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Abstract 

 
During my PhD, I have been working on Evo-Devo patterns (especially the debate around the 

hourglass model) in transcriptomes, with an emphasis on adaptation. I have characterized 

patterns in model organisms in terms of constraints and especially in terms of positive selection. 

I found that the phylotypic stage (a stage in mid-embryonic development) is an evolutionary 

lockdown, with stronger purifying selection and less positive selection than other stages in 

terms of the evolution of protein sequences and of regulatory elements. To study the adaptive 

evolution of gene regulation during development, I have developed a machine leaning based 

in silico mutagenesis approach to detect positive selection on regulatory elements.  

In addition to transcriptome evolution, I have been working on the tension between precision 

and stochasticity of gene expression during development. More precisely, I have shown that 

expression noise follows an hourglass pattern, with lower noise at the phylotypic stage. This 

pattern can be explained by stronger histone modification mediated noise control at this stage. 

In addition, I propose that histone modifications contribute to mutational robustness in 

regulatory elements, and thus to conserved expression levels. These results provide insight into 

the role of robustness in the phenotypic and genetic patterns of evolutionary conservation in 

animal development 

  



  ii 
 

 
Résumé de thèse 
 

 
Au cours de ma thèse, j'ai travaillé sur les modèles Evo-Devo (en particulier le débat autour du 

modèle hourglass) dans les transcriptomes, en mettant l'accent sur l'adaptation. J'ai mis en 

évidence les tendances dans des organismes modèles en termes de contraintes et en particulier 

de sélection positive. J'ai trouvé que le stade phylotypique (stade du développement au milieu 

de développement embryonnaire) est un évolutivement verrouillé, avec une sélection purifiante 

plus forte et moins de sélection positive que d'autres stades, en termes d'évolution des 

séquences protéiques et des éléments régulateurs. Pour étudier l'évolution adaptative de la 

régulation des gènes au cours du développement, j'ai développé une approche de mutagénèse 

in silico basée sur le machine learning afin de détecter la sélection positive sur des éléments 

régulateurs.  

En plus de l'évolution du transcriptome, j'ai travaillé sur la tension entre précision et 

stochasticité de l'expression des gènes au cours du développement. Plus précisément, j'ai 

montré que le bruit d'expression suit le modèle hourglass, avec un bruit plus faible au stade 

phylotypique. Ce schéma peut s’expliquer par un contrôle du bruit plus intense induit par les 

modifications des histones à ce stade. De plus, je propose que les modifications d'histones 

contribuent à la robustesse mutationnelle des éléments régulateurs, et donc aux niveaux 

d'expression conservés. Ces résultats permettent de mieux comprendre le rôle de la robustesse 

dans les schémas phénotypiques et génétiques de conservation évolutive dans le 

développement des animaux. 
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1 Introduction  

1.1 Embryonic Conservation: the early conservation model and the 

hourglass model  
Embryological development has long been characterized by deep conservation. Animals that 

belong to the same phylum are considered to share a group of structural and developmental 

characteristics, the so called basic body plan (Wallace 2000; Valentine 2004; Irie and Kuratani 

2014). For example, some anatomic features such as segmented trunk muscles, vertebrae along 

the anteroposterior axis and dorsally located central nervous system, were shared by all 

vertebrates (Irie and Kuratani 2014). Similarly, various other phyla also have their own 

conserved basic body plans. For example, arthropods share a set of anatomic structures such 

as jointed legs, exoskeleton made of chitin and segmented bodies (Zrzavy and Stys’ 1997).  

 

Based on the dynamic of morphological conservation throughout development, two main 

models, “early conservation model” or “funnel-like model” (Figure 1A) and “hourglass model” 

(Figure 1B), have been proposed to link the interplay between developmental processes and 

evolutionary changes. The early conservation model (Riedl 1978; Irie and Kuratani 2014), 

modified from the “third law” of Von Baer (1828), suggests that the earlier embryos, among 

species from the same phylum, have higher morphological similarities than the later embryos. 

In the 1990s, based on renewed morphological observations and on the finding of conserved 

expression profile of Hox genes along the embryonic anteroposterior axis, Duboule (1994) and 

Raff (1996) proposed the hourglass model . This model suggests that embryos from the 

"phylotypic period" (Richardson 1995), a group of stages in middle development, have higher 

morphological similarities than embryos from early or late development. In vertebrate, this 

period is corresponding to organogenesis. Notably, however, the hourglass model was not 

supported by one of the most comprehensive morphological studies on vertebrate embryos 

(Bininda-Emonds et al. 2003).  
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Figure 1: The two major Evo-Devo models.  
In both models, the development proceeds from the bottom to the top; the width represents the 
similarities of embryonic morphology among species within the same phylum. Figure adapted 
from Irie and Kuratani (2011)  
A. The early conservation model suggests that the highest morphological similarities 

occurred at the early development, followed by a progressive evolutionary divergence over 
ontogeny. The arrows indicate the development of later stages depend on earlier stages, so 
earlier stage is more conserved.  

B. The hourglass model suggests the highest morphological similarity occurred at the middle 
development (the “phylotypic period”: organogenesis). Circles on the right of the model 
indicate the interaction of signalling network in early, middle and late development. the 
highest conservation in the middle development is caused by highly interacted signalling 
network and by co-linear Hox cluster gene expression in time and space. 
 

1.2 Both models have been supported at a molecular level  
Since there are no consistent results from morphological studies in terms of embryonic 

conservation (Von-Baer 1828; Denis Duboule 1994; Richardson et al. 1997; Bininda-Emonds 

et al. 2003), many studies have tried to find evidences from molecular level. This is because 

evolutionary changes in the genome can cause changes in development and to morphology, 

which are subject to natural selection. This leads developmental processes to constrain the 

evolution of genome. Overall, both models have been supported by recent molecular level 

studies based on different properties (such as sequence divergence, duplication, phyletic age, 

or expression divergence), different species, and different analysis methods.  

 

1.2.1 Conservation of genome evolution across development  

With the advent of post-genomic era, studies in various model species (nematode worm 

Caenorhabditis elegans, fly Drosophila melanogaster, zebrafish Danio rerio, and mouse Mus 

musculus) have shown that the timing of expression of genes in development influences their 
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evolution (sequence divergence, duplication, or phyletic age) (Castillo-Davis and Hartl 2002; 

Cutter and Ward 2005; Davis et al. 2005; Hazkani-Covo et al. 2005; Hanada et al. 2007; Irie 

and Sehara-Fujisawa 2007; Cruickshank and Wade 2008; Roux and Robinson-Rechavi 2008; 

Artieri et al. 2009; Domazet-Loso and Tautz 2010; Quint et al. 2012; Piasecka et al. 2013; 

Cheng et al. 2015; Drost et al. 2015). Roux and Robinson-Rechavi (2008) conducted one of 

the first systematic study in mouse and zebrafish. They found genes expressed at earlier stage 

have a higher proportion of essential genes, of slowly evolving genes and of singletons reverted 

after whole genome duplication, supporting the early conservation model. However, among 

these studies, the results are inconclusive based on different analysis methods. For example, 

Domazet-Loso and Tautz (2010) reported that transcriptomes of middle development stages of 

zebrafish have higher proportion of old genes than transcriptomes of early and late 

development stages, supporting the hourglass model. In this study, they performed a 

“Transcriptome Age Index” analysis: use each gene’s expression level as a weight to calculate 

the weighted mean value of gene age. Since highly and lowly expressed genes can span several 

orders of magnitude (Piasecka et al. 2013), patterns identified by using expression signal as 

weight can be driven by a subset of very highly expressed genes, or even by a few outliers. For 

example, with a standard log transformation of microarray signal intensities, Piasecka et al. 

(2013) re-analyzed the same data and found that the highest proportion of old genes was in 

transcriptomes of early development stages, supporting the early conservation model. For the 

details of different methods used to study developmental constraints on genome evolution, 

please check the introduction part of chapter 2. 

 

Because different methodologies were adapted in previous studies, their conclusions cannot be 

compared consistently, making a biological conclusion concerning developmental constraints 

across species and features difficult. In chapter 2, based on the log-transformed “Transcriptome 

Age Index” approach, I tested the conservation patterns (early and hourglass) of three 

evolutionary traits of protein coding genes (strength of purifying selection on protein sequences, 

phyletic age, and duplicability) in four species: nematode worm, fly, zebrafish and mouse. 

Generally, I found that different genomic properties supporting different models. In all studied 

species, the sequence evolution follows the hourglass model, but the evolution of phyletic age 

and of duplicability follow the early conservation model.  
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1.2.2 Conservation of transcriptome evolution across development  

In terms of transcriptome evolution, however, all studies in different phyla agree that middle 

development (the “phylotypic period”) has lower expression divergence than in early and late 

development (Kalinka et al. 2010; Irie and Kuratani 2011; Levin et al. 2012; Hu et al. 2017; 

Zalts and Yanai 2017), supporting the hourglass model. One of the pioneer study was 

conducted by Kalinka et al. (2010), quantifying expression divergence at different stages 

during embryogenesis in six Drosophila species. They found the expression divergence follows 

an hourglass pattern with the minimal divergence at the extended germband stage (8-10 hours 

after laying egg), generally regarded as the phylotypic stage of arthropod (Sander 1976). Then, 

in vertebrate, Irie and Kuratani (2011) identified pharyngula as the most conserved stage in 

terms of gene expression divergence. In Caenorhabditis, Levin et al. (2012) identified ventral 

enclosure is the stage with most conserved expression divergence. Since the expression 

divergence recapitulates the morphological hourglass, it highlights the hypothesis that changes 

in gene expression play a central role in the morphological differences between species (King 

and Wilson 1975; Carroll 2008).  

 

Although transcriptomic comparisons throughout developmental time across species 

underwent widespread studies, the roles of gene regulation on the evolution of expression 

during embryogenesis remains to be elucidated. Specifically, are regulatory elements involved 

in the phylotypic stage are also more conserved than in other stages? Few studies have tried to 

study this question (Nord et al. 2013; Piasecka et al. 2013), but there is no direct evidence 

supporting stronger conservation at the phylotypic stage. For example, based on the findings 

that the neighbourhood of genes specifically expressed in the phylotypic stage to be enriched 

with transposon free regions and long conserved non-coding elements, Piasecka et al. (2013) 

suggested that phylotypic stage has higher conservation of gene regulation. However, there 

are several potential caveats for this study. First, they didn’t identify regulatory elements, 

they used neighbourhood of gene as an approximation instead. Second, they didn’t directly 

compare the regulatory elements turn over between different species, they compared the 

sequence conservation of orthologous regions instead.  

 

To systematically answer this question, I worked in collaboration with the Furlong lab, on 

DNase-seq across multiple matched embryonic development stages in two distant Drosophila 

species: D. melanogaster and D. virilis. Based on the DNase-seq dataset, I identified putative 
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regulatory elements (enhancers and promoters) and performed downstream evolutionary 

analyses. I found the phylotypic stage has higher proportion of conserved regulatory elements 

and less proportion of stage specific gain regulatory elements, indicating stronger conservation 

of gene regulation at the phylotypic stage. This study is presented in chapter 3.  

 

1.3 Molecular conservation can be caused by strong developmental 

constraints and/or by weak positive selection 
Molecular conservation may be the result of developmental constraints, defined as “a bias on 

the production of variant phenotypes or a limitation on phenotypic variability caused by the 

structure, character, composition, or dynamics of the developmental system”(Smith et al. 

1985). Both early conservation and hourglass models were interpreted as a result 

developmental constraints. For early conservation model, Garstang (1922) and Riedl (1978) 

suggested that the development of later stages is dependent on earlier stages (Figure 1A), so 

higher constraints should be found in the earlier stages of development, so more conserved. In 

the hourglass model, Raff (1996) suggested a high inter-dependence in signalling among 

developmental modules in middle development (Figure 1B), so higher constraints in the middle 

development, so more conserved. However, conservation can also be the result of variations 

being less visible to positive selection (Garfield and Wray 2009). For example, Darwin 

interpreted Von Baer's “third law” (Von-Baer 1828) via a “selection opportunity” framework 

(Darwin 1871; Artieri et al. 2009). He proposed that highly divergent late development could 

also be driven by adaptive evolution (positive selection), at least in part. This could be due to 

the greater diversity of challenges to which natural selection needs to respond in juvenile and 

adult life than in early and mid-development. 

 

1.3.1 Sequence evolution across development: development constraints and positive 

selection  
For sequence evolution, development constraints can be manifested by purifying selection. 

Although there are many studies which have investigated the interplay between development 

and sequence evolution (Castillo-Davis and Hartl 2002; Cutter and Ward 2005; Davis et al. 

2005; Hazkani-Covo et al. 2005; Roux and Robinson-Rechavi 2008; Artieri et al. 2009; 

Piasecka et al. 2013; Drost et al. 2015), there is still an open question that whether higher 

sequence conservation in some stages is caused by stronger development constraints or by 

weaker positive selection. By using branch site models (see Methodology introduction) (Yang 
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and Nielsen 2002; Zhang et al. 2005), I distinguished the relative contribution of purifying 

selection and positive selection on sequence evolution. I found genes expressed at the 

phylotypic stage under stronger purifying selection, indicating stronger developmental 

constraints on sequence evolution in the phylotypic stage. This part of results is presented in 

chapter 2.  

 

Although the phylotypic stage is under stronger purifying selection in terms of sequence 

evolution, it could still accumulate more adaptive nonsynonymous substitutions than other 

stages of development (higher adaptive evolution). Richardson (1999) proposed the “adaptive 

penetrance hypothesis”, suggesting that changes occurring in the “phylotypic period” have a 

higher probability to generate adaptive traits in adult. This is because the “phylotypic period” 

is when many adult traits are specified. So, I tested whether there are differences not just in 

purifying selection but also in the rates of adaptive substitutions between stages. Overall, there 

is a consistent signal that positive selection mainly affects genes and pathways expressed in 

late embryonic development and in adult, implying that the evolution of embryogenesis is 

mostly conservative, with most adaptive evolution affecting some stages of post-embryonic 

gene expression, and thus post-embryonic phenotypes. This is consistent with the diversity of 

environmental challenges to which juveniles and adults are exposed. This part of results is 

presented in chapter 4.  

 

1.3.2 Expression evolution across development: development constraints and positive 

selection  
For expression evolution, development constraints can be manifested by purifying selection or 

by mutational robustness (Zalts and Yanai 2017). The conserved expression can be explained 

by strong purifying selection on regulation programme or by strong buffering on gene 

regulatory variations. In order to test whether the hourglass expression divergence can be 

explained by developmental constraints or not, Zalts and Yanai (2017) compared the 

expression variations of 20 C. elegans mutation accumulation strains across embryonic 

development and found that the phylotypic stage has lower expression variation. Since 

mutation accumulation experiments mostly remove the effect of positive selection, this study 

indicates that developmental constraints (both purifying selection and mutational robustness) 

can contribute to the hourglass model of expression evolution.  
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However, the contribution of positive selection on the hourglass expression divergence is still 

unknown. This is because of the challenges of detecting positive selection on gene regulation 

(Zhen and Andolfatto 2012) (see Methodology introduction). One of the major challenges is 

the lack of reliable neutral reference sites to infer positive selection. To, answer this question, 

I first developed an in silico mutagenesis based method to detect positive selection on 

regulatory elements. This part of results is presented in chapter 5. And then, I applied this 

method to detect signatures of positive selection on stage specific enhancers in fly, and found 

that the phylotypic stage has a lower proportion of enhancers with evidence of positive 

selection. These results suggest that the lower expression divergence at the phylotypic stage 

could also be explained by lacking of adaptive evolution on gene regulation. This part of results 

is presented in chapter 3.   

 

1.4 Developmental robustness and stochastic gene expression  
The phenotypic differences between individuals mainly result from variations in underlying 

genetic and environmental factors. However, phenotypes can also vary among isogenic 

individuals in homogenous environments, suggesting contributions of stochastic effects in 

generating phenotypic diversity (Raj et al. 2010; Li et al. 2019). Gene expression noise 

(Elowitz et al. 2002; Blake et al. 2003; Raser and O’Shea 2005), variability of gene expression 

among genetically identical individuals under uniform conditions, is one of the most important 

stochastic processes in the mapping of genotype to phenotype.  

