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Abstract 
 
This paper addresses the residential load scheduling problem with the objective of investigating the influence of price 
and CO2 signals in (i) the electricity bill, (ii) the consumer inconvenience, (iii) the electric peak load, and (iv) the CO2 
emissions. These objectives were considered widely in the literature; however, they were not considered 
simultaneously in one model before. Furthermore, CO2 emissions targets constraint was not considered in the previous 
literature. This paper contributes by twofold. First, the CO2 signal is drawn up based on the proposed generation-mix 
plan in South Africa and an hourly CO2 emissions limit is guaranteed. Second, a multi-objective mixed integer 
programming model is proposed, and a preemptive multi-objective optimization approach is applied. The model is 
tested with and without considering the hourly CO2 emissions limit. Furthermore, the model is solved at four scenarios 
to explore the effect of the price and CO2 signals and the order of optimization. Results showed that the price and CO2 
signals and the order of optimization have remarkable effect on the appliance schedule and on the four objectives.  
 
Keywords 
Residential load scheduling, electrical peak load reduction, inconvenience, CO2 emissions, multi-objective mixed 
integer programming 
 
1. Introduction 
Carbon Dioxide (CO2) emissions are increasing exponentially all over the world. For example, the total CO2 emissions 
in South Africa recorded a dramatic increase of around 400% from 98 million tons in 1960 to 490 million tons in 2014 
(The World Bank 2018). Figure 1 shows the total CO2 emissions profile in South Africa from 1960 to 2014 (The 
World Bank 2018). 

One of the main sources of CO2 emissions in South Africa is the electricity sector due to the continuous expansion in 
electricity generation capacity. According to the Integrated Resource Plan for electricity sector in South Africa 2010-
2030 (IRP-2010) (DoE SA 2013), the electricity sector generates around 45-50% of national CO2 emissions. In 2013, 
the electricity sector generated around 266 million tons of CO2 emissions in South Africa and this number is expected 
to climb to 319 million tons in 2025 (DoE SA 2013).   

South Africa has set a target to limit CO2 at 550 million tons per annum starting 2025, which makes eliminating CO2 
emissions a critical and urgent issue (DoE SA 2013). Thus, the CO2 emission target for the electricity sector in South 
Africa is established as 275 million tons per annum in the IRP-2010. 
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Figure 1. CO2 emissions profile (million tons) in South Africa. 

The residential or domestic sector contributes significantly in the total electricity consumption. Generally, it accounts 
for around 30~40% of the total energy use all over the world (Torriti 2014). For example, it represents around 20~25% 
of South Africa’s total load. Furthermore, it is a significant contributor to both the morning and evening peak periods 
(ESKOM 2018). 

Demand Response (DR) is one of the solutions to control the peak demand and significantly reduce energy 
consumption in the residential sector (Sæle and Grande 2011). Naturally, effective DR policies require smart 
appliances, which can be switched on or off in response to price signal. Similarly, an hourly CO2 intensity signal could 
give customers an extra environmental motivation to shift or reduce loads as it would enable minimization of 
electricity consumption cost and CO2 emissions. 

Several studies have studied the Residential Load Scheduling Problem (RLSP) under time-varying price signal by 
rescheduling smart appliances. Whilst many authors studied the RLSP under a price signal, few of them guaranteed 
consumer convenience and preferences in their models’ constraints (Sou et al. 2011, Baldauf 2015 and Yao et al. 
2016). Furthermore, few authors solved the RLSP with consumer convenience related objective functions. Setlhaolo 
et al. (2014), Setlhaolo and Xia (2014) and Setlhaolo and Xia (2015) proposed a non-linear optimization model for 
the RLSP with a bi-objective function that minimizes electricity costs and inconvenience. However, the proposed 
model formulation was nonlinear which raised the issue of complexity and computation time. Furthermore, few studies 
considered minimization of peak load and cost simultaneously (Nan et al. 2018, Rasheed et al. 2015, Haider et al. 
2014, İzmitligil and Özkan 2016, and Shakouri and Kazemi 2017). However, the aforementioned work considered 
minimization of either the inconvenience or the peak load; and did not consider these two objectives simultaneously. 

