, robust control, adaptive control, and nonlinear control. In

this thesis, we study the modern control theory to obtain the controllability and

observability criteria for the linear nabla fractional systems in both time-invariant and

time-variant cases. The modern control theory deals with the state-space model of

the control system. A state-space model is a set of first-order differential or difference

equations that uses state variables (input, output and internal states of the system)

to describe a dynamical system.

The study of controllability and observability plays an essential role in modern

control theory and engineering. The controllability and observability become partic-

ularly important for practical implementations after Kalman [37] introduced the rank

condition for these theoretically initiated concepts. They can be roughly defined as

follows.

(i) Controllability: The ability to transfer any initial state to any arbitrary final
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state under a control vector of the system.

(ii) Observability: The ability to measure or determine the state of the system

based on its outputs.

The primary purpose of this study is to discuss the controllability and observ-

ability of the linear nabla fractional system,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = Ay(t − 1) +Bu(t − 1)

z(t) = Cy(t) +Du(t)

where A is an n × n constant matrix, B is an n ×m constant matrix, C is an r × n

constant matrix, D is an r×m constant matrix, y(t) is an n×1 state vector, u(t) is an

m × 1 control vector (control signal) and z(t) is an r × 1 the output vector (response

vector).

The motivation for the study of discrete fractional control systems is mainly

twofold: First, from an applicability point of view, controllability and observabil-

ity have close connections to pole assignment, structural decomposition, optimal

quadratic control, observer design, controller design and so forth. For this reason,

in recent decades, the investigation of control systems has aroused great interest

among applied mathematicians and engineers. Second, because of the popularization

of the computer, the study of the discrete time case becomes practical and promising.

Furthermore, we extend our works and investigate the necessary and sufficient

conditions for the controllability and observability of the linear time-variant nabla

fractional difference system,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0y(t) = A(t)y(t − 1) +B(t)u(t − 1)

z(t) = C(t)y(t) +D(t)u(t)

2



where y(t) is an n × 1 state vector of the system, u(t) is an m × 1 control input, z(t)

is an r × 1 output vector, A(t) is an n × n matrix valued function, B(t) is an n ×m

matrix valued function, C(t) is an r × n matrix valued function, D(t) is an r ×m

matrix valued function and ν is positive real number 0 < ν < 1.

In this study, we intend to reduce mathematical derivations and several defi-

nitions and produce some precise check-up tests and identify the controllability and

observability of discrete fractional systems more rigorously.
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Chapter 2

PRELIMINARIES

In this chapter, we recall some fundamental definitions and notations for the

discrete fractional nabla calculus.We refer the readers to [1, 6, 8, 32, 33, 42] for further

background on this topic.

The backward difference operator, or nabla operator (∇) for a function f ∶

Na Ð→ R is defined by

(∇f) (t) ∶= f(t) − f (ρ(t)) , (2.0.1)

where a ∈ R, Na = {a, a + 1, a + 2, . . .} and ρ(t) = t − 1 is known as backward jump

operator on time scale calculus [32].

We define a discrete interval as a set of the form

Nb
a ∶= {a, a + 1, ..., b}

where a, b ∈ R and b − a a is positive integer.

Let µ be any real number. The rising factorial power tµ (read ‘t to the µ

rising’) is defined as

tµ ∶= Γ(t + µ)
Γ(t)

,

where t, t+µ ∈ R∖ {...,−2,−1,0} and Γ denotes the Gamma function. We accept the

convention that if t is a pole of the Gamma function and t + µ is not a pole of the

Gamma function, then tµ ∶= 0.

We consider the ν-th order fractional sum of f defined as in [6]

∇−ν
a f(t) ∶=

t

∑
s=a

(t − ρ(s))ν−1

Γ(ν)
f(s) (2.0.2)

where a ∈ R, ν ≥ 0, and t ∈ Na. Further, we consider the ν-th order fractional difference
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(a Riemann-Liouville fractional difference) of f defined by

∇ν
af(t) ∶= ∇n(∇−(n−ν)

a f(t)) (2.0.3)

where ν > 0, n − 1 < ν < n, n denotes a positive integer [6].

Let us recall some basic properties of the rising factorial power function. We

refer to the reader [9] for the proof of these basic properties.

Lemma 2.1. Let a be a real number and ν be a positive real number. Then the

following properties hold for those values of t, ν, and µ for which the expressions are

well-defined.

(i). ∇tµ = µtµ−1.

(ii). ∇−ν
a (t − a + 1)µ = Γ(µ + 1)

Γ(µ + ν + 1)
(t − a + 1)ν+µ.

Theorem 2.2. For ν > 0, the following equality holds:

∇ν
a+1∇f(t) = ∇∇ν

af(t) −
(t − a + 1)ν−1

Γ(ν)
f(a)

where f is defined on Na.

We refer to the reader [9] for the proof of property stated above.

Theorem 2.3. (Leibniz Rule [33]) For any ν positive real number, the ν-th order

fractional difference of the product fg is given by in the form

t

∇ν
a f(t)g(t) =

t−a
∑
n=0

(ν
n
)[

t−n
∇ν−n
a f(t − n)][∇ng(t)]

where f, g are defined on Na.

5



Theorem 2.4. [32] Asumme f ∶ Na ×Na+1 → R. Then

∇
t

∑
a

f(t, τ) =
t

∑
a

∇f(t, τ) + f(t − 1, t)

∇
t

∑
a

f(t, τ) =
t−1

∑
a

∇f(t, τ) + f(t, t)

for t ∈ Na+1.

Theorem 2.5. [39] n functions f1, f2, ..., fn are linearly independent in an interval I

if there exist a set of n points in I, namely x1, x2, x3, ..., xn such that the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(x1) f2(x1) ⋯ fn(x1)

f1(x2) f2(x2) ⋯ fn(x2)

⋮ ⋮ ⋱ ⋮

f1(xn) f2(xn) ⋯ fn(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is nonsingular.
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Chapter 3

NABLA FRACTIONAL DIFFERENCE EQUATIONS

In this chapter, we shall provide a solution for the fractional differential equa-

tion of the form

∇ν
ay(t) = Ay(t − 1) + f(t − 1) (3.0.1)

where ν ∈ R, 0 < ν < 1, t ∈ Na+1, y(t) is an n × 1 vector, A is an n × n constant matrix

and suppose f(t − 1) is an n × 1 vector valued function. For the convenience of the

reader, we refer related works [8, 1, 18].

In mathematics, the Mittag-Leffler function is a special function with impor-

tance in the solution of a general problem of the theory of analytic functions. It can

be considered the direct generalization of the exponential function ex and is essential

for the theory of fractional calculus. This function is named after Gösta Mittag-

Leffler who defined and studied the particular function in 1903 [43]. The one and

two-parametric representations of the Mittag-Leffler function can be defined in terms

of a power series

Eα(x) =
∞
∑
k=0

xk

Γ(αk + 1)
,

Eα,β(x) =
∞
∑
k=0

xk

Γ(αk + β)
,

where α and β are positive real numbers. Agarwal first defined the Mittag-

Leffler function with two-arguments in 1953 [3]. Discrete Mittag-Leffler function with

one and two-parameters are given by Nagai in 2003 [48],
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Fα(at) =
∞
∑
k=0

aktk

Γ(αk + 1)
,

Fα,β(at) =
∞
∑
k=0

aktk

Γ(αk + β)
,

where α and β are positive real numbers and ∣a∣ < 1. For the discrete fractional case

given by Atıcı and Eloe in 2011 [8],

Fα,β(atν) =
∞
∑
k=0

aktkν

Γ(αk + β)

where α and β are positive real numbers, ν any real number. As we will present in

Section 3.1 the solution of the fractional difference equation (3.0.1) is a Mittag-Leffler

type function in fractional difference calculus.

This chapter is organized as follows: In Section 3.1, we give the unique solution

of the initial value problem (IVP) of the order up to one. Then, we define the solution

as a new function and state the properties of this function. We close Section 3.1 by

giving the variation of constants formula for the fractional difference equation. In

Section 3.2 we will give the general solution for the sequential fractional difference

equations. In Section 3.3, we present the method of obtaining the state-space model

of the nνth order fractional difference equations. In the final section we will generalize

our result for the matrix valued fractional difference equations and give the Putzer

Algorithm to evaluate the matrix exponential functions in discrete fractional calculus.
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3.1 Up to First Order Fractional Difference Equations

In this section, we first present and then prove the existence of the unique

solution of the following initial value problem (IVP)

∇ν
ay(t) = λy(t − 1) for t = a + 1, a + 2, a + 3, ..., (3.1.1)

∇−(1−ν)
0 y(t)∣t=a = y(a) = c. (3.1.2)

where λ, c ∈ R and ν ∈ (0,1). Then, we define the solution of this initial value problem

and give its properties. Finally, we give the variation of constants formula.

Theorem 3.1. The solution of the IVP (3.1.1)- (3.1.2) is uniquely determined.

Proof. We use the definition of the fractional nabla difference operator to obtain the

following iteration schema.

∇ν
ay(t) = λy(t − 1)

∇∇−(1−ν)
a y(t) = λy(t − 1) by 2.0.2

∇
t

∑
s=a

(t − ρ(s))−ν
Γ(1 − ν)

y(s) = λy(t − 1) by 2.0.3

t

∑
s=a

(t − ρ(s))−ν
Γ(1 − ν)

y(s) −
t−1

∑
s=a

(t − 1 − ρ(s))−ν
Γ(1 − ν)

y(s) = λy(t − 1) by 2.0.1

y(t) = −
t−1

∑
s=a

(t − ρ(s))−ν−1

Γ(−ν)
y(s) + λy(t − 1),

for t = a + 1, a + 2, . . .. This iteration scheme ensures that the solution of the IVP

(3.1.1)-(3.1.2) is uniquely determined.
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Theorem 3.2. The unique solution of the initial value problem (3.1.1)-(3.1.2) is

given by

y(t) = c
t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
. (3.1.3)

Proof. We show that

c
t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)

satisfies the IVP (3.1.1)- (3.1.2). Performing the definition of the nabla fractional

difference yields

∇ν
ac

t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)

= c∇∇−(1−ν)
a

t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)

= c∇
t

∑
s=a

(t − ρ(s))−ν
Γ(1 − ν)

s

∑
n=a

λn−a(s − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
= I.

Next, we interchange the order of sums and obtain

I = c∇
t

∑
n=a

t

∑
s=n

λn−aΓ(t − s + 1 − ν)Γ(s − n + nν − aν + ν)
Γ(1 − ν)Γ(t − s + 1)Γ(s − n + 1)Γ(nν − aν + ν)

= c∇
t

∑
n=a

t−n
∑
s=0

λn−aΓ(t − s − n + 1 − ν)Γ(s + nν − aν + ν)
Γ(1 − ν)Γ(t − s − n + 1)Γ(s + 1)Γ(nν − aν + ν)

.

By using the formula (t
r
) = Γ(t + 1)

Γ(r + 1)Γ(t − r + 1)
and the definition of the rising facto-
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rial power we get,

I = c∇
t

∑
n=a

t−n
∑
s=0

(t − n
s

)λ
n−aΓ(t − s − n + 1 − ν)Γ(s + nν − aν + ν)

Γ(1 − ν)Γ(t − n + 1)Γ(nν − aν + ν)

= c∇
t

∑
n=a

λn−a

Γ(t − n + 1)

t−n
∑
s=0

(t − n
s

)(1 − ν)t−s−n(nν − aν + ν)s

= c∇
t

∑
n=a

λn−a

Γ(t − n + 1)
(nν − aν + 1)t−n

= c∇
t

∑
n=a

λn−a

Γ(nν − aν + 1)
(t − n + 1)(n−a)ν ,

where we used the identity [4]

t−n
∑
s=0

(t − n
s

)(1 − ν)t−s−n(nν − aν + ν)s = (nν − aν + 1)t−n.

Next, we apply the following rule [16] to the above expression

∇
t

∑
n=a

f(t, n) =
t

∑
n=a

∇f(t, n) + f(ρ(t), t).

Hence, we have

I = c
t

∑
n=a

∇ λn−a

Γ(nν − aν + 1)
(t − n + 1)(n−a)ν + cλ

n−a(t − n + 1)(n−a)ν
Γ(nν − aν + 1)

∣t=t−1,n=t

= c
t

∑
n=a

λn−a(t − n + 1)(n−a)ν−1

Γ((n − a)ν)

where we used Lemma 2.1 (i). Now, we use the assumption that
1

Γ(0)
= 0 and

11



obtain

I = c
t

∑
n=a+1

λn−a(t − n + 1)(n−a)ν−1

Γ((n − a)ν)

= cλ
t−1

∑
n=a

λn−a(t − n)(n−a+1)ν−1

Γ((n − a + 1)ν)

= cλy(t − 1).

Uniqueness of this solution follows from Theorem 3.1.

Next, we define the following nabla function that will be used throughout the

work

ŷλ,ν(t, a) ∶=
t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
,

where λ is any constant number, ν is positive real number and t ∈ Na.

We continue with some properties of ŷλ,ν(t, a)

Lemma 3.3. The following properties hold:

(i) ŷλ,ν(a, a) = 1, where λ ∈ R and ν is positive real number.

(ii) ∇ν
aŷλ,ν(t, a) = λŷλ,ν(t − 1, a), where 0 < ν < 1 and λ ∈ R.

(iii) ŷλ,ν(t, a) is monotone increasing on t ∈ Na, where ν ≥ 1 and λ is a positive real

number.

(iv) ŷλ,ν(t, a) is monotone increasing on t ∈ Na, where λ ≥ 1 and ν is any positive

real number.

Proof. (i) The proof follows the definition of ŷλ,ν(t, a).

(ii) ŷλ,ν(t, a) satisfies the fractional difference equation (3.1.1).