 

Gene expression noise consists of intrinsic noise and extrinsic noise (Elowitz et al. 2002). The 

intrinsic noise mainly originates from the ‘open’ and ‘closed’ chromatin transitions associated 

with the ‘transcriptional burst’ process (Figure 2), and from the inherent randomness of 

biochemical reactions with low molecule numbers (Becskei et al. 2005; Raj and van 

Oudenaarden 2008). The extrinsic noise is generally caused by the propagation of intrinsic 

noise from upstream genes in the gene regulatory network, and by variations in cellular 

environment (Elowitz et al. 2002; Pedraza and van Oudenaarden 2005), such as random 

distribution of molecules at cell division. Although noise can be beneficial in some cases (Raj 

and van Oudenaarden 2008; Zhang et al. 2009; Wolf et al. 2015; Duveau et al. 2018), it is more 

generally harmful (Fraser et al. 2004; Batada and Hurst 2007; Lehner 2008; Chen and Zhang 

2016), thus subject to purifying selection.  
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Figure 2: The contribution of transcriptional bursts to expression noise 
A. Transcription without bursts with a relatively small amount of expression noise.  
B. Transcription with bursts can cause significantly higher expression noise, even when the 

mean transcript number is similar with Transcription without bursts. Figure adapted from 
Raj and van Oudenaarden (2008) 

 

Expression noise can be minimized in many ways, generally falling into two categories: 

transcriptional based regulation and post-transcriptional based regulation. Based on the 

“transcriptional burst” model, the expression level is decided by both burst size and burst 

frequency, while expression noise is mainly decided by burst frequency (Hornung et al. 2012; 

Dey et al. 2015; Wu et al. 2017). Thus, transcriptional based regulation of noise functions by 

increasing burst frequency. For example, low noise can be achieved by the clustering of genes 

in nucleosome depleted regions (Batada and Hurst 2007; Dey et al. 2015; Chen and Zhang 

2016), the use of nucleosome-disfavoured promoters (Hornung et al. 2012; Dadiani et al. 2013; 

Sharon et al. 2014), or an increase in euchromatic histone modifications (Weinberger et al. 

2012; Benayoun et al. 2014; Wu et al. 2017; Nicolas et al. 2018). The post-transcriptional 

based mechanisms function by buffering or filtering noise. For example, noise can be buffered 

by some specific regulatory motifs, such as negative feedback loops and incoherent feed-

forward loops (Becskei and Serrano 2000; Alon 2007; Chalancon et al. 2012), or by 

microRNAs (Hornstein and Shomron 2006; Wu et al. 2009; Schmiedel et al. 2015; 

Schmiedel et al. 2017), or filtered by using cellular compartmentalization (Stoeger et al. 

2016). 
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Precise regulation of gene expression appears to be notably important during animal 

development (Waddington 1942), since the underlying gene expression programs must ensure 

that different cells appear at the correct time and location to make a functional embryo. 

However, the development process inevitably has to deal with inherent randomness (Oates 

2011), especially expression noise. This conflict between precision and stochasticity raises 

questions, such as how is expression noise controlled or its effects buffered during development? 

Is expression noise equally distributed across development or are some stages more robust to 

gene expression stochasticity? This is especially interesting in relation to the “phylotypic” stage. 

Whether the low expression divergence in the phylotypic stage is partially driven by mutational 

robustness is still an open question. Since genes that confer robustness to stochastic 

fluctuations can also buffer the effects of genetic variation (Meiklejohn and Hartl 2002; 

Lehner 2010), mutational robustness could be a side effect of selection against stochastic 

variation of gene expression at a key stage of development. 

 

To answer these questions, I designed an experiment, carried out in collaboration with the 

Deplancke lab, to build a single embryo transcriptome time series of 150 embryos across fly 

embryonic development. This uniquely high number of isogenic replicates allowed me to find 

that expression noise recapitulates an hourglass model (D Duboule 1994; Raff 1996), with the 

minimum of noise at the phylotypic stage. I also shown that gene expression at this stage is 

robust both to stochastic variations and to genetic variation. Finally, I explained this robustness 

by the role of histone modifications over development. These results provide insight into the 

interplay between chromatin environment, stochastic robustness, mutational robustness, and 

purifying selection in the context of animal development. The results of this part are presented 

in chapter 6. 

 
 
1.5 Methodology introduction  

1.5.1 Methods for detecting positive selection on gene sequence 

Detecting positive selection is about rejecting evolutionary neutrality as an explanation for 

change (Vitti et al. 2013). For detecting positive selection at the macro-evolutionary molecular 

level, one of the best established methods is using the ratio ω of dN (the number of non-

synonymous substitutions per non-synonymous site) to dS (the number of synonymous 

substitutions per synonymous site) (Yang and Nielsen 1998; Hurst 2002). Because 
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synonymous changes are assumed to be functionally neutral, their evolution rate can be used 

as an approximation of neutral evolution rate. So, ω>1 indicates evidence of positive selection; 

ω<1 indicates evidence of purifying selection; ω=1 indicates evidence of neutral evolution. 

Since adaptive changes can happen only at a few codon sites and at a few phylogenetic lineages, 

branch-site models were proposed to allow the ω ratio to vary both among codon sites and 

among lineages (Yang and Nielsen 2002; Zhang et al. 2005). In case of detecting positive 

selection among sites, the branch-site test contrasts two hypotheses: the null hypothesis is that 

no positive selection occurred in the phylogenetic branch of interest, and the alternative 

hypothesis is that at least some codons experienced positive selection. Additionally, the branch 

site models can also estimate the dN/dS ratio of the subset of codons which have evolved under 

purifying selection. So, it can separate both purifying selection and positive selection on 

sequence evolution. For detecting positive selection at the micro-evolution level, 

polymorphism based methods such as frequency spectrum, linkage disequilibrium and 

population differentiation were developed (Vitti et al. 2013). The main idea is that, under 

positive selection, a beneficial allele and its surrounding variants will reach to high frequency 

together (Smith and Haigh 1974). So, regions with population-wide reduction in genetic 

diversity can be interpreted as the signal of positive selection. Since several genes with slight 

effect mutations can act together to have a strong effect, adaptive evolution can act on the 

pathway level as well (Daub et al. 2013; Berg et al. 2014). For detecting polygenic adaptation, 

Daub et al. (2013; 2017) developed a gene set enrichment test. Briefly, the evidence of 

polygenic adaptation is inferred by comparing the sum of adaptive signals across a gene set 

with a null distribution generated by random sampling.  

 

1.5.2  Methods for detecting positive selection on gene regulation  

Generally, detecting positive selection for noncoding regions is still a big challenge (Zhen and 

Andolfatto 2012) . A major reason is the lack of a null model of neutral evolution for non-

coding regions. Currently, the methods used to detect positive selection on regulatory elements 

can be divided into two categories. The first category is looking for conserved noncoding 

regions with lineage-specific accelerated evolutionary rates by scanning multiple genomes 

(Pollard et al. 2006; Prabhakar et al. 2006; Gittelman et al. 2015). A major caveat for this 

method is that these identified accelerated regions may result from biased gene conversion 

(Galtier and Duret 2007) rather than from positive selection. The second category is under the 

McDonald–Kreitman test framework (McDonald and Kreitman 1991; Ludwig and Kreitman 
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1995; Andolfatto 2005; Arbiza et al. 2013; Gronau et al. 2013), which originally developed for 

detecting positive selection on protein sequences by integrating both divergence and 

polymorphism information. Since mutations under positive selection can spread through a 

population rapidly, they don't contribute to polymorphism but do increase divergence. So, a 

higher divergence relative to polymorphism ratio in regulatory elements than in neutrally 

evolving sites (such as synonymous sites or the fastest evolving sites of short introns) can 

indicate adaptive evolution. However, this approach is expected to lack power on individual 

elements, since many regulatory elements are too short to have enough number of 

variations(Andolfatto 2005). In addition, it can also be biased by the choice of appropriate 

neutral reference sites (Zhen and Andolfatto 2012). 

 

To overcome these disadvantages, I developed an in silico mutagenesis approach to detect 

positive selection on regulatory elements based on regulatory activity changes. The effects of 

substitutions on regulatory activity change can be accurately predicted by deltaSVM (Lee et al. 

2015), a machine leaning based method to predict the effects of regulatory variations de novo 

from sequence (Figure 3). My approach does not assume a subset of neutral sites and does not 

compare sequence evolution rate, but instead considers the effects of variations on regulatory 

activities (Berg et al. 2004; Moses 2009; Smith et al. 2013). I compared the observed regulatory 

activity change to the expectation under a no-selection model to assess when neutrality can be 

rejected. This part of results is presented in chapter 5. 
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Figure 3 Overview of the deltaSVM method 
The procedures of calculating deltaSVM. First, training a gapped k-mer support vector 
machine (gkm-SVM) classifier by using putative regulatory sequences (transcription factor 
biding sites, for example) as a positive training set and using random sequences as a negative 
training. Second, using the gkm-SVM to generate the weights of all possible 10-mers (the 
regulatory sequence vocabulary). Each 10-mer’s weight represents its contribution to the 
prediction of regulatory function. Third, based on the regulatory sequence vocabulary, the 
impact of a single-nucleotide substitution in a melanocyte enhancer of Tyrp1 can be predicted 
(the right part of the figure). WT, wild type. Figure adapted from Lee et al. (2015) 
  
 
In the following chapters, I will give several examples to show the interplay between 

developmental processes and evolutionary changes. Chapter 2 presents how development 

constrains the evolution of protein-coding gene sequence, duplicability, and phyletic age in 

four model species: nematode worm, fly, zebrafish, and mouse. Chapter 3 presents the evidence 

of positive selection on protein-coding genes in relation to their timing of expression over 

development in fly, zebrafish, and mouse. Chapters 2 and 3 are published. Chapter 4 presents 

the evolutionary conservation, divergence and positive selection on gene regulation under the 

context of Drosophila embryogenesis. Chapter 5 presents the in silico mutagenesis approach 

to detect positive selection on regulatory elements which I developed, and applied it to study 

the regulatory adaptive evolution on human brain. Chapter 6 reports how expression noise was 
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controlled during fly embryogenesis, and the contribution of mutational robustness on the 

hourglass expression divergence.  
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2.1 Abstract   
Developmental constraints on genome evolution have been suggested to follow either an early 

conservation model or an "hourglass" model. Both models agree that late development strongly 

diverges between species, but debate on which developmental period is the most conserved. 

Here, based on a modified “Transcriptome Age Index” approach, i.e. weighting trait measures 

by expression level, we analyzed the constraints acting on three evolutionary traits of protein 

coding genes (strength of purifying selection on protein sequences, phyletic age, and 

duplicability) in four species: nematode worm Caenorhabditis elegans, fly Drosophila 
melanogaster, zebrafish Danio rerio, and mouse Mus musculus. In general, we found that both 

models can be supported by different genomic properties. Sequence evolution follows an 

hourglass model, but the evolution of phyletic age and of duplicability follow an early 

conservation model. Further analyses indicate that stronger purifying selection on sequences 

in the middle development are driven by temporal pleiotropy of these genes. In addition, we 

report evidence that expression in late development is enriched with retrogenes, which usually 

lack efficient regulatory elements. This implies that expression in late development could 

facilitate transcription of new genes, and provide opportunities for acquisition of function. 

Finally, in C. elegans, we suggest that dosage imbalance could be one of the main factors that 

cause depleted expression of high duplicability genes in early development. 
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2.2 Introduction  
Evolutionary changes in the genome can cause changes in development, which are subject to 

natural selection. This leads developmental processes to constrain genome evolution. More 

precisely, selection on the output of development affects evolution of the genomic elements 

active in development. Currently, based on morphological similarities during development, 

two popular models have been proposed to bridge developmental and evolutionary biology. 

The early conservation model, modified from the “third law” of Von Baer (1828) (as cited in 

Kalinka and Tomancak 2012), suggests that the highest morphological similarities among 

species from the same phylum occur in early development, followed by a progressive 

evolutionary divergence over ontogeny. It should be noted that Von Baer in fact based his 

observations on post-gastrulation embryos (Kalinka and Tomancak 2012; Abzhanov 2013). 

The "developmental burden" concept was proposed to explain this model. It suggested that the 

development of later stages is dependent on earlier stages, so that higher conservation should 

be found in the earlier stages of development (Garstang 1922; Riedl 1978) (as discussed in Irie 

and Kuratani 2014). 

 

Based on renewed observations in modern times, however, Duboule (1994) and Raff (1996) 

proposed the developmental "hourglass model". This model suggested that a "phylotypic 

period" (Richardson 1995) in middle development has higher morphological similarities than 

early or late development. Several mechanisms have been proposed to explain this observation. 

Duboule (1994) proposed that it may be due to co-linear Hox cluster gene expression in time 

and space. Raff (1996) suggested a high inter-dependence in signaling among developmental 

modules in middle development. Galis and Metz (2001) also highlighted the high number of 

interactions at this period, although Comte et al. (2010) did not find any molecular evidence 

for these interactions. It is worth noting that the hourglass model was not supported by a 

comprehensive study of vertebrate embryonic morphology variation (Bininda-Emonds et al. 

2003). A number of alternatives have been proposed, for example the “adaptive penetrance 

model” (Richardson et al. 1997) and the “ontogenetic adjacency model” (Poe and Wake 2004). 

Of note, the higher divergence of late development could also be due to stronger adaptive 

selection, the "Darwin hypothesis" (Artieri et al. 2009). This question is independent of the 

pattern of constraints (early or hourglass) which are the focus of this study, and we explore it 

in a companion study (Liu and Robinson-Rechavi 2017). 
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Both main models have been supported by recent genomic level studies based on different 

properties (such as expression divergence, sequence divergence, duplication, or phyletic age), 

different species, and different analysis methods. Concerning expression divergence, 

interestingly, all studies are consistent across different species and research groups (Kalinka et 

al. 2010; Irie and Kuratani 2011; Yanai et al. 2011; Levin et al. 2012; Wang et al. 2013; 

Gerstein et al. 2014; Ninova et al. 2014; Zalts and Yanai 2017). All of them suggested that 

middle development has the highest transcriptome conservation, i.e. the hourglass pattern. On 

the other hand, when animals are compared between different phyla, middle development has 

been reported to have the highest divergence (Levin et al. 2016), although this conclusion has 

been criticized on methodological grounds (Dunn et al. 2018). From other properties, however, 

the results are inconclusive based on different methods (Castillo-Davis and Hartl 2002; Cutter 

and Ward 2005; Davis et al. 2005; Hazkani-Covo et al. 2005; Hanada et al. 2007; Irie and 

Sehara-Fujisawa 2007; Cruickshank and Wade 2008; Roux and Robinson-Rechavi 2008; 

Artieri et al. 2009; Domazet-Loso and Tautz 2010; Quint et al. 2012; Piasecka et al. 2013; 

Cheng et al. 2015; Drost et al. 2015). 

 

Generally, the methods used to measure developmental constraints at the genomic level can be 

divided into three categories: proportion based analysis, module analysis, and transcriptome 

index analysis. Proportion based analysis consists in testing the proportion of genes with a 

given property within all expressed genes (Roux and Robinson-Rechavi 2008). The method is 

less used following the emergence of accurate transcriptome-scale data, since it does not take 

into account the contributions of expression abundance. Module analysis consists in studying 

evolutionary properties of distinct sets of genes (modules) which are specifically expressed in 

groups of developmental stages (Piasecka et al. 2013). This method can avoid problems caused 

by genes expressed over all or a large part of development. For example, trends might be 

diluted by highly expressed housekeeping genes, which contribute to the average expression at 

all developmental stages. However, this approach can only measure the developmental 

constraints for a specific subset of genes, instead of considering the composition of the whole 

transcriptome. Transcriptome index analysis is a weighted mean: the mean value of an 

evolutionary parameter is weighted by each gene’s expression level (Domazet-Loso and Tautz 

2010). This method has the benefit of detecting evolutionary constraints on the whole 

transcriptome, but patterns can be driven by a subset of very highly expressed genes, or even 

by a few outliers, because the difference between highly and lowly expressed genes can span 
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several orders of magnitude. For instance, Domazet-Loso and Tautz (2010) reported that 

transcriptomes of middle development stages of D. rerio have a higher proportion of old genes 

than transcriptomes of early and late development stages, using the transcriptome age index. 

