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ABSTRACT 

  

South Africa is rich in naturally occurring resources including water, coal, oil, land. 

Individuals and industries use these resources as raw material inputs on a daily 

basis. However, they create significant amounts of pollution such as persistent 

organic pollutants (POPs). Such pollutants can be classified as inorganic, 

microbial and organic. Organic pollutants such as organic dyes are found in textile 

effluents that escape to the environment. They are designed to have a high degree 

of stability to fading upon sunlight exposures, chemicals and microbial attack 

leading to the ineffectiveness of current conventional wastewater treatment 

methods.  

 

Conventional wastewater treatment methods have been reported to be ineffective 

in the degradation of textile dyes because of their chemical stability. These 

methods have low effectiveness, with limited flexibility, they require specialized 

equipment and further handling of the generated waste. These methods are 

reported to have the ability to effectively remove colour, but for but lack the ability 

to completely degrade the dye molecules. Developed methods such as advanced 

oxidation processes (AOPs) use of photocatalytic semiconductors. These 

semiconductors have been researched and reported to have the characteristics to 

effectively treat wastewater by completely degrading a diversity of organic 

pollutants.  

 

A widely used semiconductor is monoclinic tungsten trioxide (WO3). It is viewed as 

an ideal candidate for photocatalytic applications. It is a photocatalyst that is 

responsive in the visible region, it absorbs light in the region up to 480 nm. WO3 

has small band-gap energy which has been reported to range from 2.4−2.8 eV and 

high oxidation power of valence band (VB) holes and thus displays enhanced 

photoabsorption in visible-light irradiation. This gives WO3 the advantage to be 

used as an indoor pollutant treatment as well as outdoor applications. Hence, this 

project aims to utilize lanthanum-doped WO3 for the photodegradation of refractory 
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organic dyes. Lanthanides as dopants are reported to improve the photocatalytic 

activity of the catalyst by increasing the adsorption capacity for pollutants, as well 

as, reducing the electron-hole recombination rates.   

 

In this study, pristine tungsten trioxide (WO3) nanoparticles were synthesized 

using the impregnation method with tungstic acid (H2WO4) and nitric acid as 

precursors, Lanthanum nitrate hydrate was used as a source of lanthanum (La) 

dopant. The as-synthesized nanoparticles were annealed at 450ºC for 3 hrs. The 

nanoparticles were characterized using X-ray diffraction spectroscopy (XRD), 

transmission electron microscopy (TEM), coupled with energy dispersive X-ray 

(EDX), scanning electron microscopy (SEM), Fourier transform infrared 

spectroscopy (FTIR), Raman spectroscopy, zeta potential, UV-visible 

spectroscopy (UV-vis), X-Ray photoelectron spectroscopy (XPS) and Ion 

chromatography (IC). 

 

Spectroscopic instruments such as XRD, Raman and FTIR confirmed the 

nanoparticles were composed of monoclinic polymorphs. The spherical 

morphology was confirmed by TEM and SEM, with EDX confirming the presence 

of tungsten, oxygen and lanthanum in the samples. The band gap energy obtained 

from the DRS measurements were found to be 2.45, 2.42 and 2.57 eV for m-WO3, 

1-La-WO3, and 5-La-WO3 nanoparticles respectively. XPS was used to determine 

the valence band maximum (VBM) which was used to calculate the conduction 

band and estimate the band edge position. XPS band edge positions were in 

agreement with the UV-vis band edge positions. Zeta potential confirmed the point 

of zero charge for the nanoparticles to be at pH 3.8. Ion chromatography 

confirmed the evolution of the chlorides and sulphate ions from the degradation of 

Methylene blue and Congo red respectively. 
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CHAPTER 1 
INTRODUCTION 

1.1 Problem statement 

South African National Water Act (Act number 36 of 1998) stated that it recognises 

the necessity to guard the quality of water resources in order to ensure that the 

nation's water resources are sustainable in the interest of all water users.1 

However, due to agricultural, industrial, and domestic activities, water is polluted 

by a variety of pollutants such as suspended solids, metals, organic and inorganic 

substances. This water pollution has become a worldwide problem as the quality 

of water continues to deteriorate and thus leading to water-related diseases.1–3 

The availability of clean water for human needs has become a challenge and the 

scarcity of satisfactory sanitation prior to discharge of wastewater requires 

concepts for monitoring and implementation plans.4 

 

Wastewater from textile industries has been classified as the most contaminating 

because of the large volumes they generate and the toxic components of the 

effluent.5 During the dyeing process, a portion of the dye does not bind to the 

fabrics and is washed out. The released unfixed dyes contain high concentrations 

of toxic compounds, which are released into waste wastewater treatment plants 

(WWTP) or unlawfully released to surface waters. However, most WWTP in South 

Africa (SA) are not equipped to effectively treat the pollutants.6,7 Removal of 

organic dyes using nanomaterials in conjunction with conventional treatment 

plants is thus of interest. As nanomaterials exhibit unique properties that will 

enable the removal of toxic pollutants even at low concentration, at which the 

current conventional processes fail.  

 

This project aims to utilize doped WO3 for the photodegradation of refractory 

organic dyes. This will be achieved by synthesizing and characterizing pristine and 

modified tungsten trioxide nanoparticles, which will then be applied for the 

photodegradation of organic dyes such as Congo red and Methylene blue. 
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1.2 Justification 

Water pollution is a distinct facet of the overall water crisis and access to safe 

drinking water is basic human rights. South Africa is a water-stressed country and 

though it has built many dams, water resources within these dams are still 

susceptible to the presence of polluted effluent.8 It is reported that the greater 

concern to the environment is pollution that is due to the textile effluent that has 

increased in recent years.9  

 

Different types of dye are used in many industries such as textile, paint, ink, plastic 

and cosmetics. Synthetic dyes used in textile industries in the dyeing and printing 

processes, generate large quantities of toxic chemical compounds which remain in 

the wastewater from numerous stages of textile processing.10 A significant amount 

of these dyes may collect in the soil, particularly in the areas near the textile 

processing industries. It is reported that when ingested, these organic dyes split 

into aromatic amines which cause cancer, and when released into the aquatic 

environment they disturb the natural growth of aquatic life by decreasing the 

dissolved oxygen capacity and by blocking sunlight.11–13 Methylene blue (MB) and 

Congo red (CR) are some of the widely used dyes in textile industries. They have 

been reported as hazardous due to their recalcitrant nature under conventional 

wastewater treatment methods.4 Wang et al.14 reported that inhalation and 

ingestion of MB result in adverse effects including breathing difficulties, nausea, 

vomiting, profuse sweating, and mental confusion. Ventura-camargo & Marin-

morales 15 reported CR to be a known human carcinogen.  

 

The release of these organic dyes into water stream poses a serious concern to 

the environment, human and animal health and should be adequately treated 

before being discharged. The use of photocatalytic semiconductors for water 

decontamination has been widely reported as being effective for the degradation 

of a variety of organic pollutants. In this study, the focus is on fabricating modified 

nanostructured tungsten trioxide, which is known for its photocatalytic properties. 
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The outcome of this study will provide photocatalytic mechanisms that will degrade 

the organic dye components to non-toxic compounds. 

 

1.3 Aim and objectives 

The aim of the study was: 

To synthesise and characterize the pristine and lanthanum modified tungsten 

trioxide (WO3) nanoparticles for the photodegradation of organic dyes. 

 

The objectives of the study were: 

i. To synthesize pristine and lanthanum doped tungsten trioxide 

nanoparticles. 

ii. To characterize pristine and lanthanum doped tungsten trioxide 

nanoparticles using XRD, Raman spectroscopy, SEM, TEM, BET, DRS and 

XPS. 

iii. To monitor and measure the photodegradation efficiency of the synthesized 

tungsten trioxide nanoparticles on organic dyes using UV-vis spectroscopy 

and IC 

 

1.4 Dissertation outlines 

From this chapter the dissertation continues as outlined below: 

Chapter 2 outlines the literature review on water pollution, different types of 

pollution found in water. The study chapter further elaborates on dye pollution, 

classification of dye pollutants, and treatment of water pollution, advanced 

oxidation processes as well as heterocatalysis overview. 

Chapter 3 details the synthetic route, characterization techniques as well as the 

photodegradation activity of the prepared nanoparticles.   

Chapter 4 reports the results and discussions of the findings in Chapter 3. 

Chapter 5 summarises the key findings of the research work and further provides 

recommendations on addressing gaps this study could not cover. 

References are listed at the end of each chapter. 
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CHAPTER 2 
LITERATURE REVIEW  

2.1 Introduction 

Underground waters in developed areas is normally inclined to severe contamination by 

various pollutants in the form of water pollution, air pollution and soil pollution.1,2 Though 

it is reported that South Africa has ratified the Stockholm Convention, the production, 

import and use of POPs are banned. However, there are potential sources that are still 

present.3 Persistent Organic Pollutants (POP's) comprise a variety of organic pollutants 

characterized by high toxicity, bioaccumulation, and ability to persist through long-range 

transport. It is reported that POPs produced and used in industrial centres, urban 

centres and agricultural areas  are the primary source of environmental pollution.4 

  

Over the past few decades, air pollution has been identified as a major problem globally 

as it has been recognized that this fine particulate matter has contributions to diseases 

such as cardiovascular and respiratory symptoms.5 On the other hand, the soil has 

been reported as an important reservoir for POPs even after their phase-out for many 

years. POPs residues in soil have been associated with the contamination of food, 

groundwater which poses a serious threat to human health and the environment.4 

Textile dyeing processes and agricultural activities use water excessively and discharge 

the contaminated water. The dyes are able to resist light, biological wastewater 

treatments, and other degradative environmental conditions because of the complexity 

of their aromatic structures.6,7 Since these POPs resist degradation and bioaccumulate, 

they migrate through the atmosphere and waterways for thousands of kilometres from 

their source, accumulating in terrestrials and aquatic ecosystems.4 

 

Traditional methods that have been employed for the removal of organic dyes include 

coagulation, membranes and adsorption.8 However, these existing technologies were 
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reported to be unable to eliminate harmful materials without generating potentially 

dangerous by-products.9 For this reason, advanced oxidation methods have been 

applied in the removal of organic pollutants, these methods employed the combination 

of powerful oxidizing agents with UV or near-UV light.10  

 

2.2 Water pollution 

Drinking water can be provided by different water sources such as oceans, wells, 

rainwater, lakes and rivers. The challenges arise due to the diversity of the 

concentration of the common inorganic and organic pollutants, and trace amounts of 

disinfectant by-products.11 Water Pollution as described in National Water Act is the 

direct or indirect modification of the physical, biological and, chemical properties of a 

water resource making it undesirable for any beneficial use, harmful to human beings 

and aquatic organisms, and affecting other legitimate uses of water.12  

 

Water sustains life and hence the need to preserve and protect it from pollution. 

Wastewater contaminants may include organic, inorganic, and diverse trace 

contaminants from pesticides, pharmaceuticals and personal care products. In addition, 

industrial wastewater may encompass organic compounds and heavy metals.13 The 

consistent effects of disposal of human waste, water quality, health status, and 

transmission of disease via the faecal-oral route have been reported.14  

Water wastage resulting from industries is a worldwide problem. It is common 

knowledge that resources of freshwater are scarce, hence the need to govern them. 

The accessibility of freshwater for different human requirements for the years to come 

appears to turn into a challenge.7 The weakening of water quality is a genuine concern 

and prompts an expansion in treatment costs. Another outcome of water contamination 

is its inevitable effect on wellbeing. Many diseases affecting humans such as diarrhoea, 

cholera and other bacterial diseases are triggered and kept up by terrible water quality. 

Contaminated water may likewise affect food quality through the growth of 

microorganisms in harvests. The build-up of metals and substances that disturb the 
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endocrine systems present in the water could adjust the organic qualities of crops, 

making them increasingly hard to be well-maintained and compromising their capacity 

to adjust to fluctuating climatic conditions.15  

 

Increasing industrialization and urbanization has been related to environmental 

pollution. Various industries discharge toxic effluents, which influence water assets, soil 

affinity, aquatic life forms and the integrity of the ecosystem. Flooded agribusiness is 

caught in this discussion, among different reasons, as a result of its contribution to 

contamination of groundwater over the leakages that result in the pollution of surface 

water through their runoff.16 Nowadays, the synthetic dye industries have achieved a 

critical spot in the improvement of the general public because it supplies its produces to 

a great diversity of industries.17 Industries including printing, textile, cosmetics and 

leather are accounted for to utilize dyes to tint their final product. They also consume 

significant amounts of water and thus produce a substantial amount of colour-tinted 

wastewater. Dye contaminated water is extremely hard to treat because the dyes are 

recalcitrant organic molecules, are stable to light and resist aerobic digestion.18 

 

2.2.1 Inorganic pollutants 

Water polluted by heavy metals adds to the economic concerns due to their intense 

toxicity to human wellbeing and biological frameworks. In general, heavy metals are 

reported to be foundational poisons that affect the kidneys, destruct the nerve tissue, 

and disturb physiological development. Inorganic contaminants are found in water, 

wastewaters, and industrial effluents including mining, tanning etc. and may include 

Cadmium (Cd), Nickel (Ni), Copper (Cu), Chromium (Cr), Zinc (Zn), and Lead (Pb).19,20 

South African mines contribute to the economy. However, mining effluents have been 

reported to detriment the quality of land-dwelling and aquatic ecosystems due to the 

generation of acid mine drainage (AMD). It is reported that Johannesburg generates 

360 mL/d from gold mines, which is discharged onto the nearby aquatic ecosystem and 
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fast-tracking the degradation of waterbodies downstream. This acid advances 

weathering and leaching of toxic elements.21  

 

Tanning Industry is considered one of the main sources of pollution. Its waste in the 

aquatic system is characteristic of a complex mixture including inorganic pollutants such 

as hexavalent chromium. Hexavalent Chromium is reported to be one of the inorganic 

pollutants from the tannery waste, its use in leather production is to bind with the 

insoluble fibrous protein to convert to leather, a process that forms a crucial step of 

intervention in pollution control.22 Hexavalent Chromium in this form has proven to be of 

the greatest occupational and environmental health concern. It does not form insoluble 

precipitates in aqueous solutions, making through an immediate precipitation technique 

not practical. It has been reported that it can enter the body through food, drinking water 

and inhaled air. Infection is evidenced by a runny nose, sneezing, nosebleeds, and 

ulcers. Ingestion can cause kidney and liver damage, nausea, and death.22,23 

 

2.2.2 Microbial pollutants 

Microbial pollution originates from agricultural activities in our country such as plants 

(fields, runoff water from fields, fertilisation), animal production, faecal nature related to 

humans (sewage treatment systems), agrarian wastewater and wastewater from the 

processing industry runoff into streams or lakes. Some microbial populations can 

increase in drinking water distribution systems.24,25 In fertilization, pollution is reported to 

be related to agricultural nitrogen enrichment which is important for growth and yields. 