12



(iii) The function is monotone increasing if the first nabla difference is positive

on given discrete interval. Thus we take the nabla difference of our function by using

following rule [16]

∇
t

∑
n=a

f(t, n) =
t

∑
n=a

∇f(t, n) + f(ρ(t), t).

Hence, we have

∇ŷλ,ν(t, a) = ∇
t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)

=
t

∑
n=a

∇λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
+ λ

n−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
∣t=t−1,n=t

=
t

∑
n=a

Γ(t − n + (n − a + 1)ν − 1)λn−a
Γ(t − n + 1)Γ((n − a + 1)ν − 1)

.

The last quantity is positive if ν ≥ 1.

(iv) Let t be any real number t ∈ Na. ŷλ,ν(t, a) is monotone increasing if

ŷλ,ν(t + 1, a) > ŷλ,ν(t, a).

ŷλ,ν(t + 1, a) =
t+1

∑
n=a

λn−a(t − n + 2)(n−a+1)ν−1

Γ((n − a + 1)ν)

= Γ(t − a + ν + 1)
Γ(t − a + 2)Γ(ν)

+
t+1

∑
n=a+1

λn−a(t − n + 2)(n−a+1)ν−1

Γ((n − a + 1)ν)

>
t

∑
n=a

λn−a+1Γ(t − n + (n − a + 2)ν)
Γ(t − n + 1)Γ((n − a + 2)ν)

.

Next, we use a property of Gamma function [32] and we get

13



Γ(t − n + (n − a + 2)ν)
Γ((n − a + 2)ν)

= 1

Γ((n − a + 2)ν)

t−n
∏
s=1

(t − n + (n − a + 2)ν − s)Γ((n − a + 2)ν)

≥ 1

Γ((n − a + 1)ν)

t−n
∏
s=1

(t − n + (n − a + 1)ν − s)Γ((n − a + 1)ν)

= Γ(t − n + (n − a + 1)ν)
Γ((n − a + 1)ν)

since ν is positive integer. Using this inequality, we obtain

ŷλ,ν(t + 1, a) >
t

∑
n=a

λn+1−aΓ(t − n + (n − a + 1)ν)
Γ(t − n + 1)Γ((n − a + 1)ν)

≥
t

∑
n=a

λn−aΓ(t − n + (n − a + 1)ν)
Γ(t − n + 1)Γ((n − a + 1)ν)

=
t

∑
n=a

λn−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)

= ŷλ,ν(t, a)

since λ ≥ 1.

We conclude this section by giving the following useful theorem and remark.

Theorem 3.4. Assume λ ∈ R. The fractional difference equation of order ν where

ν ∈ (0,1)

∇ν
ay(t) = λy(t − 1) + f(t − 1) for t = a + 1, a + 2, a + 3, ..., (3.1.4)

14



has the general solution

y(t) = ŷλ,ν(t, a)c +
t−1

∑
s=a
ŷλ,ν(t + a − s − 1, a)f(s), t = a, a + 1, a + 2, ..., (3.1.5)

where c is constant.

Proof. A direct substitution gives that
t−1

∑
s=a
ŷλ,ν(t + a − s − 1, a)f(s) is a particular

solution of equation

∇ν
ay(t) = λy(t − 1) + f(t − 1).

We show that

∇ν
a

t−1

∑
s=a
ŷλ,ν(t + a − s − 1, a)f(s) = λ

t−2

∑
s=a
ŷλ,ν(t + a − s − 2, a)f(s) + f(t − 1).

Using the definition of the nabla fractional difference operator we have

∇ν
a

t−1

∑
s=a
ŷλ,ν(t + a − s − 1, a)f(s) = ∇∇−(1−ν)

a

t−1

∑
s=a
ŷλ,ν(t + a − s − 1, a)f(s)

= ∇
t

∑
u=a

(t − ρ(u))−ν
Γ(1 − ν)

u−1

∑
s=a

ŷλ,ν(u + a − s − 1, a)f(s).

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

Next we interchange the order of sums and obtain

I = ∇
t−1

∑
s=a

t

∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν)

ŷλ,ν(u + a − s − 1, a)f(s).

Next we apply the following rule [16] to the above expression

∇
t−1

∑
s=a
f(t, s) =

t−2

∑
s=a

∇f(t, s) + f(t, t − 1). (3.1.6)

15



Hence, we have

I =
t−2

∑
s=a

∇
t

∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν)

ŷλ,ν(u + a − s − 1, a)f(s)

+
t

∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν)

ŷλ,ν(u + a − s − 1, a)f(s) ∣t=t,s=t−1

=
t−2

∑
s=a

∇
t

∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν)

ŷλ,ν(u + a − s − 1, a)f(s) + f(t − 1)

since ŷλ,ν(a, a) = 1.

Next we use the substitution u + a − s − 1 = τ, we obtain

t

∑
u=s+1

(t − ρ(u))−ν
Γ(1 − ν)

ŷλ,ν(u + a − s − 1, a) =
t+a−s−1

∑
τ=a

(t − (τ + s − a + 1 − 1))−ν
Γ(1 − ν)

ŷλ,ν(τ, a)

= ∇−(1−ν)
a ŷλ,ν(t + a − s − 1, a).

Thus,

I =
t−2

∑
s=a

∇∇−(1−ν)
a ŷλ,ν(t + a − s − 1, a)f(s) + f(t − 1)

=
t−2

∑
s=a

∇ν
aŷλ,ν(t + a − s − 1, a)f(s) + f(t − 1)

= λ
t−2

∑
s=a
ŷλ,ν(t + a − s − 2, a)f(s) + f(t − 1)

We use Theorem 3.2 to complete the proof.

Remark 3.5. Assume λ ∈ R. The first order nabla difference equation

∇y(t) = λy(t − 1) + f(t − 1) for t = a + 1, a + 2, a + 3, .., (3.1.7)
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has the general solution

y(t) = (1 + λ)t−ac +
t−1

∑
s=a

(1 + λ)t+a−s−1f(s), t = a, a + 1, a + 2, ..., (3.1.8)

where c is constant.

If we take the ν = 1, then the solution of (3.1.7) and the our function value

coincides.Thus:

ŷλ,1(t, a) = (1 + λ)t−a.

3.2 Sequential Fractional Difference Equations

In this section we establish the solution of the sequential fractional equation

with constant coefficients

p∇ν
a∇ν

ay(t) + q∇ν
ay(t − 1) + ry(t − 2) = 0 for t = a + 2, a + 3, a + 4, . . . , (3.2.1)

where ν ∈ (0,1) and p, q, r are constant. The characteristic equation of (3.2.1) is given

as

pλ2 + qλ + r = 0.

Assume that λ1 and λ2 are the roots of the characteristic equation. By using

the fact that any given equation can be represented by its characteristic roots, we

have characteristic polynomial

∇ν
a∇ν

ay(t) − (λ1 + λ2)∇ν
ay(t − 1) + λ1λ2y(t − 2) = 0. (3.2.2)

CASE I. If λ1 ≠ λ2 and λ1, λ2 ∈ R.

By using the fact that, λ1 and λ2 are solutions of characteristic equation and

17



part (ii) of Lemma 3.3 we obtain

p∇ν
a∇ν

aŷλi,ν(t, a) + q∇ν
aŷλi,ν(t − 1, a) + rŷλi,ν(t − 2, a) = (pλ2

i + qλi + r)ŷλi,ν(t − 2, a) = 0

which implies that ŷλi,ν(t, a), i = 1,2 are solutions of (3.2.1). The functions ŷλ1,ν(t, a)

and ŷλ2,ν(t, a) are linearly independent, otherwise there would be nonzero constant

c1 and c2 such that

c1ŷλ1,ν(t, a) + c2ŷλ2,ν(t, a) = 0

for all t. First let t = a

ŷλ1,ν(a, a) = ŷλ2,ν(a, a) = 1.

c1 + c2 = 0.

Now let t = a + 1. Then we have

ŷλ1,ν(a + 1, a) = ν + λ1, ŷλ2,ν(a + 1, a) = ν + λ2

which implies that

c1(ν + λ1) + c2(ν + λ2) = 0.

This is a system of two equations and two unknowns. The determinant of the corre-

sponding matrix is

(ν + λ1) − (ν + λ2) = λ1 − λ2 ≠ 0.

Since determinant is nonzero the only solution is the trivial solution. That is c1 =

c2 = 0.

Since ŷλ1,ν(t, a) and ŷλ2,ν(t, a) are linearly independent we have that

y(t) = c1ŷλ1,ν(t, a) + c2ŷλ2,ν(t, a)

18



is the general solution of (3.2.1).

CASE II. If λ1 = λ2 = λ and λ ∈ R.

We claim that ŷλ,ν(t, a) and tŷλ,ν(t, a) are solutions of linear homogeneous

nabla fractional equation (3.2.1). In Case I we determined that ŷλ,ν(t, a) is a solution

of the equation (3.2.1) and we also need to show tŷλ,ν(t, a) is a solution of (3.2.1).

To continue the proof, we use Leibniz rule [33]

t
∇ ν

af(t)g(t) =
t−a
∑
n=0

(ν
n
)[
t−n
∇ ν−n

a f(t − n)][∇ng(t)].

For g(t) = t and f(t) = ŷλ,ν(t, a) we have

t

∇ν
a ŷλ,ν(t, a)t =

1

∑
n=0

(ν
n
)[
t−n
∇ ν−n

a ŷλ,ν(t − n, a)][∇nt].

By using

(ν
n
) = Γ(ν + 1)

Γ(n + 1)Γ(ν − n + 1)

we obtain (ν
0
) = 1, (ν

1
) = ν.

Since
t
∇ ν

aŷλ,ν(t, a) = λŷλ,ν(t − 1, a), we obtain the following form

t
∇ ν

aŷλ,ν(t, a)t = [
t
∇ ν

aŷλ,ν(t, a)]t + ν
t−1
∇ ν−1

a ŷλ,ν(t − 1, a) (3.2.3)

= λŷλ,ν(t − 1, a)t + ν
t−1
∇ ν−1

a ŷλ,ν(t − 1, a). (3.2.4)
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Next, we consider the second nabla fractional derivative of tŷλ,ν(t, a) to obtain

∇ν
a∇ν

aŷλ(t)t =
t
∇ ν

aλŷλ,ν(t − 1, a)t + ν
t
∇ ν

a

t−1
∇ ν−1

a ŷλ,ν(t − 1, a) (3.2.5)

= λ2ŷλ,ν(t − 2, a)t + νλ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a) + ν
t
∇ ν

a

t−1
∇ ν−1

a ŷλ,ν(t − 1, a).

(3.2.6)

Claim:
t
∇ ν

a

t−1
∇ ν−1

a ŷλ,ν(t − 1, a) = λ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a). (3.2.7)

We start to prove our claim by writing the left side as

∇
t
∇ −(1−ν)

a

t−1
∇ ν−1

a ŷλ,ν(t − 1, a). (3.2.8)

Then we use the lemma

∇−ν
a+1∇f(t) = ∇∇−ν

a f(t) −
(t − a + 1)ν−1

Γ(ν)
f(a).

Define
t−1
∇ ν−1

a ŷλ,ν(t − 1, a) = f(t). So f(a) = a and we conclude that

t
∇ ν−1

a+1∇f(t) = ∇
t
∇ ν−1

a f(t).

Thus (3.2.8) can be written as

t
∇ ν−1

a+1∇
t−1
∇ ν−1

a ŷλ,ν(t − 1, a) =
t
∇ ν−1

a+1

t−1
∇ ν

aŷλ,ν(t − 1, a).

Since
t
∇ ν

aŷλ,ν(t − 1, a) = λŷλ,ν(t − 2, a), by shifting one unit left we obtain

t−1
∇ ν

aŷλ,ν(t − 1, a) = λŷλ,ν(t − 3, a)
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Thus 3.2.8 can be written as

t
∇ ν−1

a+1

t−1
∇ ν

aŷλ,ν(t − 1, a) =
t
∇ ν−1

a+1λŷλ,ν(t − 3, a).

Using the definition of nabla sum , we have

t
∇ ν−1

a+1

t−1
∇ ν

aŷλ,ν(t − 1, a) = λ
t

∑
s=a+1

(t − ρ(s))−ν
Γ(1 − ν)

ŷλ,ν(s − 3, a)

By using s − 1 = τ , we have

t
∇ ν−1

a+1

t−1
∇ ν

aŷλ,ν(t − 1, a) = λ
t−1

∑
τ=a

(t − 1 − ρ(τ))−ν
Γ(1 − ν)

ŷλ,ν(τ − 2, a).

which equals to

t
∇ ν−1

a+1

t−1
∇ ν

aŷλ,ν(t − 1, a) = λ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a).

Next we need to show that tŷλ,ν(t, a) satisfies (3.2.2). Hence, by (3.2.4)-(3.2.6)-(3.2.7)

we have

∇ν
a∇ν

aŷλ,ν(t, a)t − (2λ)∇ν
aŷλ,ν(t − 1, a)(t − 1) + λ2ŷλ,ν(t − 2, a)(t − 2)

= λ2ŷλ,ν(t − 2, a)t + νλ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a) + νλ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a)

− 2λ2ŷλ,ν(t − 2, a)t + 2λ2ŷλ,ν(t − 2, a) − 2νλ
t−1
∇ ν−1

a ŷλ,ν(t − 2, a)

+ λ2ŷλ,ν(t − 2, a)t − 2λ2ŷλ,ν(t − 2, a)

= 0.