However, Piasecka et al. (2013) re-analyzed the same data and reported that the highest 

proportion of old genes was in transcriptomes of early development stages, once a standard 

log-transformation of microarray signal intensities was done, a result confirmed by module 

analysis and proportion based analysis. 

 

Several statistical methods have been proposed to distinguish the hourglass model from the 

early conservation model. The parabolic test is based on fitting both first degree and second 

degree polynomial models (Roux and Robinson-Rechavi 2008). The hourglass model is 

supported if the parabolic function provides a significantly better fit and its minimum 

corresponds to middle development. This method has been criticized for being too specific and 

insensitive to other non-parabolic hourglass patterns (Drost et al. 2015). The flat line test 

simply tests whether variance of transcriptome indexes across development is significantly 

higher than variance from random samples (Domazet-Loso and Tautz 2010; Quint et al. 2012). 

But a significant difference does not necessarily imply the existence of an hourglass pattern 

(Drost et al. 2015). Since these two methods are either too strict or without power to distinguish 

the hourglass model, Drost et al. (2015) proposed a "reductive hourglass test" which focuses 

on testing the presence of an hourglass pattern of divergence: high-low-high. For this, 

development can be divided into three periods (early, phylotypic, and late), based on the known 

phylotypic period from morphological studies. Then, a permutation method is used to test 

whether the mean value in the phylotypic period is significantly lower than in early and late 

periods.  

 

Overall, the transcriptome index analysis should be the best method to measure developmental 

constraints on the whole transcriptome, if care is taken to properly treat the expression values. 

Moreover, the reductive hourglass test should be used to objectively test the hourglass model, 

alone or in combination with other methods.  

 

Because previous studies used different methodologies, and few studies adopted a transformed 

transcriptome index analysis, their conclusions cannot be compared consistently, making a 

biological conclusion concerning developmental constraints across species and features 
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difficult. What’s more, while many studies focus on distinguishing between early conservation 

model and hourglass conservation model, we still know very little of the factors driving these 

patterns.  

 

To measure developmental constraints on genome evolution, we calculated transcriptome 

indexes over the development of four species (C. elegans, D. melanogaster, D. rerio and M. 

musculus), for three evolutionary parameters (strength of purifying selection on coding 

sequences (ω0), phyletic age, and duplicability (paralog number)), with three transformations 

of expression values (non-transformed, log2 transformed, and square root transformed). For C. 

elegans, the strength of purifying selection on coding sequences was not reliably estimated, 

with no data in the Selectome database (Moretti et al. 2014) and very high values of estimated 

synonymous distances (dS) from Ensembl Metazoa (Kersey et al. 2016) (Figure S1); thus we 

did not include this parameter in the study of C. elegans. In general, we found results consistent 

with the hourglass model for sequence evolution, but with early conservation for phyletic age 

and paralog number, in the four species. In addition, log2 transformed transcriptome indexes 

are always consistent with square root transformed transcriptome indexes but not with non-

transformed transcriptome indexes. 

 
2.3 Results and Discussion  

2.3.1 Effect of expression value transformation on transcriptome indexes 

As mentioned in the Introduction, the pattern from a transcriptome index analysis may not 

reflect the global behavior of the transcriptome, but that of a small fraction of very highly 

expressed genes, or even of a few outliers. In order to systematically test this issue, we 

calculated 95% confidence intervals of transcriptome indexes based on log2 transformed, 

square root transformed, and non-transformed expression values (see Methods). Then, for the 

purpose of comparing the range of confidence intervals in the same scale, we plotted the ratio 

of upper to lower confidence interval boundary across development. Clearly, at a given 

confidence level (95% here), we can see that the ratio of non-transformed transcriptome 

indexes is much higher and more variable than transformed transcriptome indexes (Figure S2), 

indicating that the transcriptome indexes estimated from transformed expression are more 

stable. The most stable pattern comes from log2 transformed transcriptome indexes, although it 

is quite similar with square root transformation. We note that while log-transformation is 
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routine in most application of transcriptomics, many analyses of "hourglass" patterns use non 

transformed expression data. 

 

In summary, although a subset of genes with dramatically different expression values in 

different stages could be interesting in some sense, when the goal is to investigate the general 

tendency of the transcriptome, log- or square-root-transformation for expression value is 

necessary and efficient to reach a stable estimation.  

 

2.3.2 Variation of evolutionary transcriptome indexes across development 

Here, based on log2 transformed expression values, we calculated transcriptome indexes for 

strength of purifying selection on coding sequences (ω0), phyletic age, and duplicability 

(paralog number). In order to objectively distinguish the hourglass model from the early 

conservation model, we used a permutation test method similar to that of Drost et al. (2015) 

(see Methods). For all parameters considered the highest divergence is observed in late 

development, and there are many more stages sampled from late development, so we only 

compared the difference between early and middle development. Thus a significant p-value for 

lower divergence in middle vs. early development supports the hourglass model, whereas a 

lack of significance supports the early conservation model. We consider early conservation to 

cover both stronger conservation in early than middle development, and similar strong 

conservation over early and middle development, and hence we use a one-sided test. Notably, 

for early development, we did not consider the stages before the start of maternal to zygote 

transition (MZT, see Methods), because these stages are dominated by maternal transcripts. 

 

For the transcriptome index of purifying selection on coding sequence (Transcriptome 

Divergence Index: TDI), we found that genes with stronger purifying selection tend to be more 

expressed at middle developmental stages, suggesting an hourglass pattern (Figure 1). 

However, for the transcriptome indexes of phyletic age (Transcriptome Age Index: TAI) and 

of paralog number (Transcriptome Paralog Index: TPI), we observed that genes with higher 

duplicability and younger phyletic age trend to be expressed at later developmental stages, 

which corresponds to early conservation (Figure 1). In addition, we also repeated these 

analyses based on square root transformed expression values (Figure S3) and on non-

transformed expression values (Figure S4). In general, the results from square root 

transformation are highly consistent with those from log2 transformation, but not with those 
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from non-transformation. For example, with non-transformed expression data, the TPI in C. 

elegans became very noisy; the TAI in D. rerio changed from early conservation to hourglass 

pattern; or the TDI in M. musculus changed into an unexpected early divergence pattern. 

Finally, we confirmed our observations with other datasets (Figure S5). For C. elegans, D. 

melanogaster and D. rerio, we used a high resolution time series single embryo RNA-seq 

dataset (Levin et al. 2016). Since this dataset is without replicates, and is generated from single 

embryo, the transcriptome indexes are noisy and present extreme values in some time points. 

However, generally, all the results from the new dataset are consistent with the results from 

our previous datasets except the TDI in D. rerio. For the latter, we only observed the first two-

thirds of an hourglass pattern in the new dataset. This is because the new dataset only covers 

embryo development, whereas the increased TDI in late development is driven by post-

embryonic development stages. For M. musculus, we also confirmed our results based on a 

microarray dataset (Irie and Kuratani 2011) (Figure S5).  
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Figure 1: Evolutionary transcriptome indexes based on log2 transformed expression values 
The top-left plot schematically shows the expected transcriptome index patterns of the early 
conservation and hourglass models. For the other plots, grey, dark blue, red, and green marked 
time points in the x-axis represent stages before the start of MZT, early developmental stages, 
middle developmental stages, and late developmental stages, respectively. Transcriptome 
index of divergence (TDI): blue line; transcriptome index of paralog number (TPI): pink line; 
transcriptome index of phyletic age (TAI): purple line. The grey area indicates 95% confidence 
interval estimated from bootstrap analysis. The p-values for supporting the hourglass model 
(permutation test, early vs. middle development) are indicated in the top-left corner of each 
plot. The numbers of genes analyzed are noted in the top-right corner of each plot. 
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In D. melanogaster, we did not confirm the results of Drost et al. (2015) for phyletic age. After 

log2 transformation of expression data, we found an early conservation pattern instead of the 

hourglass pattern which they reported (Figure S6B). It appears that the hourglass pattern of 

phyletic age in their study is driven by a few highly expressed genes, consistently with our 

previous observations in D. rerio (Piasecka et al. 2013). This is verified by excluding the top 

10% most expressed genes and analyzing without transformation (Figure S6C). Of note, that 

fly phyletic age hourglass with uncorrected expression was also reported earlier (Domazet-

Loso and Tautz 2010).  

 

Overall, these results suggest that genes under strong purifying selection on their protein 

sequence trend to be expressed in middle development; it remains to be seen how much these 

observations extend to more arthropods or chordates. They also extend our previous 

observations that genes expressed earlier have a lower duplicability and an older age (Roux 

and Robinson-Rechavi 2008; Piasecka et al. 2013). In addition, it poses the question whether 

a pattern driven by the minority of very highly expressed genes is relevant to understanding 

Evo-Devo, which is generally driven by regulatory genes (Carroll 2008), such as transcription 

factors, with typically not very high and rather tissue-specific expression. 

  

2.3.3 Expression of temporal pleiotropy genes across development 

Several models have been proposed to explain why some developmental stages are more 

conserved than others, as presented in the Introduction. In all models, a common point is that 

high conservation is caused by selection against deleterious pleiotropic effects of mutations. 

This implies that higher sequence conservation in middle developmental stages is caused by 

higher pleiotropy of genes expressed in these stages, pleiotropy being one of the major factors 

that constrain sequence evolution (Fraser et al. 2002). 

 

In order to test this hypothesis, we used one type of development related pleiotropic effect: 

temporal pleiotropy (Artieri et al. 2009) (expression breadth across development). This is 

similar to spatial pleiotropy (Larracuente et al. 2008; Kryuchkova-Mostacci and Robinson-

Rechavi 2015) (expression breadth across tissues) or connective pleiotropy (Fraser et al. 2002) 

(protein-protein connectivity). The more stages a gene is expressed in, the more traits it could 

affect, so it is expected to be under stronger evolutionary constraints (Wagner and Zhang 2011). 
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For C. elegans, D. melanogaster and M. musculus, we defined FPKM>1 as expressed. For D. 

rerio we set genes with microarray signal rank in top 70% as expressed.  

 

We calculated the proportion of potentially pleiotropic genes as expressed in more than 50% 

of development stages. In all the species, interestingly, we found pleiotropic genes enriched in 

middle development (Figure 2). In D. melanogaster, the evidence is weaker, because of the 

low sampling of early and middle development stages in the main dataset; but the pattern was 

clear in the high resolution single embryo RNA-seq dataset (Figure S7). We also found similar 

patterns when we define pleiotropic genes as expressed in more than 70% of development 

stages (Figure S8). Since the late development of D. melanogaster can clearly be divided into 

two periods with distinct patterns from the pleiotropy analysis, we removed the second period 

of late development, and found the same overall trend (Figure S9). For D. rerio, in addition, 

we observed consistent results based on setting expressed genes as microarray signal rank in 

the top 90% or 50% (Figure S10). Similar observations of higher temporal pleiotropy for genes 

in middle development in vertebrates were recently reported by Hu et al. (2017). 
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Figure 2: Proportion of temporal pleiotropic genes across development.  
Grey, dark blue, red, and green marked time points in the x-axis represent stages before the 
start of MZT, early developmental stages, middle developmental stages and late developmental 
stages respectively. The proportion of temporal pleiotropic genes is plotted as orange circles. 
The p-values from chi-square goodness of fit test are indicated in the top-right corner of each 
graph. Pleiotropic genes are defined as expressed in more than 50% of stages sampled. The 
proportion of pleiotropic genes is defined as the number of pleiotropic genes divided by the 
number of all genes expressed in the corresponding stage. 
 

Based on these observations, we further checked whether higher temporal pleiotropic 

constraint could explain stronger purifying selection on sequence evolution. As expected, we 

found that pleiotropic genes have lower ω0 than non-pleiotropic genes (Figure 3).  

 
Figure 3: Comparison of ω0 between temporal pleiotropic genes and non-pleiotropic genes.  
The number of genes in each category is indicated below each box. The p-values from a 
Wilcoxon test comparing categories are reported above boxes. The lower and upper intervals 
indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile range, or the 
maximum (respectively minimum) if no points are beyond 1.5 IQR (default behaviour of the R 
function boxplot). 
 

In summary, we found that middle development stages with a higher proportion of broadly 

expressed genes are under stronger pleiotropic constraint on sequence evolution.  

 

2.3.4 Higher expression of retrogenes in later development stages 

In adult anatomy, young genes are mainly enriched for expression in testis (Kaessmann 2010). 

Two main factors have been proposed to explain this pattern. Firstly,  permissive chromatin in 

testis facilitates the transcription of most genes, including new genes (Soumillon et al. 2013). 

The widespread expression in testis appears related to regulation of gene evolution rates based 

on transcription coupled repair (Xia et al. 2018). Secondly, as the most rapidly evolving organ 

at genomic level, there is least purifying selection acting on new genes expressed in testis 

(Kaessmann 2010). Is there a similar explanation for the ontogenic pattern of young genes 
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tending to be expressed in late development stages? As testis constitutes the most rapidly 

evolving organ transcriptome, late development represents the most rapidly evolving stage 

transcriptome, owing to both relaxed purifying selection (Artieri et al. 2009) and to increased 

positive selection (Liu and Robinson-Rechavi 2017). Thus, we suggest that expression in late 

development might, like in testis, promote the fixation and functional evolution of new genes. 

  

In order to test this, we analyzed the expression of retrogenes across development. Since 

retrogenes usually lack regulatory elements, most of them fail to acquire transcription and 

achieve function (Kaessmann et al. 2009). So, if late development, like testis, can facilitate the 

transcription of new genes, promoting their fixation, we should observe higher expression of 

retrogenes in later developmental stages. Because retrogenes have higher expression in testis, 

and testis is already differentiated after middle development, we excluded testis genes in our 

analyses for D. melanogaster and M. musculus, where the information of testis gene expression 

was available. As expected, the median expression of retrogenes is higher in late development 

(Figure 4), with a significant positive correlation. Generally, in C. elegans, D. rerio and M. 

musculus, the median expression progressively increases; in D. melanogaster, all the median 

values are 0 until stage 4 days, and then it progressively increases.  
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Figure 4: Expression of retrogenes in development. 
Grey, dark blue, red, and green marked time points in the x-axis represent stages before the 
start of MZT, early developmental stages, middle developmental stages and late developmental 
stages respectively. A Spearman correlation was computed between development and median 
expression. The correlation coefficient (Rho) and p-value are indicated in the top-left corner 
of each plot. The numbers of genes analyzed are noted in the top-right corner of each plot.  
 

These results confirm that late development could allow more transcription of new gene copies, 

which usually lack efficient regulatory elements and transcriptional activity. Since the first step 

to functionality is acquiring transcription, we suggest that the functional acquisition and 

survival at the beginning of life history for new genes could be promoted by expression in late 

development. When beneficial mutations come, a subset of these new gene candidates could 

subsequently obtain adaptive functions in late development, evolve efficient regulatory 

elements, and finally be retained long term in the genome. Thus, the higher proportion of young 

genes expressed in later development stages can be in part explained by these stages favoring 

the fixation of new genes.  

 

2.3.5 Connectivity and dosage imbalance  

It has previously been found that, in both S. cerevisiae and C. elegans, gene duplicability is 

negatively correlated with protein connectivity (Hughes and Friedman 2005; Prachumwat and 

Li 2006) which might be explained by dosage balance (Veitia 2002; Papp et al. 2003). Firstly, 

we checked the relationship of connectivity and duplicability in our datasets. We found, indeed, 

a negative relationship in C. elegans (Figure S11). In D. melanogaster and in D. rerio, there is 

a non-monotonous pattern (increasing first, and then decreasing), but the overall trend is more 

connectivity with less duplicability. In M. musculus, however, we did not observe a significant 

relationship between connectivity and duplicability. Secondly, we calculated a transcriptome 

index of connectivity (Transcriptome Connectivity Index: TCI). In C. elegans and M. musculus, 

earlier developmental stages have higher TCI, which means that these stages trend to have 

higher expression of more connected genes (Figure 5). In D. melanogaster and in D. rerio, 

there is no clear pattern based on individual stages, but the mean TCI of each developmental 

period (early, middle and late development) also gradually decreases.  
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Figure 5: Transcriptome index of connectivity (TCI) across development. 
Grey, dark blue, red, and green marked time points in the x-axis represent stages before the 
start of MZT, early developmental stages, middle developmental stages and late developmental 
stages respectively. TCI is plotted in dark red line. The grey area indicates 95% confidence 
interval estimated from bootstrap analysis. The p-values for supporting the hourglass model 
(permutation test, early vs. middle development) are indicated in the top-left corner of each 
graph. The numbers of genes analyzed are noted in the top-right corner of each plot.  
 