However, the excess of nitrogen can lead to increased pollution of rivers and ground 

waters.26 

 

Microbial pollution resulting from animal production (pasture, farms), contaminate 

ground and surface water resources with microorganisms such as viruses, bacteria, and 

parasites. Whereas pollution from faecal nature related to humans results from releases 
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of water treatment plants, disinfecting stations, medical clinics, and wastewater from the 

processing industry runoff into streams or lakes. The current disinfection practices and 

rules as far as chlorine residuals have been accounted for to be incapable for the 

eradication of faecal pollution indicators and pathogens since large amounts of these 

organisms could, in any case, be identified in the final effluent, bringing about the 

deterioration of the quality of receiving water bodies. Microbial pollution is in this manner 

a source of impairment of the compliance of supply for small scale to private water 

supplies.25,27 

 

2.2.3 Organic pollutants 

Organic pollution starts from different industries including the industrialization, 

agricultural activities, municipal wastewater, other ecological and worldwide changes. 

These pollutants are unsafe and harmful to the environment.28 There are different types 

of organic pollutants which have been found in various water bodies. They include 

fertilizers, hydrocarbons, oils, pesticides, plasticizers, biphenyls, pharmaceuticals. 

These compounds mostly encompass a large number of organic materials that are 

challenging to degrade.29  

 

Organic pollutants that have been found to taint water assets have been connected to 

different symptoms and embryotoxicity, mutagenicity, teratogenicity, and cancer-

causing nature just as wellbeing issue to individuals.28–30 Organic dyes are intended to 

have a more prominent liking for the substrate than the medium from which it is applied 

and also a high level of stability to washing off when exposed to sunlight, microbial 

attack and when washed with chemicals. Subsequently, the current conventional 

wastewater treatment methods including adsorption, flocculation, and biological 

degradation are typically ineffective.31,32  
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2.3 Dye pollution 

The use of synthetic chemical dyes has expanded impressively in the course of the 

most recent couple of years in different industrial processes such as paper and pulp 

manufacturing, colouring of material, leather treatment, plastics.33 The textile industry is 

critical in light of the fact that its materials are utilized in varying ways including clothes 

for wearing. Dyes and colours are known to have a long history. It is accounted for that 

natural plants as well as insect sources were at first utilized by the dye industry and 

thereafter turned to synthetic dyes. Synthetic dyes normally consist of aromatic rings, 

methoxy, methyl, nitro or sulfo group. Their use and manufacture of synthetic dyes have 

continued due to their ease and simplicity of synthesis.6,34 

 

However, textile industries use substantial amounts of chemicals and water during their 

textiles wet processing stage. These chemicals, running from inorganic to polymers and 

organic products are utilized for scouring, desiring, dyeing, bleaching and printing.33 The 

textile industry devours a significant quantity of water in its manufacturing processes, 

largely in the dyeing and finishing stages. Amid the colouration stage, a large 

percentage of the synthetic dye that does not bind to the material is lost to the 

wastewater stream. In cotton textiles production, cotton fibres separated from the 

cottonseeds and then spun into cotton yarns. Thereafter the yarns are meshed 

effectively into fabrics which then undergo numerous wet processing stages including 

dyeing. The final step in manufacturing is the finishing, this step uses chemicals to treat 

the cloths for obtaining a better quality.30  

 

The wastewater released from textile plants is delegated the most polluting when 

compared to other industrial divisions, mainly due to the volume produced together with 

the composition of the effluent. It is reported that 10,000 diverse textile dyes with yearly 

generation of 7.105 metric tons are available commercially around the world. More than 

1000 tons of about 30% of the dyes are utilized on a yearly basis. Furthermore, only 
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about 100 tons or less of the 90% of the textile products are utilized every year.35 Most 

of these dyes can by-pass the conventional methods of wastewater treatment and 

proceed in the environment because they are stable towards the light, water, 

temperature, chemicals and soap. Moreover, an increase in colour fastness and the 

resistance of dyes to degradation have made them increasingly obstinate to 

biodegradation.32 

 

2.4 Classification of Dyes  

There are three main categories used to classify textile industries namely: cellulose, 

synthetic and protein fibres. The sort of dyes and chemicals used in this industry are 

found to contrast depending on the textures fabricated. These dyes display structural 

diversity and depending on the surface charge, they can be grouped into anionic dyes 

such as direct dyes, reactive dyes and acid dyes, the cationic dyes such as basic dyes 

and the non-ionic disperse dyes.6,30 Examples of anionic dyes are depicted in Figure 
2.1. 

 

Naphthol dyes, direct dyes, reactive dyes and indigo dyes are a portion of the anionic 

dyes used to colour cellulose fibres which are sourced from plants such as linen, lyocell, 

cotton, ramie, rayon, and hemp.30 Basic and reactive dyes are widely utilized in textile 

industries on account of their bright colour which is their favourable characteristics. 

Furthermore, they are e are effectively water-soluble, less expensive to create, and 

simpler to apply to fabric.36 Reactive dyes show a wide scope of diverse chemical 

structures comprising functional groups like azo, phthalocyanine, anthraquinone,  

formazin, and oxazine as a chromophore. Wastewater treatment has for the most part 

centred on the use of reactive dyes in dyeing cotton fibres. This makes up about a 

portion of the world's fibre intake. A large segment of the applied reactive dyes is 

reported to be released into wastewater because of the process of hydrolysis in an 

alkaline dye bath that passes through. Traditional wastewater treatment plants have 
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limited removal efficiency towards these reactive and anionic dyes, and this has led to 

colour-tinted waterways.36  

 
C. I. Reactive Orange 122, RO122.37 

 

 

 
C.I. Direct Yellow 50 (DY).38 

 

 
C.I. Acid orange 7.39 

 

Figure 2. 1: Examples of anionic dyes 

 

Direct dyes are quite large molecules with high attraction specifically for fibre. They are 

used in dyeing cotton, rayon, linen, ramie, hemp and lyocell. They do not form strong 
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with the fibre molecules from which they are applied. These weak bonds result in them 

having a poor quick drying property after their application on fabrics and thus require 

elevated temperatures of 79.4-93.3 °C for the application. Congo red is one of the direct 

diazo dye frequently utilized in the paper industry. It is a refractory and a notable 

carcinogen owing to the aromatic amine group in the structure. Acid dyes and Lanaset 

dyes are utilized in dyeing protein fibres sourced from animals such as wool, mohair, 

angora, and silk.6,30 Anionic dyes have been reported to cause severe organic and 

colour pollution in the water. They display a variety of chemical structures containing 

azo anthraquinone, phthalocyanine, and showcase toxic effects and can thus be 

mutagenic and carcinogenic to both human beings and aquatic life.28,30  

 

Other different dyes, such as basic dyes, and dispersed dyes are used in dying 

synthetic fibres like nylon, polyester, acetate, spandex, acrylic and polypropylene.6,28,30 

Cationic basic dyes are soluble in water, their chemical backbone comprises of azo, 

anthraquinone, methane, thiazine, and triarylmethane, with applications in modified 

nylon,  acrylic, papers, and polyesters. Some of them have biological activities which 

are used in medicine as antiseptics.30 Basic dyes are cationic in nature and are utilized 

in dyeing acid-group-containing fibres, typically synthetic fibres. When basic dyes are 

dissolved in water they form a coloured cationic salt which reacts with the anionic 

surface of the substrate. They were discovered to be powerful colouring agent when 

used on acrylic fibre. Crystal violet and brilliant green which form part of the Basic dyes, 

are known potent clastogens, and are found to be most acutely toxic and may advance 

tumour growth in certain types of fishes especially dyes with a triphenylmethane 

structure.6  

 

The major non-ionic dyes are disperse dyes, which do not ionise in the aqueous 

atmosphere. Disperse dyes utilized in dyeing synthetic fibres are generally sparingly 

water-soluble compounds, yet they can be found in the water section, because of their 

commercial formulation. Some disperse dyestuffs have been found to cause allergic 
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reactions such as eczema or contact dermatitis and their presence in the aquatic 

systems were connected to the observed mutagenic activity of the water and 

sediments.6,35,40  

 

2.5 Treatment of water pollution 

Dye bearing effluents from industries are problematic to the environment unless 

adequately treated before being discharged. Dyes are designed with complex aromatic 

structures that have a strong affinity for the substrate and less affinity for the medium 

from which they are applied. They are highly stable and do not fade when exposed to 

water and sunlight. Furthermore, they are able to resist biological activities, ozone and 

most degradative environmental conditions. There are several processes such as 

primary, secondary and tertiary processes that have been utilized in the treatment of 

wastewater effluents. These processes include chemical coagulation, aerobic activated 

sludge,  flocculation, sedimentation and reverse osmosis.41,42  

 

These conventional treatment methods take a very long time for the degradation of 

organic pollutants to complete and also implementing them for the small-scale 

applications is extremely difficult. In these methods, large amounts of secondary 

pollutants are produced and released into the environment. These secondary pollutants 

include poisonous gases and odours. Organic pollutants treated through biological 

methods produce large amounts of sludge after treatment of wastewater.43 Figure 2.2 
illustrates the differences between conventional and photocatalysis wastewater 

treatment methods. 
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Figure 2. 2: Schematic diagram illustrating the differences between conventional and 

photocatalysis waste water treatment.43 

 

However, these treatment methods have been found to be ineffective against the 

elimination of all types of dyes and other chemicals that are used in the industry.30 The 

technologies that are used in wastewater treatment can be classified into three 

categories. The first one is a non-destructive procedure, which is grounded on physical 

adsorption, removal, stripping processes.  The second is a biological destructive 

process, which is based on active mud process. Lastly, the oxidative destructive 

procedure centred around oxidative chemical procedure such as wet oxidation (WO) 

functioning at high temperature and pressure, then liquid oxidation (LO). Liquid 

oxidation procedures are advanced oxidation processes (AOPs), which operate at 

temperature and pressure conditions using oxidative agents O3, O2, H2O2, catalysts 

and/ or UV radiations.44 The wastewater treatment methods can be classified into three 

categories: physical methods including membrane filtration, adsorption, and 
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coagulation/flocculation, chemical methods such as photocatalytic oxidation, chemical 

oxidation, Fenton reagent and electrolysis, then lastly is the biological methods such as 

biosorption and enzymatic degradation.6  

 

2.5.1 Conventional methods 

Effluents released from the textile industries go through several physical and chemical 

methods of treatment including chemical coagulation, precipitation, flocculation, 

photooxidation, reverse osmosis, ozonation, ion exchange, adsorption, and membrane 

filtration to remove pollutants such as nitrogen, organics, phosphorus and metals.6,30 

These conventional treatment methods have been less effective in completely 

degrading the pollutants found in the municipal wastewater. Some conventional 

technologies include adsorption, coagulation, flocculation, precipitation, electrochemical 

reduction, biosorption and enzyme degradation treatment.6,45  

 

It is reported that most of these conventional water treatment methods are not designed 

to remove small quantities of organic pollutants and as a result, high amounts of these 

pollutants and their metabolites find their way into the aquatic surroundings.46,47 The 

major shortcoming of conventional methods is high operating costs, they have limited 

versatility, low efficiency, they require specialized equipment, they might incur 

interference from other wastewater elements, and the process of handling the 

generated waste. It is reported that these methods may be successful in removing the 

colour, however, are ineffective in the complete degradation of the dye molecules. In 

this way, the dyes become concentrated and demanding proper disposal methods.48 

Hence, the use of photocatalytic methods as pre-treatment steps preceding the 

conventional water treatment is of importance and has attracted the attention of 

researchers.48  
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2.5.1.1 Biological methods  

Biological wastewater treatment may take place by means of biodegradation by the 

cells or through biosorption on the microbial biomass. In biosorption, the dye is 

entrapment in the framework of the adsorbent without obliteration of the pollutant.47 

Biological methods involve the use of the by-product of industrial fermentations which 

have various functional groups on the fungal cell wall such as carboxyl, amino, 

phosphate and thiol groups. It is reported that these groups can fix dye particles onto 

the surface of fungal cells. This process is quick and can reach completion in a few 

hours. Numerous process parameters are reported to affect the dye biosorption 

process. These parameters include pH, dye concentration, temperature and nature of 

dye in the solution.6 Whereas biodegradation is depicted as the complete breakdown of 

organic molecules into harmless products such as carbon dioxide, water and/or 

inorganic products. This breakdown is facilitated by the activity of biological 

enzymes.6,47 Biological methods are broadly functional for the management of residual 

wastewater and it has a need for long residence time so that the microorganisms can 

degrade pollutants and it's not applicable to tread the toxic pollutants due to biomass 

poisoning.49  

 

Biological methods are cost-effective, higher efficiency and less secondary pollution and 

are frequently the economical alternatives in comparison with other physical and 

chemical processes. However, in this method, there are toxic heavy metals in the runoff 

which influence the development of microorganism, also the vast majority of the dyes 

used are a non-biodegradable in nature, thirdly the method requires a long time for 

treating the effluent.30 They require a large-scale commercial application. The 

adsorption process may be influenced by biosorbents having numerous functional 

groups and intricate adsorption mechanisms. The biosorbents lack the selectivity hence 

the recovery of sorbate and the production of biosorbents could be difficult. These 

methods are unsatisfactory in colour elimination with current biodegradation processes. 