Other works have focused on CO2 emission factors and its potential impacts on the changes in household load profile. 
Favre and Peuportier 2014 and Paridari et al. 2014) solved the load scheduling problem with the bi-objective function 
of electricity bill and CO2 emissions minimization. Paridari et al. (2016) extended their work by considering 
uncertainty and unpredictable changes in the user preferences with the aim of reducing both the electricity bill and the 
CO2 emissions. Rayati et al. (2015) addressed the RLSP while aiming to minimize the electricity and gas bill, 
consumer dissatisfaction and CO2 emission cost. Setlhaolo and Xia (2016) studied the RLSP with a dedicated 
photovoltaic and storage system. They demonstrated that the consumer’s preferences, inconvenience and CO2 
emissions objectives could affect the consumption pattern. However, a CO2 signal-based load shifting was not 
considered in the aforementioned work. 

Few authors considered CO2 signal while solving the RLSP. Sou et al. (2013) studied the RLSP and investigated the 
conflict between minimization of electricity bill and CO2 emission goals. They concluded that the two signals could 
lead to very different appliances schedules with drastically different electricity bill and CO2 emission. Song et al. 
(2014) investigated the joint influence of price and CO2 signals in a DR program. The results showed that consumers’ 
attitude to the signals largely affect the load shift, bill saving and CO2 emission reduction. Stoll et al. (2014) tested the 
effect of electricity price and CO2 signals on CO2 emissions, and indicated that the CO2 signal can help avoid CO2 

emissions increment. However, they did not consider the consumer convenience and preferences, the peak load 
reduction objective, and CO2 emissions limits in their study. 
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Two important gaps are outlined from the review of the literatures. First, the objectives of minimizing the Electricity 
Bill (EB), the consumer Inconvenience (IC), the Electric Peak Load (EPL) and the CO2 emissions were considered 
widely in the literature. However, they were not considered simultaneously before. Second, there is a global concern 
about the individual national emission commitments, pledges, targets, policy and actions to reduce their greenhouse 
gas emissions. However, CO2 emissions targets constraint was not considered earlier in the literature. 

This paper deals with these gaps by proposing a Multi-Objective Mixed Integer Linear Programming (MOMILP) 
model for the RLSP. The proposed model aims to minimize the EB, the IC, the EPL and the CO2 emissions objectives. 
Appliance load scheduling is based on both tariff and CO2 intensity signals. The proposed model considers an hourly 
CO2 emissions limit. The paper investigates the influence of applying the tariff and CO2 intensity signals on the 
resulted power profile. Furthermore, the effect of considering the hourly CO2 emissions limit on the four objectives is 
explored. 

The remainder of this paper is organized as follows: Section 2 focuses on defining the problem and presenting the 
proposed MOMILP optimization model. Section 3 introduces a case study based on a typical household in South 
Africa and all the data used in this paper. Results, comparisons and discussions are presented in section 4. Lastly, a 
conclusion is drawn. 

2. The proposed mathematical model 
The load scheduling problem is concerned with the selection of an optimal on/off status of each home appliance over 
the day that minimizes the EB, the IC, the EPL and the CO2 emissions. Due to the conflict between the considered 
objectives, the multi-objective preemptive approach is applied to solve the proposed model. Two demand response 
signals are considered in this paper: (i) TOU electricity tariff, and (ii) CO2 intensity. A sampling time (Δt) of 10 
minutes and a study period of 24 hours (full-day) are considered in the proposed model. Table 1 summarizes the 
indices, parameters and decision variables used in this paper.  

Table 1. Notation summary 

Notation Description 

Indices: 

݅ ∈  .Index of home appliance, I is the total number of appliances ܫ

ݐ ∈ ܶ Index of time/ time slot, t = 1, . . . T, where T is the horizon, which is 24 h. 

Parameters: 

௜ܲ The rated power (KW) of appliance i. 

௜ܰ The required number of time slots (Slot) to complete the normal operation of appliance i. 

௜ܵ The start of the time interval (Slot number) in which the appliance i is to be scheduled. 

 .௜ The end of the time interval (Slot number) in which the appliance i is to be scheduledܧ

 .௧ The electricity price (R/KWh) at time tܥ

௧ܸ The incentive offered (R/KWh) at time t. 

 .The sampling time (Minutes) ݐ߂

ܳ The maximum cost (R) that the consumer is willing to incur in one day. 