These results indicate that, at least in C. elegans, earlier stages trend to express higher 

connectivity genes, which are less duplicable because more sensitive to dosage imbalance, but 

that this cannot be generalized to other animals. Of course, this is not exclusive with an adaptive 

scenario that early stages lack opportunities for neo- or sub-functionalization, because of 

simpler anatomical structures, which could also diminish fixation of duplicates in early 

development. 
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2.4 Conclusion 
Our results concern both patterns and processes of evolution over development. For patterns, 

we tested the early conservation and hourglass models by using three evolutionary properties: 

strength of purifying selection, phyletic age and duplicability. The strength of purifying 

selection on protein sequence supports the hourglass model. Genes under stronger purifying 

selection are more expressed at middle development stages. Both duplicability and phyletic 

age support the early conservation model. Less duplicated genes and phyletically older genes 

are more expressed at earlier stages.  

 

For processes, we investigated the potential causes of the observed patterns. The hourglass 

pattern of sequence evolution appears to be driven by temporal pleiotropy of gene expression. 

Genes expressed at middle development evolve under stronger temporal pleiotropic constraints. 

The enrichment in young phyletic age genes in late development might be related to a testis-

like role of late development that facilitates the expression of retrogenes. Finally, in C. elegans, 

connectivity appears to be the main force explaining higher duplicability of genes expressed in 

later development.  

 

2.5 Materials and Methods  
Data files and analysis scripts are available on our GitHub repository: 

https://github.com/ljljolinq1010/developmental_constraints_genome_evolution 
 

2.5.1 Expression data sets  

Main datasets 

For C. elegans and D. melanogaster, we downloaded processed (non-transformed but 

normalized) RNA-seq data from http://www.stat.ucla.edu/~jingyi.li/software-and-data.html 

(Li et al. 2014), which originally comes from (Gerstein et al. 2010; Graveley et al. 2011). For 

D. rerio, we used the processed (log-transformed and normalized) microarray data from our 

previous study (Piasecka et al. 2013). This data originally comes from Domazet-Loso and 

Tautz (2010).For M. musculus, we obtained processed (non-transformed but normalized) 

RNA-seq data from Hu et al. (2017).  
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Supplementary datasets 

For C. elegans, D. melanogaster and D. rerio, we downloaded the processed (non-transformed 

and non-normalized) RNA-seq data from Levin et al. (2016). This dataset was generated by 

CEL-Seq (Hashimshony et al. 2012), a technique for multiplexed single cell RNA-seq. 

Because CEL-Seq retains only the 3ʹ end of the transcript, we performed sample 

normalization based on transcripts per million, but without transcript length normalization. 

Since only one embryo was sequenced in each stage, there could be larger technical error 

among lowly expressed genes, like in single cell RNA-seq, especially in early development. 

So, after normalization, we removed genes with mean expression across samples <1. For M. 

musculus, the processed (log-transformed and normalized) microarray data was retrieved from 

Bgee (release 13.1, July 2015; Bastian et al., 2008), a database for gene expression evolution. 

This data originally comes from (Irie and Kuratani 2011).  

The detail information of the two datasets listed in Table S1. 

 

2.5.2 Omega0  

The ω0 values were downloaded from Selectome (Moretti et al. 2014), a database of positive 

selection based on the branch-site model (Zhang et al. 2005). Selectome excludes ambiguously 

aligned regions before model fitting, using Guidance bootstrapping and M-Coffee consistency. 

ω0 is the dN/dS ratio (dN is the rate of non-synonymous substitutions, dS is the rate of 

synonymous substitutions) of the subset of codons which have evolved under purifying 

selection according to the branch-site model. We used ω0 from the Clupeocephala branch, the 

Murinae branch, and the Melanogaster group branch for D. rerio, M. musculus, and D. 

melanogaster, respectively. One gene could have two ω0 values in the focal branch because of 

duplication events. In this case, we keep the value of the branch following the duplication and 

exclude the value of the branch preceding the duplication. 

 

2.5.3 Phyletic age data  

Phyletic ages were retrieved from Ensembl version 84 (Yates et al. 2016) using the Perl API. 

For each gene, we browsed its gene tree from the root and dated it by the first appearance. We 

assigned the oldest genes with phyletic age value of 1 and the youngest genes with the highest 

phyletic age value. So, genes can be split into discrete "phylostrata" by phyletic age. We 

classified 3 phylostrata, 4 phylostrata, 9 phylostrata and 18 phylostrata respectively for C. 
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elegans, D. melanogaster, D. rerio and M. musculus. The definition of phylostrata is dependent 

on the available genome sequences in related lineages, hence the differences between species. 

 

2.5.4 Number of paralogs 

We retrieved the number of paralogs from Ensembl release 84 (Yates et al. 2016) using 

BioMart (Kinsella et al. 2011). 

 

2.5.5 Retrogene data  

For C. elegans, we retrieved 33 retrogenes from Zou et al. (2012). For D. melanogaster, we 

retrieved 72 retrogenes from retrogeneDB (Kabza et al. 2014). For D. rerio we retrieved 113 

retrogenes from Fu et al. (2010). For M. musculus we retrieved 134 retrogenes from 

Potrzebowski et al. (2008).  

 

2.5.6 Connectivity data  

We retrieved connectivity (protein-protein interactions) data from the OGEE database (Chen 

et al. 2012).  

 

2.5.7 Testis specific genes 

We first retrieved processed (normalized and log-transformed) RNA-seq data of 22 M. 

musculus tissues and 6 D. melanogaster tissues from Kryuchkova-Mostacci and Robinson-

Rechavi (2016a).  

Then, we calculated tissue specificity based on Tau (Yanai et al. 2005; Kryuchkova-Mostacci 

and Robinson-Rechavi 2016b):  

 
where n is the number of tissues, and xi is the expression of the gene in tissue i. This index 

ranges from zero (broadly expressed genes) to one (genes specific to one tissue). All genes that 

were not expressed in at least one tissue were removed from the analysis. 

Finally, we defined genes with highest expression in testis and with tissue specificity value ≥ 

0.8 as testis specific genes.  
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2.5.8 Transcriptome index analysis for different evolutionary parameters  

The TEI (transcriptome evolutionary index) is calculated as:  

 
where s is the developmental stage, Ei is the relevant evolutionary parameter (ω0, paralog 

number, phyletic age, stage specificity, or protein connectivity) of gene i, n is the total number 

of genes, and eis is the expression level of gene i in developmental stage s; by default we use 

log-transformed expression levels for eis.  

 

2.5.9 Confidence interval analysis 

Firstly, we randomly sampled gene IDs from each original data set 10,000 times with 

replacement. Then, we computed transcriptome indexes for the 10,000 samples. Finally, the 

95% confidence interval is defined as the range from quantile 2.5% to quantile 97.5% of the 

10,000 transcriptome indexes. This approach was integrated into myTAI (Drost et al. 2017), a 

R package for evolutionary transcriptome index analysis.  

 

2.5.10 Stages before the start of maternal to zygote transition 

The stages before the start of the maternal to zygote transition (MZT) were defined from Tadros 

and Lipshitz (2009). For C. elegans and D. melanogaster, it’s the first 1 hour of embryo 

development; for D. rerio, it’s the first 2 hours of embryo development; for M. musculus, it’s 

the first day of embryo development. 

 

2.5.11 Phylotypic period 

From both morphological and genomic studies, we defined the phylotypic period of each 

species as follows: for C. elegans, the phylotypic period is defined as the ventral enclosure 

stage (Levin et al. 2012); for D. melanogaster, the phylotypic period is defined as an extended 

germband stage (Sander 1983; Kalinka et al. 2010); for D. rerio, the phylotypic period is 

defined as the segmentation and pharyngula stages (Ballard 1981; Wolpert 1991; Slack et al. 

1993; Domazet-Loso and Tautz 2010); for M. musculus, the phylotypic period is defined as 

Theiler stages 13 to 20 (Ballard 1981; Wolpert 1991; Slack et al. 1993; Irie and Kuratani 2011). 
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2.5.12 Permutation test 

We first assigned all development stages to three broad development periods (early: after the 

start of MZT and before the phylotypic period, middle: the phylotypic period, and late: after 

the phylotypic period). Next, we calculated the difference of mean transcriptome indexes 

between the early module and the middle module (De-m). Then, we permuted the values of the 

relevant parameter (ω0, paralog number, phyletic age, stage specificity or protein connectivity) 

10,000 times. Finally, we approximated a normal distribution for De-m based on 10,000 De-m 

values computed from the permutated samples. The p-value of the hourglass model vs. the 

early conservation model for each parameter is the probability of a randomly sampled De-m 

exceeding the observed De-m. For protein connectivity, the p-value of the hourglass model is 

the probability that a randomly sampled De-m lower than the observed De-m. 
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2.8 Supporting Information 
Supporting materials can be downloaded from: 

https://academic.oup.com/gbe/article/10/9/2266/5076813#121132694  

 

Table S1: Expression datasets used in this study; "main": dataset used for the figures in 

the manuscript; "supplementary": dataset used for the figures in the supplementary 
materials. 

Figure S1: Distributions of dN and dS for C. elegans 



  37 
 

Figure S2: Comparison of 95% confidence intervals from transformed and non-

transformed expression values 
Grey, dark blue, red, and green marked time points in the x-axis represent stages before the 

start of MZT, early developmental stages, middle developmental stages and late developmental 

stages respectively. Y-axis represents the ratio of upper to lower 95% confidence interval 

boundary. The ratio from non-transformed expression values is plotted in dotted lines, while 

the ratio from log2 transformed expression values is plotted in solid lines, and the ratio from 

square root (abbreviated as “sqrt”) transformed expression values is plotted in dashed lines.  

Figure S3: Evolutionary transcriptome indexes based on square root transformed 
expression values 

Legend as Figure 1, but here the indexes are based on square root transformed expression 

values. 

Figure S4: Evolutionary transcriptome indexes based on non-transformed expression 

values 

Legend as Figure 1, but here the indexes are based on non-transformed expression values. 

Figure S5: Evolutionary transcriptome indexes based on supplementary datasets 

Legend as Figure 1, but here the indexes are based on supplementary datasets. 

Figure S6: Comparison of transcriptome phyletic age indexes (TAI) 

Dark blue, red, and green marked time points in the x-axis represent early developmental stages, 

middle developmental stages and late developmental stages respectively. TAI is plotted in 

purple line. The grey area indicates 95% confidence interval estimated from bootstrap analysis. 

The p-values for supporting the hourglass model (permutation test, early vs. middle 

development) are indicated in the top-left corner of each graph.  

A: TAI based on non-transformed expression values. 

B: TAI based on log2 transformed expression values. 

C: TAI based on non-transformed expression values, excluding the top 10% highest expressed 

genes. 

Figure S7: Proportion of temporal pleiotropic genes for D. melanogaster with the 

supplementary dataset 

Legend as Figure 2, but here the result comes from the supplementary dataset of D. 

melanogaster. 
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Figure S8: Proportion of temporal pleiotropic genes defined as expressed in more than 

70% stages 
Legend as Figure 2, but here the temporal pleiotropic genes are defined as expressed in more 

than 70% of stages. 

Figure S9: Proportion of temporal pleiotropic genes for D. melanogaster after removal of 

the second period of late development  

Legend as Figure 2. 

Figure S10: Proportion of temporal pleiotropic genes for D. rerio based on expressed 

genes defined as microarray signal rank in top 90% or 50% 
Legend as Figure 2. In upper panel graphs, expressed genes defined as microarray signal rank 

in top 90%. In lower panel graphs, expressed genes defined as microarray signal rank in top 

50%. 

Figure S11: Relation of protein connectivity and duplicability 

Genes were split into 10 bins according to their connectivity. The duplicability in each bin was 

measured by the number of genes with paralogs divided by the number of all genes. The 

duplicability was fit by regression (the first degree of polynomial for C. elegans and M. 

musculus, while the second degree of polynomial for D. melanogaster and D. rerio), whose R2 

and p-value are indicated in the top-left corner of each graph. The median connectivity of each 

bin was plotted on the x-axis (in log2 scale).  
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3.1 Abstract  
A driving hypothesis of Evo-Devo is that animal morphological diversity is shaped both by 

adaptation and by developmental constraints. Here we have tested Darwin's "selection 

opportunity" hypothesis, according to which high evolutionary divergence in late development 

is due to strong positive selection. We contrasted it to a "developmental constraint" hypothesis, 

according to which late development is under relaxed negative selection. Indeed, the highest 

divergence between species, both at the morphological and molecular levels, is observed late 

in embryogenesis and post-embryonically. To distinguish between adaptation and relaxation 

hypotheses, we investigated the evidence of positive selection on protein-coding genes in 

relation to their expression over development, in fly Drosohila melanogaster, zebrafish Danio 

rerio, and mouse Mus musculus. First, we found that genes specifically expressed in late 

development have stronger signals of positive selection. Second, over the full transcriptome, 

genes with evidence for positive selection trend to be expressed in late development. Finally, 

genes involved in pathways with cumulative evidence of positive selection have higher 

expression in late development. Overall, there is a consistent signal that positive selection 

mainly affects genes and pathways expressed in late embryonic development and in adult. Our 

results imply that the evolution of embryogenesis is mostly conservative, with most adaptive 

evolution affecting some stages of post-embryonic gene expression, and thus post-embryonic 

phenotypes. This is consistent with the diversity of environmental challenges to which 

juveniles and adults are exposed. 
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3.2 Introduction 
There are two main models to explain the relationship of development and evolutionary 

divergence. The early conservation model suggests that embryonic morphology between 

different species within the same group progressively diverges across development (Von Baer 

1828); such groups are usually understood to by phyla in a modern context. In contrast, the 

hourglass model proposes that middle development (the morphological ‘phylotypic’ period) 

has the highest morphological similarity (Duboule 1994; Raff 1996). Based on recent genomic 

studies, both models have some level of molecular support. Some studies support the early 

conservation model (Roux and Robinson-Rechavi 2008; Artieri et al. 2009), while most recent 

ones support the hourglass model (Kalinka et al. 2010; Irie and Kuratani 2011; Levin et al. 

2012; Quint et al. 2012; Drost et al. 2015; Hu et al. 2017; Zalts and Yanai 2017). And in fact 

the two models may not be mutually exclusive (Piasecka et al. 2013; Liu and Robinson-

Rechavi 2018). 

 

Both the early conservation and hourglass models predict that late development has high 

evolutionary divergence. This high divergence of late development has been interpreted as a 

consequence of relaxed developmental constraints, i.e. weaker negative selection. For example, 

Garstang (1922) and Riedl (1978) suggested that the development of later stages is dependent 

on earlier stages, so higher divergence should be found in the later stages of development (cited 

in Irie and Kuratani 2014). Indeed, many studies have found evidence for relaxed purifying 

selection in late development (Castillo-Davis and Hartl 2002; Roux and Robinson-Rechavi 

2008; Artieri et al. 2009; Kalinka et al. 2010; Liu and Robinson-Rechavi 2018). An alternative 

explanation, however, known as Darwin's “selection opportunity” hypothesis (Darwin 

1871)(cited in Artieri et al. 2009), proposed that highly divergent late development could also 

be driven by adaptive evolution (positive selection), at least in part. This could be due to the 

greater diversity of challenges to which natural selection needs to respond in juvenile and adult 

life than in early and mid-development. Notably, weaker negative and stronger positive 

selection are not mutually exclusive. For example, Cai and Petrov (2010) found the accelerated 

sequence evolution rate of primate lineage specific genes driven by both relaxed purifying 

selection and enhanced positive selection. Necsulea and Kaessmann (2014) suggested that the 

high evolution rate of testis transcriptome could be caused by both sex-related positive 

selection and reduced constraint on transcription.  