As a result, tŷλ(t) is also a solution of (3.2.1).
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The functions tŷλ,ν(t, a) and ŷλ,ν(t, a) are linearly independent, otherwise there

would be nonzero constants c1 and c2 such that

c1ŷλ,ν(t, a) + c2tŷλ,ν(t, a) = 0,

for all t ∈ Na. First let t = a, we have

tŷλ,ν(t, a)∣t=a = a, ŷλ,ν(t, a)∣t=a = 1,

hence

c1 + ac2 = 1.

Now let t = a + 1. Then

tŷλ,ν(t, a)∣t=a+1 = (a + 1)ν + (a + 1)λ, ŷλ,ν(t, a)∣t=a+1 = ν + λ,

implies that

c1(ν + λ) + c2((a + 1)ν + (a + 1)λ) = 0.

This is a system of two equations and two unknowns. Since the determinant of

the corresponding matrix is nonzero the only solution is the trivial solution.Thus

tŷλ,ν(t, a) and ŷλ,ν(t, a) are linearly independent. Since tŷλ,ν(t, a) and ŷλ,ν(t, a) are

linearly independent we have that

y(t) = c1tŷλ,ν(t, a) + c2ŷλ,ν(t, a)

is general solution of (3.2.1).

CASE III. If λ1 ≠ λ2 and λ1, λ2 ∈ C.
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Consider the following equation

∇ν
a∇ν

ay(t) + β2y(t − 2) = 0, t = a + 1, a + 2, . . . (3.2.9)

where ν ∈ (0,1). The characteristic equation of (3.2.9) is

λ2 + β2 = 0

and the roots of the characteristic equation are λ1, λ2 = ±iβ. We claim that the general

solution of the equation (3.2.9) is

y(t) = c1ĉosβ,ν(t, a) + c2ŝinβ,ν(t, a)

where c1, c2 are arbitrary constants and

ĉosβ,ν(t, a) =
ŷiβ,ν(t, a) + ŷ−iβ,ν(t, a)

2
, ŝinβ,ν(t, a) =

ŷiβ,ν(t, a) − ŷ−iβ,ν(t, a)
2i

.

Firstly, we need to show that ĉosβ,ν(t, a) and ŝinβ,ν(t, a) are solutions of (3.2.9). By

using the fact that ∇ν
a is linear we obtain

∇ν
aĉosβ,ν(t, a) =

∇ν
aŷiβ,ν(t, a) +∇ν

aŷ−iβ,ν(t, a)
2

= −β
∇ν
aŷiβ,ν(t − 1, a) −∇ν

aŷ−iβ,ν(t − 1, a)
2i

= −βŝinβ,ν(t − 1, a).
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Using a similar technique, we obtain the following identities.

∇ν
aŝinβ,ν(t, a) = βĉosβ,ν(t − 1, a)

∇ν
a∇ν

aĉosβ,ν(t, a) = −β2ĉosβ,ν(t − 2, a)

∇ν
a∇ν

aŝinβ,ν(t, a) = −β2ŝinβ,ν(t − 2, a).

Using the identities we get

∇ν
a∇ν

aĉosβ,ν(t, a) + β2ĉosβ,ν(t − 2, a) = 0

∇ν
a∇ν

aŝinβ,ν(t, a) + β2ŝinβ,ν(t − 2, a) = 0.

Thus shows that ĉosβ,ν(t, a) and ŝinβ,ν(t, a) satisfy (3.2.9) thus both of them are

solutions of (3.2.9). The proof of linearly independence follows a similar technique as

case-I and case-II. Since ĉosβ,ν(t, a) and ŝinβ,ν(t, a) are linearly independent we have

that

y(t) = c1ĉosβ,ν(t, a) + c2ŝinβ,ν(t, a)

is general solution of (3.2.9).

3.3 State-Space Representation of Nabla Fractional Difference

Equations

A dynamic system consisting of a finite number of inputs and outputs may be

described by ordinary differential equations in which time is the independent variable.

The state space representation of any linear system helps us to analyse the stability,

controllability, observability etc. For instance, nth order circuit systems, mechanical

rotating systems, and mechanical translating systems can be represented as an n piece
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first order linear differential system. Similarly, by using of the vector-matrix notation,

an nνth order linear nabla fractional difference equation may be expressed by a νth

order matrix valued linear nabla fractional difference equation. In this section, we

shall present methods for obtaining state-space representations of nνth order linear

nabla fractional difference equations.

Define

∇(nν)a y(t) ∶= ∇ν
a∇ν

a⋯∇ν
a

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

y(t), n ∈ N. (3.3.1)

This is known as a sequential fractional difference operator [1, 30, 31].

Consider that we have been given the following nνth order nabla fractional

equation,

an∇(nν)a u(t)+an−1∇((n−1)ν)
a u(t−1)+an−2∇((n−2)ν)

a u(t−2)+⋯+a0u(t−n) = f(t), (3.3.2)

for all t ∈ Na+n and given values

u(a),∇ν
au(a),∇

(2ν)
a u(a), . . . ,∇((n−1)ν)

a u(a).

Let us define

y1(t) = u(t − n)

y2(t) = ∇ν
au(t − n + 1)

y3(t) = ∇(2ν)a u(t − n + 2)

⋮ ⋮

yn(t) = ∇((n−1)ν)
a u(t − 1).
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Then we have

∇ν
ay1(t) = ∇ν

au(t − n) = y2(t − 1)

∇ν
ay2(t) = ∇(2ν)a u(t − n + 1) = y3(t − 1)

⋮ ⋮ ⋮

∇ν
ayn−1(t) = ∇((n−1)ν)

a u(t − 2) = yn(t − 1)

∇ν
ayn(t) = ∇

(nν)
a u(t − 1)

= −an−1

an
∇((n−1)ν)
a u(t − 2) −⋯ − a0

an
u(t − n − 1) + f(t − 1)

an

= −an−1

an
yn(t − 1) − an−2

an
yn−1(t − 1) −⋯ − a0

an
y1(t − 1) + f(t − 1)

an
.

Then equation (3.3.1) can be written as

∇ν
ay(t) = Ay(t − 1) +Bf(t − 1)

∇−(1−ν)
a y(t)∣t=a = y(a)

where
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y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(t)

y2(t)

⋮

yn−1(t)

yn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 ⋯ 1

− a0
an

− a1
an

− a2
an

⋯ −an−1an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⋮

0

1

an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.4 Vector Fractional Difference Equations

In this section, we study the following fractional difference equation

∇ν
ay(t) = Ay(t − 1) + f(t − 1), t ∈ Na+1

where where A is an n × n constant matrix, and y0 and y(.) are n × 1 vectors and we

present a method to compute the matrix exponential function ŷA,ν(t, a) in fractional

calculus.

Now, we give the following theorem, and the proof follows similar techniques

as Theorem 3.2.
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Theorem 3.6. The unique solution of the initial value problem

∇ν
ay(t) = Ay(t − 1), t = a + 1, a + 2, . . . (3.4.1)

∇−(1−ν)
a y(t)∣t=a = y(a) = y0 (3.4.2)

is given by

y(t) =
t

∑
n=a

An−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
y0, t ∈ Na

where A is an n × n constant matrix, y0 and y(.) are n × 1 vectors.

Next, we define following nabla function that we will be used sequel.

ŷA,ν(t, a) ∶=
t

∑
n=a

An−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
, t ∈ Na (3.4.3)

In the following lemma, we mention some important properties of the ŷA,ν(t, a).

Lemma 3.7. For given any A an n × n matrix, the following properties hold:

(i) ŷA,ν(a, a) = In.

(ii) ∇ν
aŷA,ν(t, a) = AŷA,ν(t − 1, a) t ∈ Na+1.

Proof. (i) The proof follows from the definition of the new nabla function.

(ii) ŷA,a(t, a) satisfies the IVP (3.4.1)-(3.4.2).

We omit the proof of the next theorem since it follows from the technique used

in the proof of Theorem 3.4 and the properties of ŷA,ν(t, a) in Lemma 3.7.

Theorem 3.8. (Variation of Constants) Let ν ∈ R, 0 < ν < 1, A be an n×n constant

matrix and suppose f(t− 1) is an n× 1 vector valued function. Then the initial value
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problem

∇ν
ay(t) = Ay(t − 1) + f(t − 1), t ∈ Na+1

∇−(1−ν)
a y(t)∣t=a = y(a) = y0,

has a unique solution. Moreover, this solution is given by

y(t) = ŷA,ν(t, a)y0 +
t−1

∑
s=a
ŷA,ν(t + a − s − 1, a)f(s), t ∈ Na (3.4.4)

3.4.1 Putzer Algorithm

The Putzer Algorithm is an analytic method for evaluating matrix exponen-

tial functions using eigenvalues and components in the solution of a relatively simple

linear system. This algorithm was defined by E. J. Putzer who studied the matrix

exponential and presented the method to compute eAt, where A is an n × n constant

matrix in 1966 [57]. Elaydi and Harris [22] presented a method for the computation

of An for non-singular A based on the Cayley–Hamilton theorem [29] and the pre-

cise determination of the eigenvalues of A. We shall present the proof of the Putzer

Algorithm to evaluate the matrix exponential in discrete fractional calculus.

Next, we want to give an algorithm to calculate ŷA,ν(t, a) in terms of ŷλ,ν(t, a)

where λ is an eigenvalue of the matrix A. For this purpose, we first define the matrix

exponential function in discrete fractional calculus. Then we will state and prove the

Putzer algorithm for any n × n matrix.

Definition 3.9. (Matrix Exponential Function) Let A be an n × n constant matrix.
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The unique matrix valued solution of the initial value problem(IVP)

∇ν
aY (t) = AY (t − 1) for t ∈ Na+1 (3.4.5)

∇−(1−ν)
a Y (t)∣t=a = Y (a) = In, (3.4.6)

where In denotes the n × n identity matrix, is called the matrix exponential function.

Theorem 3.10. If λ1, λ2, ..., λn are (not necessarily distinct) eigenvalues of the n×n

matrix A, with each eigenvalue repeated as many times as its multiplicity, then

ŷA,ν(t, a) =
n−1

∑
i=0

pi+1(t)Mi,

where

M0 = In

Mi = (A − λiIn)Mi−1, (1 ≤ i ≤ n − 1)

Mn = 0

and the vector valued function p defined by

p(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(t)

p2(t)

p3(t)

⋮

pn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the solution of the initial value problem
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∇ν
ap(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 0 ⋯ 0

1 λ2 0 ⋯ 0

0 1 λ3 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 1 λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(t − 1) for t ∈ Na+1 (3.4.7)

∇−(1−ν)
a p(t)∣t=a = p(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4.8)

Proof. Let Φ(t) =
n−1

∑
i=0

pi+1(t)Mi. We first show that Φ solves the IVP (3.4.5)-(3.4.6).

First note that

∇−(1−ν)
a Φ(a) = ∇−(1−ν)

a p1(a)M0 +∇−(1−ν)
a p2(a)M1 +⋯ +∇−(1−ν)

a pn(a)Mn−1

= In

since we are given the initial values p(a) = [1 0 0 ⋯ 0]
T

.

∇ν
aΦ(t) −AΦ(t − 1) = ∇ν

a

n−1

∑
i=0

pi+1(t)Mi −A
n−1

∑
i=0

pi+1(t − 1)Mi

= ∇ν
ap1(t)M0 +∇ν

ap2(t)M1 +⋯ +∇ν
apn(t)Mn−1 −A

n−1

∑
i=0

pi+1(t − 1)Mi,

31



since ∇ν
a is a linear operator. Next we use (3.4.7), so the last quantity equals

∇ν
aΦ(t) −AΦ(t − 1) = λ1p1(t − 1)M0 + [p1(t − 1) + λ2p2(t − 1)]M1

+ [p2(t − 1) + λ3p3(t − 1)]M2 +⋯ + [pn−1(t − 1) + λnpn(t − 1)]Mn−1

−A
n−1

∑
i=0

pi+1(t − 1)Mi

= [λ1M0 +M1 −AM0]p1(t − 1) + [λ2M1 +M2 −AM1]p2(t − 1)

+⋯ + [λnMn−1 −AMn−1]pn(t − 1)

= [λnIn −A]Mn−1pn(t − 1),

since Mi = (A − λiIn)Mi−1 for (1 ≤ i ≤ n). The last quantity is zero matrix by

Cayley-Hamilton Theorem. In fact,

(λnIn −A)Mn−1pn(t − 1) = −(A − λnIn)(A − λn−1In)⋯(A − λ1In)pn(t − 1)

= 0n×n.

Since ŷA,ν(t, a) satisfies the IVP (3.4.5)-(3.4.6), we have

Φ(t) = ŷA,ν(t, a)

by the unique solution of the given initial value problem.

Next, we will give an example to illustrate the use of the Putzer algorithm for

a 2 × 2 matrix.
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Example 3.11. Let the matrix A =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.2 0.5

0.6 −0.1

⎤⎥⎥⎥⎥⎥⎥⎦

be given with the eigenvalues λ1 =

0.4, λ2 = −0.7.

By using Theorem 3.4 we find that the solution of the IVP (3.4.7)-(3.4.8) is

given by

p1(t) = ŷ.4,ν(t, a) and

p2(t) =
t−1

∑
s=a
ŷ−.7,ν(t + a − s − 1, a)ŷ.4,ν(s, a).

Now we compute ŷA,ν(t, a) by using Theorem 3.10

ŷA,ν(t, a) = ŷ.4,ν(t, a)

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

+ p2(t)

⎡⎢⎢⎢⎢⎢⎢⎣

−0.6 0.5

0.6 −0.5

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

ŷ.4,ν(t, a) − .6p2(t) .5p2(t)

.6p2(t) ŷ.4,ν(t, a) − .5p2(t)

⎤⎥⎥⎥⎥⎥⎥⎦

.
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Chapter 4

CONTROLLABILITY AND OBSERVABILITY OF LINEAR

TIME-INVARIANT NABLA FRACTIONAL SYSTEMS

Nowadays the concepts of fractional order derivative and integrals have at-

tracted increasing attention from various fields of science and engineering communi-

ties. The main reason for this is that many physical materials and processes can be

properly described by using fractional order calculus. It has been proven by scientific

findings that many fractional-order mathematical models are the best description for

natural phenomena. Most of the research on the applications of the fractional differ-

ence/differential calculus are focused on the temporal state of physical change, image

processing, viscoelastic theory, controller design, and random fractional dynamics

[51, 54, 55, 56].