௜ܺ,௧ A binary parameter represents consumer’s preferred/baseline ON/OFF status of appliance i at time t 

ܴ௧ The CO2 emission rate at time t (Kg/KWh). 

 .The hourly limit of the CO2 emissions (Kg/hr) ܮܪଶܱܥ

Main decision variables: 

 .௜,௧ A binary variable represents the optimal ON/OFF status of appliance i at time tݔ

Auxiliary decision variables: 

 .௜,௧ A binary indicator function for inconvenienceݖ

 .௜,௧ A binary indicator function for incentivesݕ

 .௜,௧ A binary indicator function to guarantee uninterruptible operationݑ



݈௧ A real value represents the total consumed electrical power or load (KW) at time t. 

 .The maximal electrical peak load (KW) over the study period T ܮܲܧ

2.1. Model objective functions 
The objective functions in the multi-objective RLSP can be formulated as follows: 

2.1.1. The first objective function: minimizing the electricity bill (EB) 
One of the main objectives of an electricity-consuming household is to minimize its electricity bill. To achieve this, 
appliances should be scheduled to benefit from the lower electricity prices offered during peak times. To minimize 
the EB through these incentives, the first objective function is characterized by two components: the electricity cost 
and the incentives offered. 

ா஻ܨ	݊݅ܯ ൌ෍෍ ௜ܲ ⋅

ூ

௜ୀଵ

்

௧ୀଵ

௧ܥൣ ⋅ ௜,௧ݔ െ ௧ܸ ⋅ ௜,௧൧ݕ ⋅  (1) ݐ∆

Where, t is the time index, t = 1, ... T, Δt is the sampling time and T is the horizon, which is 24 h. i is the appliance 
index, i = 1, ... I, and I is the total number of appliances. Pi is the rated power of appliance i. Ct is the electricity price 
at t and Vt is the incentive at t. ݔ௜,௧ is the optimal/new ON/OFF status of appliance i at time t. Where, ݔ௜,௧ ൌ 1 if 
appliance i is scheduled to be ON at time t and  ݔ௜,௧ ൌ 0 if appliance i is scheduled to be OFF at time t. ݕ௜,௧ is a binary 
indicator function that allows consumers to earn an incentive. Consumers earn incentives only when they switch off 
their appliances during peak times. If ݕ௜,௧ is 1, an incentive is earned, otherwise there is no incentive. 

2.1.2. The second objective function: minimizing the inconvenience (IC) 
Consumer’s conveniences may be the most important objective of an electricity-consuming household. The objective 
to minimize scheduling inconveniences seeks to minimize the disparity between the preferred and the optimal 
schedule. In this research, postponement and advancement of the schedule are both regarded as the inconvenience. 

݊݅ܯ ூ஼ܨ ൌ෍෍ ௜,௧ݖ

ூ

௜ୀଵ

்

௧ୀଵ

 
(2) 

Where ݖ௜,௧ is a binary indicator function to make the obtained schedule suffer an inconvenience penalty when the 
obtained schedule does not match the consumer’s preferred schedule. If it is 1, an inconvenience penalty is charged, 
otherwise there is no inconvenience penalty. 

2.1.3. The third objective function: minimizing the electricity peak load (EPL) 
The third objective function minimizes the hourly electricity peak/maximal load over the day. It seeks to level the 
hourly load profile resulting from the optimal schedule. Thus, this is a min-max objective. Where, the value of  EPL 
is calculated based on constraints (7-8). 

݊݅ܯ ா௉௅ܨ ൌ  ܮܲܧ
(3) 

2.1.4. The fourth objective function: minimizing the CO2 emissions (CE) 
The fourth objective function emphasizes the CO2 emissions due to the household electric consumption. It targets to 
shift the electric loads according to the hourly CO2 emissions rate (Kg of CO2 emissions/KWh). Thus, it aims to 
minimize the total daily CO2 emissions. 

஼ாܨ	݊݅ܯ ൌ෍෍ ܴ௧ ⋅ ௜ܲ ⋅ ௜,௧ݔ

ூ

௜ୀଵ

⋅ ݐ∆

்

௧ୀଵ

 
(4) 

Where ܴ௧ is the hourly CO2 emissions rate (Kg of CO2 emissions/KWh). 