 



  45 
 

As far as we know, few studies have tried to distinguish the roles of adaptation vs. relaxation 

of constraints in late development (Artieri et al. 2009), and no evidence has shown stronger 

adaptive evolution in late development. Yet there is an intuitive case for adaptation to act on 

phenotypes established in late development, because they will be present in the juvenile and 

adult, and interact with a changing environment. 

 

In the case of detecting individual gene adaptation, one of the best established methods is using 

the ratio ω of non-synonymous (dN) to synonymous (dS) substitutions (Yang and Nielsen 1998; 

Hurst 2002). Because synonymous changes are assumed to be functionally neutral, ω>1 

indicates evidence of positive selection. As adaptive changes probably affect only a few codon 

sites and at a few phylogenetic lineages, branch-site models allow the ω ratio to vary both 

among codon sites and among lineages (Yang and Nielsen 2002; Zhang et al. 2005). 

Polymorphism based methods such as frequency spectrum, linkage disequilibrium and 

population differentiation can also be used to identify changes due to recent positive selection 

(Vitti et al. 2013).  

 

Since several genes with slight effect mutations can act together to have a strong effect, 

adaptive evolution can act on the pathway level as well (Daub et al. 2013; Berg et al. 2014). In 

the case of polygenic adaptation, a gene set enrichment test has successfully been applied to 

detect gene sets with polygenic adaptive signals (Daub et al. 2013; Daub et al. 2017). This gene 

set enrichment analysis allows to detect weak but consistent adaptive signals from whole 

genome scale, unlike traditional enrichment tests which only consider top scoring genes with 

an arbitrary significance threshold.  

 

In order to estimate the contribution of positive selection to the evolution of highly divergent 

late development, we have adopted three approaches. First, we used modularity analysis to 

obtain distinct sets of genes (modules) which are specifically expressed in different meta 

developmental stages (Piasecka et al. 2013; Levin et al. 2016), and compared the signal of 

positive selection across modules. Second, we applied a modified “transcriptome index” 

(Domazet-Loso and Tautz 2010) to measure evolutionary adaptation on the whole 

transcriptome level. Finally, we used a gene set enrichment approach to detect polygenic 

selection on pathways, and studied the expression of these gene sets over development. Each 

approach was applied to developmental transcriptomes from D. rerio, M. musculus, and D. 
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melanogaster and to results of the branch-site test for positive selection in lineages leading to 

these species. All the analyses found a higher rate of adaptation in late and in some stages of 

post-embryonic development, including adult. 

 

3.3 Results 
In order to characterize the signal of positive selection, we used the log-likelihood ratio test 

statistic (∆lnL) of H1 to H0 models with or without positive selection, from the branch-site 

model (Zhang et al. 2005) as precomputed in Selectome on filtered alignments (Moretti et al. 

2014), and as used in Roux et al. (2014) and Daub et al. (2017). Briefly, ∆lnL represents the 

evidence for positive selection, thus a branch in a gene tree with a higher value indicates higher 

evidence for positive selection for this gene over this branch.  

 

3.3.1 Modularity analysis 

For the modularity analysis, we focused on different sets of specifically expressed genes 

(modules) in each developmental period. Our expectation is that genes in each module have 

specific involvement during embryonic development (Piasecka et al. 2013), so different 

adaptation rates of these genes should reflect a stage specific impact of natural selection. In 

addition, since the modules decompose the genes into different meta development stages, they 

allow to avoid the potential bias caused by imbalanced time points in each meta development 

stage from our transcriptome datasets; e.g., many more "late development" samples in fly than 

in the other two species studied. For D. rerio, we obtained seven modules from our previous 

study (Piasecka et al. 2013) (Figure S1). For M. musculus and D. melanogaster, we identified 

three and six modules respectively (see Methods; Figure S1).  

 

Because not all genes have any evidence for positive selection, we first compared the 

proportion of genes either with strong evidence (q-value < 0.2) or with weak evidence (no 

threshold for q-value; ∆lnL > 0) of positive selection across modules. For strong evidence, the 

proportion is not significantly different across modules in M. musculus and D. melanogaster 

(Figure S2). In D. rerio, however, there is a higher proportion in the juvenile and adult modules. 

For the weak evidence, D. melanogaster has a higher proportion in pupae and adult modules, 

but there is no significant difference in D. rerio and M. musculus (Figure S3). 
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We then compared the values of ∆lnL for genes with weak evidence of positive selection 

(Figure 1). In order to improve the normality of non-zero ∆lnL, we transformed ∆lnL with 

fourth root (Hawkins and Wixley 1986; Roux et al. 2014; Daub et al. 2017).  In D. rerio, we 

detected an hourglass pattern of ∆lnL, at its highest in late modules. Specifically, in the juvenile 

module, the mean ∆lnL is significantly higher than the mean ∆lnL for all genes (p-values 

reported in Table 1). We note that the adult module also has higher mean ∆lnL, even though 

it’s not significant. In the pharyngula module, the mean ∆lnL is significantly lower than the 

mean ∆lnL for all genes, as expected under the hourglass model. In the other modules, the 

mean ∆lnL is not significantly different from the mean for all genes. In M. musculus, similarly, 

we found an hourglass pattern of ∆lnL. The late embryo module has a higher mean ∆lnL than 

all genes, while the middle embryo module has a lower mean ∆lnL than all genes. In D. 

melanogaster, however, we observed an early conservation pattern of ∆lnL. Specifically, in the 

early embryo module, the mean ∆lnL is lower than the mean ∆lnL for all genes. In the adult 

module, the mean ∆lnL is higher than the mean ∆lnL for all genes. There is no significant 

difference for the other modules. It should be noted that the patterns reported in this modularity 

analysis are relatively weak, especially in D. melanogaster. After multiple test correction, some 

of the reported differences are not significant anymore (Table S1).  

 
Figure 1: Variation of ΔlnL in different modules. 
For each module, dots are values of ΔlnL for individual genes and the black line is the mean 
of ΔlnL. Red (respectively blue) dots indicate modules for which the mean of ΔlnL is 
significantly (p<0.05) higher (respectively lower) than the mean of ΔlnL from all modules. The 
green dashed line denotes the mean value of ΔlnL from all modular genes.  
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Table 1:  P-values of randomization test for modular analysis. 

 
D. melanogaster Early embryo Middle embryo Late embryo Larva Pupae Adult 

p-value 0.014 0.484 0.263 0.435 0.213 0.018 

D. rerio Cleavage/ 
Blastula 

Gastrula Segmentation Pharyngula  Larva Juvenile Adult 

p-value 0.166 0.238 0.448 0.005  0.273 0.003 0.066 

M. musculus Early embryo Middle embryo Late embryo    

p-value 0.094 0.043 0.001    

 

 

Overall, these findings suggest that positive selection is stronger on genes expressed in late 

development or in adult than in early and middle development. It also indicates that ∆lnL on 

gene modules in different phyla supports different Evo-Devo models (hourglass vs. early 

conservation). 

 

3.3.2 Transcriptome index analysis  

Although modularity analysis guarantees independence between the sets of genes which are 

compared, it only considers a subset of genes. This leaves open whether the higher adaptive 

evolution in late development and adult holds true for the whole transcriptome as well, or just 

for these modular genes. Additionally, while trends were detected, significance is weak. To 

consider the composition of the whole transcriptome and to increase our power to detect a 

signal of positive selection in development, we used a modified "Transcriptome Age Index" 

(Domazet-Loso and Tautz 2010) to calculate the weighted mean of ∆lnL for the transcriptome. 

Notably, all expression levels were log-transformed before use, unlike in Domazet-Loso and 

Tautz (2010). See discussion in Piasecka et al. (2013) and Liu and Robinson-Rechavi (2018), 

but briefly log-transformation provides insight on the overall transcriptome rather than a small 

number of highly expressed genes. We named this modified index "Transcriptome Likelihood 

Index” (TLI). A higher index indicates that the transcriptome has higher expression of 

transcripts from genes with high ∆lnL between models with and without positive selection.  

 

In D. rerio, generally, the pattern resembles an hourglass like pattern (Figure 2). The TLI first 

decreases and reaches a minimum in the late stage of gastrula (8h), and then progressively 
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increases until adult (ninth month), with finally a slight decline. In addition, in the adult stage, 

female has higher TLI than male, although the difference is weak. To test whether TLIs are 

different between developmental periods, we compared the mean TLI of all stages within a 

period, between each pair of periods (see Methods). We found that middle development has 

low TLI, early development has medium TLI, late development and maternal stage have very 

similar high TLI, and adult has the highest TLI. Except late development and maternal stage 

(p=0.24), all pairwise comparisons are significant: p<5.7e-07. In M. musculus, we observed a 

clear hourglass-like pattern of TLI. For the mean TLI comparison, we found low TLI in middle 

development, medium TLI in early development, high TLI in late development, and the highest 

TLI in maternal stage (all pairwise comparisons are significant: p<2e-16). Of note, unlike in D. 

rerio, the "late development" here only contains late embryo stages, but no post embryo stages. 

This may explain why late development has lower TLI than the maternal stage in this dataset. 

In D. melanogaster, we found the TLI progressively increasing over development, suggesting 

an early conservation model. Unlike in D. rerio, we found that male has higher TLI than female 

in the adult stage. For the mean TLI comparison, early development has low TLI, middle 

development has medium TLI, late development has high TLI, and adult has the highest TLI 

(all pairwise comparisons are significant: p<2e-16). 

 

As in the modularity analysis, but with much stronger signal, both D. rerio and M. musculus 

support the hourglass model, while D. melanogaster follows an early conservation model. 

Again, from whole transcriptome level, these results indicate that genes with evidence for 

positive selection are more highly expressed in late development and adult. Interestingly, the 

maternal stage has a comparable high TLI to late development. This could be related to the 

maternal stage being dominated by adult transcripts (Tadros and Lipshitz 2009). In this respect 

(transcriptome evolution), the maternal stage should maybe be regarded as a special adult stage 

rather than as an early embryonic stage.  
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Figure 2: Transcriptome index of ΔlnL (TLI) across development.  
For sub-figure A, B and C: 
Orange, blue, red, green and purple time points represent stages within the developmental 
periods of maternal stage, early development, middle development, late development, and adult, 
respectively. For the adult stage, the black solid circle represents TLI from average expression 
between male and female; the purple solid triangle and square represent TLI from only males 
or females, respectively.  
For sub-figure D, E and F: 
Comparison of the TLI (mean TLI of all stages within a period) between any two different 
periods. Each period has 10,000 pseudo-TLIs which come from random resampling with 
replacement.  
 

3.3.3 Polygenic selection analysis  

Positive selection can be detected at the biological pathway level, even when individual genes 

within the pathway only fix small effect mutations (Daub et al. 2013; Berg et al. 2014; Daub 

et al. 2017). Thus, we searched for such signals of positive selection on pathways. Briefly, we 

calculated the sum of ∆lnL (SUMSTAT statistic) for a pathway, and inferred the significance 

of this SUMSTAT with an empirical null distribution (Tintle et al. 2009; Daub et al. 2013; 

Daub et al. 2017). In total, we identified 10, 4 and 9 pathways with a significant signal of 

positive selection, respectively in lineages leading to D. rerio, M. musculus and D. 

melanogaster (q-value<0.2, Table2).  
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Table 2: Candidate pathways enriched with signal of positive selection. We reported all 
pathways with q-value <0.2 after removing overlapping genes (“pruning”) for D. rerio, D. 
melanogaster and M. musculus. 
 

Species Rank Pathway 
Pathway size 
before /after 

pruning 

p value 
before 

pruning  

q value 
before 

pruning  

p value 
after 

pruning  

q value 
after 

pruning  

D. rerio 1 Laminin interactions 12/12 2.00E-06 1.32E-03 2.00E-06 0.00E+00 

 2 Phenylalanine metabolism 10/10 7.70E-05 1.51E-02 7.80E-05 8.78E-03 

 3 Visual phototransduction 33/33 9.10E-05 1.51E-02 8.30E-05 8.78E-03 

 4 Metabolism of 
carbohydrates 

119/118 
2.02E-04 2.23E-02 2.37E-04 2.97E-02 

                   
5 

Gamma carboxylation, 
hypusine formation and 
arylsulfatase activation 

                        
18/18 

1.46E-03 8.05E-02 1.24E-03 1.16E-01 

 6 Extracellular matrix 
organization 

75/61 
2.00E-05 6.62E-03 1.50E-03 1.16E-01 

 7 Acyl chain remodelling of 
PE 

10/10 
5.12E-03 1.79E-01 3.79E-03 1.66E-01 

 8 Base excision repair 24/24 4.94E-03 1.79E-01 3.82E-03 1.66E-01 

 9 Aminoacyl-tRNA 
biosynthesis 

30/30 
6.23E-03 1.97E-01 3.93E-03 1.66E-01 

 10 Phase II conjugation 37/30 1.08E-03 6.92E-02 4.00E-03 1.66E-01 

D. melanogaster 1 Triglyceride Biosynthesis 59/59 7.60E-05 1.57E-02 7.60E-05 3.32E-02 

 2 Glycosaminoglycan 
degradation 

16/16 
6.99E-04 4.70E-02 6.37E-04 9.44E-02 

 3 Metabolism of porphyrins 12/12 1.57E-03 7.31E-02 1.47E-03 9.62E-02 

 4 Detoxification of Reactive 
Oxygen Species 

17/17 
1.45E-03 7.31E-02 1.48E-03 9.62E-02 

 5 Longevity regulating 
pathway 

43/28 
2.83E-02 3.12E-01 3.37E-03 1.54E-01 

 6 ECM-receptor interaction 10/10 4.54E-03 1.66E-01 4.10E-03 1.54E-01 

 7 Lysine degradation 25/15 1.84E-02 2.86E-01 5.15E-03 1.54E-01 

 8 Metabolic pathways 813/767 3.04E-04 3.11E-02 5.23E-03 1.54E-01 

 9 Glutathione metabolism 55/32 2.59E-02 3.12E-01 5.66E-03 1.54E-01 

M. musculus 1 Pantothenate and CoA 
biosynthesis 

16/16 
9.10E-05 7.20E-02 9.10E-05 5.01E-02 

 2 Mineralocorticoid 
biosynthesis 

10/10 
1.52E-04 7.20E-02 1.40E-04 5.01E-02 

 3 Mitochondrial translation  72/72 2.91E-04 7.86E-02 2.73E-04 5.25E-02 

                 
4 

Cytokine-cytokine receptor 
interaction 

                    
100/100 3.41E-04 7.86E-02 2.78E-04 5.25E-02 
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The function of these pathways, while not our primary focus, is consistent with adaptive 

evolution of juvenile or adult phenotypes. First, we found metabolism related pathways in all 

three species, suggesting pervasive adaptation, possibly related to diet; this is consistent with 

previous results in primates (Daub et al. 2017). Second, in D. rerio and D. melanogaster, 

several pathways are involved in morphogenesis and remodelling of organs (e.g., laminin 

interactions, extra cellular matrix, ECM-receptor interaction), suggesting potential adaptive 

evolution of morphological development. Third, there are several pathways involved in aging 

in D. melanogaster and M. musculus (e.g., reactive oxygen detoxification, longevity regulation, 

mitochondrial translation), suggesting potential role of natural selection on modulating lifespan 

or on metabolic activity. Forth, in D. rerio, we detected one pathway related to environmental 

adaptation: visual phototransduction; adaptations in vision are expected for aquatic species 

which under a wide variety of visual environments (Sabbah et al. 2010). 

 

If late development and adult are under stronger positive selection at the pathway level as well, 

we expect genes involved in pathways with a signal of positive selection to be more highly 

expressed at these periods. Thus we computed the ratio of median expression between 

positively selected pathway genes and genes included in pathways not positively selected. 