The discarding of biomaterials polluted with toxic organic ions frequently poses public 
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and environmental hazards, particularly in emerging countries, where incinerators and 

engineered landfills are lacking.47,50 

 

2.5.1.2 Physical methods  

Physical methods comprise of adsorption on activated carbon, coagulation/flocculation, 

peat, fly ash, coal, wood, membrane-filtration procedures and sorption techniques.51 

Adsorption occurs when the substances accumulate at the surface or interface. In water 

treatment, the procedure takes place at an interface between the solid adsorbent and 

polluted water. The adsorbed pollutants are called adsorbates whereas the adsorbing 

phase is called adsorbent.29  

 

Adsorption is considered an effective method for removal of colour from dye wastewater 

since it is dependence on the type and the molecular structure of the dye, as well as the 

position and the number of substituents in the dye molecule. In this way, there may be 

interactions between the dyes and the active groups on the surface of the cell via 

adsorption process in which it is widely acknowledged that the mechanism of ion-

exchange is involved in the selectivity and the efficiency of adsorption by microbial 

biomass.6 The advantages of the adsorption method of wastewater treatment are its 

worldwide nature, less expensive and easy to operate. It has the capacity to eliminate 

soluble and insoluble organic compounds with the removal of up to 99.9%. Physical 

methods using activated bentonites and powdered activated carbon have been reported 

to generate large amounts of sludge and their use has thus been limited due to is low 

treatment efficiency toward specific dyes. Their effectiveness is observed only when the 

effluent volume treated is small. Furthermore, it is a big challenge to dispose of the solid 

adsorbent.33,48,51 

 

In biocoagulation method, the extracellular polymers comprise of surface functional 

groups. These functional groups improve the sorption the dye pollutants onto the 
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polymer surface and settle throughout the process of dye removal. Processes that have 

been used intensively include coagulation, flocculation, and precipitation for the pre-

treatment of raw wastewater before releasing to wastewater treatment plants. These 

processes have been reported to be satisfactory in reducing COD and partial 

decolourization. However, it has been found that alone they are ineffective in treating 

textile/dye waste.6  

 

2.5.1.3 Chemical methods 

Chemical treatment techniques involve oxidation process using oxidizing agents such 

as sodium hypochlorite, Fenton’s reagent, photochemical, ozone and electrochemical 

degradation. They also consist of precipitation and flocculation or coagulation in 

combination with floatation and filtration. Dye removal using ozone is reported to be 

effective and much quicker. However, it does not provide satisfactory results, 

particularly for some dispersed dyes.33 These methods remove the dyes completely 

however they are expensive. Furthermore, it becomes a challenge to dispose of 

concentrated sludge that has buildup. Some methods are is not suitable for all type of 

dyes.48,51 

 

2.5.2 Advanced oxidation processes  

Advanced oxidation processes (AOPs) refers explicitly to processes whereby organic 

pollutants are primarily oxidized through interactions with hydroxyl radicals (OH-). AOPs 

were development in the 1990s and comprise a variety of methods for producing OH- 

and other reactive oxygen species such as hydrogen peroxide (H2O2), superoxide anion 

radical (O2• ‾) and singlet oxygen (O2).52–54 the attention that photocatalysis has 

attracted arises from the unique route it takes to effectively achieve better mineralization 

of organic contaminants to less harmful products under light irradiation.53 This process 

is directed by the desired flow rate, the target effluent contaminant concentration, and 

the pH of the background water.52 
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AOPs are broadly utilized in removing organic pollutants that are difficult to remove by 

conventional methods, thereby providing remediation for wastewater because of their 

ability to completely degrade different types of pollutants. The AOP technology is 

capable of removing persistent organic pollutants and microorganisms present in water 

even at low concentration levels. The generated free radicals in AOP process were 

observed to degrade pollutants that are not easily degraded by conventional oxidation 

methods. This technology is being researched and applied worldwide especially in 

developing nations.30,53,54 Water systems rooted in urban areas are typically 

predisposed to severe pollution a collection of pollutants including organic and inorganic 

pollutants.44 

 

These processes are based on the production of highly oxidizing agents, such as 

hydroxyl radicals with high oxidation potential (E°=+2.72 V vs. NHE). They can oxidize 

organic pollutants present in the environment to produce harmless by-products such as 

H2O and CO2). Hence, they are deemed environmentally friendly.30,43 The processes 

are based on different classes including photocatalysis, AOPs based on ozone, AOPs 

based on H2O2, AOP "hot" technologies based on ultrasound, oxidation with an electron 

beam, electrochemical oxidation process.44   

 

2.5.2.1 Advanced oxidation process based on Ozone 

Ozonation encompasses an important coadjutant process for treating different effluents 

that are highly loaded with recalcitrant pollutants. The discolouration process via 

ozonation is a speedy one that takes place in both alkaline and acid medium. This 

behaviour can be ascribed to the electrophilic nature of the ozonation process, whereby 

the reaction with the azo groups in the pollutants is facilitated through the direct attack 

by O3 molecules and the indirect attack of HO• radicals.37 But this process of cleaving 

the conjugated double bonds frequently results of the formation of poisonous products. 

However, extended ozonation can eradicate toxic products.51 The electron affinity of O3 

which is at 2.1 eV is much higher as compared to that of O2 at 0.44 eV, therefore 
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addition of O3 in pure O2 or in air could be a means of enhancing the scavenging of the 

photo-promoted electrons from the VB into the CB, either directly as illustrated in 

Equation (2.1) and (2.2). 
 

   (2.1) 

 

or indirectly 

 

  (2.2) 

 

The radical anion is more unstable than O3 and can probably split effortlessly at the 

surface: according to Equation 2.3. It may also react with adsorbed water as illustrated 

in Equation 2.4. 
 
  (2.3) 

   (2.4) 

 

An increased scavenging rate of photogenerated e- due to the ozone process should 

reduce the recombination rate of e- and h+. However, O3 can also scavenge hydroxyl 

radicals thereby restraining the favourable effect.53  

 

2.5.2.2 Advanced oxidation process based on Hydrogen peroxide 

Included in AOPs are Fenton, Fenton-like, H2O2 /UV, and photo-Fenton reactions 

(UV/H2O2/Fe2+ or Fe3+). In 1894, Fenton discovered that hydroxyl radicals could be 

generated by mixing H2O2 and ferrous iron, hence the name Fenton’s reagent.55 These 

are effective alternatives to remove textile industrial dyes, due to the ability to 

completely discolour and partially mineralize them, in relatively short reaction times. In 
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Fenton reaction, the ferrous iron (Fe2+) starts and catalyzes the breakdown of H2O2, 

which result in the production of hydroxyl radicals. The production of these radicals 

occurs in a sequential complex reaction in an aqueous solution.55 In this process, the 

initial Fe2+ ions are consumed as the oxidation of the dye occurs, then the rate of 

oxidation is dependent on the rate of dissolution of Fe0. The dye oxidation mechanism 

in the H2O2/Fe0 system is illustrated in Equations (2.5)  and (2.6).56,57 

 

   (2.5) 

  (2.6) 

  (2.7) 

 

In the photo-Fenton process, an extra number of HO⦁ is created each through direct 

H2O2 photolysis as well as by UV radiations interaction with the ion species that are 

present in aqueous solutions. The mechanisms are illustrated in Equations (2.8)-(2.10). 
 

  (2.8) 

  (2.9) 

  (2.10) 

 

The effectiveness of the oxidation method is determined by the organic compound 

structures, H2O2 and the concentrations of the catalyst, the wavelength and UV 

radiation intensities, the initial pH of the solution and the duration of the reaction.44 The 

drawbacks of traditional Fenton reaction include low efficiency in utilizing H2O2, narrow 

working pH (pH <3.0) range, excessive loss of iron ions and generation of solid sludge 

and challenges in recycling catalysts.58  
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2.5.2.3 Advanced oxidation process based on Photolysis 

Heterogeneous photocatalysis is defined as the acceleration of a photoreaction within 

the sight of a catalyst. It is a green innovation technology with the distinctive benefits of 

operating at room temperature and usage of fresh, sustainable solar light as the 

propulsion. It is effective for other reactions, for example, organic transformations, 

reduction of carbon dioxide and photocatalytic water splitting. Furthermore, a variety of 

alternative photoactive organic species and photocatalytic semiconductors can apply to 

these photocatalytic reactions.53,54 The interest in photocatalytic processes is on the 

utilization of photocatalytic semiconductors for the abatement of both organic and 

inorganic species present in effluents as a result of cleaning up the environmental, 

treatment of drinking water. This photocatalysis application in drinking water, as well as 

wastewater treatment, has been well recognized as a technique that transforms toxic 

organic pollutants into harmless mineral acids, CO2 and water.44,54 

 

The photocatalysis process is illustrated in Figure 2.3. At the point when a 

semiconductor absorbs an ultraviolet photon that has energy that is equivalent to or 

exceeds its band gap, electrons may be ejected from the VB to the CB (ecb), leaving 

behind an electron vacancy known as ‘‘hole’’ in the VB (hvb
+). These electrons and holes 

then relocate to the surface of the catalyst and take part in redox reactions.8,59.  



Chapter 2: Literature review 

 

 

25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e- 

h+ 

hv 

A 

A⦁- 

D⦁+ 

D 

CB 

VB 

 
Figure 2. 3: Schematic illustrating electron/hole pair generation at semiconductor 

particle, D- electron donor; A- electron acceptor.41 

 

In the VB, the oxidation may take place either as a result of indirect oxidation by means 

of reaction with the hydroxyl radical (⦁OH) that are bound on the surface or by direct 

attachment of h+ on the metal surfaces, before it is trapped inside the particle or at its 

surface.58 

 

 ⦁   (2.11) 

 ⦁   (2.12) 
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 ⦁  (2.13) 

 

Furthermore, the photogenerated electrons may also react with adsorbed oxygen as 

illustrated in Equation (2.14) to (2.19), to form superoxide radical ions (O2•−) in order to 

avoid build-up of excess charges within the particles of the catalyst and thus lead to 

electron/hole recombination. These species are strongly oxidizing and can mineralize 

organic pollutants as indicated below.58  

 

    (2.14) 

    (2.15) 

   (2.16) 

     (2.17) 

   (2.18) 

    (2.19) 

 

2.6 Photocatalysis overview  

The usage of photocatalytic semiconductors as a method of degrading organic and 

inorganic pollutants is currently drawing in a great deal of attention. Photocatalysis 

processes can be utilized to completely degrade and mineralize dyes and chemicals to 

CO2 and H2O and are additionally useful in the degradation of stable compounds which 

are recalcitrant under other processes. They are relatively cheap and also able to 

function efficiently at ambient temperature and pressure conditions, requiring no special 

supply of oxygen.58 Earlier studies have demonstrated that TiO2 and oxygen can 

completely photomineralized a large scope of organic compounds including alkanes, 

fungicides, insecticides, pesticides, and aromatics.60 
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Metal oxide semiconductors are reported to be very efficient photocatalysts and have 

been widely researched. However, a number of metal oxides have a wide band gap, 

and that has restricted their visible-light absorption capacity. For example, TiO2, as a 

standout amongst the most regularly considered photocatalysts can only absorb the UV 

portion at a wavelength lower than 388 nm, which covers just 4-6% of the solar radiation 

because of its wide band gap that is reported to be 3.2 eV and shows low quantum 

yield. The other disadvantage is the rapid recombination of photogenerated e−/h+ pairs, 

which diminish the efficiency of photocatalytic reactions quite significantly. Moreover, 

they are not suitable for recycling.41,61  

 

The semiconducting particle works simultaneously throughout the lifetime of charge 

separation. It works as an oxidizing agent by catching electrons found on the substrate 

and putting them at the positive holes and as a reducing agent by transporting electrons 

to substrates. This reduction and oxidation in the photocatalytic procedure have to occur 

simultaneously. If the redox reaction does not occur at the same rate, there will be an 

accumulation of electrons in the conduction band which will result in electron/ hole pair 

recombination as illustrated in Figure 2.4. The state of charge separation can be 

affected through different pathways, such as charge recombination of photogenerated e- 

or h+ in the similar occasion of photon absorption and by charge recombination after 

unsystematic migration of e- or h+ through the material.53 
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Figure 2. 4: Schematic diagram showing the typical photocatalysis process.62 

 

To significantly reduce the recombination rate of the photogenerated electrons and 

holes, the charge-carrier species may be separated through the addition of appropriate 

scavenger or addition of trap sites on the surface in order to produce defects, surface 

adsorbents, or different sites. Modification methods used to improve the performance of 

the catalyst comprised of heterojunction structural development, ion-doping, 

morphological control and noble metal deposition.58 The differences in corresponding 

conduction and valence bands energy levels between the dopants and the catalyst, 

resulting in the increase in the photocatalytic efficiency as charge separation is 

increased which allows absorption not only in UV but also visible light range.61,63,64  

 