2.2. Model constraints 
The model constraints are formulated as follows. 

 
௜ܺ,௧ െ ௜,௧ݔ	 ൑ ݅∀ ௜,௧ݕ ∈ ,ܫ ݐ∀ ∈ ܶ (5) 

௜ܺ,௧ െ ௜,௧ݔ	 	൑ 	 ݅∀ ௜,௧ݖ ∈ ,ܫ ݐ∀ ∈ ܶ (6) 
௜,௧ݔ െ 	 ௜ܺ,௧ 	൑ 	  ௜,௧ݖ

݈௧ ൌ෍ ௜ܲ	

ூ

௜ୀଵ

	⋅ ݐ∀ ௜,௧ݔ ∈ ܶ (7) 

ܮܲܧ ൒ 	 ݈௧ ∀ݐ ∈ ܶ (8) 

෍ܴ௧ ⋅ ௜ܲ ⋅ ௜,௧ݔ ⋅ ݐ∆	

ூ

௜ୀଵ

	൑ ݐ∀ ܮܪଶܱܥ ∈ ܶ (9) 

෍෍ ௜ܲ 	⋅	

ூ

௜ୀଵ

்

௧ୀଵ

⋅	௧ܥൣ ௜,௧ݔ െ ௧ܸ ⋅ ௜,௧൧ݕ ⋅ 	ݐ∆ ൑ 	ܳ		  (10) 

෍ݔ௜,௧ 	൒ 	 ௜ܰ

ா೔

ௌ೔

 ∀݅ ∈  (11) ܫ

௜,௧ݔ 	൑ 1 െ	ݑ௜,௧ ∀݅ ∈ ,ܫ ݐ∀ ∈ ܶ 

௜,௧ିଵݔ (12) െ	ݔ௜,௧ 	൑ ݅∀ ௜,௧ݑ ∈ ,ܫ ݐ∀ ൒ 2 

௜,௧ିଵݑ 	൑ ݅∀ ௜,௧ݑ ∈ ,ܫ ݐ∀ ൒ 2 

௜,௧ݔ 	൑ 	 ݐ∀ ప̃,௧ݑ ∈ ܶ 
(13) 

Constraint (5) sets the value of yi,t as 1 if consumers switch off their appliances in an anti-preference way. Thus,  yi,t 
=1 if (Xi,t - xi,t) is greater than zero, otherwise  yi,t = 0. Whereas, Xi,t is the consumer’s preferred/baseline ON/OFF 
status of appliance i at time t. Xi,t = 1 if consumer prefers appliance i to be ON at time t and  Xi,t = 0 if consumer prefers 
appliance i to be OFF at time t. 

Constraint (6) sets the value of zi,t as 1 if the obtained schedule does not match the consumer’s preferred schedule (Xi,t 
≠ xi,t). Thus, the inconvenience term can be modeled using the absolute value of the difference between the preferred 
and the optimal schedules as, zi,t =|Xi,t - xi,t|. However, the absolute function linear equivalent is used. 

Constraint (7) calculates the load profile lt  as the sum of the power consumption due to all the scheduled appliances 
at time t. 

Constraint (8) aims to find the maximal/peak electric load over the day horizon (T) which can be modeled using the 
maximal value of lt as (EPL = max lt). However, the maximal function linear equivalent formulation is used. The 
linear formulation implies that the EPL exceeds each  lt  which ensures that the objective function minimizes the 
maximal/peak load. 

Constraint (9) calculate the CO2 emissions at each time slot t from all appliances and guarantees that the produced 
emissions do not exceed the defined CO2 hourly limit (CO2HL). 

Constraint (10) guarantees that the appliance schedule is bound by the maximum amount that the consumer is willing 
to incur in one day (Q). 

Constraint (11) guarantees that the assigned time slots for each appliance are within interval [Si, Ei] and are sufficient 
to execute the appliance operation. 