The study of controllability and observability plays an important role in control

theory and engineering. They have close connections to pole assignment, structural

decomposition, quadratic optimal control, observer design, controller design, and so

forth. For this reason, many active scholars contributed to controllability of continu-

ous time systems [5, 36, 37, 50] and controllability of dynamic systems on time scales

[12, 13, 24, 27, 63]. Bartosiewicz and Pawluszewicz [12] proposed the controllability

criteria for linear time-invariant dynamic systems on time scales, whereas Fausett and

Murty [27] not only studied the controllability of dynamic systems but also obtained

the observability and realizability criteria for linear time-invariant dynamic systems

on time scales. Davis et al. [24] proved some basic results on controllability, observ-

ability, and realizability of linear time-invariant dynamic systems, and then extended

their results to time-variant systems. Pawluszewicz [13] proposed a necessary and

sufficient condition for positive reachability of a positive system on an arbitrary time

scale considering the Gramian matrix. However, when studying the controllability

34



of dynamic systems [12, 24, 27], one must assume that the graininess function is

differentiable, an assumption that is not satisfied in general for all time scales. For

this reason, Wintz and Bohner [63] altered the system and obtained controllability of

time-invariant linear dynamic systems without assuming differentiability of the grain-

iness function. Due to these solid works, controllability theory on continuous time

systems, dynamic systems, and continuous fractional order systems [14, 15, 41, 47]

all have been well developed.

In contrast to that for the continuous-time case, the amount of literature which

focus on controllability of time-invariant linear discrete systems is much less. The con-

trollability of the linear discrete-time systems have been investigated in [21, 49, 51],

and the necessary and sufficient conditions for discrete fractional order systems with

the Grünwald-Letnikov operator are given in [34, 36, 59]. Kaczorek [36] introduced

the notion of the positive fractional discrete-time linear system and proposed the nec-

essary and sufficient conditions for the positivity, reachability, and controllability to

zero. Guermah et al. [34] studied controllability and observability of linear discrete-

time fractional-order systems that are modeled by a discrete-time linear system with

delays in states. Mozyrska et al. [44] proposed the properties of the h-difference

linear control systems with fractional order and developed the rank conditions for

controllability and observability of fractional order systems with the Caputo-Type

operator. Then they extended their results to h-difference linear control systems

with n different fractional orders in [45]. Mozyrska et al. [46] investigated the local

controllability and observability of nonlinear discrete-time systems considering the

Caputo, the Riemann-Liouville, and the Grünwald-Letnikov-type h-difference frac-

tional operators. In [7] Atici and Nguyen studied the controllability and observability

of the discrete ∆-fractional time-invariant linear systems.

Fractionalizing of mathematical models in the field of applied mathematics is
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a method which improves the descriptive meaning of the mathematical models of real

world problems, as illustrated in many papers in the area of applied mathematics,

physics, computer science, and bioengineering [11, 40, 51, 55]. So the natural question

follows: Do we keep or lose the controllability of the discrete system if we fractionalize

it?

Motivated by this question and the recent work in discrete time, we shall

continue to develop the control theory in discrete time and search for an answer to

this question in this chapter. We discuss the controllability and observability of a

linear time-invariant nabla discrete fractional state-space model, which is represented

by
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = Ay(t − 1) +Bu(t − 1)

z(t) = Cy(t) +Du(t)
, (4.0.1)

where A is an n × n constant matrix, B is an n ×m constant matrix, C is an r × n

constant matrix, D is an r×m constant matrix, y(t) is an n×1 state vector, u(t) is an

m × 1 control vector (control signal) and z(t) is an r × 1 the output vector (response

vector).

Throughout this chapter we assume that t0, t1 ∈ R+ and t1 − t0 ∈ Z+.

This chapter is organized as follows: In Section 4.1, we give the definition

of controllability and controllability to the origin. We give a necessary and suffi-

cient condition for the linear time-invariant fractional difference system (4.0.1) to be

controllable via the controllability Gramian matrix. In particular, it requires more

computations of ŷA,ν(⋅, t0)(see Chapter-3). For this reason, we give the Kalman rank

condition to be controllable via the controllability matrix. We close Section 4.1 by

giving the necessary condition for the two notions completely controllable and control-

lability to the origin to coincide. While observability of (4.0.1) is studied in Section 4.2

and similarly necessary and sufficient conditions to be observable are given in terms
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of the observability Gramian matrix and observability matrix. Section 4.3 discusses

the relationship between the controllability and observability of the system (4.0.1)

with the duality principle.

4.1 Controllability

In this section, we establish the criterion for controllability of the linear discrete-

fractional time-invariant system

∇ν
t0y(t) = Ay(t − 1) +Bu(t − 1), t ∈ Nt1

t0+1, (4.1.1)

where y(t0) = y0 is the initial state, A is an n × n constant matrix, y(t) is an n × 1

state vector, B is an n×m constant matrix and u(t) is an m×1 control vector, m ≤ n

and 0 < ν < 1. Because the output does not play any role in controllability, the output

equation is disregarded in this study. By Theorem 3.8 the corresponding solution of

the system (4.1.1) is

y(t) = ŷA,ν(t, t0)y0 +
t−1

∑
s=t0

ŷA,ν(t + t0 − s − 1, t0)Bu(s). (4.1.2)

We say that a system is controllable if we can transfer any initial state to any

arbitrary final state under the control vector of the system. Now we present a formal

definition of this and controllability to the origin.

Definition 4.1. A system modeled by (4.1.1) or pair {A,B} is said to be completely

controllable, if it is possible to construct a control signal u(t) that will transfer any

initial state y(t0) to any final state y(t1) in finite discrete time interval t ∈ Nt1−1
t0

.

Otherwise the system (4.1.1) or {A,B} is said to be uncontrollable.
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Definition 4.2. If every non-zero initial state y(t0) can be transferred to final state

y(t1) = 0n×1, by control signal u(t) in finite discrete time interval t ∈ Nt1−1
t0

, then the

system (4.1.1) is said to be controllable to the origin.

To give necessary and sufficient conditions for controllability of the linear sys-

tem (4.1.1), we will define the controllability matrix and the controllability Gramian

matrix of the given fractional control system (4.1.1).

The controllability matrix Ŵ of the system (4.1.1) is defined as an n × (nm)

matrix

Ŵ ∶= [B AB A2B ⋯ An−1B]

and we define controllability Gramian matrix P of the system (4.1.1) as an n × n

matrix

P(t, t0) ∶=
t−1

∑
s=t0

ŷA,ν(s, t0)BBT [ŷA,ν(s, t0)]T .

Theorem 4.3. The following statements are equivalent:

(i) The system ∇ν
t0
y(t) = Ay(t − 1) + Bu(t − 1) is completely controllable on the

discrete time interval Nt1
t0+1.

(ii) The controllability Gramian matrix P(t1, t0) has rank n.

(iii) The controllability matrix Ŵ has rank n.

Proof. (i)⇔ (ii)

First we show that if a given system is completely controllable then control-

lability Gramian matrix P(t1, t0) of the given system has rank n. Let us prove this

by contradiction. Suppose that rank(P(t1, t0)) < n. And then there exists a nonzero
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vector η ∈ Rn such that ηTP(t1, t0) = 01×n. Then it follows that

0 = ηTP(t1, t0)η

=
t1−1

∑
s=t0

ηT ŷA,ν(s, t0)BBT [ŷA,ν(s, t0)]Tη

=
t1−1

∑
s=t0

∣∣ηT ŷA,ν(s, t0)B∣∣22,

where ∣∣ ⋅ ∣∣2 defines the Euclidean norm. Hence

ηT ŷA,ν(t, t0)B = 01×m, t ∈ Nt1−1
t0

. (4.1.3)

From the controllable assumption there exists a control signal u(t) that will transfer

initial state y(t0) = y0 to final state y(t1) = yf = ŷA,ν(t1, t0)y0 + η. By substitution of

initial and final state in to (4.1.2) the solution of the given system becomes

ŷA,ν(t1, t0)y0 + η = ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

η =
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s).

Multiplying though by ηT and using (4.1.3) yields

ηTη =
t1−1

∑
s=t0

ηT ŷA,ν(t1 + t0 − s − 1, t0)Bu(s) = 0,

which contradicts the assumption that η is a nonzero vector in Rn Thus, the control-

lability Gramian matrix P(t1, t0) has rank n.

Conversely, suppose P(t1, t0) has rank n. Then it follows that P(t1, t0) is

invertible. Therefore, for the given any initial state y(t0) = y0 and final state y(t1) = yf

39



we can choose the control signal u(t) as

u(t) = BT [ŷA,ν(t1 + t0 − t − 1, t0)]T [P(t1, t0)]−1[yf − ŷA,ν(t1, t0)y0].

The corresponding solution of the system at t = t1 can be written as

y(t1) = ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

= ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)BBT [ŷA,ν(t1 + t0 − s − 1, t0)]T

× [P(t1, t0)]−1[yf − ŷA,ν(t1, t0)y0].

By performing the above last summation we obtain

t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)BBT [ŷA,ν(t1 + t0 − s − 1, t0)]T

= ŷA,ν(t1 − 1, t0)BBT [ŷA,ν(t1 − 1, t0)]T + ŷA,ν(t1 − 2, t0)BBT [ŷA,ν(t1 − 2, t0)]T

+⋯ + ŷA,ν(t0, t0)BBT [ŷA,ν(t0, t0)]T

=
t1−1

∑
s=t0

ŷA,ν(s, t0)BBT [ŷA,ν(s, t0)]T = P(t1, t0).

Hence we have

y(t1) = ŷA,ν(t1, t0)y0 +P(t1, t0)[P(t1, t0)]−1[yf − ŷA,ν(t1, t0)y0] = yf .

This shows that if the controllability Gramian matrix P(t1, t0) has rank n, then a

given system is completely controllable on given discrete time interval.
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(i)⇔ (iii) First we note that for all N ≥ n the rank of matrix

Ŵ (N) = [B AB A2B ⋯ AN−1B]

is equal to the rank of the controllability matrix Ŵ . By the Cayley-Hamilton’s

theorem

An =
n−1

∑
s=0

psA
s,

where −ps are coefficients of the characteristic polynomial of A. Multiplying the above

last expression by the matrix B we obtain

AnB =
n−1

∑
s=0

psA
sB.

Thus columns of AnB are linearly dependent on the columns of Ŵ and

rank(Ŵ (n + 1)) = rank(Ŵ ).

Multiplying the last equation by the matrix A we obtain

An+1B =
n−1

∑
s=0

psA
s+1B.

Consequently, rank(Ŵ )(n + 2) = rank(Ŵ )(n + 1) = rank(Ŵ ). Proceeding forward,

we can conclude that rank(Ŵ (N)) = rank(Ŵ ) for all N ≥ n. Thus, here we assume

that t1 − t0 = n.

First we show that if the given system is completely controllable, then the

controllability matrix has full rank n. Since given system is completely controllable,

there exists a control signal u(t) that will transfer any given initial state y(t0) = y0 ∈

Rn to any final state y(n + t0) = yf ∈ Rn. Plugging t1 = n + t0 into the solution (4.1.2)
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yields

yf = ŷA,ν(n + t0, t0)y0 +
n+t0−1

∑
s=t0

ŷA,ν(n + 2t0 − s − 1, t0)Bu(s).

By performing the sum we obtain

y(n + t0) − ŷA,ν(n + t0, t0)y0 =
n+t0−1

∑
s=t0

ŷA,ν(s, t0)Bu(n + 2t0 − s − 1)

=
n+t0−1

∑
s=t0

s

∑
τ=t0

Aτ−t0(s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
Bu(n + 2t0 − s − 1)

=
n+t0−1

∑
τ=t0

Aτ−t0B
n+t0−1

∑
s=τ

(s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
u(n + 2t0 − s − 1),

where we interchanged the order of the summations. Next, we define F (τ) for t0 ≤

τ ≤ n + t0 − 1 by

F (τ) =
n+t0−1

∑
s=τ

(s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
u(n + 2t0 − s − 1).

Substituting back F (τ) into equation, we have

yf − ŷA,ν(n + t0, t0)y0 =
n+t0−1

∑
τ=t0

Aτ−t0BF (τ)

yf − ŷA,ν(n + t0, t0)y0 = [B AB A2B⋯An−1B]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (t0)

F (t0 + 1)

F (t0 + 2)

⋮

F (t0 + n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ŴF1(n). (4.1.4)

Suppose the controllability matrix Ŵ has rank less than n, then this implies

that there exists a nonzero vector η ∈ Rn such that ηT Ŵ = 01×(mn). Hence, multiplying
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both sides of (4.1.4) by ηT yields ηT (yf − ŷA,ν(n+ t0, t0)y0) = 01×n regardless of control

signal u(t). Since the given system is completely controllable, we choose yf = ŷA,ν(n+

t0, t0)y0+η. Then ηTη = 0 which contradicts the assumption that η is a nonzero vector.

Therefore, rank(Ŵ ) = n.