Since the median expression in the first time point of M. musculus is 0, we removed it from 

our analysis. In D. rerio, the ratio of median expression keeps increasing until the juvenile 

stage. Then, it slightly decreases (Figure 3). In M. musculus, except the first time point, the 

ratio of median expression also progressively increases. In D. melanogaster, there is a small 

peak in the first time point, but it quickly decreases to minimum within the same developmental 

period. Then, it keeps increasing until the middle of the larval stage. Finally, for the last 

development stages, it resembles a wave pattern: decrease, increase and decrease again. Again, 

we also tested the difference between male and female in adult stages for D. rerio and D. 

melanogaster. Unlike the observation in the transcriptome index analysis, here we found that 

male has higher ratio of median expression than female in both species.  
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Figure 3: Expression in development for genes involved in pathways enriched with signal of 
positive selection.  
Each solid circle represents the ratio of the median expression for genes involved in pathways 
enriched with signal of positive selection to the median expression for genes involved in 
pathways without signal of positive selection. Orange, blue, red, green and purple time points 
represent stages within the developmental periods maternal stage, early development, middle 
development, late development, and adult, respectively. In adult samples, black solid circles 
represent ratios generated from average expression of males and females; purple solid 
triangles and squares represent ratios generated from only males or only females, respectively. 
 

Overall, consistent with previous results, we found that late development and adult tend to 

express genes involved in pathways enriched for signal of positive selection, indicating that 

adaptive evolution at the pathway level mainly affects these stages. While there is some signal 

of early development adaptive evolution on single genes, the later developmental signal is more 

consistent at the pathway level. Because pathways link genes to phenotypes (Müller 2007; 

Wray 2007; Tickle and Urrutia 2017), this suggests stronger phenotypic adaptation in late 

development and adult. 

 

3.4 Discussion  

3.4.1 Correcting confounding factors  

Since some non-adaptive factors (such as gene length, tree size (number of branches), and 

branch length) can be correlated with ∆lnL and affect our results (Daub et al. 2017), we 

investigated the correlation between ∆lnL and these potential confounding factors. Generally, 

we found a small correlation between ∆lnL and tree size, but a larger correlation between ∆lnL 

and gene length or branch length (Figure S4). One explanation for this high correlation between 

∆lnL and gene length is that long genes could accumulate more mutations than short genes, so 

we have more power to detect positive selection with higher number of mutations (Fletcher 

and Yang 2010; Gharib and Robinson-Rechavi 2013). So, we checked the influence of gene 

length on our results. Because branch length is inferred from the number of mutations, and 
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higher branch length can be driven by higher evolutionary rate due to positive selection, we 

did not check further the correlation between ∆lnL and branch length. In order to investigate 

whether gene length might have affected our results, for modularity and TLI analysis, we tested 

whether patterns purely based on gene length are similar to those based on ∆lnL or not. 

Surprisingly, we found an opposite pattern of gene length, relative to ∆lnL. For modularity 

analysis, the modules with higher ∆lnL have significantly lower mean gene length than all 

genes (Figure S5). For transcriptome index analysis, the stages with higher TLI trend to have 

lower transcriptome index for gene length (Figure S6), suggesting that these stages trend to 

express shorter genes. These findings imply that the detection of higher positive selection in 

late development is not driven by gene length. Immune system genes can bias positive selection 

analyses, since they evolve under pervasive positive selection (Flajnik and Kasahara 2010). To 

control for this, we also confirmed our findings after removing immune genes from our analysis 

(Figure S7).  

 

3.4.2 Developmental constraint hypothesis and Darwin's selection opportunity 
hypothesis 

Despite the repeated observation that late development is highly divergent for diverse genomic 

properties (sequence evolution, duplication, gene age, expression divergence) in diverse animal 

species (Roux and Robinson-Rechavi 2008; Domazet-Loso and Tautz 2010; Kalinka et al. 

2010; Irie and Kuratani 2011; Levin et al. 2012; Piasecka et al. 2013; Drost et al. 2015; Liu 

and Robinson-Rechavi 2018), the underlying evolutionary forces driving such a pattern remain 

obscure. The “developmental constraint” hypothesis (Raff 2000; Brakefield 2006) suggests 

that this high divergence is due to relaxed purifying selection, whereas Darwin's "selection 

opportunity" hypothesis proposes stronger positive selection (as discussed in Artieri et al. 2009; 

Kalinka and Tomancak 2012).  

 

Several studies have found evidence, direct or indirect, to support the importance of 

developmental constraints (Castillo-Davis and Hartl 2002; Roux and Robinson-Rechavi 2008; 

Artieri et al. 2009; Kalinka et al. 2010). For example, we (Roux and Robinson-Rechavi 2008) 

found that genes expressed earlier in development contain a higher proportion of essential 

genes, and Uchida et al. (2018) found strong embryonic lethality from random mutations in 

early development. Weaker purifying selection in late development would imply that genes 

expressed in this period have less fitness impact, which is consistent with the paucity of 
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essential genes. Here and in Liu and Robinson-Rechavi (2017) the branch-site codon model 

allows us to isolate the contribution of purifying selection to coding sequence evolution. We 

found indeed that genes under weaker purifying selection on the protein sequence trend to be 

expressed in late development (Liu and Robinson-Rechavi 2018). This provides direct 

evidence of relaxed purifying selection in late development.  

 

To the best our knowledge, there has been no direct test of Darwin's "selection opportunity" 

hypothesis. One such study, in D. melanogaster, was proposed by Artieri et al. (2009). 

Unfortunately, they only had relatively poor expression data (ESTs) and limited time points 

(embryonic, larval/pupal and adult), and they did not find any direct evidence of higher positive 

selection in late development. Since they noticed that the accelerated sequence evolution of 

genes expressed at adult stage was confounded by male-biased genes, they argued that the rapid 

evolution observed in late development could be due to specific selective pressures such as 

sexual selection. A recent study, in D. melanogaster, provides indirect evidence: using in situ 

expression data and population genomic data to map positive selection to different embryonic 

anatomical structures, Salvador-Martínez et al. (2018) found larva stage enriched with signal 

of positive selection. Our results clearly provide a quantitative test which supports a role of 

positive selection in the high divergence of late development. While our sampling is very far 

from covering the diversity of developmental modes of animals, we show consistent patterns 

in a placental mammal, a direct development ray-finned fish, and a holometabolous insect. 

While it is possible that other patterns will be found in species with different development, this 

shows that adaptation in late development is not limited to one model. We show that this is not 

due to testis-expressed genes (Figure S8). In addition, in vertebrates, we also found some 

evidence of adaptive evolution in early development on single genes. This indicates that 

some changes in early development might be adaptive consequences to diverse ecological 

niches, as proposed by Kalinka and Tomancak (2012). It should be noted that our results also 

provide counter evidence to the adaptive penetrance hypothesis, which argues that adaptive 

evolution mainly occurs in the middle development (Richardson 1999).  

 

3.4.3 Re-unification of structuralist and functionalist comparative biology  

There have been two major approaches to comparative biology since the late 18th century: the 

structuralist approach (which gave rise to Evo-Devo) emphasizes the role of constraints, and 

often focuses on investigating spatial and timing variations of conserved structures in distantly 
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related species. In a modern context, the focus is often on comparing developmental genes’ 

expression between species. The functionalist or adaptationist approach (which gave rise to the 

Modern Synthesis and most of evolutionary biology) emphasizes the role of natural selection. 

In a modern context, the focus is often on investigating adaptive mutations. It has been 

suggested that these two approaches could not be reconciled (Amundson 2007), since the 

former underscores how mutations generate morphological diversity, while the later 

underscores whether mutations are fixed by positive selection or not. A good example of the 

differences between structuralist and adaptationist comes from the debate between Hoekstra 

and Coyne (2007) and Carroll (2008). As a structuralist, Carroll suggested that mutations 

affecting morphology largely occur in the cis-regulatory regions. However, as adaptationists, 

Hoekstra and Coyne argued that this statement is at best premature. Their main argument was 

that they didn’t find that adaptive evolution was more likely occur in cis-regulatory elements, 

but rather in protein coding genes, from both genome-wide surveys and single-locus studies. It 

is important to note that Carroll’s theory is specific to morphological evolution, but not directly 

related to evolutionary adaptation. Basically, both sides could be correct, and were mostly 

discussing different things. 

 

Since both adaptation and structure are part of biology, we should be able to explain both in a 

consistent manner. Here, we try to bridge positive selection and morphological evolution by 

combining developmental time-series transcriptomes, positive selection inference on protein 

coding genes, modularity analysis, transcriptome index analysis, and gene set analysis. From 

both modularity analysis and transcriptome index analysis, we found that genes highly 

expressed in late development and adult have higher evidence for positive selection. From 

polygenic analysis, we found that the expression of positively selected pathways is higher in 

late development and adult. Overall, these results suggest that higher morphological variation 

in late development could be at least in part driven by adaptive evolution. In addition, coding 

sequence evolution might also make a significant contribution to the evolution of morphology, 

as suggested by Hoekstra and Coyne (2007) and Burga et al. (2017). This is also supported by 

the observation of tissue-specific positive selection in D. melanogaster development 

(Salvador-Martínez et al. 2018). It should be noted that we do not test here whether regulatory 

sequence evolution plays a similar or greater role, since we do not have equivalent methods to 

test for positive selection in regulatory regions. 
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3.5 Materials and Methods  
Data files and analysis scripts are available on our GitHub repository: 

https://github.com/ljljolinq1010/Adaptive-evolution-in-late-development-and-adult 

 

3.5.1 Expression data sets  

For D. rerio, the log-transformed and normalized microarray data was downloaded from our 

previous study (Piasecka et al. 2013). This data includes 60 stages from egg to adult, which 

originally comes from Domazet-Loso and Tautz (2010). For M. musculus, the processed RNA-

seq (normalized but non-transformed) data was retrieved from Hu et al. (2017). This data 

includes 17 stages from 2cells to E18.5. We further transformed it with log2. For D. 

melanogaster, we obtained processed (normalized but non-transformed) RNA-seq data from 

http://www.stat.ucla.edu/~jingyi.li/software-and-data.html Li et al. (2014), which originally 

comes from Graveley et al. (2011). This data has 27 stages from embryo to adult. For the last 

three stages, since data were available for male and female, we took the mean. We further 

transformed it with log2. 

 

3.5.2 Branch-site likelihood test data 
The log-likelihood ratio (∆lnL) values of a test for positive selection were retrieved from 

Selectome (Moretti et al. 2014), a database of positive selection based on the branch-site 

likelihood test (Zhang et al. 2005). One major advantage of this test is allowing positive 

selection to vary both among codon sites and among phylogenetic branches. The branch-site 

test contrasts two hypotheses: the null hypothesis is that no positive selection occurred (H0) in 

the phylogenetic branch of interest, and the alternative hypothesis is that at least some codons 

experienced positive selection (H1). The log likelihood ratio statistic (ΔlnL) is computed as 

2*(lnLH1-lnLH0). Importantly, in order to mitigate false positives due to poor sequence 

alignments, Selectome integrates filtering and realignment steps to exclude ambiguously 

aligned regions. We used ∆lnL from the Clupeocephala branch, the Murinae branch and the 

Melanogaster group branch for D. rerio, M. musculus and D. melanogaster respectively. One 

gene could have two ∆lnL values in the focal branch because of duplication events. In this case, 

we keep the value of the branch following the duplication and exclude the value of the branch 

preceding the duplication. 
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3.5.3 Pathways 

We downloaded lists of 1,683 D. rerio gene sets, 2,269 M. musculus gene sets and 1365 D. 

melanogaster gene sets of type “pathway” from the NCBI Biosystems Database (Geer et al. 

2009). This is a repository of gene sets collected from manually curated pathway databases, 

such as BioCyc (Caspi et al. 2014), KEGG (Kanehisa et al. 2014), Reactome (Croft et al. 2014), 

The National Cancer Institute Pathway Interaction Database (Schaefer et al. 2009) and 

Wikipathways (Kelder et al. 2012).  

 

3.5.4 Coding sequence length 

We extracted coding sequence (CDS) length from Ensembl version 84 (Yates et al. 2016) using 

BioMart (Kinsella et al. 2011). For genes with several transcripts, we used the transcript with 

the maximal CDS length.  

 

3.5.5 Testis specific genes 

Testis specific genes for M. musculus and D. melanogaster were obtained from a parallel study 

(Liu and Robinson-Rechavi 2018). The testis specific genes were defined as genes with highest 

expression in testis and with tissue specificity value ≥ 0.8.  

 

3.5.6 Immune genes 

To control for the impact of immune system genes, we downloaded all genes involved in the 

“immune response” term (GO:0006955) from AmiGO (Carbon et al. 2009) (accessed on 

25.04.2018), and repeated analyses with these genes excluded. 

 

3.5.7 Phylotypic period 

The definition of phylotypic period is based on previous morphological and genomic studies. 

For D. melanogaster, the phylotypic period defined as extended germband stage (Sander 1983; 

Kalinka et al. 2010); for D. rerio, the phylotypic period defined as segmentation and 

pharyngula satges (Ballard 1981; Wolpert 1991; Slack et al. 1993; Domazet-Loso and Tautz 

2010); for M. musculus, the phylotypic period defined as Theiler Stage 13 to 20 (Ballard 1981; 

Wolpert 1991; Slack et al. 1993; Irie and Kuratani 2011). 

 

3.5.8 Module detection  

For D. rerio, we obtained seven modules from our previous study (Piasecka et al. 2013). This 
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is based on the Iterative Signature Algorithm, which identifies modules by an iterative 

procedure (Bergmann et al. 2003). Specifically, it was initialized with seven artificial 

expression profiles, similar to presented in Figure S11. Each profile corresponds to one of the 

zebrafish meta developmental stages. Next, the algorithm will try to find genes with similar 

expression profiles to these artificial ones through iterations until the processes converges. This 

method has proven to be very specific, but lacks power with medium or small datasets (<30 

time points). For mouse and fly, the sample size is not enough, so we used the method 

introduced by Levin et al. (2016). Firstly, we generated standardized gene expression for each 

gene by subtracting its mean (across all stages) and dividing by its standard deviation. Next, 

we calculated the first two principal components of each gene based on the standardized 

expression across development. Since the expression was standardized, the genes form a circle 

with scatter plot (Figure S9). Then, we computed the four-quadrant inverse tangent for each 

gene based on its principal components, and sort these values to get gene expression order from 

early to late (Figure S10). Next, we performed Pearson correlation of the standardized 

expression and idealized expression profile of each module (Figure S11). Finally, for each 

module, we defined genes with correlation coefficient rank in top 10% as modular genes. 

Clearly, the genes in earlier modules have higher gene orders (Figure S9).  

 

3.5.9 Randomization test of modularity analysis 

For each module, we randomly choose the same number of ∆lnL from all modular genes (genes 

attributed to any module in that species) without replacement and calculated the mean value. 

We repeated this 10000 times and approximated a normal distribution for the mean value of 

∆lnL. The p-value that the mean value of interested module is higher (or lower) than the mean 

value from all modular genes is the probability that the randomly sampled mean value of ∆lnL 

is higher (or lower) than the original mean value of ∆lnL. In the same way, we also estimated 

the p-value of the median ∆lnL value. 

 

3.5.10 Transcriptome index of log-likelihood ratio (TLI)  

The TLI is calculated as:  
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s is the developmental stage, ∆lnLi is the value of log-likelihood ratio for gene i, n the total 

number of genes and eis is the log-transformed expression level of gene i in developmental 

stage s. Here, we used all ΔlnL values without applying any cut-off on ΔlnL or the associated 

p-value. For genes with ΔlnL<0, we replaced it with 0. For M. musculus, we calculated the TLI 

from a merged data set, instead of computing it on two data sets separately.  

 

3.5.11 Polynomial regression 

For polynomial regression analysis, we keep increasing the degree of polynomial model until 

no further significant improvement (tested with ANOVA, p<0.05 as a significant 

improvement). For M. musculus, since the development time points in transcriptome data set 

are close to uniformly sampled, we used the natural scale of development time for regression. 

For C. elegans, D. melanogaster and D. rerio, however, we used the logarithmic scale, to limit 

the effect of post-embryonic time points. 