Numerous visible-light absorbing photocatalysts have been effectively pursued in recent 

years.65 A diversity of photocatalytic semiconductors including TiO2, ZnO, CdS, SnO2, 
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Ag3PO4, FeTiO3, their composites have been fabricated without failure and also their 

photocatalytic properties have been widely explored.66 These nanocrystalline composite 

frameworks show a significantly improved photocatalytic degradation of organic 

pollutants as the composite could facilitate the transfer of charges and conquer the 

recombination of photoexcited electron-hole pairs. Amongst other visible-light absorbing 

photocatalysts, tungsten oxide (WO3) has been viewed as a standout amongst the best 

candidates because of its physicochemical properties that are stable, including relatively 

small band-gap energy (2.4-2.8 eV) and valence band (VB) holes having high oxidation 

power.61  

 

2.7 Tungsten trioxide (WO3)  

Amongst countless visible active photocatalysts, is Tungsten oxide (WO3), also referred 

to as tungsten trioxide. It is an n-type semiconductor having a narrow band gap reported 

to range between 2.5-3.2 eV and is thermally stable and water-insoluble. Prior studies 

have indicated that temperature and pressure have an influence on the different 

crystalline phases and phase transitions that WO3 possess.67–69 WO3 is a transition 

metal oxide composed of perovskite units and is better known for its nonstoichiometric 

properties. Its lattice can endure a substantial amount of oxygen deficiency.70  

 

The metal tungsten (W) can for oxides quite easily when oxidized in air. The oxidation 

process of tungsten with water and the reduction process of tungsten oxides with 

hydrogen are similar, especially if the reaction is driven in a specific direction by the 

high partial pressure of H2O or hydrogen.71 The sequential reactions are illustrated 

below 

 

  (2.20) 

  (2.21) 

   (2.22) 
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The reaction with water is a slow reaction at 38ºC and it is temperature and pressure 

dependent. Prior studies have shown that the reaction increases with increasing 

temperatures and pressures. It is reported that reactions with water vapour at 

temperatures ranging from 20 and 500ºC resulted in the formation of WO3 only without 

forming other oxides. Since the rate of the reaction is dependent on temperature and 

partial pressure of water to that of hydrogen, proper adjustments of the partial pressures 

may result in the formation of all known oxides.71 

 

The structure is constructed with corner sharing of WO6 octahedra, where the oxygen 

atoms are located at the corner and the tungsten atom are at the centre position of each 

octahedron as illustrated in Figure 2.5. Concerning the perfect ReO3 cubic structure, 

the symmetry is brought down by two distortions originating from the tilting of the WO6 

octahedra and the dislocation of tungsten from the centre position of its octahedron.72 

The structure is held together largely by ionic bonds since there are also significant 

covalent bonds. WO3 has a stoichiometric that can be visualized as being made out of 

W6+ and O22- ions. The VB is largely composed of O 2p orbitals, while the CB originates 

largely from W 5d orbitals.73 
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Figure 2. 5: Crystal structure of anhydrous monoclinic γ-phase of tungsten oxide.75 

 

They can be synthesized in nanostructures with varying morphology as illustrated in 

Figure 2.6, crystallinity and the alteration of each octahedron results in the following 

phases, monoclinic (ε-phase), monoclinic (γ-phase), triclinic (δ-phase), tetragonal (α-

phase) and orthorhombic (β-phase), The mixture of monoclinic and triclinic phases are 

commonly present at room temperature.72 All these four phases of WO3 have 

essentially a similar chessboard-like arrangement of WO6 octahedra. The difference 

between them is only in the degree to which the W atoms are dislodged from the centre 

of WO6 octahedra.75 WO3 has demonstrated great photocatalytic efficiency under visible 

light for abatement of most organic pollutants. The monoclinic phase has been reported 

to be a good candidate for applications in the presence of solar irradiation since it 

displays suitable band-gap energy for visible light absorption.61 
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Figure 2. 6: Tilt patterns and stability temperature domains of the different polymorphs 

of WO3. 

 

The focus has been on tungsten because of their distinctive attributes that have 

prompted various applications and guaranteed further improvement. Methods that have 

been used to prepare tungsten oxide include sol-gel, chemical precipitation, 

hydrothermal, and microwave irradiation methods.68,73 Because of such outstanding 

characteristics, WO3 has interesting optical and electrical behaviour,76 making it a 

suitable candidate in electrolysis,77 photoelectrochemistry,78 gas sensing,73 

photocatalysis, 81 electrochromic,81 and photoelectrolysis.82 
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2.7.1 Advantages and disadvantages 

WO3 is an interesting photocatalyst because it is inexpensive, non-toxic, holds physical 

and chemical stability toward harsh conditions including consistent contact with water 

and solar irradiation. Furthermore, it is comparatively abundant in nature.63,67 The ability 

of WO3 photocatalyst to absorb visible light in the region of up to 480 nm qualifies to be 

an interesting option for photocatalytic applications. It can, as a result, be utilized 

indoors for pollutant treatment. WO3 can use internal light sources in which ultraviolet 

light is limited to degrade volatile organic compound (VOC) gases. It also has the 

potential to be applied in outdoors where it is able to utilize light from the sun as energy 

for the treatment of harmful pollutants that are released from industrial wastewater. 

Moreover, it can be used for the production of hydrogen.59,67,68 On the other hand, WO3 

in a pure state still suffers some drawbacks such as lower conduction band level. In 

WO3 semiconductor, the VB edge is reported to be located at approximately 3 eV, but 

due to the lower CB edge value (+0.3 to 0.5 V NHE) does not have adequate potential 

to decrease O2 [E0 (O2/O22-•) -0.33 V NHE and E0(O2/HO2•) -0.05 V NHE]. The 

consequence of O2 failing to scavenge CB electrons leads to the build-up of electrons in 

the CB which subsequently results in less separation of the photogenerated e- and h+ 

and thus resulting in inefficient photocatalytic activity of WO3.23 

 

2.7.2 Modification 

Even though WO3 is able to absorb visible light, research has shown that using dopants 

can modify properties including the optical, electronic and physical properties of the 

nanomaterial and also further reduce the material's bandgap. The method of supporting 

and altering the surface of the photocatalyst is an effective one that also improves the 

adsorption capacities. The improved adsorption capacity enables a reactant-rich 

environment which then results in strengthened interaction between the pollutant and 

the catalyst surface.66 Considering that each photocatalyst has advantages and 

disadvantages, there are different approaches that have been used to improve the 
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efficiency of the photocatalyst. These include altering the morphology and particle size, 

using composite materials, doping with transition/noble metal, non-metals, and surface 

sensitization.67 Doping considered to be an effective and basic approach to increase 

free carries and decrease potential and conduction band levels by presenting impurity 

elements. The process involves the incorporation of foreign components into the parent 

photocatalyst without offering to ascend to another thus improving the separation of 

photogenerated charges. In this way, the wide visible-light component of the solar 

spectrum can be harnessed efficiently by the photocatalyst as compared to the narrow 

UV component.83 

 

Tungsten oxide as an interesting photocatalyst has limitations which can be 

compensated by applying modification strategies. Modifying functionalities of the WO3 is 

critical for its wide applications and can be effectively accomplished predominantly in 

three different ways. The first is the attachment of mono- or divalent cations into the 

interstitial positions of the WO3, secondly by producing surface oxygen vacancies and 

lastly by doping the WO3 semiconductor in either oxygen site or W site.23,83 

Furthermore, nanoscale metal oxides have extremely increased the photocatalytic 

activity due to the availability of larger specific surface area for reactions.54 However, 

large surface areas may facilitate electron and hole recombination. Thus modifying the 

surface area of the semiconductor delays the fast electron-hole recombination, and 

increases the photocatalytic efficiency.54,84  

 

2.7.2.1 Metal doping 

Extensive research has been done on the use of transition metals as dopants. This has 

been done in order to enhance their physical properties, explicitly to induce electronic 

structure with a small energy band gap.23 Noble metals like platinum (Pt), silver (Ag), 

gold (Au) display excellent visible light absorption and interfacial charge transfer due to 

their surface plasmon resonance (SPR) effect which adds to improve the visible-light 

absorbance and the efficiency of solar-energy conversion. It is well known that SPR is 
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based on the resonant oscillation of charges between the metal-dielectric interface, 

occurring as the exciting light frequency equals the natural frequency of the surface 

metal electrons that are oscillating to resist the restoring force of positive nuclei.61 

 

Li et al.83 used the density functional theory to research the crystal structure of Niobium 

(Nb) and Rhenium (Re) doped WO3. The research revealed that doping with Nb 

distorted the WO3 lattice, whilst Re-doping transformed WO3 from monoclinic to cubic 

phase. In the investigation of the effects of Ag on the structural and optical properties 

WO3 synthesised via a microwave-assisted route, it was discovered that the Ag 

substituted on the host lattice of WO3 resulting in intensity increase of the observed 

diffraction bands. This substitution causes lattice defects due to different atomic radii of 

the transition metals Ag (1.26) and W (0.6Å).85   

 

2.7.2.2 Non-metal doping 

Non-metal doping has attracted attention and has been thoroughly researched. This 

technique has been used to decrease the Eg of wide bandgap semiconductors so that 

they can absorb in the visible light range. In nitrogen-doped semiconductor such as 

TiO2, the element has been considered a suitable dopant because of its ionic radii and 

the band structure which is equivalent to oxygen. Nitrogen has lower electronegativity 

than oxygen, hence its 2p states produce trap sites that influence the narrowing of the 

band gap energy of nitrogen-doped TiO2 nanoparticles.23 Successful results were 

observed upon alteration of nanostructured WO3 films when doped with boron. The non-

metal substituted on the interstitial positions in the pristine WO3 lattice, decreased the 

crystallite size due to B3+ having smaller atomic radii than that of W6+ (0.23Å vs 0.54Å) 

thus occupying partial tungsten sites. Furthermore, the morphology of the films having a 

pronounced increase in roughness factor was observed and resulted in a larger surface 

area that was visible to the aqueous solution and thus increased surface hydroxylation 

contributing to improved photoelectrochemical (PEC) performance.69,78 
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2.7.2.3 Binary semiconductors 

In binary semiconductor compounds, the character of the valence band is generally 

linked with the anion and the character of the conduction band is generally linked with 

the cation. Therefore, the transition of a band to band deteriorates the interatomic bond, 

so that the when in the solution, the photoexcitation can promote the decomposition and 

dissolution of the solid.23 Stojadinovic et al.86 have reported that the Bi-component WO3 

and TiO2 nanoparticles have demonstrated improved photocatalytic activity regarding 

their plain component analogues since their VB and CB energy levels favour the 

transfer of electrons from the TiO2 conduction band to WO3 conduction band. The holes 

are transferred between valence bands in reverse direction. In this way, the electron-

hole recombination process is reduced in both semiconductors. The results indicated 

higher photocatalytic activity achievement for a shorter Plasma electrolytic oxidation 

process time.86 It was also discovered that by coupling with CaFe2O4 (CFO), the 

photocatalytic efficiency of WO3 was basically improved and the composite 

photocatalysts could completely break down acetaldehyde.87 

 

2.8 Characterization tools 

2.8.1 X-ray diffraction (XRD) 

Various X-ray diffractometry techniques have been utilized for the analysis of crystal 

structure as a means to understand the properties that the material displays. An 

example of a diffractometer system is depicted in Figure 2.7. XRD is based on the 

productive interference of the X-rays monochromatic beam that is scattered at particular 

angles from each set of lattice planes in a sample allowing a precise study of the 

structure of crystalline phases providing information on the degree of crystallinity, phase 

transitions as well as average grain size.88 The structure of a material alludes to its 

arrangement at different complexity levels, which ranges from a simple molecular 

formula to the precise locations of all atoms in the molecule. The structural features 

such as electrostatic/polar effects have a great influence on the macroscopic behaviour 
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and properties of the material. Hence, structural characterization assumes an important 

role in identifying material structures. X-ray diffractometry technique such as powder 

method which uses a wide-angle goniometer and an automatic diffractometer with 

counter has been of interest for years.89,90  

  

 
Figure 2. 7: Schematic diagram of a diffractometer system.92 

 

X-rays are generated in a cathode ray tube. Upon heating the filaments, electrons are 

produced and accelerated towards the target material by means of applying a voltage. 

Characteristic X-ray spectra are created at the time when electrons have acquired 

enough energy to remove electrons from the material’s inner shell. These spectra 

illustrated in Figure 2.8 and comprise of Kα and Kβ. Whereby Kα consists of Kα1 and Kα2. 