For the converse, suppose rank(Ŵ ) = n, but for the sake of a contradiction, we

assume that the given system is uncontrollable. Since the system is uncontrollable,

then the controllability Gramian matrix P(t0+n, t0) has rank less than n. Hence there

exists η ∈ Rn such that ηTP(t0 + n, t0) = 01×n. Then we have

0 = ηTP(t0 + n, t0)η

=
n+t0−1

∑
s=t0

ηT ŷA,ν(s, t0)BBT [ŷA,ν(s, t0)]Tη

=
n+t0−1

∑
s=t0

∣∣ηT ŷA,ν(s, t0)B∣∣22,

which implies that

ηT ŷA,ν(t, t0)B = 01×m for all t ∈ Nt0+n−1
t0

. (4.1.5)

Setting t = t0 and using Lemma 3.7 (i) we have

ηTB = 01×m.

Applying ν-th order fractional difference operator to the each side of the last

equality and using Lemma 3.7 we have ηTAŷA,ν(t − 1, t0)B = 01×m for all t ∈ Nt0+n−1
t0+1 .

Hence we have

ηTAŷA,ν(t, t0)B = 01×m for all t ∈ Nt0+n−2
t0

.
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Setting t = t0 and using Lemma 3.7 we have

ηTAB = 01×m.

Repeating the same step up to n − 1 times, we have

ηTAkB = 01×m for k = 0,1, ..., n − 1.

Then we have

ηT [B AB A2B ⋯ An−1B] = ηT Ŵ = 01×(mn).

This contradicts the assumption that rank(Ŵ ) = n. Thus the controllability Gramian

matrix has rank n implies that the given system is completely controllable.

Remark 4.4. Note that, for every η ∈ Rn

ηTP(t1, t0)η =
t1−1

∑
s=t0

∣∣ηT ŷA,ν(s, t0)B∣∣2.

Hence the controllability Gramian matrix P(t1, t0) is a non-negative symmetric ma-

trix. In particular P(t1, t0) has rank n if there exits p > 0 such that

ηTP(t1, t0)η ≥ p

for all η ∈ Rn.

Since the controllability Gramian matrix is a non-negative symmetric matrix,

in the statement of Theorem 4.3, (i) being equivalent to (ii) (i.e (i) ⇔ (ii)) can

be interpreted as saying the given time-invariant linear nabla fractional difference

system is completely controllable on the given discrete time interval if and only if
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the controllability Gramian matrix is positive definite (or the controllability Gramian

matrix is invertible) [24, 63].

In the statement of Theorem 4.3, (i) being equivalent to (iii) (i.e (i)⇔ (iii))

is called the Kalman Rank Condition after Kalman [37] established the proofs for the

continuous (R) and discrete cases (Z). However, it is essential to point out that the

proof here is not the one that Kalman gave. In continuous (R) and discrete cases

(Z), the results are more straightforward while we use the matrix exponential on Z

and the discrete fractional case requires additional argument as illustrated above.

Next, we provide an example to illustrate the applicability of the Theorem 4.3.

Example 4.5. Consider the following system

∇ν
t0y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1

5 −9 1

6 −3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t − 1) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t − 1),

where 0 < ν < 1.

From the given condition we obtain the controllability matrix of system

Ŵ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 −1 −1

1 0 −4 1 39 −5

0 1 3 −1 9 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be easily verified that the rank of Ŵ is 3. Thus by Theorem 4.3 the given linear

fractional order system is completely controllable.

Next we give an extra assumption on ŷ to prove that completely controllability

and controllability to the origin are equivalent concepts for the given system (4.1.1).
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Theorem 4.6. If ŷA,ν(⋅, t0) in (4.1.1) is non-singular on discrete time interval t ∈

Nt1
t0+1, then the given system is completely controllable if and only if the system is

controllable to the origin.

Proof. Suppose that the system (4.1.1) is completely controllable. Choose final state

as y(t1) = 0n×1. Then by the Definition 4.2 the given system is controllable to the

origin.

Assume that ŷA,ν(⋅, t0) in (4.1.2) is non-singular on discrete time interval Nt1
t0+1

and the system (4.1.1) is controllable to the origin. For given any initial state y(t0)

and any final state y(t1), define

x(t0) ∶= y(t0) − [ŷA,ν(t1, t0)]−1y(t1) x(t1) ∶= 0n×1.

Then we obtain a system with initial state x(t0) and final state x(t1), by

assumption there exists u(t) in finite discrete time interval t ∈ Nt1−1
t0

, such that x(t0)

can be transferred to x(t1). By Theorem 3.8 we have,

x(t1) = ŷA,ν(t1, t0)x(t0) +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

0n×1 = ŷA,ν(t1, t0)[y(t0) − [ŷA,ν(t1, t0)]−1y(t1)] +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

0n×1 = ŷA,ν(t1, t0)y(t0) − y(t1) +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

y(t1) = ŷA,ν(t1, t0)y(t0) +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)

so for any given initial state y(t0) and any final state y(t1) there exists a control

vector u(t). This means that the given system is completely controllable.
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4.2 Observability

In this section we discuss the observability of the following linear discrete

fractional system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = Ay(t − 1) +Bu(t − 1), t ∈ Nt1

t0+1

z(t) = Cy(t) +Du(t)
(4.2.1)

where z(t) is an r × 1 the output vector, C is an r ×n constant matrix, D is an r ×m

constant matrix and A,B, y(⋅), u(⋅) are defined as in (4.1.1).

Suppose we are given z(t) and u(t) for t ∈ Nt1
t0

. We substitute the solution of

state system (4.1.2) into the output measurement and we obtain

z(t) = Cy(t) +Du(t)

= C[ŷA,ν(t1, t0)y0 +
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s)] +Du(t).

Hence we have

CŷA,ν(t1, t0)y0 = z(t) −C
t1−1

∑
s=t0

ŷA,ν(t1 + t0 − s − 1, t0)Bu(s) −Du(t).

Since A,B,C,D matrices and control vector u(t) are given, the last two terms on the

right-hand side of this equation are known quantities. Thus, we can subtract known

terms from the observed value of output vector z(t) and we define right-hand side by

z1(t). Then response of the system (4.2.1) can be written as

CŷA,ν(t1, t0)y0 = z1(t). (4.2.2)
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We say that a system is observable if we can measure or determine the state of

the system based on its outputs. Now we present a formal definition of observability.

Definition 4.7. The system (4.2.1) is said to be completely observable, if every state

y(t0) can be uniquely determined from the observation of z(t) over a finite discrete

time interval t ∈ Nt1
t0
. Otherwise the system (4.2.1) or {A,C} is said to be unobservable.

To give necessary and sufficient conditions for observability of the system 4.2.1,

we define the observability matrix and the observability Gramian matrix of the control

system.

We define the observability matrix Ô of this system as an (nr) × n matrix

Ô ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Next, let us define observability Gramian matrix R(t, t0) of the system (4.2.1)

as an n × n matrix

R(t, t0) ∶=
t−1

∑
s=t0

ŷA,ν(s, t0)TCTCŷA,ν(s, t0).

Theorem 4.8. The following statements are equivalent.

(i) The system (4.2.1) is completely observable on Nt1
t0
.

(ii) The observability Gramian matrix R(t1, t0) has rank n.

(iii) The observability matrix Ô has rank n.
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Proof. (i)⇐⇒ (ii).

First we show that if the given system is completely observable, then rank(R(t1, t0)) =

n. We will prove the contrapositive, suppose rank(R(t1, t0)) < n, then there exists a

nonzero vector η ∈ Rn such that R(t1, t0)η = 0n×1. Then we have

0 = ηTR(t1, t0)η

=
t1−1

∑
s=t0

ηT ŷA,ν(s, t0)TCTCŷA,ν(s, t0)η

=
t1−1

∑
s=t0

∣∣CŷA,ν(s, t0)η∣∣22.

which implies CŷA,ν(t, t0)η = 0r×1 for all t ∈ Nt1−1
t0

. Thus y(t0) = y0 + η yields the same

response for the system as y(t0) = y0 and contradicts the assumption that the given

system is completely observable. Therefore rank(R(t1, t0)) = n.

On the other hand, suppose the matrix R(t1, t0) has rank n. Multiplying both

sides of (4.2.2) by ŷA,ν(t, t0)TCT and taking summation over the discrete interval

t ∈ Nt1−1
t0

, we obtain

t1−1

∑
s=t0

ŷA,ν(s, t0)TCTCŷA,ν(s, t0)y0 =
t1−1

∑
s=t0

ŷA,ν(s, t0)TCT z1(s)

R(t1, t0)y0 =
t1−1

∑
s=t0

ŷA,ν(s, t0)TCT z1(s).

Since rank(R(t1, t0)) = n, the matrix is invertible and

y0 =R(t1, t0)−1
t1−1

∑
s=t0

ŷA,ν(s, t0)TCT z1(s).

Hence, the given system is completely observable.

(i)⇔ (iii).
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Firstly, for all N ≥ n the rank of matrix

[C CA CA2 ⋯ CAN−1]
T

is equal to the rank of observability matrix Ô. The proof follows from the Cayley-

Hamilton theorem and is similar to the controllability case. Here we assume t1−t0 = n.

Assume that the system (4.2.1) is completely observable. Multiplying both

sides of the state response (4.2.2) by ŷA,ν(t, t0)TCT and taking summation over the

discrete interval t ∈ Nt0+n−1
t0

, we obtain

R(t0 + n, t0)y0 =
t0+n−1

∑
s=t0

ŷA,ν(s, t0)TCT z1(s)

=
t0+n−1

∑
s=t0

s

∑
τ=t0

[Aτ−t0]T (s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
CT z1(s)

=
t0+n−1

∑
τ=t0

[Aτ−t0]TCT
t0+n−1

∑
s=τ

(s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
z1(s),

where we interchanged order of the summation. Next, we define G(τ) for all τ ∈

Nt0+n−1
t0

by

G(τ) =
t0+n−1

∑
s=τ

(s − τ + 1)(τ−t0+1)ν−1

Γ((τ − t0 + 1)ν)
z1(s).

Substituting back G(τ) into the equality, we obtain

R(t0 + n, t0)y0 =
t0+n−1

∑
s=t0

[Aτ−t0]TCTG(τ)
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R(t0 + n, t0)y0 = [CT ATCT (A2)TCT ⋯ (An−1)TCT ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(0)

G(1)

G(2)

⋮

G(n − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ÔTG1(n).

(4.2.3)

Since the system is completely observable and (i) ⇔ (ii), then R(t0 + n, t0)

has full rank n, thus R(t0 +n, t0)y0 ∈ Rn. Since rank(ÔTG1(n)) ≤ rank(ÔT ) we have

Rn ⊆ Im(ÔT ) ⊆ Rn. Therefore, rank(ÔT ) = n = rank(Ô).

Conversely, we show that if rank(Ô) = n, then the given system is completely

observable. We assume to the contrary that the given system is unobservable. Since

the given system is unobservable, by (i)⇔ (ii) the observability Gramian matrix has

rank less than n, and there exists a nonzero vector η ∈ Rn such that ηTR(t0 +n, t0) =

01×n. Then we have

0 = ηTR(t0 + n, t0)η

=
t0+n−1

∑
s=t0

ηT ŷA,ν(s, t0)TCTCŷA,ν(s, t0)η

=
t0+n−1

∑
s=t0

∣∣CŷA,ν(s, t0)η∣∣22

which implies that

CŷA,ν(t, t0)η = 0r×1 for all t ∈ Nt0+n−1
t0

.
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Now setting t = t0 and using Lemma (3.7) (i) yields

Cη = 0r×1.

Applying the ν-th order fractional difference operator to both sides of the last

equality and using Lemma 3.7 yield CAŷA,ν(t − 1, t0)η = 0r×1 for all t ∈ Nt0+n−1
t0+1 and

shifting each side one unit left we obtain

CAŷA,ν(t, t0)η = 0r×1 for all t ∈ Nt0+n−2
t0

.

Setting t = t0 and using Lemma 3.7 one has

CAη = 0r×1.

Repeating the same step up to n − 1 times, we have

CAkη = 0 for k = 0,1,2, ..., n − 1.

Then
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η = Ôη = 0(rn)×1.

This contradicts the assumption rank(Ô) = n. Therefore the observability Gramian

matrix having full rank implies that the given system is completely observable.

We now provide some remarks regarding the observability Gramian matrix
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and the observability matrix.

Remark 4.9. Note that, for every η ∈ Rn

ηTR(t1, t0)η =
t1−1

∑
s=t0

∣∣CŷA,ν(s, t0)η∣∣22.

Therefore like the controllability Gramian matrix, the observability Gramian matrix

R(t1, t0) is a non-negative symmetric matrix. In particular R(t1, t0) has rank n if

there exits c > 0 such that

ηTR(t1, t0)η ≥ c

for all η ∈ Rn.

Since the observability Gramian matrix is a non-negative symmetric matrix,

in the statement of Theorem 4.3, (i) being equivalent to (ii) (i.e (i) ⇔ (ii)) can

be interpreted as saying the given time-invariant linear nabla fractional difference

system is completely observable on the given discrete time interval if and only if the

observability Gramian matrix is positive definite (or the observability Gramian matrix

is invertible) [24, 63].

Similarly, in the statement of Theorem 4.3, (i) being equivalent to (iii) (i.e

(i)⇔ (iii)) is called the Kalman Rank Condition for the observability of the system.

The following example illustrates the applicability of Theorem 4.8.
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Example 4.10. Consider the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1

5 −9 1

6 −3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(t − 1) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t − 1)

z(t) = [1 0 1] y(t)

,

where 0 < ν < 1.

Using Theorem 4.8, we get the observability matrix of the system

Ô =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1

5 −2 0

−15 23 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

whose has rank 3. Thus, by Theorem 4.8 given linear fractional order system is

completely observable.

We continue with the remark by stating that the rank conditions for the dy-

namic systems on time scales, continuous fractional systems, and discrete fractional

systems coincide.