The set of constraints (12) ensures uninterruptible operation of appliances. This ensures that the assigned time slots 
for each appliance are successive. This can be modeled by guaranteeing that xi,t = 0 if there exists an earlier time slot  



t ̃< t ̃+1 < t such that xi,t ̃ = 1 and xi, t ̃+1 = 0. For appliances that may be operated more than one time per day (i.e., oven 
operation for lunch and dinner), the appliance can be treated as two separate appliances. Where ui,t is a new auxiliary 
binary decision variable that equals 1 if the operation of appliance i is already completed before time slot t (i.e., the 
operation of the appliance is just finished). Hence, the corresponding xi,t must be zero and ui,t = 1 remain unity. 
Constraint (13) guarantees the logical sequence between any two sequential appliance operations. For example, the 
operation of a clothes dryer follows the operation of the washing machine. Thus, logically, the start of the time interval 
in which the clothes dryer is to be scheduled (Sclothes dryer) should be at least greater than Swashing machine plus Nwashing machine. 
This condition can be conveniently described using the main decision variable xi,t and the auxiliary decision variable 
ui,t as (xi=clothes dryer,t ≤ ui=washing machine,t). Where ῖ is the index of the appliance which must be finished before i can start. 

2.3.  The solution approach 
A sequential optimization of individual objectives or the so called “Preemptive optimization approach” is applied to 
solve the proposed MOMILP optimization model. The preemptive optimization technique realizes that objectives are 
rarely of equal importance nor have the same dimensions. Therefore, it considers one objective at a time in a sequential 
way (Rardin 2016). However, the main limitation of this approach is that it does not provide a compromise solution 
for all objectives. First, it optimizes the most important objective, then it optimizes the second most important 
objective, subject to a condition that the first objective must achieve its optimal value. This approach is repeated for 
all objectives. 

With multi-objective optimization models, a global optimal solution to the problem cannot be obtained, but rather 
various efficient solutions are introduced. The order of optimization given to individual objective functions (i.e., 1, 2, 
3 and 4) controls the benefits received by consumers and utilities. For the first and second scenarios (section 4), 
benefits are biased towards consumers by assigning a precedent order of optimization to the EB and the IC, 
respectively. However, for the third and fourth scenarios (section 4), benefits are biased towards utility companies and 
environment by assigning a precedent order of optimization to the EPL and the CO2 emissions, respectively. 

For example, based on the order of optimization for the first scenario (section 4), the preemptive approach is applied 
as follows. 

Step 1 – The RLSP is solved with the individual objective function (1), subject to constraints (5) to (13). The optimal 
objective value of the FEB (EB*) is obtained. 

Step 2 – The RLSP is solved with the individual objective function (2), subject to constraints (5) to (14). A new 
constraint (14) is added to guarantee the bound of the FEC as following, and the optimal FIC (IC*) is obtained. 

෍෍ ௜ܲ	.

ூ

௜ୀଵ

்

௧ୀଵ

௧ܥൣ ∙ ௜,௧ݔ െ ௧ܸ . ௜,௧൧ݕ . ݐ∆ ൑  ∗ܤܧ
(14) 

Step 3 – The RLSP is solved with the individual objective function (3), subject to constraints (5) to (15), including 
constraint (14). A new constraint (15) is added to guarantee the bound of the FIC as following, and the optimal objective 
value of the FEPL (EPL*) is obtained. 

෍෍ ௜,௧ݖ

ூ

௜ୀଵ

்

௧ୀଵ

൑  (15) ∗ܥܫ

Step 4 – The RLSP is solved with the individual objective function (4), subject to constraints (5) to (16), including 
constraints (14) and (15). A new constraint (16) is added to guarantee the bound of the FEPL as following, and the 
optimal objective value of the FCE (CE*) is obtained. 

ܮܲܧ ൑  ∗ܮܲܧ
(16) 

The final solution obtained from Step 4 is an efficient solution for the original multi-objective RLSP. 



3. Case study 
A typical household in South Africa with ten appliances has been used as a case study. Table 3 provides the model 
input parameters for each appliance. For example, appliance 1 (Stove) is scheduled twice in a day for 30 and 50 min 
in the morning and evening, respectively. It is to be switched on at any time between t = 30 (05:00) to t = 42 (07:00) 
and t = 96 (16:00) to t = 120 (20:00), respectively. Appliance 2 (Microwave) is scheduled once a day for at least 10 
min any time from t = 96 (16:00) to t = 114 (19:00). Because the EWH is a continuous on/off appliance, it is excluded 
from the uninterruptible constraint. The appliance’s preferred/baseline schedule is considered based on Setlhaolo et 
al. (2014).  