The specific wavelengths are subject of the target material (Cu, Fe, Mo, Cr) from which 

X-ray beams are produced. For filtration, foils or crystal monochrometers are used in 
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order to create monochromatic X-rays necessary for diffraction. Copper (Cu) is the most 

widely recognized target material for single-crystal diffraction with CuKα (1.5418 Å).92 
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Figure 2. 8: Schematic of the atomic energy levels and emission of characteristic X-ray 

radiation.89 

 

When the crystal structure is stricken at an angle θ by incident X-rays with respect to 

the crystalline planes, they can enter the crystal up to a reasonable distance and will 

interrelate with a great number of parallel planes. In general, each plane will be inclined 

to reflect the minimum amount of the incident X-ray beam and the reflected X-rays will 

likewise leave at an angle θ with respect to the planes as illustrated in Figure 2.9.92 
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Figure 2. 9: Geometrical description of X-rays scattering.94  

 

When conditions satisfy Bragg's Law (Equation 2.23), constructive interference and a 

diffracted ray are generated as incident rays interact with the target material. Bragg’s 

law relates the wavelength, diffraction angle and the lattice spacing in a crystalline 

sample  

 

   (2.23) 

 

Where n =an integer, d =interplanar spacing producing the diffraction, λ = wavelength of 

the X-rays and θ =diffraction angle.92,93 

 

2.8.2 Raman spectroscopy 

Raman spectroscopy is a technique named after its inventors. C.V. Raman together 

with K.S. Krishnan, experimented on the phenomenon of inelastic scattering of light 

which was first proposed by Smekal.94,95 Raman spectroscopy is for the most part 

https://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html
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utilized to distinguish vibrations in molecules, giving data on the physical forms and 

chemical structures in order to recognize materials from the spectral patterns.95 This 

technology utilizes a single frequency of radiation in irradiating the sample. Raman 

detects the radiation that is scattered from the molecule and from one vibrational unit of 

energy that differs from the incident beam. Consequently, Raman does not need to 

match the incident radiation with the energy difference that is between the ground and 

excited states.95 

 

The Raman scattering is a two-photon process, which involves light interactions with 

molecules. At the time when the light interacts with a material, the photons may either 

be absorbed or scattered. The photons may also be in contact with the material but 

rather pass straight through it. However, if the incident photon energy matches the 

energy gap between the ground state and the excited state of the molecules, the photon 

could be absorbed and the molecule excited to the higher energy state. Upon the 

interaction of the light with the molecule, the cloud of electrons nearby the nuclei is 

distorted to form an unstable short-lived state in which the photon can re-radiate. Then 

Rayleigh scattering is due to the emitted photon energy that remains the same as the 

energy of the incoming photon. An emitted photon with energy that is weaker than that 

of the incoming photon implies that the molecule gained energy from the photon while at 

ground state and then got promoted to the excited state. This process is known as 

Stokes Raman scattering. Furthermore, when the incoming photon gains energy from 

the molecule that is already in an excited vibrational state, it will produce a much 

stronger photon while the molecule in the excited state falls back to the ground state, 

this process is known anti-Stokes Raman scattering. These three types of scattering 

processes are summarised in Figure 2.10.94,95  
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Figure 2. 10: Mechanism of the Raman scattering process.96 

 

2.8.3  FTIR spectroscopy 

FTIR spectroscopy was invented by Michelson in the 80s. it was a concept which 

started as an invention of the interferometer. Then Lord Rayleigh proposed a new way 

in which the produced interference patterns could be interpreted into a spectrum by 

Fourier transformation.96 The instrumentation has been improved and advanced over 

the years and to date, FTIR spectroscopy is considered to be one of the most powerful 

techniques to date that can identify functional groups and molecular bonds between 

chemical compounds.97 Chemical compounds can easily be identified by observing the 

position of IR absorption bands in the spectrum. FTIR has the capacity to provide the IR 

spectrum at a faster rate than other spectrophotometers. The main components of a 

simple FTIR spectrophotometer are illustrated in Figure 2.11.97 
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Figure 2. 11: Layout of a typical FTIR spectrometer.97 

 
In the FTIR process, the intended light passes through the aperture wheel and is 

focussed on the mirror which then directs and focuses the light onto the beam splitter.  

Then the interferogram, which is the constructive and destructive interference, is 

created in the interferometer because of the recombination of the beams having 

different path lengths. The mirror directs the beam to enter the sample compartment 

from which a specific frequency of energy is absorbed by the sample. The detector 

interprets the interferogram signal in energy as a function of time. Then the 

interferogram subtracts the background noise from the sample by Fourier 

transformation software before releasing the anticipated.96,98  
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There are two modes used to collect FTIR spectra, namely, the transmission modes 

and reflection modes. The transmission modes which involve the use of KBr pallets, 

disposable cards and gas cells, whiles the reflection modes comprise of diffuse 

reflectance, attenuated total reflection, and specular reflectance. For liquid samples, the 

solution is placed between pairs of salt plates, for example, potassium bromide or 

sodium chloride. These plates are then placed into a holder in the spectrometer to 

produce a neat spectrum since no solvent is used. In solid samples, KBr pellet is 

obtained by crushing the sample into powder and then mixing it with potassium bromide 

(KBr) at a ratio of 1:100, followed by pressing it under high pressure of about 12,000 psi 

for 1-2 minutes. The obtained KBr pellet can then be placed into a holder inside the 

FTIR spectrometer for analysis. The IR spectrum is in the mid-IR region ranging from 

2.5-15 µm between 4000 and 666 cm-1. The mid-IR region is used to determine the 

existence of specific functional groups within the molecule because that is where the 

transition energies corresponding to vibrational energy state changes occur.98,99 

 

2.8.4  Morphological analysis  

The morphology studies of the nanoparticles were determined using transmission 

electron microscopy (TEM) coupled with energy dispersive X-ray (EDX), and scanning 

electron microscopy (SEM). TEM was invented in 1931 by a German electrical engineer 

Max Knoll and Ernst Ruska who was a German physicist. It was further improved from 

using a horizontal lens to using the vertically aligned lens in a column in order to sustain 

good alignment for an extended time. TEM is said to offer incredible choices to examine 

materials with characteristic dimensions that are under 100 nm or down to atomic scale. 

It quantifies the nanomaterial particle size, which is essential for the determining factor 

of the particle diameter. It is also an important instrument in characterizing the size 

distribution and the morphology of nanoparticles.100 The basic structure of TEM is 

comprised of an electron gun and glass lenses with magnetic lenses. The lens system 

that forms the images comprises three lenses, which are the objective, intermediate and 
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projection lenses. These lenses ensure high magnification from some tens to up to 

million times. The schematics the basic structure of TEM is shown in Figure 2.12.101 

 

 
Figure 2. 12: Schematic diagram of transmission electron microscope.102 

 

In TEM, there are electron beams that are generated from an electron gun, these 

beams are focused by the metal apertures and electromagnetic lens in the column. The 
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electrons are focused as the wave-like character of electrons behaving as negatively 

charged particles are deflected by magnetic or electric fields and only a small range of 

energy could pass through in this process. This leads to an energy electron beam that is 

well defined. In the TEM column, the specimen placed onto the sample holder is 

bombarded with transmitted electrons. This specimen should have a thickness that is 

within 100 nm for electrons to go through it.100 
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Figure 2. 13: Types of signals produced by the hitting of a specimen with a high-energy 

electron beam.101  

 
Figure 2.13 illustrates X-ray and numerous types of electrons that are generated 

between an electron beam and specimen. Density and the composition of a specimen 

are factors that may affect the transmission of electrons. More electrons would go 

through permeable metal, while fewer electrons would go through much denser 
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material. The application of a condenser lens could lead to the acquisition of the 

specimen’s crystal structure data by the paralleled electrons beams.100 TEM 

instruments can be combined EDX. EDX is an X-ray-based system, which is perceived 

as a nondestructive testing device to explore the elementary structure of materials. EDX 

studies deal with the properties, composition and structure of materials.102 

 

 
Figure 2. 14: Description of energy-dispersive X-ray spectroscopy principle.103 

 

In the EDS spectrum, peaks are attained through X-rays. These X-rays are created by 

characteristic fluorescence radiation. This characterization of EDS is viewed as an 

instrument for estimating the X-ray mapping and elemental composition, in which every 

atom is characteristic of its electronic configuration. In EDX, the sample is bombarded 

with X-ray or g-ray to knock out the electrons from the inner shell. This leaves a hole 

behind and thereafter the higher energy of the electrons is shifted to lower energy level 

delivering energy to the EDX where is detected as X-rays.102 The process is illustrated 

in Figure 2.14. 
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SEM is a technique that provides the surface image of samples. It was constructed by 

Manfred von Ardenne in the years 1937-1938 and is one of the best resourceful 

instruments for the analysis of microstructures and nanostructures. SEM as an electron 

microscope focuses electron beams to react with the sample in order to produce images 

and composition of the sample. The focused electron beam creates backscattered 

electrons, secondary electrons, and characteristic X-ray. These are then detected and 

displayed on the screen monitor. The schematic drawing of the SEM function is 

illustrated in Figure 2.15.103,104 

 

 
Figure 2. 15: Schematic drawing of the SEM function.104 

 

2.8.5  UV-Vis absorbance spectra analysis 

UV-Vis spectroscopy is an exceptional instrument that characterizes nanomaterial 

properties. In UV-Visible spectroscopy, the photons of light are measured in the UV-Vis 

range. In this process, the light intensity going through the sample is measured against 

the light intensity before passing through the sample. This technique can be used for 

absorption measurements of UV and visible light. The measurement may either occur 
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as single wavelength or scan a whole range in the spectrum. The UV-Vis spectral 

region extends over a UV range (190-400 nm) and visible range (400-780 nm). The 

complete spectrum can be obtained by using dispersive multichannel or dual beam 

dispersive scanning techniques. The instrument setup is illustrated in Figure 2.15. It 
consists of a light source, a chopper, a monochromator, a sample, a reference beam, a 

reference section, and a detector.105,106 

 

 
Figure 2. 16: Block schematic diagram of UV-Vis multichannel spectrometer.108 

 

The extinction of light that is measured by the spectrophotometer is a fraction of light 

that is isolated from the incident beam. This extinction can be derived from the relation 

given by the Lambert-Beer law (Equation 2.24). Based on the Beer-Lambert Law, the 

concentration of the substance is direct to the absorbance that is in the solution and 

consequently UV-visible spectroscopy can be utilized to quantify the concentration of a 

sample. 

 

    (2.24) 

 

Where A =absorbance of a solution, l =optical path length of the cell (cm), c =solution 

concentration (mol dm-3), and ε = molar absorptivity of the absorbing molecule. The 

molar absorptivity is constant for a specific substance at a specific wavelength (dm3 mol-
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1 cm-1). The plot of concentration against the absorbance of a series of sample solutions 

having known concentrations should give a linear graph if the Beer-Lambert Law was 

obeyed. The graph is identified as a calibration graph.106 

 

2.8.6  X-ray photoelectron spectroscopy  

XPS is a technology that was developed by K. Siegbahn and his research group in the 

mid-1960s. It is based on the phenomenon of the photoelectric effect delineated by 

Einstein. In the year 1905, Einstein used the concept of a photon to describe how 

electrons are ejected from a surface when impinged upon by photons.108,109 XPS is a 

very resourceful technique for surface chemistry analysing of materials. It is a 

quantitative and a nondestructive method, which has the ability to detect most elements 

and obtain information relating to the atomic compositions, chemical bonds, 

quantification of elements, oxidation states and determination of contaminants. A 

schematic diagram of an XPS measurement system is illustrated in Figure 2.16.110,111 

 

 
Figure 2. 17: Schematic diagram of an XPS measurement system.111  
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Concentric hemispherical analyzer determines the photoelectrons energies ejected from 

the material and this produces a spectrum of photoelectron peaks. Each peak has 

binding energy (BE) which is characteristic of each element and this is useful in 

identifying species. The number of electrons that are related to the energy quantifies the 

states and in turn, the number of electrons as an element of BE in a given sample.108,109 

 

 
Figure 2. 18: Schematic representation of the XPS process.109 

 

With respect to the tilting angle of the sample as depicted in Figure 2.17, the X-ray 

penetrates for about 1-10 nm under the surface. When there is an interaction between a 

photon that has higher energy than the BE of the electron in an atom, electrons will be 

emitted from an atomic energy level by X-ray photons. The following steps characterize 

this process: (1) optical excitation; (2) transport to the surface; (3) escape into the 

vacuum. The kinetic energy (KE) of the ejected electron is related to the incident beam 
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energy, the BE of the electron and the spectrometer work function.108,109,111 KE is given 

by Equation 2.25. 

 

     (2.25) 

 

Where KE = kinetic energy, BE = binding energy of the atomic orbital from which the 

electron originates, hν = energy of the incident beam and eØ = spectrometer work 

function. The spectrometer work function is the least amount of energy that each 

electron requires to dislodge from the surface. Each element generates an exclusive set 

of electrons with specific energies. Then an XPS spectrum is obtained by quantifying 

the number of electrons as a function of BE and KE.111 

 

2.9 Application 

2.9.1 Gas sensing 

Nanotechnology has been used to manufacture gas chemical nanosensors devices. 

These nanosensors are designed to quantitatively determine chemicals present in a 

gaseous medium. The nanosensors include two main components, the sensing element 

and the measuring transducer. The measuring transducer measures the change in 

optical, electrical and mechanical properties. Gas sensing is a surface effect hence 

nanostructured materials that are mesoporous have been largely researched in the 

development of catalytic and gas sensing systems. These mesoporous materials have a 

large and controllable pore size and high surface area. An increased active surface area 

of semiconductors enhances the material’s properties used as gas sensors.112  

 

Tungsten oxide has attracted great attention for its distinctive photocatalytic properties 

that have the potential for catalysis, solar energy, electrochromic devices and gas 

sensors. Tungsten oxide has demonstrated tremendous capabilities as a sensor for 

various gasses such as H2, CO, C2H5OH, CH3OH, HCHO, and NH3.113. Furthermore, 
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ultrafine WO3 nanoparticles produced via nanocasting synthesis route were investigated 

on sensing NO2. The results indicated that the nanoparticles are sensitive enough to 

detect NO2 gas even at low concentrations.112 

 

2.9.2 Electrochromic properties.  

WO3 nanoparticles display sub-stoichiometric phase transitions and structural 

transformations, which have sought the attention in the nanotechnology research field. 

The electrochromic effect of WO3 is highly dependent on the crystal stoichiometry, 

having significantly diverse properties that have been reported for crystalline and 

amorphous films. Electrochromic materials are materials that are capable of changing 

their optical properties, reversibly and persistently, by applying an electrical voltage. 