Remark 4.11. Let T be a time scale and ν be a real number such that 0 < ν < 1.

The following control systems have same controllability and observability criteria.

Consider the following systems:
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(i) The linear dynamic time-invariant system on T

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y∆(t) = Ay(t) +Bu(t), t ∈ [t0, t1] ∩T,

z(t) = Cy(t) +Du(t),
(4.2.4)

where t0, t1 ∈ T.

(ii) The linear ∇-discrete fractional time-invariant system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = Ay(t − 1) +Bu(t − 1), t ∈ Nt1

t0+1,

z(t) = Cy(t) +Du(t).
(4.2.5)

(iii) The linear ∆-discrete fractional time invariant system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆ν
ν−1y(t) = Ay(t + ν − 1) +Bu(t + ν − 1), t = 0,1,2, . . . .

z(t) = Cy(t) +Du(t), t = ν − 1, ν, . . .

(4.2.6)

(iv) The continuous fractional time-invariant system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dνy(t) = Ay(t) +Bu(t) t ∈ [t0, t1],

z(t) = Cy(t) +Du(t).
(4.2.7)

The system (4.2.4) in [24], the system (4.2.5) in this paper, the system (4.2.6)

in [7], and the last system (4.2.7) in [41] have the same controllability matrix

[B AB A2B ⋯ An−1B] .

Additionally, observability also studied in the mentioned papers and all have the same
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observability matrix
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4.3 Duality Principle

The notions of controllability and observability can be thought of as duals

of one another, and so any theorems and concepts for controllability should have

analogs in terms of observability and vice-versa. The duality principle is useful to

prove any theorem for the observability of the systems by using the doctrines that

we obtained for controllability and vice-versa. Thus in this section, we establish

the connection between controllability and observability of the linear time-invariant

fractional difference systems via the duality concept.

Theorem 4.12. We consider that the following systems are defined on the discrete

interval t ∈ Nt1
t0+1 and 0 < ν < 1. The linear discrete fractional time-invariant system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = Ay(t − 1) +Bu(t − 1)

z(t) = Cy(t) +Du(t)
(4.3.1)

is completely controllable (observable) if and only if the linear discrete fractional time-

invariant system
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = ATy(t − 1) +CTu(t − 1)

z(t) = BTy(t) +DTu(t)
(4.3.2)
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is completely observable(controllable).

Proof. By Theorem 4.3 linear system (4.3.1) is completely controllable if and only if

controllability matrix

Ŵ = [B AB A2B ⋯ An−1B] .

has rank n. Obviously this is true if and only if transpose matrix

Ŵ T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT

BTAT

BT (A2)T

⋯

BT (An−1)T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

has rank n. Since this transpose matrix is the observability matrix of linear system(4.3.2),

Ŵ T = Ô and Theorem 4.8 yields that indeed if and only if linear system (4.3.2) is

completely observable. Similarly, one can easily prove that linear system (4.3.1)

is completely observable if and only if linear system (4.3.2) is completely control-

lable.
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Chapter 5

CONTROLLABILITY AND OBSERVABILITY OF LINEAR

TIME-VARIANT NABLA FRACTIONAL SYSTEMS

Control theory, a branch of the systems theory, deals with behaviors of inputs

and outputs of a given system. Controllability and observability are two fundamental

concepts in the control theory. A system is said to be controllable if it can be trans-

ferred from any initial state to any arbitrary final state under the control vector of

the system. A system is observable if we can measure or determine the state of the

system based on its outputs. The controllability and observability became particu-

larly important for practical implementations after Kalman [37] introduced the rank

conditions. There exist many papers in the literature in which these two concepts

are investigated for the linear/non-linear time-invariant continuous or discrete-time

systems [9, 14, 15, 19, 20, 24, 35, 37, 38, 51]. The research in this area has been

developed in two directions: (i) a study on the time-invariant systems and (ii) a

study on the time-variant systems.

The time-variant system refers to a system such that output and input param-

eters are depending on the time. Almost all systems, which model real world problems

are time-varying systems. However, the time-varying system may be tough to be sat-

isfied by the controllability and observability conditions or to be shown whether it is

stable or not, due to difficulties in computing its solution. Thus, many scholars are

trying to approximate the actual plant by a simple model using available techniques

for the linear time-invariant continuous or discrete-time systems. Even though such

corresponding models may present a good approximation for some actual plants, there

are some time-variant systems, which cannot be modeled by assuming that they are

time-invariant such as the aerodynamic coefficients of aircraft, the earth’s thermo-

dynamic response to incoming solar irradiance, the circuit parameters in electronic
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circuits and the human vocal track. Therefore, and by the advance of technology all

these are motivating us to have more detailed study on the linear time-variant control

systems.

In contrast to the time-invariant systems, the amount of literature which fo-

cuses on the controllability and observability of linear time-variant systems [20, 24,

26, 58, 60, 61, 62] is much less. Tsakalis and Ioannou [60] have investigated the

continuous time systems and introduced the analysis and design techniques for lin-

ear time-invariant systems, while Silverman and Meadow [61] introduced the test

for the controllability and observability of time-varying systems. This test is a gen-

eralization of the familiar Wronskian determinant test for scalar functions. Rum-

chev and Adeane [58] established the necessary and sufficient conditions for the

null-controllability, reachability, and controllability of the time-variant discrete-time

positive linear systems, while Engwerda [26] commonly investigated the reachabil-

ity, output-controllability and target path controllability of the linear discrete time-

varying systems. Much more solid work were done by Weiss [62], who not only

studied the controllability and observability of the linear time-varying discrete sys-

tems but also investigated the sufficient conditions for the local controllability of the

non-linear discrete-time systems and obtained the necessary and sufficient conditions

for the Lyapunov stability and stability of the non-linear difference systems.

The discrete fractional calculus is a new field for researchers. By interpretation

of computers to signal processing, which deals with a tremendous amount of informa-

tion expressed by discrete numbers, the study of discrete-time systems is becoming

practical and promising. Thus in recent years, the discrete fractional calculus [6, 32]

has been developed as a counterpart to the classical integer-order calculus.

Motivated by the importance of the study of the linear time-variant control

systems and the descriptive power of the fractional order systems in real world prob-
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lems, we propose the following discrete fractional time-variant system in order to

investigate controllability and observability:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0y(t) = A(t)y(t − 1) +B(t)u(t − 1)

z(t) = C(t)y(t) +D(t)u(t)

where ν is positive real number such that 0 < ν < 1, y(t) is an n × 1 state vector of

the system, u(t) is an m× 1 control input, z(t) is an r × 1 output vector, A(t), B(t),

C(t), and D(t) are an n×n, an n×m, an r×n, and an r×m matrix valued functions,

respectively.

To the best of our knowledge there are no results relating to the study of the

above system in the literature.

This chapter is organized as follows. In Section 5.1, we define the state tran-

sition matrix of the fractional difference system (5.1.1)-(5.1.2) with the Riemann-

Liouville fractional difference operator. Then we state the basic properties of the

state transition matrix. Section 5.2 deals with controllability of the linear time-

varying fractional difference system, while observability of the control system is given

in the final Section 5.3.

5.1 The State Transition Matrix

In this section, we consider the following initial value problem (IVP)

∇ν
ay(t) = A(t)y(t − 1) for t = a + 1, a + 2, . . . (5.1.1)

∇−(1−ν)
a y(t)∣t=a = y(a) = y0. (5.1.2)
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First we define the state transition matrix ΦA(⋅),ν(t, a) of the initial value problem

(5.1.1)-(5.1.2). Later, we give fundamental properties of the state transition matrix,

and we present a unique solution of the initial value problem (5.1.1)-(5.1.2). Finally,

to prove necessary and sufficient conditions for the controllability and observability

of the system we state and prove the variation of constants formula.

Now we present a precise definition of a state transition matrix.

Definition 5.1. Let a be any real number and ν be positive number such that ν ∈ (0,1).

The state transition matrix ΦA(⋅),ν(t, a) of the system (5.1.1) is defined by the unique

solution of the following fractional order initial value problem (IVP)

∇ν
aΦA(⋅),ν(t, a) = A(t)ΦA(⋅),ν(t − 1, a) (5.1.3)

ΦA(⋅),ν(a, a) = In, (5.1.4)

where A(t) is an n × n matrix and In is an n × n identity matrix.

The state transition matrix refers to a matrix whose product with the state

vector at an initial time gives the state vector at a later time. It plays a vital role

in the time-varying control systems. Adamec [2] gave an explicit formula for the

generalization matrix exponential for the dynamic systems derived by restricting a

principal fundamental matrix of the system. Then, DaCunna [23] investigated the

state transition matrix via the Peano-Baker series on time scales has virtually no

restriction on the system matrix A(t), while Zhang et al. [64] studied the state

transition matrix of linear time-varying fractional differential systems via the Caputo

derivative operator. We refer the reader to [17, 25, 28, 52, 53] for further readings on

the state transition matrix and the Peano-baker series. To the best of our knowledge,

the state transition matrix of the linear time-varying fractional difference systems has
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not been reported in the literature.

The state transition matrix of the given fractional order initial value problem

is expressed as

ΦA(⋅),ν(t, a) ∶=
∞
∑
k=0

I(k)t,a,ν , (5.1.5)

where

I(0)t,a,ν ∶=
(t − a + 1)ν−1

Γ(ν)
In,

I(1)t,a,ν ∶= ∇−ν
a+1A(t)I(0)t−1,a,ν =

t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A(s)(s − a)

ν−1

Γ(ν)
In

and

I(k)t,a,ν ∶= ∇−ν
a+1A(t)I(k−1)

t−1,a,ν .

In this definition we define for k < 0 as

I(k)t,a,ν ∶= On

We continue with a lemma, which will be useful to prove the properties of the

state transition matrix.

Lemma 5.2. Let In and On be an identity and a zero square matrice with dimension

n respectively and a be any real number and ν ∈ (0,1). The following identities hold:

(i) ∇ν
aI
(0)
t,a,ν = On.

(ii) ∇ν
aI
(k)
t,a,ν = A(t)I(k−1)

t−1,a,ν for k = 1,2,3, . . . .

(iii) I(0)a,a,ν = In.

(iv) I(k)a,a,ν = On for k = 1,2,3, . . . .
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Proof. (i) Using the definition of the nabla fractional difference we obtain,

∇ν
aI
(0)
t,a,ν = ∇∇

−(1−ν)
a

(t − a + 1)ν−1

Γ(ν)
In.

Applying (ii) of Lemma 2.1 and using the fact that nabla difference of the constant

is zero, we obtain

∇ν
aI
(0)
t,a,ν = ∇In = On.

(ii) First, we rewrite the ∇ν
aI
(k)
t,a,ν in term of the sum and then we use the

definition of the nabla fractional difference operator, and we have

∇ν
aI
(k)
t,a,ν = ∇ν

a∇−ν
a+1A(t)I(k−1)

t−1,a,ν

= ∇∇−(1−ν)
a

t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A(s)I(k−1)

s−1,a,ν

= ∇
t

∑
τ=a

(t − ρ(τ))−ν
Γ(1 − ν)

τ

∑
s=a+1

(τ − ρ(s))ν−1

Γ(ν)
A(s)I(k−1)

s−1,a,ν .

Next, we interchange the order of sums and obtain

= ∇
t

∑
s=a+1

t

∑
τ=s

(t − ρ(τ))−ν
Γ(1 − ν)

(τ − ρ(s))ν−1

Γ(ν)
A(s)I(k−1)

s−1,a,ν .

Hence, we obtain

t

∑
τ=s

(t − ρ(τ))−ν
Γ(1 − ν)

(τ − ρ(s))ν−1

Γ(ν)
= ∇−(1−ν)

s
(t − ρ(s))ν−1

Γ(ν)

= 1

by using (ii) of Lemma 2.1.
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Hence, we perform the nabla difference of sum and we obtain

∇ν
aI
(k)
t,a,ν = ∇

t

∑
s=a+1

A(s)I(k−1)
s−1,a,ν

= A(t)I(k−1)
t−1,a,ν .

(iii) The proof follows from the definition of the rising factorial power.

(iv) Using the definition of I(k)t,a,ν we get,

I(k)a,a,ν = ∇−ν
a+1A(t)I(k−1)

t−1,a,ν ∣t=a

=
a

∑
s=a+1

A(s)I(k−1)
s−1,a,ν = On,

using the assumption that if the upper bound of the sum is less than the lower bound,

then the quantity is identically equal to zero.

Now we discuss the convergence of the state transition matrix. Let T ∈ Na and

A(t) be a matrix valued function defined on the discrete finite interval Na+T
a . Thus

for each t ∈ Na+T
a , we have that ∣∣A(t)∣∣ is bounded, where ∣∣ ⋅ ∣∣ denotes the spectral

norm. Define

α ∶= max
t∈Na+Ta

∣∣A(t)∣∣.

Theorem 5.3. Let a be any real number and A(t) be an n×n matrix valued function

defined on Na. Then the following are valid:

(i) The following series

ΦA(⋅),ν(t, a) =
∞
∑
k=0

I(k)t,a,ν (5.1.6)

is uniformly convergent on Na.

(ii) ∣∣ΦA(⋅),ν(t, a)∣∣ ≤ (1 + α)t−a.
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Proof. (i) First, we prove the following inequality.