The optimal appliance schedule is bounded by the maximum cost that the consumer is willing to incur in one day (Q), 
and an hourly CO2 emissions limit (CO2HL). The Q value is assumed to be not more than R25 (R denotes the South 
Africa currency, ZAR or rand). The Integrated Resource Plan for electricity sector in South Africa 2010-2030 (IRP-
2010) established the CO2 emission target from the electricity sector as 275 million tons per annum (DoE SA 2013). 
Considering that the residential electricity load represents around 23% of South Africa’s total load (ESKOM 2018), 
the CO2 emission target from the residential consumers could be assumed as 63.25 million tons per annum. Statistics 
South Africa (2016) reported that households with access to electricity at 2016 were around 14,795,827. Thus, the 
CO2 emission target from a typical household could be assumed as 4,274.85 kg per annum and the hourly CO2 
emission target from a typical household (CO2HL) is assumed as 0.488 kg. 

The tariff used is based on South Africa's TOU tariff for residential consumers. Figure 2 shows that the TOU peak 
and off-peak tariff are R1.4452/kWh and R0.4554/kWh, respectively. Eskom’s peak times are 07:00 – 10:00 and 
18:00–20:00 (Eskom Tariffs & Charges 2018). The hourly charge is discretized into a 10-minute sampling time to 
match the proposed model sampling time, and the optimization is done over a 24-h period. An incentive of Vt = 
R0.20/kWh was assumed based on Setlhaolo et al. (2014). 

Table 2. Appliances data. 

No. Appliance  Power rating,  
Pi (kW) 

Duration,  
Ni (time slot) 

Si  

(slot #) 
Ei 

(slot #) 
Baseline Schedule 
(slot #) 

1 Stove 3.000 3 30 42 37-39 
5 96 120 108-112 

2 Microwave 1.230 1 96 114 108 
3 Kettle 1.900 1 33 45 39 

1 106 120 109 
4 Toaster 1.010 1 30 42 31 
5 Steam iron 1.235 5 96 126 108-112 
6 Vacuum cleaner 1.200 3 48 62 54-56 
7 Electric water 

heater (EWH) 
2.600 12 24 49 25-36 

12 96 132 105-116 
8 Dishwasher 2.500 15 120 144 120-134 
9 Washing machine 3.000 5 96 132 111-115 
10 Tumble dryer 3.300 3 96 122 120-122 

 



 
Figure 2. The hourly electricity price and CO2 intensity in South Africa. 

The CO2 intensity signal used is based on the results reported by Yahia and Kholopane (2019), where an electricity 
generation-mix on an hourly basis was developed for South Africa based on the electricity sector 2030 plan. The 
dynamic hourly CO2 intensity signal is derived based on that hourly electricity generation-mix data (Stoll et al. 2014). 
Figure 2 shows the CO2 intensity signal used in this research. 

4. Results and discussion 
The proposed model is solved optimally with the commercial optimization solver LINGO 12.0 of two different cases. 
Case 1 ignores the CO2HL, thus the proposed model is solved without constraint (9). Case 2 respects the CO2HL while 
solving the proposed model. This will show how considering the hourly CO2 emissions target would influence the 
appliance schedule. 

Four scenarios are studied for each of the two cases. Scenario 1 and Scenario 2 focus on the consumer benefits by 
targeting to minimize the consumer electricity bill and the consumer inconvenience, respectively. To achieve that, a 
highest order of optimization is assigned to the FEB objective and the FIC objective, respectively. Scenario 3 focuses 
on the utility company benefits by targeting to minimize the EPL. To achieve that, a highest order of optimization is 
assigned to the FEPL objective. Scenario 4 concerns about the environmental impact by targeting to minimize the CO2 
emissions by assigning a highest order of optimization to the FCE objective. 

In Table 3 — Case 1, high order of optimization on electricity bill (scenario 1) gives the lowest cost of R10.60, while 
high order of optimization on consumer inconvenience (scenario 2) gives the lowest inconvenience of zero, high order 
of optimization on electric peak load (scenario 3) gives the lowest peak of 3.30 kW and high value on CO2 emissions 
(scenario 4) gives the lowest value of 11.75 kg of CO2. 