They exhibit electrochromic properties that make them appropriate for dazzle-free 

mirrors that are in automobiles, variable reflection mirrors, and smart windows.114  

 

Tungsten trioxide (hydrate) and its electrochromic properties were investigated in their 

applications in the electrochromic device where a complementary electrochromic device 

which was founded on the nanoparticle 3WO3·H2O film and PB film was synthesized 

and the resultant demonstrated faster-switching response, larger optical contrast and 

better colouration efficiency.115,116 In smart windows, they spare energy by decreasing 

the heating or cooling loads of the interiors in buildings.70,73,116 The investigation of the 

electrochromic and morphological effect of dry-lithiated nanostructured WO3 thin films 

resulted in improved normal state transmission as well as suppression of interference 

extrema in nanostructured films that are highly porous. The high normal state 

transmission, together with the open structure of the films, made the films highly 

anticipated applicants for electrochromic applications.117 
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2.9.3 Photoelectrochemical properties 

Photoelectrochemical (PEC) water splitting has the same principles as the natural 

photosynthesis-solar energy conversion through numerous electron transfers and 

generation of high energy chemicals like hydrogen.118 Metal oxide semiconductors are 

regarded as ideal candidate for photoelectrodes due to their nontoxicity, and low cost 

and inherent stability in water. WO3 has been considered a promising photoanode 

material for PEC water oxidation. PEC is extensively used in water splitting devices that 

involve water electrolysis using solar energy.118–120  

 

Kwong et al.121 demonstrated the effectiveness of the deposition potential on different 

mechanisms for deposition as well as the morphological, mineralogical, and optical 

properties of electrodeposited WO3 thin films and how these characteristics influence 

the photoelectrochemical performance of the WO3 thin films. Yang, et al.120 modified the 

surface states as well as the performance of PEC water oxidation of WO3 nanoflakes 

film photoanode with amorphous TiO2 (α-TiO2). This led the photogenerated-electrons 

or dissolved-oxygen method for the formation of H2O2 to be depressed and accelerated 

the H2O2 oxidation throughout PEC water oxidation. In the removal of pollutants from 

wastewater, Fernández-Domene et al.122 investigated parameters that influenced the 

PEC performance of WO3 nanomaterials via statistical analysis. He reported that the 

photoelectrochemical and chemical stability of WO3 in highly acidic atmospheres 

improved the PEC performance of WO3 photoelectrodes. The result further indicated 

that the high degree of crystallinity of WO3 nanostructure enhanced the electrochemical 

as well as the photoelectrochemical interfacial phenomena. These WO3 photoanodes 

were used in the degradation of chlorfenvinphos under visible-light illumination.   
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2.9.4 Photocatalytic properties 

WO3 nanoparticles have been evaluated for their photocatalytic efficiency in Methylene 

blue under UV-vis irradiation and alkaline reaction pH indicated that the more porous 

and large surface area samples provided a more active site for faster photocatalytic 

reaction rate and almost complete discolouration of the organic dye.59 Moreover, the 

photocatalytic activity of the WO3 in the degradation reaction of the organic dyes such 

as indigo carmine (IC), Rhodamine blue (RhB), Congo red (CR) and methyl orange 

(MO) under UV and UV-vis irradiation has been remarked as one of the peak 

applications of WO3.123  

 

Furthermore, WO3 nanoparticles have been employed for the treatment of wastage form 

pharmaceutical contaminated effluents. The study on the photocatalytic degradation of 

Lidocaine drug achieved 95.48% and 97.5% degradation of the drug in 60 minutes 

under visible and sunlight respectively.80 Modification of WO3 proves to enhance the 

photocatalytic activity of the catalyst. Upon deposition of Silver nanoparticles on WO3 

nanorods, the resultant was better optical properties and more optical visible-light 

response-ability. The enhancement of photocatalytic activity was attributed to the 

intrinsic nature of charge separation and also on the SPR effect which contributes 

towards the reduction of electron-hole pair recombination.61 
 

2.10 Synthesis 

2.10.1 Sol-gel technique 

Sol-gel methods grant the means to obtain well-crystallized nanomaterials with high 

chemical homogeneity at warm temperatures. It is reported to be a powerful technique 

for synthesizing metal oxides to fit particular applications due to the ability to regulate a 

number of parameters such as the pH, the type of the precursors, reaction time and 

temperature, concentration of the reagent, concentration and type of the catalyst and 
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ageing temperature and time. In this process, the metal-oxo-polymer networks are 

formed from metal salt or metal alkoxides precursors. However, alkoxides tend to 

hydrolyse rapidly which may result in the difficulty in controlling the sol-gel synthesis. 

Hence, products can be obtained as a result of introducing different variations in the 

preparation routes.23  

 

Ageing of the sol, particularly at high temperatures, produces coarse particles. The 

hydrolysis step is promoted by the electrophilic attack of H+, hence it is typically 

catalysed by the addition of either an inorganic or carboxylic acid. Preparation at low pH 

generally produces more crystalline powders. However, high pH levels promote 

condensation, which results in less ordered solids. It is possible to control the rates of 

nucleation and growth of the particle by adjusting the water-to-alkoxide ratio. An 

increase in this ratio favours nucleation, whereas low water content or excess TiO2 

alkoxide favours particle growth.23 

 

2.10.2 Acid precipitation 

As one suitable and inexpensive method, chemical co-precipitation is able enough to 

meet high demands for the direct preparation of nanoparticles that are well dispersed. 

This method is energy saving by using low-temperature substitutes to conventional 

powder synthesis methods in the synthesis of nanoparticles. The method also offers the 

ability to control the sizes of nanoparticles by an apt surfactant. Chemical co-

precipitation can generate high-purity, fine, stoichiometric particles of single and 

multicomponent metal oxides. The synthesis route includes metal ion complexation by 

polyfunctional carboxyl with one hydroxyl group, its precipitation and lastly, thermal 

treatment decomposition.124,125 
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2.10.3 Microwave irradiation method 

Microwave heating is one of the promising technologies, whose applications have been 

a research interest due to its unique effects including increased reaction rates, rapid 

volumetric heating and shortened reaction time, enhanced reaction selectivity and 

energy saving. Microwave irradiation methods have been used effectively to modify the 

properties which have enormous effects on the photocatalytic performance of 

semiconductor metal oxides, these properties include particle size, morphology and 

high surface areas.86 

 

Moreover, the simplicity of the microwave irradiation method arises from its operation, 

less time consuming, purity of the material in comparison with other methods. In a 

typical experiment, the prepared precursor solution is placed into the microwave oven 

operating at 360W in an air atmosphere. Thereafter, the resulting substance is dried at 

a temperature of 100°C for 5 min. Abhudhahir and Harshulkhan127 synthesized pristine 

and Manganese doped WO3 nanoparticles without hydrate group using Microwave 

irradiation method for the photodegradation of Methylene Blue. 
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CHAPTER 3 
METHODOLOGY AND CHARACTERIZATION 

3.1 Introduction  

This chapter gives detailed procedures employed in the synthesis, characterization and 

photodegradation of the synthesized nanoparticles. Pristine monoclinic tungsten trioxide 

(m-WO3) and lanthanum doped WO3 nanoparticles were synthesized using the 

impregnation method. Various characterization techniques such as X-ray diffraction 

(XRD), Raman spectroscopy, scanning electron spectroscopy, transmission electron 

microscopy (TEM), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS) 

were used to characterize the samples. The UV-Vis spectroscopy and ion 

chromatography (IC) were used in photocatalytic measurements of the nanoparticles. 

 

3.2 Materials and reagents 

Tungstic acid (99%, Sigma-Aldrich Co.), Nitric acid (30%, Sigma-Aldrich Co.), 

Lanthanum nitrate hydrate (99%, Merck), 1000 ppm dye stock solutions were prepared 

by dissolving Methylene Blue and Congo Red powders (Sigma-Aldrich Co.) in de-

ionized water. 

 

3.3 Methodology 

3.3.1 Synthesis of pristine m-WO3 and La- WO3 nanoparticles 

Pristine m-WO3 was synthesized using a thermal treatment of a yellow tungstic acid 

H2WO4 (5.0 g) powder in the oven at 450 ºC for 3 hrs. Lanthanum doped samples were 

prepared via impregnation method. To obtain the desired percentage of dopant (1, and 

5 m/m %), lanthanum nitrate and tungstic were dissolved in nitric acid (30%, 10 ml) 

under continuous stirring for two hrs at 90°C. The materials were then precipitated, 
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washed with ethanol and dried overnight at room temperature to obtain a yellow powder 

product. The sample was then calcined in the oven at 450 °C for 3 hours. The samples 

were labelled m-WO3, 1-La-WO3, and 5-La-WO3 for pristine WO3, 1% and 5% (m/m) La-

doped WO3 respectively.1,2 

 

3.3.2 Characterization tools 

3.3.2.1 X ray diffraction (XRD) 

Structural properties of pristine m-WO3 and the La-WO3 nanoparticles were analyzed 

with X-ray diffraction (XRD, X’Pert Philips). XRD was operated at 40 mA, 40 kV with 

CuKα radiation (1.54060 nm) polychromator beam 2θ scan within the scan range of 10–

80°, and a step size and step time of 0.0170 and 175.26 s. By using the Debye–

Scherrer’s equation (3.1), the average grain size was calculated based on the peaks 

found in the XRD patterns.  

 

                                                                                                                               (3.1) 

 

Where, D =mean crystallite size, λ =X-ray wavelength (0.1541 nm) for CuK, k =0.89, β 

=full width at half maximum and θ =Bragg angle.3,4  

 

3.3.2.2 Raman spectroscopy 

Raman experiments were conducted using Raman Micro 200, Perkin Elmer 

spectrophotometer with a 514.5 nm wavelength Ar+ laser. Spectra were obtained by an 

1800 lines/mm grating, with a holographic notch filter and cooled TCD tolerating a 

spectral resolution of about 3 cm−1. The power on the samples was maintained below 

0.5 mW to avoid local heating and the photoluminescence spectra were recorded by LS 

45 Fluorescence spectrometer. 
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3.3.2.3 Fourier transform infrared (FTIR) spectroscopy 

The FTIR spectra analysis was done using a Perkin Elmer Precisely spectrum 100 FTIR 

spectrometer in the range 400-4000 cm-1 with KBr as a reference. The specimen discs 

of nanopowders were prepared by preparing a pellet of a mixture of nanoparticle with 

KBr. In this experiment, the sample was crushed into powder. Then the sample powder 

was combined with powdered potassium bromide (KBr) at a ratio of 1:100. The powder 

mixture was then pressed under high pressure at around 12,000 psi for 1 minute. The 

produced KBr pellet was then inserted into a sample holder in the FTIR spectrometer 

and scanned between 4000 – 400 wavenumbers (cm-1) to obtain spectra.5 

 

3.3.2.4 Morphological analysis 

The morphology studies of the nanoparticles were resolved using transmission electron 

microscopy (JOELTEM 2010) at an acceleration voltage of 200 kV. The instrument was 

coupled with an energy dispersive X-ray (EDX) detector operated at 5 kV. The 

nanoparticles were dispersed in alcohol followed by ultrasonication for 2 minutes and 

then with the use of a pipette, a drop of the sample was dispersed on a carbon-coated 

copper grid, which was left to dry before analysis. The scanning electron microscope 

(SEM, TESCAN Vega TC instrument with VEGA 3 TESCAN software) was used and 

operated under nitrogen gas. 

 

3.3.2.5 UV-Vis absorbance spectra analysis 

UV-Vis spectrometer (Shimadzu UV-2450) operated in diffuse reflectance mode (DRS) 

was utilized in obtaining the absorbance spectra, followed by the application of 

Kubelka–Munk transformation and Barium sulphate (BaSO4) was used as reference 

material in all measurements. The nanoparticles were mixed with BaSO4 and placed in 

a spherical sample holder and pressed into a smooth surface pallet. The sample was 

then placed in UV-Vis spectrometer for analysis. The energy gap values (Eg) were 

determined with the following relationship as expressed in Equation (3.2).  



Chapter 3: Methodology and characterization 

 

 

72 

 

                                                     (3.2) 

 

where α =the absorption coefficient that is calculated from the Kubelka–Munk function, 

hv =the photon energy, Eg = band gap energy, A =constant, and n =constant with a 

value of n = 1/2 for materials with a direct transition.  

 

The formula was simplified as expressed in equation 3.3 

 

                                                    (3.3) 

 

The optical band gap of the nanomaterials was calculated by extrapolation from the 

Tauc linear portion of 2 against hv, to the x-axis, where α = 0, and, consequently, 

Eg = hv.2,6 

 

3.3.2.6 X-ray photoelectron spectroscopy 

The AXIS SUPRA X-Ray photoelectron spectroscopy (XPS) equipment was used to 

provide information on the position of the valence band edge of the nanoparticles with 

respect to the Fermi level. The valence band maximum was determined under the 

following conditions: working pressure 1.8 × 10-8 Torr, 15mA emission current, 

resolution 80, with dwell time 100 and sweeps 2. Furthermore, the application of charge 

neutralizer mode was carried out due to the non-conductive nature of samples.  
 

3.3.3 Photocatalytic degradation 

3.3.3.1 Photocatalytic activity 

The photocatalytic activity of the as-synthesized nanoparticles was demonstrated by the 

degradation of Congo Red and Methylene Blue in aqueous solutions. The experiments 
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were carried using Lelesil Make TQR super degradation reactor. In this experiment,  

0.5 g of the catalyst was added into 500 mL of dye (10 ppm). The high-pressure visible 

lamp attached to a UV controller unit and operating at 250 W was mounted in a glass 

tube with cooling water system around it which was then placed inside the 1000 mL 

flask with the dye solution in it. The flask was then placed on a magnetic stirrer and 

stirred for half an hour in the dark to ensure that the equilibrium between the adsorption-

desorption of the dye on the surface of the catalyst is reached; then the solution was 

kept in the dark for 30 minutes. Thereafter the light source was switched on. During the 

reaction, 5 mL samples were withdrawn at different time intervals from the reactor to be 

analyzed with UV-Vis spectrophotometer. 

 

 

Figure 3. 1:  Schematic representation of a photocatalytic reactor. 
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3.3.3.2 Surface Charge Analyses 

Zeta potential measurements were done using a Zetasizer Nano ZS (Malvern). The zeta 

potential was determined by suspending nanoparticle (30 mg) in deionized (DI) water. 