 

3.5.12 Bootstrap approach for transcriptome index of ∆lnL (TLI) comparison between 

developmental periods 
Firstly, we randomly sampled the same size of genes from original gene set (with replacement) 

for 10,000 times. In each time, we calculated the TLI of each development stage. Then, we 

calculated the mean TLI (mean TLI of all stages within a period) for each developmental period 

(maternal stage, early development, middle development, late development, and adult). Thus, 

each developmental period contains 10,000 mean TLI. Finally, we performed pairwise 

Wilcoxon test to test the differences of mean TLI between developmental periods. 

 

3.5.13 Detection of polygenic selection 

We performed a gene set enrichment approach to detect polygenic signals of positive selection 

on pathways (Ackermann and Strimmer 2009; Daub et al. 2013; Daub et al. 2017). For each 

pathway, we calculated its SUMSTAT score, which is the sum of ∆lnL of all genes within this 

pathway. The ∆lnL values were fourth-root transformed. This approach makes the distribution 

of non-zero ∆lnL approximate normal distribution (Canal 2005; Roux et al. 2014; Daub et al. 

2017). So, with fourth-root transformation, we limit the risk that the significant pathways we 

found be due to a few outlier genes with extremely high ∆lnL. The SUMSTAT score of a 

pathway is calculated as: 
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where p represents a pathway, and ∆lnLi represents the value of log-likelihood ratio for gene i 

within pathway p. Pathways less than 10 ∆lnL values were excluded from our analysis. Like in 

TLI analysis, we used all ΔlnL values and replaced <0 values with 0. 

 

3.5.14 Empirical null distribution of SUMSTAT  

We used a randomization test to infer the significance of the SUSMTAT score of a pathway. 

To correct for the potential bias caused by gene length, we firstly created bins with genes that 

have similar length (Figure S12). Secondly, we randomly sampled (without replacement) the 

same number of genes from each bin, to make the total number of genes equal to the pathway 

being tested. Thirdly, we computed the SUMSTAT score of the randomly sampled ∆lnL values. 

We repeated the second and third processes one million times. Fourthly, we approximated a 

normal distribution for SUMSTAT score of the interested pathway. Finally, the p-value was 

calculated as the probability that the expected SUMSTAT score is higher than the observed 

SUMSTAT score.  

 

3.5.15 Removing redundancy in overlapping pathways (“pruning”) 

Because some pathways share high ∆lnL value genes, the identified significant pathways might 

be partially redundant. In other words, shared genes among several pathways can drive all these 

pathways to score significant. We therefore removed the overlap between pathways with a 

“pruning” method (Daub et al. 2013; Daub et al. 2017). Firstly, we inferred the p-value of each 

pathway with the randomization test. Secondly, we removed the genes of the most significant 

pathway from all the other pathways. Thirdly, we ran the randomization test on these updated 

gene sets. Finally, we repeated the second and third procedures until no pathways were left to 

be tested. With this “pruning” method, the randomization tests are not independent and only 

the high scoring pathways will remain, so we need to estimate the False Discovery Rate (FDR) 

empirically. To achieve this, we applied the “pruning” method to pathways with permuted 

ΔlnL scores and repeated it for 300 times. So, for each pathway, we obtained one observed p-

value (p*) and 300 empirical p-values. The FDR was calculated as follow: 
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where π0 represents the proportion of true null hypotheses, 𝑉(p*) represents the estimated 

number of rejected true null hypotheses and R(p*) represents the total number of rejected 

hypotheses. For π0, we conservatively set it equal to 1 as in Daub et al. (2017). For 𝑉(p*), in 

each permutation analysis, we firstly calculated the proportion of p-value (from permutation 

analysis) ≤ p*. Then, the value of 𝑉(p*) was estimated by the mean proportion of p-value (from 

permutation analysis) ≤ p* for the 300 permutation tests. For R(p*), we defined it as the number 

of p-value (from original analysis) ≤ p*. For q-value, we determined it from the lowest 

estimated FDR among all p-values (from original analysis) ≥ p*.  
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Table S1: Multiple test corrected p-values (Benjamini–Hochberg method) of 

randomization test for modular analysis.  
Figure S1: Expression profiles of different modules across development 

The bold black line represents median expression of modular genes, the two gray lines 

represent 25th and 75th quantiles of expression of modular genes respectively. The blue, red 

and green named stages represent early, middle and late modules respectively.  
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Figure S2: Proportion of genes with strong evidence of positive selection in each module 

The number of genes in each module is indicated below each box. The p-value from chi-square 

goodness of fit test is reported in the top-left corner of each graph. 

Figure S3: Proportion of genes with weak evidence of positive selection in each module 
Legend as in Figure S2. 

Figure S4: Spearman’s correlation between gene properties and ΔlnL 

Spearman’s correlation coefficient (rho) and adjusted p-value are indicated in the top-right 

corner of each graph. Loess regression lines are plotted in red. 

Figure S5: Variation of gene length in different modules 
Legend as in Figure 1. 

Figure S6: Transcriptome index of gene length across development 

Legend as in Figure 2. 

Figure S7: Transcriptome index of ΔlnL (TLI) for non-immune genes 

Legend as in Figure 2. 

Figure S8: Transcriptome index of ΔlnL (TLI) for non-testis genes in M. musculus and 

D. melanogaster 

Legend as in Figure 2. 

Figure S9: Scatter plot of genes based on principal component analysis 

Each dot represents one gene, grey dots represent genes not assigned to any modules, blue 

dots represent genes in early embryo module, red dots represent genes in middle embryo 

module, blue dots represent genes in late embryo module, pink dots represent genes in larva 

module, and purple dots represent genes in pupae/adult module. Arrow indicates the gene 

expression order (from early to late).  

Figure S10: Heat map of gene expression across development 
Genes arranged by the order of expression (from early to late). Generally, the earlier genes 

have higher expression in earlier stages. Color bar represents the standardized expression 

value.  

Figure S11: idealized expression profile for each module 

Figure S12: Correction of gene length for polygenic selection 

The red lines indicate the boundaries of bins which contains genes with similar length. 
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4 Chromatin accessibility evolution during Drosophila 

embryogenesis 
This is a collaborative project with Eileen Furlong (EMBL, Heidelberg, Germany). My 

contribution to this chapter was the evolutionary analysis.  

This article is in preparation and should be submitted soon. 

 

 

4.1 Abstract  
Transcriptome-based Evo-Devo studies revealed that a period in middle development is highly 

conserved across species within the same phylum. Although the developmental hourglass 

pattern has been observed in different phyla, the roles of gene regulation evolution on this 

pattern remains elusive. Here, using DNase-seq to identify accessible chromatin regions, we 

assessed the evolutionary conservation, divergence, and positive selection of gene regulation 

throughout several stages of embryogenesis in two distant Drosophila species: D. 

melanogaster and D. virilis. We found that the phylotypic stage has a higher proportion of 

conserved regulatory elements and a lower proportion of species specific gain of regulatory 

elements. Moreover, based on an in silico mutagenesis approach, we detected signatures of 

positive selection on developmental enhancers, and found that the phylotypic stage enhancers 

have less evidence of positive selection. These results suggest that both stronger positive 

selection and less purifying selection on regulatory sequences contribute to the lower 

expression divergence at the phylotypic stage.  

  



  69 
 

4.2 Introduction  
Embryological development has long been characterized by deep conservation. Animals that 

belong to the same phylum are considered to share a group of structural and developmental 

characteristics, the so called basic body plan or bauplan (Wallace 2000; Valentine 2004; Irie 

and Kuratani 2014). For example, arthropods share a set of anatomic structures such as jointed 

legs, exoskeleton made of chitin, and segmented bodies (Zrzavy and Stys’ 1997). Based on 

morphological conservation, Duboule (1994) and Raff (1996) proposed the hourglass model, 

suggesting, within a phylum, embryos in middle development (the phylotypic period 

(Richardson 1995)) is morphologically more conserved than embryos in both early and late 

development. However, this model was not supported by later morphological studies 

(Richardson et al. 1997; Bininda-Emonds et al. 2003). To overcome difficulties of comparing 

morphological features across species, recent studies have been focusing on comparative 

transcriptomics (Yanai 2018). This is based on the hypothesis that changes in gene expression 

play a central role in the morphological differences between species (King and Wilson 1975; 

Carroll 2008). 

 

Transcriptome comparisons in different phyla (Kalinka et al. 2010; Irie and Kuratani 2011; 

Levin et al. 2012; Hu et al. 2017) all show that expression divergence is lower in the phylotypic 

period than in early and late development, supporting the hourglass model. One of the pioneer 

studies was conducted by Kalinka et al. (2010), quantifying expression divergence at different 

stages during embryogenesis in six Drosophila species. They found that expression divergence 

follows an hourglass pattern with the minimal divergence at the extended germband stage (8-

10 hours after laying egg), generally regarded as the phylotypic stage of arthropods (Sander 

1976). Notably, this expression hourglass pattern also extends to population level (Zalts and 

Yanai 2017), and even to the level of variation between isogenic individuals (Liu et al. 2019). 

Based on a single embryo transcriptome time series of fly embryonic development with a high 

number of isogenic replicates, we found that the extended germband stage also has lower non-

genetic expression variability (Liu et al. 2019). On the other hand, when animals are compared 

between different phyla, the phylotypic period has been reported to have the highest divergence 

(Levin et al. 2016).  

 

Although transcriptomic comparisons throughout developmental time across species have been 

repeatedly studied, the role of gene regulation on the evolution of expression during 
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embryogenesis remains to be elucidated. What’s more, the contribution of positive selection 

on the hourglass expression divergence is still unknown, despite recent evidence of a role of 

positive selection in the hourglass of protein divergence (Liu and Robinson-Rechavi 2018). To 

answer these questions, we performed DNase-seq to identify active regulatory elements across 

multiple matched embryonic development stages in D. melanogaster and D. virilis. Overall, 

we found that gene regulation in the phylotypic stage is more conserved than in the earlier 

stages. In addition, it less accessible to adaptive evolution. Thus, the phylotypic stage can be 

regarded as an evolutionary lockdown. 

 
4.3 Results  

4.3.1 Interspecies DNase-seq across three stages of embryogenesis  

To study the evolution of regulatory regions in the context of development, we collected 

embryos from both D. melanogaster and D. virilis at three equivalent developmental stages, 

referred to as TP1, TP2, and TP3 (Figure 1A). TP3 corresponds to the phylotypic stage. Active 

regulatory regions were then identified by using DNase I hypersensitive sites sequencing 

(DNase-seq). For every stage, we performed two independent biological replicates. The high 

confidence peaks (active regulatory regions) for both biological replicates were called at a 5% 

Irreproducible Discovery Rate (IDR, a measure ensuring equivalent reproducibility between 

replicas (Li et al. 2011)) threshold. Replicates are highly concordant, with a median 

Spearman’s correlation coefficient of 0.948 (Table S1). On average, we identified 17’549 

peaks in each stage in D. virilis, and 15’745 peaks in D. menanogaster (Figure 1B). The higher 

number of regulatory elements in D. virilis might be related with its larger non-coding genome 

(Khoueiry et al. 2017). In addition, in both species, we found that TP3 has more peaks than 

TP1 or TP2, (Figure 1B), potentially reflecting higher tissue and cell type diversity in TP3. We 

divided all peaks into either putative enhancers or putative promoters based on their distance 

to transcriptional state sites (Figure S1, see Materials and Methods). For the sake of simplicity, 

we refer to these putative enhancers or putative promoters as simply enhancers or promoters in 

the rest of the paper. The peaks identified in D. virilis were translated onto D. 

melanogaster orthologous coordinates by using pslMap (Zhu et al., 2007) (see Materials and 

Methods), resulting in 91.8% of peaks translated on average at each stage (Figure 1C).  
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Figure 1: Studying regulatory elements evolution throughout embryogenesis 
A. We performed DNase-seq at three matched embryonic development stages in D. 

melanogaster and D. virilis. The corresponding time points (TP1, TP2 and TP3) for the 
three development stages are shown on the developmental axis. Different color bars 
represent different time points sampled. The developmental axes are scaled in hours after 
egg laying (AEL).  

B. Number of significant DNase peaks in the three embryonic development stages in each 
species.  

C. The proportion of peaks identified in D. virilis that can be translated onto D. melanogaster 
coordinates (i.e., have an ortholog). 

 

4.3.2 Enhancer conservation over developmental stages 

To compare evolutionary conservation of enhancers between stages, we first identified stage 

specific enhancers for each stage in each species (Figure 2A). For example, a D. melanogaster 

TP1 stage specific enhancer was defined as a DNase peak in this stage without any overlap 

with peaks at other stages in D. melanogaster (Figure 2A). From these, we identified conserved 

stage specific enhancers. For example, if a D. melanogaster TP1 stage specific enhancer 

overlaps (by orthologous translation) with a D. virilis TP1 stage specific enhancer, we defined 

this as a conserved TP1 stage specific enhancer. Finally, we calculated the proportion of 

conserved stage specific enhancers among all D. melanogaster stage specific enhancers, in 

each stage. We found that TP3 has a significantly higher proportion of conserved enhancers 

than both TP1 and TP2 (Figure 2B). However, there is no significant difference between TP1 

and TP2. Given the larger size of non-coding genome in D. virilis, the genome coordinates of 
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orthologous enhancers maybe shifted by insertions and deletions. To account for this, we 

repeated the analysis with a relaxed definition of conserved enhancer: the distance between 

stage specific enhancers in the two species was defined to be smaller than 1kb, but not 

necessarily overlap. With this definition, we found a very similar pattern, with higher 

conserved enhancer proportion at TP3 than at earlier stages (Figure S2). Finally, we repeated 

the same analyses for promoters, and found very similar patterns of stronger conservation at 

TP3 (Figure 2C, Figure S2).  

 
Figure 2: The phylotypic stage has a higher proportion of conserved regulatory elements 
A. Genome browser visualization of a D. melanogaster TP1 stage specific conserved 

enhancer. The left panel is the DNase-seq signal in different development stages (TP1, TP2 
and TP3) for a D. melanogaster TP1 stage specific enhancer, covered by the grey area. 
The coordinates of this enhancer are indicated below the grey arrow. The right panel is 
the DNase-seq signals in different development stages (TP1, TP2 and TP3) for a D. virilis 
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TP1 stage specific enhancer, covered by the grey area. The coordinates of this enhancer in 
D. virilis, and the orthologous coordinates in D. melanogaster, are illustrated below the 
grey arrow. Since there is overlap between the D. melanogaster TP1 stage specific 
enhancer and the orthologous position of the D. virilis TP1 stage specific enhancer, we 
define the D. melanogaster TP1 stage specific enhancer to be conserved.  

B. Proportion of conserved stage specific enhancers at each development stage. The 
number of stage specific enhancers and the number of conserved stage specific 
enhancers at each development stage is indicated inside each bar of the plot. The p-
values from Fisher's exact test are reported above the bars. 

C. Proportion of conserved stage specific promoters at each development stage. The 
number of stage specific promoters and the number of conserved stage specific 
promoters at each development stage is indicated inside each bar. The p-values from 
pairwise Fisher's exact tests are reported above the bars. 

 

4.3.3 Enhancer gain over developmental stages 

We first inferred stage specific enhancer gains in each D. melanogaster developmental stage 

(Figure 3A). For example, a TP1 stage specific enhancer gain was defined as a DNase peak in 

TP1 without any overlaps with peaks in other D. melanogaster stages, and without a peak in 

any D. virilis stage (Figure 3A). Then, we calculated the proportion between D. melanogaster 

stage specific enhancer gains and all D. melanogaster stage specific enhancers, in each stage. 

Both TP3 and TP2 have significantly lower proportions of enhancer gain than TP1 (Figure 3B). 

However, there is no significant difference between TP2 and TP3 (Figure 3B). Again, we 

repeated the same analyses for promoters, and found very similar patterns (Figure 3C). 

 

Overall, we found the evolution of both enhancers and promoters to be more conserved in TP3, 

the phylotypic stage, than in earlier stages. These results suggest a contribution of stronger 

purifying selection on regulatory elements evolution to the lower expression divergence in the 

phylotypic stage. 
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Figure 3: The phylotypic stage has a lower proportion of gain of regulatory elements 
A. Genome browser visualization of a TP1 stage specific gain of enhancer. The left panel is 

the DNase-seq signal in different development stages (TP1, TP2 and TP3) for a D. 
melanogaster TP1 stage specific enhancer, covered by the grey area. The coordinates are 
indicated above the grey area. The right panel is the DNase-seq signals in different 
development stages (TP1, TP2 and TP3) of the orthologous position of in D. virilis, with 
no signal of enhancer in the DNase-seq.  