Compared to first three scenarios, scenario 4 could reduce CO2 emissions by around 4%, 11% and 7% respectively. 
This percentage represents the CO2 emissions reduction per day for a typical household. In the national level, these 
percentage represent massive CO2 emissions reduction of 7,197; 21,482 and 13,082 tons per day, respectively. This 
translates to a massive CO2 emissions reduction of 2.6, 7.8 and 4.8 million tons per annum, respectively. However, 
scenario 4 resulted in a high peak load. This result guided the research to study the effect of considering the CO2 
emissions hourly limit while solving the problem (Case 2). 

In Table 4 — Case 2, with applying an hourly CO2 emission limit and comparing to first three scenarios, scenario 4 
could reduce CO2 emissions by around 4%, 7% and 6%, respectively. In the national level, these percentage represent 
massive CO2 emissions reduction of 6,791; 13,464 and 11,120 tons per day, respectively. This translates to a massive 
CO2 emissions reduction of 2.5, 4.9 and 4.1 million tons per annum, respectively. In addition, applying an hourly CO2 
emission limit resulted in significant reduction in the EPL. Thus, the proposed model could eliminate CO2 emissions 
and reduce the EPL as well. 
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Table 3. Effect of order of optimization on the four objectives for case 1. 

Scenario 
Order of optimization FEB  

(R) 
FIC  
(Slot) 

FEPL  
(KW) 

FCE  
(Kg) FEB FIC FEPL FCE 

1 1 2 3 4 10.60 58 8.74 12.23 

2 2 1 3 4 23.06 0 9.84 13.20 

3 2 3 1 4 13.99 76 3.30 12.63 

4 2 3 4 1 10.60 94 11.07 11.75 

Table 4. Effect of order of optimization on the four objectives for case 2. 

Scenario 
Order of optimization FEB  

(R) 
FIC  
(Slot) 

FEPL  
(KW) 

FCE  
(Kg) FEB FIC FEPL FCE 

1 1 2 3 4 10.60 60 6.00 12.34 

2 2 1 3 4 18.64 22 5.74 12.79 

3 2 3 1 4 13.99 76 3.30 12.63 

4 2 3 4 1 10.60 96 6.84 11.88 
 

Figure 3 shows the results of the four scenarios for Case 1. It was observed that scenario 1 scheduled all appliances to 
off-peak in order to reduce the electricity bill. Scenario 2 scheduled all appliances to match the consumer preferred 
schedule in order to reduce the inconvenience. It was observed that scenario 3 scheduled all appliances while avoiding 
overlaps of appliances, which resulted in the minimum EPL of 3.3 kW. Scenario 4 scheduled the appliances to the 
time slots associated with the lower CO2 emission intensity, as much as possible, to reduce the CO2 emissions, which 
resulted in the lowest CO2 emissions of 11.75 kg of CO2. Figure 4 shows the power profile resulting from the four 
scenarios while applying an hourly CO2 emission limit. It was observed that applying the hourly CO2 emission limit 
resulted in leveled power profiles compared to Case 1. Reducing the peak load and levelling the power profile can 
reduce CO2 emissions, because the peak load requires marginal electricity generation from more CO2 intensive 
generation sources. 

 
Figure 3. The power profiles under four schedules with different order of optimization for Case 1. 
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Figure 4. The power profiles under four schedules with different order of optimization for Case 2. 

5. Conclusion 
In this paper, an MOMILP optimization model is proposed to address the RLSP while considering price and CO2 
signals. The proposed model aimed to optimize appliance load schedules in terms of the EB, the IC, the EPL, and the 
CO2 emissions. The model considered an hourly CO2 emissions limit, which was defined based on the yearly CO2 
emissions target in South Africa. The effect of considering the hourly CO2 emissions limit was investigated and results 
showed that applying an hourly CO2 emission limit could reduce the EPL significantly and could eliminate the CO2 
emissions as well. Furthermore, the effect of the price and CO2 signals and the order of optimization on the resulting 
appliance schedules was explored. The price and CO2 DR signals, and the order of optimization over the four 
objectives could lead to very different appliances schedules with drastically different EB, IC, EPL and CO2 emission. 
These results emphasized that the hourly CO2 signal could give consumers an extra environmental motivation toward 
DR programs. Future work may focus on getting more compromise solutions for all objectives by applying different 
multi-objective optimization approaches, as well as uncertainties in appliance duration is to be considered.  
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