The pH of the suspensions ranging from 2–10 was adjusted using 6 M NaOH and 6 M 

HCl.7  

 

3.3.3.3 Ion Chromatography 

The resulting [SO4]2- and Cl- ions were measured using Ion chromatograph (IC, Dionex-

ICS 2000) that was equipped with a Dionex Ion Pac AS18 (2 × 250 mm) column and a 

conductivity. A cocktail of the two dyes, Methylene Blue and Congo Red were prepared 

at different concentrations (1ppm, 5ppm, 20ppm, 50ppm, 70ppm, 100ppm) and 10ppm 

of each dye for the calibration curve. Thereafter, the degradation samples were then 

injected into the IC for analysis. 
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CHAPTER 4 
RESULTS AND DISCUSSIONS  

4.1 Introduction 

Organic dyes including the cationic Methylene Blue and an anionic Congo Red are 

considered as hazardous chemical due to the high stability of these species. They are 

able to resist light and oxidation agents. Hence, they are able to by-pass the 

conventional method of anaerobic digestion. Both CR and MB commonly used in textile 

industries in for dyeing cotton, wool and silk. These dyes are detrimental to human and 

animal health and thus their introduction to water stream poses health risks, ecological 

and environmental concerns. Therefore, it is important that effluents containing MB and 

CR pollutants must be properly treated before they are released into water bodies.1–3
 

 

The process of degrading unmanageable organic pollutants is challenging since they 

cannot be adequately treated by conventional methods.2 These methods include carbon 

adsorption, coagulation, ultrafiltration and reverse osmosis.4 The conventional biological 

wastewater treatment method is not effective enough to treat dye wastewater since 

these dyes are less biodegradable. Furthermore, chemical and physical processes 

create a substantial amount of sludge and also cause secondary pollution owing to 

hazardous products that are being formed.5 

 

Heterogeneous photocatalysis using semiconductor has demonstrated to be a useful 

means for the degradation of water pollutants.6,7 Several efforts have been done to 

understand how it is able to degrade a wide variety of indistinct recalcitrant organics into 

compounds that are readily biodegradable and ultimately mineralizing them to 

innocuous CO2 and water.8,9 In light of the economical use of visible light radiation the 

development of semiconductor photocatalysts with high photocatalytic activity under 

visible light radiation is desirable.10 Among numerous visibly active photocatalysts, is 

tungsten trioxide (WO3). It is reported to be a nontoxic metal oxide, possessing physical 
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and chemical resilience toward photo corrosions and it is relatively abundant in nature. 

It is an n-type semiconductor with a wide band gap of between 2.4 and 2.8 eV, which 

makes it an interesting visible-light-driven photocatalysts.11,12 

 

WO3 has a broad display of band-gap values that guarantees considerable 

photoelectrocatalytic and photocatalytic applications under visible-light radiation.13 

However, pure WO3 has some drawbacks as it has low conduction band level which 

does not provide potential that is adequate to react with strong oxidizing agents and 

thus result in fast recombination of photogenerated e- and h+ and eventually lowering 

the photocatalytic activity of the catalyst.12 Different strategies have been employed to 

modify their catalytic activity including non-metal and transition/noble metal doping.14,15 

Depending on the structure distortions, WO3 exists in several phase transitions such as 

monoclinic, triclinic, orthorhombic and tetragonal.16 WO3 has positive valence band (VB) 

holes (+3.1 - 3.2 VNHE), which is generally more positive than the oxidation potential. 

This makes it capable of efficiently photo oxidising a broad range of organic pollutants.17 

Furthermore, WO3 has incredible stability in acidic conditions, making it a good 

candidate for the treatment of contaminated water.18  

 

In this manuscript, we report the synthesis of pristine and lanthanum doped WO3 

nanoparticles, via a modified impregnation method. Furthermore, the influence of 

lanthanum on the structure and optical properties was investigated. Lanthanum is one 

of the widely investigated rare-earth metal elements due to its 4f electron configuration 

that often serve as a catalyst or promote catalysis. They are ideal dopants for modifying 

the electronic structure, crystal structure, surface adsorption and optical properties. 

Lanthanide ions can also form complexes with different Lewis bases, this leads to 

increased adsorption of organic compounds onto the surface of the catalyst and thus 

results in improved photocatalytic activity.19–22 The photocatalytic properties of pristine 

and La-doped WO3 nanoparticles were investigated on the photodegradation of a 

cationic Methylene blue (MB) and an anionic Congo Red (CR) in an aqueous phase as 

model pollutants. To the best of our knowledge, the investigation of photocatalytic 
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properties of La-doped WO3 on these two different classes of dyes has not been carried 

before. Moreover, the optical bandgap shift depending on carrier concentration, the 

amount of doped lanthanum, and the pH of the reaction solution were also investigated.  

 

4.2 Results and discussions 

4.2.1. XRD  

X-ray diffraction was utilized n determining the phase purity, crystallinity and structural 

analysis of the pristine m-WO3 and La-doped WO3 nanoparticles as shown in Figure 
4.1. The X-ray patterns of the m-WO3 at 2θ = 23.14º, 23.58º and 24.37º corresponding 

to (002), (020) and (-202) can be ascribed to those of monoclinic phase of WO3. La-

doped WO3 exhibited the diffraction peak at 2θ = 23.14º, 23.64º and 24.43º correspond 

to (001), (020) and (200) planes of WO3 with monoclinic structure. The observed XRD 

results indicate clear crystallinity of the synthesized nanoparticles. It was observed that 

there were no obvious diffraction peaks associated with the dopant. This may be due to 

the differences in the ionic radius. The ionic radius of W6+ (0.64 Å), is much lower than 

that of La3+ (1.15 Å) therefore it was difficult for La3+ to enter the lattice of WO3. La3+ 

ions were most likely to be found on the surface of WO3. Villa et al23 also reported a 

monoclinic WO3 with no crystal phases related to La2O3 on their investigated into the 

role of lanthanum in mesoporous WO3  which was used to photocatalytically convert 

methane into methanol with water. The average crystallite size of the m-WO3 and La-

doped samples was calculated from the average of the diffraction peak (020) using the 

following Debye-Scherrer equation: 

 

                                                                           (4.1)  

 

Where D is the mean crystallite size, λ is the X-ray wavelength (0.1541 nm) for CuKa, k 

=0.89, β is the full width at half maximum and θ is the Bragg angle. The average 

crystallite size of m-WO3 was found to be 12 nm and it was further decreased to 10 nm 

for 1-La-WO3 and increased to 15 nm for 5-La-WO3 sample.   
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Figure 4. 1: XRD patterns for a) Tungstic acid, b) m-WO3, c) 1% La, d) 5% La. 

 

4.2.2. Raman spectroscopy 

Raman Spectroscopy was used to ascertain the polymorphic nature and bonding 

environment information about the m-WO3 and La-doped WO3 materials. Figure 4.2 
shows the modes at 806 cm-1 and 713 cm-1 corresponding to the stretching vibrations of 

O-W-O, whereas the modes at 325 cm-1 and 266 cm-1 correspond to bending vibrations 

of W-O-W.  All samples contained the characteristic peaks of the monoclinic phase of 

WO3 nanoparticles, which was consistent with the XRD results. Subsequent to La 

doping, the peaks intensities were lowered and the most intense peaks at 713 and 806 

cm−1, become wider. The crystallite size, crystal structure defects had a great influence 

on the shape, peaks position and relative intensities of the Raman spectra of WO3.23–25 

Furthermore, the Raman bands which typically appear at 104, 191 and 411 cm-1 and 

are assigned to La2O3 were not observed in the La-doped samples, confirming that 

lanthanum may be dispersed on the surface of the catalyst.16,27 Similarly, Villa et al23 
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and Khalid et al27 reported that the La3+ may be found dispersed on the surface of the 

catalyst due to the difference in their ionic radii. 

 

 
Figure 4. 2: Raman spectra of a) Tungstic acid, b) m-WO3, c) 1-La-WO3, d) 5-La-WO3. 

 

4.2.3. FTIR spectroscopy 

WO3 nanoparticles consist of packed corner sharing WO6 octahedral, with W atoms 

located in the centre and O atoms at the vertices and thus forming W-O-W connections. 

This arrangement provides IR with fundamental normal modes of vibration of W=O, W-

O and W-O-W. The IR spectra in Figure 4.3 shows the broad absorption peaks in the 

region 499-972 cm-1 which are characteristic of W=O, W-O and O-W-O stretching 

vibrations in the WO3 crystal lattice. The peaks at 1012- 1197 cm-1 are attributed to 

weak hydrogen bonded W-OH groups and these peaks disappear on the La-doped 

samples. This decrease is an indication of the presence of lanthanum in the prepared 

samples. The observed bands at 1380-1651 cm-1 are characteristic of OH bands, which 

are attributed with the surface hydroxyl groups, and solvent those are weakly bound. 
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Strong broadband at 3021-3685 cm-1, characterizes intercalated water molecules (W-

OH…..H2O). The decrease in these bands may be due to physisorption.28–30 The 

presence of these peaks is an indication of the formation of WO3 nanoparticles. These 

results are in agreement with FTIR results that are reported by Prabhu et al28 on their 

study of the effects that temperature had on the optical and structural properties of WO3 

nanoparticles that were prepared by the solvo thermal method. 

 

Figure 4. 3: FTIR spectrum of a) Tungstic acid, m-WO3 and 1% to 5% La doped WO3 

nanoparticles. 
 

4.2.4. Morphological analysis  

Investigation of morphology and particle size was carried through TEM, SAED and 

EDX. The images of m-WO3 and 5-La-WO3 nanoparticles are represented in Figure 
4.4. Figure 4.4 (a) and (b) shows the TEM images of both the m-WO3 and 5-La-WO3. 

The nanoparticles have a distinct mixture of spherical and rod-shaped morphology. The 

spherical shapes sizes of the m-WO3 and 5-La-WO3 were found to be 45 nm and 55 nm 
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respectively. The estimated average particle size from XRD data was much smaller 

compared to the one extrapolated from TEM images. This may be due to the 

agglomeration of smaller particles. Similar particle size differences were observed by 

Harshulkhan et al.29 During their research on the effects that silver doping has on the 

optical, structural and photocatalytic activity of WO3 nanoparticles. 

 

 

Figure 4. 4 TEM images for (a) m-WO3 and (b) 5-La-WO3; and EDX (c) m-WO3 and (d) 

5-La-WO3 with SAED images inserts. 

 

The SEM images in Appendix A of m-WO3 and 5-LaWO3 clearly indicated that the 

morphology of both the samples is spherical. The EDX spectra represented in Figure 
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4.4 (c) and (d), showed the presence of oxygen, tungsten and lanthanum. The peaks 

corresponding to copper and carbon arise from the grid used for EDX analysis. The 

SAED patterns inserted in Figure 4.4 (c) and (d), were found to be (022), (020) for the 

m-WO3 and (001), (220) for 5-La-WO3 respectively which compares well with X-ray 

data.  

 

4.2.5. Optical properties 

The optical properties of the synthesized samples were explored by solid-state UV-Vis 

diffuse reflectance. The results are reflected in Figure 4.5. The doped samples showed 

higher intensity than the m-WO3, furthermore, it was observed that the absorbance 

spectrum of La-doped sample slightly shifted toward the shorter wavelength (blue shift). 

This blue shift is an indication of the increased band gap. The relationship  

where hv and λ are the band gap energy and wavelength respectively was used to 

estimate the band gap energy of the synthesized samples. The insert is a graph plot 

of , where α is the absorption coefficient, h is the Planck’s constant, v is the 

frequency of incident light. The band gap energy of the m-WO3, 1-La-WO3 5-La-WO3 

nanoparticles were found to be 2.45, 2.42 and 2.57 eV respectively. A similar band gap 

of 2.66 eV for monoclinic WO3 was reported by Hunge et al.31 on their photocatalytic 

degradation efficiency studies of WO3 thin films on MB. The decrease in the band gap of 

the La-doped sample is attributed to the doping of lanthanum which could create 

impurity levels below the conduction band of WO3 nanoparticles.32 The observed 

increase in the band gap may be attributed to the high doping of lanthanum.33–35    
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Figure 4. 5: UV-Vis diffuse reflectance spectra for pristine m-WO3 and La-doped WO3 

nanoparticles. The insert is a plot of (αhv)2 versus photon energy. 

 

The band edge positions shown in Figure 4.6 were calculated to indicate the effect of 

lanthanum on the band gap of the semiconductor. The valence band (VB) and 

conduction band (CB) position were calculated using the empirical formulas (4.2) and 

(4.3). 

 

  (4.2) 

   (4.3) 

 

where X =absolute electronegativity of an atom in a semiconductor, and it is described 

as the arithmetic means of the atomic electron affinity and the first ionization energy;  
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=energy of free electrons of the hydrogen scale (4.5 eV);  =CB potential and  

=the VB potential. Table 1 Shows the calculated band edge results.36 

 

Table 1. Band edge for pristine m-WO3 and La doped WO3. 
Material ECB (eV) EVB (eV) 
m-WO3 0.855 3.305 

1-La-WO3 1.140 3.560 
5-La-WO3 0.795 3.365 

 

 

Figure 4. 6: The band edge positions of m-WO3 and La-doped WO3 

 

The calculated band edge positions infer the change in the position of both VB and CB 

of the doped samples with respect to the pristine WO3. Further analysis to confirm the 

band positions was done with XPS. The XPS data provide useful information on the 

valence band edge position with respect to the Fermi level ( ). In Figure 4.7 the 

analysis of valence band edge was performed in order to establish the location of the 

valence band maximum (VBM) with respect to the Fermi level position (which 

corresponds to 0 eV binding energy). The VBM was determined by extrapolating two 
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solid lines from the background and the straight cut off in the spectra. The determined 

VBM values for m-WO3 and 5-La-WO3 were 2.85 eV and 2.82 eV respectively, implying 

that the VBM was below the Fermi level. The direct band-gap of m-WO3 and 5-La-WO3 

were estimated to be 2.45 and 2.57 eV from the intercept, as shown in Figure 4.5 
insert.  