For any given s ∈ Na,

0 < (t − ρ(s))ν−1

Γ(ν)
≤ 1 for t − s ∈ N0, (5.1.7)

where ν ∈ (0,1). If t = s, then
(s − (s − 1))ν−1

Γ(ν)
= 1. Next, we apply the nabla difference

to
(t − ρ(s))ν−1

Γ(ν)
and we obtain

∇t
(t − ρ(s))ν−1

Γ(ν)
= (t − s + 1)ν−2

Γ(ν − 1)
= Γ(t − s + ν − 1)

Γ(t − s + 1)Γ(ν − 1)
= (ν − 1)t−s

(t − s)!
< 0,

since t − s ≥ 0 and ν ∈ (0,1). Therefore the given quantity is monotone decreasing on

the given interval and using the definition of the rising factorial power we have

(t − ρ(s))ν−1

Γ(ν)
= Γ(t − s + ν)

Γ(t − s + 1)Γ(ν)
= (ν)t−s

(t − s)!
> 0,

since t − s ≥ 0 and ν ∈ (0,1). Thus, for any given s ∈ Na we have

0 < (t − ρ(s))ν−1

Γ(ν)
≤ 1 for t − s ∈ N0.

Now, using the definition of I(0)t,a,ν and inequality (5.1.7) and we obtain

∣∣I(0)t,a,ν ∣∣ = ∣∣ (t − a + 1)ν−1

Γ(ν)
In∣∣ ≤ 1.

Following this we obtain

∣∣I(1)t,a,ν ∣∣ = ∣∣
t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A(s)(s − a + 1)ν−1

Γ(ν)
In∣∣ ≤

t

∑
s=a+1

∣∣A(s)∣∣ ≤ α(t − a)
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for t ∈ Na. Hence we have

∣∣I(2)t,a,ν ∣∣ = ∣∣
t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A(s)I(1)s−1,a,ν ∣∣

≤
t

∑
s=a+1

∣∣A(s)∣∣α(s − 1 − a)

≤
t

∑
s=a+1

α2(s − 1 − a)

= α
2(t − 1 − a)2

2

≤ α
2(t − a)2

2
.

We can proceed with mathematical induction principle to obtain,

∣∣I(k+1)
t,a,ν ∣∣ = ∣∣

t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A(s)I(k)s−1,a,ν ∣∣

≤
t

∑
s=a+1

∣∣A(s)∣∣αk (s − k − a)
k

k!

≤ αk+1 (t − k − a)k+1

(k + 1)!

≤ αk+1 (t − a)k+1

(k + 1)!
, k = 0,1,2,3,4, . . . ,

where t ∈ Na. For any T ∈ Na and t ∈ NT
a we have

∣∣I(k)t,a,ν ∣∣ ≤ αk
(t − a)k
k!

≤ αkT
k

k!
, for k = 0,1,2,3,4, . . . .

Since the series
∞
∑
k=0

αk
T k

k!
is convergent, the Weierstrass M-Test implies that the series

ΦA(⋅),ν(t, a) converges uniformly on the given discrete interval Na+T
a . Since it holds

for any T ∈ Na, then the given series is convergent on Na.
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(ii) Since
1

Γ(t)
= 0 for all t ∈ {⋯,−2,−1,0}

∣∣I(k)t,a,ν ∣∣ ≤ αk
(t − k − a + 1)k

(k)!
= 0, for all k > t − a.

Therefore, we have

∣∣ΦA(⋅),ν(t, a)∣∣ ≤
t−a
∑
k=0

αk
(t − k − a + 1)k

Γ(k + 1)
= (1 + α)t−a.

Subsequently, we give the properties of the state transition matrix.

Lemma 5.4. Let a be any real number and A(t) be an n × n matrix valued function

defined on Na. The following properties hold:

(i) ∇ν
aΦA(⋅),ν(t, a) = A(t)ΦA(⋅),ν(t − 1, a).

(ii) ΦA(⋅),ν(a, a) = In.

(iii) (Composition) For any given t0, t1, and for all t

ΦA(⋅),ν(t, t0) = ΦA(⋅),ν(t, t1)ΦA(⋅),ν(t1, t0).

(iv) (Inverse) ΦA(⋅),ν(t, t0) is a non-singular matrix and

[ΦA(⋅),ν(t, t0)]−1 = ΦA(⋅),ν(t0, t).

Proof. (i) Using the linearity property of the nabla fractional difference operator and
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(i), (ii) of Lemma 2.1, we get

∇ν
aΦA(⋅),ν(t, a) = ∇ν

a

∞
∑
k=0

I(k)t,a,ν

=
∞
∑
k=0

∇ν
aI
(k)
t,a,ν

=
∞
∑
k=0

A(t)I(k−1)
t,a,ν

= A(t)ΦA(⋅),ν(t − 1, a).

(ii) The proof is consequences of the (iii) and (iv) of Lemma 5.2.

(iii) Let y1(t) ∶= ΦA(⋅),ν(t, t0) and y2(t) ∶= ΦA(⋅),ν(t, t1)ΦA(⋅),ν(t1, t0), then

∇ν
ay1(t) = ∇ν

aΦA(⋅),ν(t, t0) = A(t)ΦA(⋅),ν(t − 1, t0) = A(t)y1(t − 1)

∇ν
ay2(t) = ∇ν

aΦA(⋅),ν(t, t1)ΦA(⋅),ν(t1, t0) = A(t)ΦA(⋅),ν(t − 1, t1)ΦA(⋅),ν(t1, t0)

= A(t)y2(t − 1)

and

y2(t1) = ΦA(⋅),ν(t1, t1)ΦA(⋅),ν(t1, t0) = InΦA(⋅),ν(t1, t0) = ΦA(⋅),ν(t1, t0) = y1(t1).

Thus, y1(t) and y2(t) satisfy the same fractional difference equation and the same

initial condition. Hence, we have

ΦA(⋅),ν(t, t0) = ΦA(⋅),ν(t, t1)ΦA(⋅),ν(t1, t0).

(iv) By contradiction, suppose there exists a t1 ≠ t0 such that ΦA(⋅),ν(t1, t0) is

a singular or det[ΦA(⋅),ν(t1, t0)] = 0. Then using the composition property of the state
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transition matrix

det[ΦA(⋅),ν(t, t0)] = det[ΦA(⋅),ν(t, t1)]det[ΦA(⋅),ν(t1, t0)] = 0

for all t. In particular

det[ΦA(⋅),ν(t0, t0)] = 0,

which contradicts with the fact that ΦA(⋅),ν(t0, t0) = In. Thus, the state transition

matrix is a non-singular and

ΦA(⋅),ν(t0, t0) = In = ΦA(⋅),ν(t0, t1)ΦA(⋅),ν(t1, t0).

Hence, we have

[ΦA(⋅),ν(t, t0)]−1 = ΦA(⋅),ν(t0, t).

Next, we give the following theorem and the proof follows from Lemma 5.4.

Theorem 5.5. The unique solution of the initial value problem for the nabla frac-

tional difference equation (5.1.1)-(5.1.2) is

y(t) = ΦA(⋅),ν(t, a)y0.

Let us demonstrate the explicit form of the state transition matrix with the

following example.

Example 5.6. Consider the matrix valued function

A(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

1
2 t

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎦

,
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where t ∈ N0 and a = 0.

First, we obtain the I(k)t,0,ν for k = 0,1,2,3, . . . .

I(0)t,0,ν =

⎡⎢⎢⎢⎢⎢⎢⎣

(t+1)ν−1
Γ(ν) 0

0 (t+1)ν−1
Γ(ν)

⎤⎥⎥⎥⎥⎥⎥⎦

,

I(1)t,0,ν = ∇−ν
1

⎡⎢⎢⎢⎢⎢⎢⎣

1
2 t

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

tν−1
Γ(ν) 0

0 tν−1
Γ(ν)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

t2ν−1
2Γ(2ν) ∇−ν

1 t t
ν−1

Γ(ν)

0 t2ν−1
2Γ(2ν)

⎤⎥⎥⎥⎥⎥⎥⎦

,

I(2)t,0,ν = ∇−ν
1

⎡⎢⎢⎢⎢⎢⎢⎣

1
2 t

0 1
2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

(t−1)2ν−1
2Γ(2ν) ∇−ν

1
(t−1)(t−1)ν−1

Γ(ν)

0 (t−1)2ν−1
2Γ(2ν)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

(t−1)3ν−1
4Γ(3ν) ∇−2ν

1
(t−1)(t−1)ν−1

2Γ(ν) +∇−ν
1 t t2ν−1

2Γ(2ν)

0 (t−1)3ν−1
4Γ(3ν)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(t−1)3ν−1
4Γ(3ν)

1
2

2

∑
s=1

∇−(3−s)ν
1 (t − 2 + s)(t − 1)sν−1

Γ(sν)
0 (t−1)3ν−1

4Γ(3ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We can proceed with the mathematical induction principle to have,

I(k)t,0,ν =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(t−k+1)(k+1)ν−1
2kΓ((k+1)ν)

1
2k−1

k

∑
s=1

∇−(k−s+1)ν
1 (t − k + s)(t − k + 1)sν−1

Γ(sν)
0 (t−k+1)(k+1)ν−1

2kΓ((k+1)ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where k = 0,1,2,3, . . . . Hence, we obtain the state transition matrix,

ΦA(⋅),ν(t,0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

t

∑
k=0

(t − k + 1)(k+1)ν−1

2kΓ((k + 1)ν)

∞
∑
k=0

1

2k−1

k

∑
s=1

∇−(k−s+1)ν
1 (t − k + s)(t − k + 1)sν−1

Γ(sν)

0
t

∑
k=0

(t − k + 1)(k+1)ν−1

2kΓ((k + 1)ν)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Here we have

ŷ 1
2
,ν(t,0) =

t

∑
k=0

(t − k + 1)(k+1)ν−1

2kΓ((k + 1)ν)

as given in the paper [10].

We now provide some remarks regarding the state transition matrix.

Remark 5.7. The representation of the state transition matrix (5.1.5) is known as the

Peano-Baker series in control theory. Although the given form of the state transition

matrix is important in theory, in practice it might be quite difficult (or even impossible)

to calculate in many cases, even for simple linear fractional difference control systems.

Corollary 5.8. Assume that A(t) = A is a constant matrix. Then the state transition

matrix for the fractional difference equation (5.1.1)-(5.1.2) is

ΦA,ν(t, a) = ŷA,ν(t, a)

where,

ŷA,ν(t, a) =
t

∑
n=a

An−a(t − n + 1)(n−a+1)ν−1

Γ((n − a + 1)ν)
.

Proof. By definition of ΦA,ν(t, a) we have

I(m)t,a,ν = ∇−ν
a+1AI

(m−1)
t−1,a,ν .

For m = 0,

I(0)t,a,ν =
(t − a + 1)ν−1

Γ(ν)
In

For m = 1, using the definition of transition matrix and rising factorial power we
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obtain,

I(1)t,a,ν =
t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
A

(s − a)ν−1

Γ(ν)
In

=A
t

∑
s=a+1

Γ(t − s + ν)Γ(s − a − 1 + ν)
Γ(ν)Γ(t − s + 1)Γ(s − a)Γ(ν)

=A
t−a−1

∑
s=0

Γ(t − a − 1 − s + ν)Γ(s + ν)
Γ(ν)Γ(t − s − a)Γ(s + 1)Γ(ν)

=A
t−a−1

∑
s=0

(t − a − 1

s
)Γ(t − a − 1 − s + ν)Γ(s + ν)

Γ(ν)Γ(ν)Γ(t − a)

= A

Γ(t − a)

t−a−1

∑
s=0

(t − a − 1

s
)(ν)s(ν)t−a−1−s

= A

Γ(t − a)
(2ν)t−a−1

=A(t − a)2ν−1

Γ(2ν)

where we used the formula (t
r
) = Γ(t + 1)

Γ(r + 1)Γ(t − r + 1)
. Suppose for m = k we have

I(k)t,a,ν = Ak
(t − a − k + 1)(k+1)ν−1

Γ((k + 1)ν)
.
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When m = k + 1, the proof follows similar techniques as above and we have

I(k+1)
t,a,ν =

t

∑
s=a+1

(t − ρ(s))ν−1

Γ(ν)
AAk

(t − a − k + 1)(k+1)ν−1

Γ((k + 1)ν)

=Ak+1
t

∑
s=k+a+1

Γ(t − s + ν)Γ(s − a − k − 1 + (k + 1)ν)
Γ(ν)Γ(t − s + 1)Γ(s − a − k)Γ((k + 1)ν)

=Ak+1
t−a−k−1

∑
s=0

Γ(t − a − k − 1 − s + ν)Γ(s + (k + 1)ν)
Γ(ν)Γ(t − s − a − k)Γ(s + 1)Γ((k + 1)ν)

=Ak+1
t−a−k−1

∑
s=0

(t − a − k − 1

s
)Γ(t − a − k − 1 − s + ν)Γ(s + (k + 1)ν)

Γ(ν)Γ((k + 1)ν)Γ(t − a − k)

=Ak+1 1

Γ(t − a − k)

t−a−k−1

∑
s=0

(t − a − k − 1

s
)((k + 1)ν)s(ν)t−a−k−1−s

=Ak+1 ((k + 2)ν)t−a−k−1

Γ(t − a − k)

=Ak+1 (t − a − k)(k+2)ν−1

Γ((k + 2)ν)

Thus we have

ΦA(⋅),ν(t, a) =
∞
∑
k=0

I(k)t,a,ν

=
∞
∑
k=0

Ak
(t − a − k + 1)(k+1)ν−1

Γ((k + 1)ν)

=
t−a
∑
k=0

Ak
(t − a − k + 1)(k+1)ν−1

Γ((k + 1)ν)

=
t

∑
k=a

Ak−a
(t − k + 1)(k−a+1)ν−1

Γ((k − a + 1)ν)
= ŷA,ν(t, a)
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We conclude this section with the following additional preliminary result,

which is essential to discuss the necessary and sufficient conditions for the controlla-

bility and observability of the fractional difference systems in Section 5.2 and Section

5.3.