 

 

Figure 4. 7: XPS spectra for m-WO3 and 5-La-WO3 showing the valence band 

maximum. 

 

Therefore, for m-WO3, by combining the measurement from the XPS (VBM is at 2.85 

eV) and the optical band-gap value using Equation 4.3, the conduction band energy 

was 0.4 eV below the Fermi level. In 5-La-WO3, the combination of the VBM and optical 

band gap resulted in conduction band energy of 0.26 eV below the Fermi level.37,38 

Thus when depicting this information in a graphical form in Figure 4.8, the results are in 

agreement with the calculated band edge positions from DRS data depicted in Figure 
4.6. 
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Figure 4. 8: Band edge position from the XPS data.  

 

The experimental results demonstrated that 1 and 5% doped WO3 nanoparticles having 

high VBM are able to generate higher oxidation holes, thus show showing photocatalytic 

oxidation capabilities. Moreover, the up-shifting of conduction band minimum generates 

more electrons that react with adsorbed oxygen molecules on the surface.  

 

4.3 Photocatalytic activity studies 

4.3.1 Zeta potential 

Zeta potential measurements were used to explains the solid/liquid interfacial charge 

processes and interactions between the surface of the catalysts and the dyes. The 

solution pH plays a significant part in characterizing dyes as well as in reaction 

mechanisms that may influence dye degradation. By making adjustments to the solution 

pH, the photocatalytic removal efficiency of the catalyst can be significantly enhanced. 

The Zeta Potential data for the synthesized nanoparticles is presented in Figure 4.9. 

The point at which the Zeta potential shifted to zero (point of zero charge, Pzc) was 
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found to be at about pH 3.5-3.8. These results revealed that WO3 surface becomes 

positively charged at pH < 3.8, and it is negatively charged at pH above 3.8. Similar 

findings were reported by Simelane et al.39 on their studies of the effects that humic acid 

had on the aggregation kinetics and stability of WO3 nanoparticles. 

 

 

Figure 4. 9: Zeta Potential of 1-La-WO3 and 5-La-WO3. 

 

4.3.2 The effect of solution pH 

The zeta potential data established that the photocatalytic nanoparticles exhibited a 

transition in potential with respect to pH. At low pH, the nanoparticles had positive 

potential and at high pH, they had a negative potential. Alkaim et al.40 studied the effects 

that pH had on the adsorption process and photocatalytic degradation efficiency of 

different catalysts when used to remove MB, and reported pH to be an important 

parameter in the photocatalytic reactions that occurs on surfaces of the catalyst. 

Methylene Blue is a cationic dye when dissolved in water. It was observed that at higher 
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pH (pH = 6), MB adsorbed on the surface of the catalyst. As the pH of the dye solution 

changed to more neutral, the surface to the photocatalyst acquired negative charges. 

Therefore the increasing electrostatic attraction between the photocatalyst that is 

negatively charged and positively charged dye resulted in increased adsorption of the 

MB dye.41 In contrast, CR is an anionic dye. Hence the adsorption capacity increased 

when the pH was low (pH = 2), due to CR containing positively charged sulfonic groups. 

In acidic conditions, the CR molecules with sulfonic groups ionize easily and become a 

soluble CR anion and thus the interaction between the catalyst surface that is positively 

charged and the negatively charged CR dye favoured adsorption.41,42 

 

4.3.3  Photocatalytic and kinetic measurements  

The photocatalytic properties of pristine and La-doped WO3 samples were evaluated by 

the degradation of Methylene blue and Congo red under visible light irradiation. The 

concentration of the dyes was calculated using the absorbance at maximum 

wavelengths of both MB and CR dyes vs the initial concentration before and during 

visible light irradiation. The degradation of MB and CR aqueous solutions was 

monitored at 664nm and 567nm wavelength respectively as illustrated in Figure 4.10. In 

MB, the decrease that is observed in the absorption band appearing at 664 nm is used 

to monitor the rate of decolourization of the dye, whereas the reductions in absorbance 

at 290 nm peak is an indication of the degradation of the aromatic portion of the dye.3,43  

 

The photocatalytic experimental results indicated a gradual decrease of the bands at 

664 and 290 nm with an increase in exposure time and finally disappearing after 60 

minutes of irradiation time, indicating a complete degradation of MB, whereas CR 

absorption spectra showed almost complete degradation without visible light. 

Furthermore, it was observed that the absorbance peak shifted from 664 to about 

640nm. suggesting that both chromophore and aromatic parts of methylene blue were 

breaking down and forming byproducts.44,45 Similar absorbance peaks were reported by 

Amini et al46 on their investigation of the photocatalytic degradation activity of 

MnOx/WO3 nanoparticles on methylene blue. 



Chapter 4: Results and discussions 

90 

 

 

 
 

Figure 4. 10: Photocatalytic degradation of MB and CR by (a) & (b) m-WO3, (c) & (d) 1-

La-WO3 and (e) & (f) 5-La-WO3. 

 
During the course of the degradation process, the observed continuous decrease in 

absorbance peaks indicates a decrease in the concentration of MB and CR.  This 

decrease was confirmed by the reaction solution decolouration and the degradation 

percentage (%) was obtained by using the formulation illustrated in Equation 4 and the 

results representing the degradation percentage of the dye concentration before and 
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after visible light irradiation in the presence of pristine and La-doped WO3 samples are 

depicted in Figure 4.11.   

 

  (4.4)  

 

 

Figure 4. 11: Photocatalytic degradation of (a) MB and (b) CR by as synthesized 

photocatalysts. 

 

It was found that the 89.0, 99.6 and 94.7 of MB and 97.0, 99.6 and 98.5% of CR were 

degraded in just 20 minutes under visible light by pristine WO3 and La (1 and 5wt%) 

doped WO3 photocatalysts. The photocatalytic activity increased at 1% La doped WO3 

and reduced with 5% WO3. The activity evaluation indicated that low amounts of 

lanthanum ions could improve the activity by acting as a trap for photogenerated holes 

and elections and thus inhibit recombination. However further increase in La doping 

slightly reduced the efficiency of the catalyst, this indicates that there is the presence of 

an optimal loading. The decreased photocatalytic activity with high La doping may be 

related to the increased absorption and scattering of a photon by the remaining 

lanthanum in the photoreaction system.27 The kinetics of the degradation process of 

methylene blue was studied and the linear behaviour was verified using the pseudo-

first-order kinetic model depicted in Equation 4.5. The slope of which upon linear 

regression equals the apparent first-order rate constant k. 
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        (4.5) 

 

Where Co =the concentration of the first solution (ppm), Ct =the actual concentration 

(ppm) of each solution at a time ‘t', t =the irradiation time (min), and k =the degradation 

rate constant of methyl orange dye solution. The plots ln(C0/Ct) vs. irradiation time for 

dyes are inserted in Figure 4.11. The highest rate constant, 1.19 × 10-1 min-1 (MB) and 

2.60 × 10-1 min-1 (CR) was observed when the photocatalyst with 1% lanthanum loading 

was used in the degradation of both dyes, which was higher than the pristine (MB, 9.90 

× 10-2 min-1 and CR, 1.95× 10-1 min-1) and 5% lanthanum doped WO3 (MB, 8.9 × 10-1 

min-2 and CR, 2.2 × 10-1 min-1) nanoparticles. These results indicate that the 

photocatalytic performances of the 1% La-doped WO3 are more efficient as compared 

to the pure WO3 and 5% La-doped WO3 under visible-light illumination.   

 

4.3.4 Ion Chromatography measurements 

To confirm the degradation of MB CR, the evolution of Cl- and [SO4]2- ions were 

measured using IC. As illustrated, in Figure 13 (a), Cl- ions from MB were liberated at 

much higher amounts with 1% loading of lanthanum than in both pristine and 5% La 

doped catalysts. However, in CR, the liberated [SO4]2- ions were at higher amounts in 

both 1% La-WO3 and 5% La-WO3. Confirming that all chloride and sulphate atoms were 

removed from both MB and CR. 
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Figure 4. 12: Evolution of (a) IC- and (b) SO42-  

 

From these outcomes, it is evident that the presence of lanthanum improved the 

photocatalytic activity of WO3. It has been generally acknowledged that metal oxide 

particles could act as electron sink in the metal photocatalytic system.14 In particular, 

lanthanides are able to form complexes with different Lewis bases including amines, 

organic acids, aldehydes, thiols and alcohols. They form these complexes via 

interactions between the functional groups and their f-orbital.4,27 Thus, doping 

lanthanide ions provided intends to concentrate organic pollutants on the surface of the 

semiconductor and therefore improved the separation efficiency of photogenerated 

electron-hole pairs of WO3 to improve the photocatalytic activity.47  

 

When WO3 absorbs the light which has energy that equal to or more than its band gap, 

electron-hole pairs are created in WO3. While some electron-hole pairs are recombined, 
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the remaining photogenerated hole/electron pairs are relocated to the surface of the 

WO3, permitting reaction with chemical compounds that are adsorbed on the surface. 

The adsorbed oxygen scavenges produced electron which then leads to H2O2, followed 

by the production of hydroxyl radicals (•OH). The active hydroxyl radicals are the ones 

that are responsible for the degradation of the dyes.14,40,48 It can be envisaged that 

lanthanum played a role in increasing the adsorbed water on the WO3 surface which 

increased the generation of OH to take part in the photocatalytic reactions.23 
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CHAPTER 5 
CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusion  

In this study, the pristine m-WO3 and La-doped WO3 nanoparticles were synthesized 

using hydrothermal and impregnation method and characterised using Powder X-ray 

diffraction (PXRD), UV-Vis spectrometer (DRS), Raman spectrophotometer, Fourier 

transformed infrared (FTIR), transmission electron microscopy (TEM) in combination 

with an energy dispersive X-ray (EDX) detector, X-Ray Photoelectron Spectroscopy 

(XPS), Zetasizer Nano ZS, and Ion chromatograph (IC). 

 

The XRD results confirm that the synthesized pristine and lanthanum doped 

nanoparticles had a monoclinic structure. The observed XRD results further indicated 

clear crystallinity of the synthesized nanoparticles as there was no presence of 

diffraction peaks that could be credited to the dopant. The functional groups such as 

W=O, W-O and W-O-W present in the monoclinic WO3 nanoparticles were affirmed by 

FTIR and Raman spectroscopy. Furthermore, the typical bands that appear at 104, 191 

and 411 cm-1 attributed to La2O3 were not present in the La-doped samples, this may be 

due to lanthanum being dispersed on the surface of the catalyst.  

 

The morphology studies indicated that as-synthesized nanoparticles are a mixture of 

spherical and rod-shaped. The spherical shapes sizes of the m-WO3 and 5-La-WO3 

were found to be 45 nm and 55 nm respectively. The particle size measurement form 

TEM is higher than the average particle size estimated from XRD and this may be due 

to the agglomeration of smaller particles. 

 

The effects of lanthanum on optical properties of the nanoparticle analysed using DRS 

revealed that all synthesized nanoparticles absorb in the visible region (350–800 nm). 

The calculated band edge positions indicated shifts in valence and conduction bands 

due to lanthanum doping. Moreover, the valence band maximum (VBM) spectra were 
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used to calculate the valence and conduction band edge positions and the obtained 

results were in support of the DRS data.   

 

The photocatalytic activity of the pristine and La-doped nanoparticles was assessed on 

the degradation of MB and CR. The result showed that low concentration of lanthanum 

loading can enhance the activity by acting as the lanthanum acted as trap sites for 

photogenerated holes and elections and thus inhibit recombination. However further 

increase in La doping slightly reduced the efficiency of the catalyst, and this is an 

indication of optimal loading of the dopant and that La may be acting as recombination 

site.  

 

It has been found that the surface charge of the nanoparticles played a significant role 

in the photodegradation of the dyes. Lanthanum played a role in concentrating the 

organic pollutants on the surface of the catalyst and therefore improved the separation 

efficiency of photogenerated electron-hole pairs of WO3 to enhance the photocatalytic 

activity. The pH of the dye solution was as important as the results showed that the 

degradation of the cationic dye Methylene blue (MB) was favoured in neutral pH where 

the photocatalyst was more negatively charged whilst the anionic dye Congo red (CR) 

had the affinity for positively charged photocatalyst in acidic media. The degradation 

rate of both MB and CR was about 99.6% in visible-light irradiation for 20 min. The 

degradation efficiency of the nanoparticles was confirmed by Ion Chromatograph (IC) 

measurements, which indicated the highest generation of both chloride, and sulphate 

ions with 1% lanthanum doped WO3 nanoparticles. 
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5.2 Recommendations for future work 

The objectives of this research were achieved, however, due to several gaps that were 

identified; the following recommendations are outlined for future work. 

• A study may be conducted to investigate the comparison of the photocatalytic 

activity between the lab synthesized pristine and commercial tungsten trioxide 

nanoparticles. 

 

• Wastewater from textile industries is composed of other complex dyestuffs which 

may also be used in the investigation of the efficiency of lanthanum doped 

nanoparticles.  

 
• The heterogeneous photocatalysis is reported to be a cheaper and faster method 

for degrading recalcitrant pollutants. Thus, the degradation efficiency of 

lanthanum-doped nanoparticle in comparison to the conventional wastewater 

treatment may also be investigated. 
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APPENDIX A: SEM images of pristine 5% La doped WO3 

nanoparticles.  

 

 

 

 

 

 

 

SEM images of pristine WO3 and 5-La-WO3. 
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APPENDIX B: Absorbance spectra for the photodegradation 
of MB and CR by pristine 5% La doped WO3 nanoparticles.  
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Absorption spectra of the photocatalytic degradation of MB and CR by (a) & (b) m-WO3, 

and (c) & (d) 5-La-WO3. 
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