Theorem 5.9. (Variation of Constants)

The fractional difference equation of order ν, where ν ∈ (0,1)

∇ν
ay(t) = A(t)y(t − 1) + f(t − 1)

has general solution

y(t) = ΦA(⋅),ν(t, a)c +
t−1

∑
s=a

ΦA(⋅),ν(t, s + 1)f(s)

where c is constant and ΦA(⋅),ν(t, a) is the state transition matrix for the fractional

difference equation ∇ν
ay(t) = A(t)y(t − 1).

Proof. A direct substitution gives that
t−1

∑
s=a

ΦA(⋅),ν(t, s+1)f(s) is the particular solution

of the given fractional difference equation

∇ν
a

t−1

∑
s=a

ΦA(⋅),ν(t, s + 1)f(s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

= A(t)(
t−2

∑
s=a

ΦA(⋅),ν(t − 1, s + 1)f(s) + f(t − 1).

Using the definition of the nabla fractional difference operator we have

I = ∇∇−(1−ν)
a

t−1

∑
s=a

ΦA(⋅),ν(t, s + 1)f(s)

= ∇
t

∑
τ=a

(t − ρ(τ))−ν
Γ(1 − ν)

τ−1

∑
s=a

ΦA(⋅),ν(τ, s + 1)f(s).

74



Next, we interchange the order of sums and obtain

I = ∇
t−1

∑
s=a

t

∑
τ=s+1

(t − ρ(τ))−ν
Γ(1 − ν)

ΦA(⋅),ν(τ, s + 1)f(s).

We continue by applying the following rule to the above expression

∇
t−1

∑
s=a
f(t, s) =

t−2

∑
s=a

∇f(t, s) + f(t, t − 1).

Hence, we have

I =
t−2

∑
s=a

∇
t

∑
τ=s+1

(t − ρ(τ))−ν
Γ(1 − ν)

ΦA(⋅),ν(τ, s + 1)f(s)

+
t

∑
τ=s+1

(t − ρ(τ))−ν
Γ(1 − ν)

ΦA(⋅),ν(τ, s + 1)f(s)∣t=t,s=t−1

=
t−2

∑
s=a

∇
t

∑
τ=s+1

(t − ρ(τ))−ν
Γ(1 − ν)

ΦA(⋅),ν(τ, s + 1)f(s) + f(t − 1)

since ΦA(⋅),ν(a, a) = In.

Using the definition of the nabla fractional difference operator and (i) of Lemma 5.4

we obtain

I =
t−2

∑
s=a

∇∇−(1−ν)
a ΦA(⋅),ν(t, s + 1)f(s) + f(t − 1)

=
t−2

∑
s=a

∇ν
aΦA(⋅),ν(t, s + 1)f(s) + f(t − 1)

= A(t)
t−2

∑
s=a

ΦA(⋅),ν(t − 1, s + 1)f(s) + f(t − 1).

We use Theorem 5.5 to complete the proof.
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5.2 Controllability

Throughout this section we assume t0, t1 ∈ R+ and t1 − t0 ∈ Z+. This section

focuses on the controllability of the linear time-variant discrete fractional system,

∇ν
t0y(t) = A(t)y(t − 1) +B(t)u(t − 1), t ∈ Nt1

t0+1, (5.2.1)

where ν is a real number such that 0 < ν < 1, y(t0) = y0 is an initial state, y(t) is an

n× 1 state vector of the system, u(t) is an m× 1 control input, A(t) and B(t) are an

n × n and an n ×m, valued functions, respectively.

We give necessary and sufficient conditions for a linear time-varying discrete

fractional control system to be controllable. By Theorem 5.9 the corresponding solu-

tion of system (5.2.1) is

y(t) = ΦA(⋅),ν(t, t0)y0 +
t−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)u(s). (5.2.2)

Definition 5.10. A system modeled by (5.2.1) or pair {A,B} is said to be completely

controllable, if it is possible to construct control signal u(t) that will transfer any initial

state y(t0) to any final state y(t1) in a finite discrete time interval. Otherwise the

system (5.2.1) or {A,B} is said to be uncontrollable.

We define a controllability Gramian matrix P(t, t0) of the system (5.2.1) as

n × n matrix

P(t, t0) ∶=
t−1

∑
s=t0

ΦA(⋅),ν(t0, s + 1)B(s + 1)[B(s + 1)]T [ΦA(⋅),ν(t0, s + 1)]T .

Theorem 5.11. The system (5.2.1) is completely controllable on the discrete time

interval Nt1
t0

if and only if the controllability Gramian matrix P(t1, t0) is invertible.
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Proof. First, we show that if the given system is completely controllable then the

controllability Gramian matrix P(t1, t0) is invertible. Let us show by contradiction,

suppose that the matrix P(t1, t0) is not invertible and then there exists a nonzero

vector η ∈ Rn such that ηTP(t1, t0) = 01×n. Then it follows that

0 = ηTP(t1, t0)η

=
t1−1

∑
s=t0

ηTΦA(⋅),ν(t0, s + 1)B(s + 1)[B(s + 1)]T [ΦA(⋅),ν(t0, s + 1)]Tη

=
t1−1

∑
s=t0

∣∣ηTΦA(⋅),ν(t0, s + 1)B(s + 1)∣∣22,

where ∣∣ ⋅ ∣∣2 defines Euclidean norm and hence

ηTΦA(⋅),ν(t0, t + 1)B(t + 1) = 01×m, t ∈ Nt1
t0−1. (5.2.3)

From the assumption of controllability there exists a control signal u(t) that will

transfer the initial state y(t0) = y0 = ΦA(⋅),ν(t0, t1)yf − η to the final state y(t1) = yf .

By substitution the initial and the final state to (5.2.2) the solution of the given

system becomes

yf = ΦA(⋅),ν(t1, t0)(ΦA(⋅),ν(t0, t1)yf − η) +
t1−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)u(s).

Using the composition property of the state transition matrix and multiplying both

sides by ΦA(⋅),ν(t0, t1) we obtain

η =
t1−1

∑
s=t0

ΦA(⋅),ν(t0, s + 1)B(s + 1)u(s).
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Multiplying though by ηT and using (5.2.3) yields

ηTη =
t1−1

∑
s=t0

ηTΦA(⋅),ν(t0, s + 1)B(s + 1)u(s) = 0,

which contradicts the assumption that η is a nonzero vector in Rn. Thus, the control-

lability Gramian matrix P(t1, t0) is invertible.

Conversely, suppose P(t1, t0) is invertible. Therefore, for the given any initial

state y(t0) = y0 and final state y(t1) = yf we can choose the control signal u(t) as

u(t) = [B(t + 1)]T [ΦA(⋅),ν(t0, t + 1)]T [P(t1, t0)]−1[ΦA(⋅),ν(t0, t1)yf − y0].

The corresponding solution of the system at t = t1 can be written as

y(t1) =ΦA(⋅),ν(t1, t0)y0 +
t1−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)u(s)

=ΦA(⋅),ν(t1, t0)y0 +
t1−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)[B(s + 1)]T [ΦA(⋅),ν(t0, s + 1)]T

× [P(t1, t0)]−1[ΦA(⋅),ν(t0, t1)yf − y0]

=ΦA(⋅),ν(t1, t0)y0 +ΦA(⋅),ν(t1, t0)
t1−1

∑
s=t0

ΦA(⋅),ν(t0, s + 1)B(s + 1)[B(s + 1)]T

× [ΦA(⋅),ν(t0, s + 1)]T [P(t1, t0)]−1[ΦA(⋅),ν(t0, t1)yf − y0]

=ΦA(⋅),ν(t1, t0)y0 +ΦA(⋅),ν(t1, t0)P(t1, t0)[P(t1, t0)]−1[ΦA(⋅),ν(t0, t1)yf − y0]

=yf

which shows that if the controllability Gramian matrix P(t1, t0) is invertible, then

the given system is completely controllable on the given discrete time interval.

Remark 5.12. Even though the previous theorem is essential in theory, in practice, it

is quite limited. Since computing the controllability Gramian requires explicit knowl-
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edge of the state transition matrix of the given system, the state transition matrix for

time-varying problems can be difficult to compute in some cases.

5.3 Observability

In this section, we discuss the observability of the following linear time-variant

discrete fractional system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ν
t0
y(t) = A(t)y(t − 1) +B(t)u(t − 1), t ∈ Nt1

t0+1

z(t) = C(t)y(t) +D(t)u(t)
(5.3.1)

where ν is a positive real number such that 0 < ν < 1, y(t) is an n × 1 state vector of

the system, u(t) is an m× 1 control input, z(t) is an r × 1 output vector, A(t), B(t),

C(t), and D(t) are an n×n, an n×m, an r×n, and an r×m matrix valued functions,

respectively.

Since z(t) and u(t) for t ∈ Nt1
t0

are given, we substitute the solution (5.2.2) of

the state system into the output measurement and we obtain

z(t) = C(t)y(t) +D(t)u(t)

= C(t)[ΦA(⋅),ν(t, t0)y0 +
t1−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)u(s)] +D(t)u(t).

Then we have

C(t)ΦA(⋅),ν(t, t0)y0 = z(t) −C(t)
t1−1

∑
s=t0

ΦA(⋅),ν(t1, s + 1)B(s + 1)u(s) −D(t)u(t)

since A(t),B(t),C(t),D(t) matrices and control vector u(t) are given, the last two

terms on the right-hand side of this equation are known quantities. Thus, we can
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subtract known terms from the observed value of output vector z(t). We define the

right-hand side of the above equality by z1(t). Then response of the system (5.3.1)

can be written as

C(t)ΦA(⋅),ν(t, t0)y0 = z1(t). (5.3.2)

Throughout this section we assume t0, t1 ∈ R+ and t1 − t0 ∈ Z+.

Definition 5.13. The system is said to be completely observable, if every state y(t0)

can be uniquely determined from the observation of z(t) over a finite discrete time

interval t ∈ Nt1
t0
. Otherwise the system (5.3.1) or {A,C} is said to be unobservable.

Let us define a observability Gramian matrix R(t, t0) of the system (5.3.1) as

an n × n matrix

R(t, t0) ∶=
t−1

∑
s=t0

[ΦA(⋅),ν(t, t0)]T [C(t)]TC(t)ΦA(⋅),ν(t, t0).

We conclude this section by giving the necessary and sufficient conditions for

control systems to be observable.

Theorem 5.14. The fractional system (5.3.1) is completely observable on discrete

time interval Nt1
t0

if and only if the observability Gramian matrix R(t1, t0) is invertible.

Proof. First we show that if the given system is completely observable, then the ob-

servability Gramian matrix R(t1, t0) is invertible. By contradiction, suppose R(t1, t0)

is not invertible then there exists a non zero vector η ∈ Rn such that R(t1, t0)η = 0n×1.
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Then we have

0 = ηTR(t1, t0)η

=
t−1

∑
s=t0

ηT [ΦA(⋅),ν(t, t0)]T [C(t)]TC(t)ΦA(⋅),ν(t, t0)η

=
t1−1

∑
s=t0

∣∣C(t)ΦA(⋅),ν(t, t0)η∣∣22,

where ∣∣ ⋅ ∣∣2 defines Euclidean norm and we have

C(t)ΦA(⋅),ν(t, t0)η = 0r×1,

for all t ∈ Nt1−1
t0

. Thus y(t0) = y0+η yields same response for the system as y(t0) = y0 and

contradicts the assumption that the given system is completely observable. Therefore

the observability Gramian R(t1, t0) is invertible.

On the other hand, assume that the matrix R(t1, t0) is invertible. Multiplying

both sides of (5.3.2) by [ΦA(⋅),ν(t, t0)]T [C(t)]T and performing the summation over

the discrete interval t ∈ Nt1−1
t0

, we obtain

t1−1

∑
s=t0

[ΦA(⋅),ν(t, t0)]T [C(t)]TC(t)ΦA(⋅),ν(t, t0)y0 =
t1−1

∑
s=t0

[ΦA(⋅),ν(t, t0)]T [C(t)]T z1(s)

R(t1, t0)y0 =
t1−1

∑
s=t0

[ΦA(⋅),ν(t, t0)]T [C(t)]T z1(s).

Since the observability Gramian matrix R(t1, t0) is invertible, we have

y0 =R(t1, t0)−1
t1−1

∑
s=t0

[ΦA(⋅),ν(t, t0)]T [C(t)]T z1(s).

Hence, y0 is uniquely determined the given system is completely observable.
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Chapter 6

CONCLUSION AND FUTURE WORK

In this thesis, linear fractional difference calculus was considered. In the sec-

ond chapter, we presented fundamental definitions and formulas in discrete fractional

calculus for the convenience of the reader. In the third chapter, we proved exis-

tence of the unique solution of one fractional difference equation. Then we stated

the properties of the unique solution and generalized for the vector fractional differ-

ence equations. We closed the chapter by giving the variation of constants formula

to examine the control system. In the fourth chapter, we investigated the control-

lability and observability of the linear time-invariant nabla fractional systems. We

started this chapter by giving the criteria for the controllability of the system via

the controllability matrix and controllability Gramian matrix, and then similarly the

criteria for the observability of the system and we then gave the connection between

the controllability and observability of the system by stating the duality principle.

In the fifth chapter, we introduced the state transition matrix in fractional difference

calculus and proved some important properties of the state transition matrix. We

closed the chapter by investigating the controllability and observability of the linear

time-variant nabla discrete fractional systems.

For future work, we would like to see other methods to evaluate the state

transition matrix in discrete fractional calculus. There exist other methods to find

the transition matrix in continuous time. We will examine the applicability of the

other methods in continuous time to the discrete fractional calculus. There are several

methodologies to examine the control systems such as classical control theory, modern

control theory, robust control, adaptive control, and nonlinear control. Because the

majority of the mathematical models are non-linear, we will examine nonlinear control

to study the time-variant control systems in discrete fractional calculus.
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