B. Proportion of stage specific gain of enhancers in each development stage. The number 
of stage specific enhancers and the number of stage specific gain of enhancers in each 
development stage is indicated inside each bar. The p-values from Fisher's exact test are 
reported above the bars. 

C. Proportion of stage specific gain of promoters in each development stage. The number 
of stage specific promoters and the number of stage specific gains of promoters in each 
development stage is indicated inside each bar. The p-values from Fisher's exact test are 
reported above the bars. 
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4.3.4 Detecting positive selection on enhancers  

To test whether conservation at the phylotypic stage is also characterized by lower positive 

selection, we scanned for signatures of positive selection in TP1 and TP3 stage specific 

enhancers; TP2 has too few enhancers for the method used (see below). We tested substitutions 

on the D. melanogaster branch after divergence from D. simulans (Figure 4A). Our approach 

considers the effects of substitutions on enhancer regulatory activity. It is derived from a new 

method using in silico mutagenesis to detect positive selection in transcription factor binding 

site evolution (see Chapter 6). The method is based on machine learning of the sequence 

patterns associated to function, and testing for substitutions which increase or decrease this 

function. Here the function is enhancers defined as DNase I–hypersensitive sites (DHSs), and 

we first defined whether there were sequence features which differ between enhancers of 

different stages. 

 
Figure 4: Gapped k-mer support vector machine (gkm-SVM) can predict stage specific 
enhancers 
A. Topological illustration of the phylogenetic relationships between the three Drosophila 

species used to detect positive selection on enhancers. We want to detect positive 
selection which occurred on the lineage of D. melanogaster after divergence from D. 
simulans, as indicated by the red branch. D. yakuba is the outgroup used to infer 
enhancer sequence in the ancestor of D. melanogaster and D. simulans.  
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B. Receiver operating characteristic (ROC) curves for gkm-SVM classification performance 
on stage specific enhancers. AUC values represent areas under the ROC curve and 
provide an overall measure of predictive power.  
B1. The results of a 5-fold cross validation on TP1 stage specific enhancers and matched 
random sequences.  
B2. The results of a 5-fold cross validation on TP3 stage specific enhancers and matched 
random sequences.  
B3. The gkm-SVM trained in TP3 used to predict TP1 stage specific enhancers and 
matched random sequences. 
B4. The gkm-SVM trained in TP1 used to predict TP3 stage specific enhancers and 
matched random sequences. 

 

To identify sequence features within enhancer regions that determine their developmental stage 

dependent regulatory activity, we first separately trained a gapped k-mer support vector 

machine (gkm-SVM) for 1’747 TP1 stage specific enhancers and for 6’063 TP3 stage specific 

enhancers (see Materials and Methods). This gkm-SVM identifies sequence features that 

determine chromatin accessibility in the corresponding developmental context. We did not 

consider TP2, because its low number of enhancers (610) limits our power to train a gkm-SVM 

(Lee et al. 2015). Interestingly, a gkm-SVM trained in one stage can accurately distinguish 

enhancers of the same stage from random sequences, but has almost no power to distinguish 

enhancers of the other stage from random sequences (Figure 4B, see Materials and Methods). 

This shows that the gkm-SVM 's predictions are not only accurate, but also developmental 

stage specific.  

 

A list of weights quantifying the contribution of each possible 10-mer to chromatin 

accessibility in each stage was generated through a scoring function from the trained gkm-

SVM (see Materials and Methods). We derived the substitutions accumulated on the D. 

melanogaster lineage for each enhancer from the whole genome pairwise alignments of D. 

melanogaster to D. simulans and D. yakuba (see Materials and Methods). We only kept 

enhancers with at least two substitutions, leading to 1’625 and 5’855 enhancers for TP1 and 

TP3 respectively. For each enhancer, we calculated deltaSVM, the effect of substitutions on 

the gkm-SVM function score. This can be interpreted as the effect of these substitutions on 

chromatin accessibility change. To infer significance, for each enhancer, we also generated a 

null distribution of deltaSVM based on 10’000 times random in silico mutagenesis (see 

Materials and Methods). This procedure results in a p-value for each enhancer, reflecting the 

probability that the observed deltaSVM could arise by chance. Thus, we can identify enhancers 

whose substitution pattern on the D. melanogaster branch have effects on chromatin 
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accessibility which are inconsistent with neutrality, and therefore imply positive selection on 

enhancers. 

 

The distributions of p-values for all stage specific enhancers in TP1 and TP3 show a strong 

skew toward low p-values (Figure 5A and B), indicating evidence for positive selection. Since 

mutations under positive selection will spread through a population rapidly, they decrease 

polymorphisms if they were recent while increasing substitutions (McDonald and Kreitman 

1991). Based on this reasoning, we predict that positive selection enhancers should have higher 

substitutions to polymorphisms ratios than non-positive selection enhancers. For this test and 

the downstream analyses, we use p-value 0.01 as a threshold to define an enhancer under 

positive selection. To test our prediction, we counted the numbers of substitutions between D. 

melanogaster and D. simulans, and of polymorphisms among 205 D. melanogaster inbred lines, 

separately for positive selection and non-positive selection enhancers (see Materials and 

Methods). As expected, in both TP1 and TP3, positive selection enhancers have a significant 

excesses of fixed nucleotide changes relative to non-positive selection enhancers (Figure 5C 

and D). This confirms that our method detects positive selection in enhancer evolution.  

 

 
 

Stage specific enhancers (TP3)

# 
su

bs
tit

ut
io

n 
/ #

 p
ol

ym
or

ph
is

m
0.

0
0.

5
1.

0
1.

5
2.

0

Pos
iitv

e s
ite

s

Non
−p

os
itiv

e s
ite

s

p= 3.98e−38

Stage specific enhancers (TP1)

# 
su

bs
tit

ut
io

n 
/ #

 p
ol

ym
or

ph
is

m
0

1
2

3
4

5

Pos
iitv

e s
ite

s

Non
−p

os
itiv

e s
ite

s

p= 5.33e−216
D. melanogaster stage specific enhancers (TP1)

Pvalue

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0

D. melanogaster stage specific enhancers (TP3)

Pvalue

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0

Stage specific enhancers

Pr
op

or
tio

n 
of

 p
os

iti
ve

 s
el

ec
tio

n

0.
00

0.
10

0.
20

0.
30

TP
1

TP
3

275/1625 385/5855

p= 1.08e−27

A

B

C

D

E



  78 
 

Figure 5: The phylotypic stage has a lower proportion of enhancers with evidence of positive 
selection 
A. The distribution of deltaSVM p-values (test for positive selection) for TP1 stage specific 

enhancers. 
B. The distribution of deltaSVM p-values (test for positive selection) for TP3 stage specific 

enhancers. 
C. The ratio between the number of substitutions and the number of polymorphisms (SNPs) 

for TP1 stage specific enhancers. Positive sites are enhancers with evidence of positive 
selection (deltaSVM p-value < 0.01), non-positive sites are enhancers without evidence 
of positive selection. The p-value from Fisher's exact test is reported above thebars. 

D. The ratio between the number of substitutions and the number of polymorphisms for TP3 
stage specific enhancers. Legend as in panel C. 

E. The proportion of enhancers with evidence of positive selection in the two stages. The 
number of stage specific enhancers and the number of stage specific enhancers with 
evidence of positive selection in each development stage is indicated inside each bar. 
The p-value from Fisher's exact test is reported above the bars. 

 

Finally, we compared the proportion of positive selection enhancers between TP1 and TP3, 

and found a significantly higher proportion in TP1 (Figure 5E). For TP1, there are 16.6 % of 

stage specific enhancers with evidence of positive selection, vs. only 6.6% in TP3. Results are 

consistent using p-value 0.05 as a threshold (Figure S3). These results suggest that positive 

selection is an important driver of the evolution of enhancers, and that conservation in the 

phylotypic stage is not only characterized by stronger purifying selection on enhancers, but 

also less positive selection. 

 
4.4 Discussion 

4.4.1 Stronger purifying selection on regulatory elements at phylotypic stage 

We performed DNase-seq in two distant Drosophila species across multiple matched 

embryonic development stages. Based on this unique dataset, we identified a set of highly 

conserved regulatory elements in different development stages of D. melanogaster. We found 

that there is a higher proportion of conserved regulatory elements and a lower proportion of 

stage specific gain regulatory elements in the phylotypic stage than other stages. These results 

suggest that there is stronger purifying selection on gene regulation at this stage. Why has the 

phylotypic stage underwent stronger purifying selection? Based on the observation that genes 

expressed at the phylotypic stage are also trend to be expressed at other stages, Hu et al. (2017) 

proposed that the evolution of gene expression in this stage was constrained by pleiotropic 

effects. However, since here we only focused on stage specific regulatory elements, this 

cannot explain our observations. One possibility, as suggested by Raff (1996), is that the 

genes expressed at the phylotypic stage are very crucial for the high interdependence of 
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different developmental modules at this stage. For example, in C. elegans, Zalts and Yanai 

(2017) found the phylotypic stage enriched with ‘integration genes’, their expression resulting 

from interactions among the cell types across germ layers. These integration gene are enriched 

with gene ontology (GO) terms such as cell-communication and signalling functions. In line 

with these findings, we also found the target genes of phylotypic stage (TP3) specific conserved 

promoters enriched with the GO terms signaling (GO:0023052) and cell communication 

(GO:0007154) (Table S2). In contrast, we did not find the same GO terms for the target genes 

of TP1 specific conserved promoters (Table S3). We did not perform the same analysis on the 

phylotypic stage specific conserved enhancers, since it’s still a challenge to link enhancers to 

their target genes. The future work should focus on identifying the target genes of conserved 

enhancers, e.g. by using Hi-C (genome-wide chromosome conformation capture assays) 

technology (Lieberman-Aiden et al. 2009). 

 

4.4.2 Widespread positive selection on developmental enhancers  

Our results indicate that widespread positive selection shaped the evolution of developmental 

enhancers, especially of early development enhancers (TP1, 2–4 h after egg laying). There are 

17% of early stage specific enhancers with evidence of positive selection (p-value < 0.01). 

Intuitively, since the later development stages is built on the earlier stages, the early 

development should not be so accessible to adaptation. In addition, many studies indicated that 

the evolution of cis-regulatory elements is the main driver of morphologic diversity (Gompel 

et al. 2005; McGregor et al. 2007; Wray 2007; Jeong et al. 2008). For example, the origin of 

male-specific wing pigmentation spot in Drosophila biarmipes was caused by the gain of 

multiple transcription factor binding sites for the yellow pigmentation gene (Gompel et al. 

2005). However, for most changes in the early development, there are no clear consequences 

on the adult morphology (Kalinka and Tomancak 2012). This raises the question of why there 

are so many adaptive enhancer changes in early development? One explanation, proposed by 

Kalinka and Tomancak (2012), was that many variations in early development result from 

adaptation to diverse ecological circumstances. This can be illustrated by the evolution of insect 

segmentation patterns (Liu and Kaufman 2005), either short or long germ segmentation. 

Drosophila adopts the long germ segmentation pattern. From anterior to posterior, all of the 

body segments are simultaneously specified before gastrulation. Oncopeltus, however, adopts 

the short germ segmentation pattern, only the anterior segments established before gastrulation. 

Notably, the different germ segmentation patterns seem without a clear influence on the body 
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plan evolution between Drosophila and Oncopeltus. Instead, a major role of the long germ 

segmentation is shortening the embryonic development time, which is likely an adaptive 

strategy to a particular ecological niches (Kalinka and Tomancak 2012). These results highlight 

the importance of adaptive cis-regulatory evolution on the evolution of life history.  

 

4.4.3 Expression divergence at the phylotypic stage shaped by negative selection, 

positive selection, and mutational robustness 

We provide evidence that the lower expression divergence at the phylotypic stage can be 

explained by both stronger purifying selection and less adaptive evolution on gene regulations. 

Interestingly, recent studies found evidences that the phylotypic stage also has stronger 

mutational robustness on gene regulation. For example, Zalts and Yanai (2017) compared the 

expression variations of 20 C. elegans mutation accumulation strains across embryonic 

development and found that the phylotypic stage has lower expression variation. Since 

mutation accumulation experiment mostly remove the effect of positive selection, this study 

indicates that developmental constraints (both purifying selection and mutational robustness) 

can contribute to the hourglass model of expression evolution. In fly, we have recently also 

shown that there is stronger histone modification based mutational robustness in the phylotypic 

stage (Liu et al. 2019). These results suggest a contribution of mutational robustness to 

conserved expression divergence at the phylotypic stage. Overall, the low expression 

divergence at the the phylotypic stage seems to have been shaped by the interplay of purifying 

selection, positive selection, and mutational robustness.  

 
4.5 Materials and Methods 

4.5.1 DNase-seq sample processing 

Raw paired-end reads were first trimmed with Trim Galore 

https://github.com/FelixKrueger/TrimGalore. Then the trimmed reads were mapped to D. 

melanogaster genome (Flybase Assembly 6 version: dm6) and to D. virilis genome (Flybase-

R1.2 assembly version: droVir3) respectively by using Bowtie2 (Langmead and Salzberg 2012) 

with standard parameters. For peak calling, we used MACS2 (Zhang et al. 2008) with standard 

parameters. We derived peaks using 5% Irreproducible Discovery Rate (IDR) threshold leading 

to a unique highly confident and consistent peak sets for biological replicates. 
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4.5.2 Genome coordinates translation  

Since D. melanogaster and D. virilis are highly diverged, the D. virilis peak coordinates were 

translated to D. melanogaster genome coordinates by using the pslMap (Zhu et al. 2007), as 

suggested by Khoueiry et al. (2017). Notably, liftover is more suitable for translation between 

different genome assemblies, while pslMap is more suitable for translation between different 

species. 

 

4.5.3 Definition of enhancers and promoters  

All peaks were assigned into either putative enhancer category or putative promoter category 

based on their distance to transcriptional state sites (TSSs). If a peak had at least 1bp overlap 

with a 500bp region around a TSS, we assigned it into the putative promoter category. 

Otherwise, we assigned it into the putative enhancer category. 

 

4.5.4 Sequence alignment files 

The pairwise whole genome alignments between D. melanogaster and D. simulans or D. 

yakuba were downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in 

December, 2018).  

 

4.5.5 Single Nucleotide Polymorphism (SNP) data 

Over 4.8 million SNPs for 205 D. melanogaster inbred lines were downloaded from the 

Drosophila Genetic Reference Panel (DGRP) http://dgrp2.gnets.ncsu.edu/ (Huang et al. 2014, 

accesed in December, 2018).  
 

4.5.6 In silico mutagenesis for detecting positive selection on enhancers 

1. Train the gapped k-mer support vector machine (gkm-SVM) 

gkm-SVM is a method for predicting regulatory DNA sequence by using k-mer frequencies 

(Ghandi et al. 2014) . For the gkm-SVM training, we followed the same approaches as Lee et 

al. (2015). Firstly, we defined a positive training set and its corresponding negative training set. 

The positive training set is stage specific enhancers. The negative training set is an equal 

number of sequences randomly sampled from the genome with matched length, GC content 

and repeat fraction of the positive training set. This negative training set was generated by 

using “genNullSeqs”, a function of the gkm-SVM R package (Ghandi et al. 2016). Then, we 

trained a gkm-SVM with default parameters except -l=10 (meaning we use 10-mer as feature 
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to distinguish positive and negative training sets). The classification performance of the trained 

gkm-SVM was measured by using receiver operating characteristic (ROC) curves with fivefold 

cross-validation. The gkm-SVM training and cross-validation were achieved by using the 

“gkmtrain” function of “LS-GKM” (Lee 2016) (also see https://github.com/Dongwon-

Lee/lsgkm).  

2. Test the stage specificity of gkm-SVM  

To test the performance of gkm-SVM trained in TP1 in predicting TP3 stage specific enhancers, 

we first scored both positive and negative training sets in TP3 by using the TP1 gkm-SVM. 

This is achieved by using the “gkmpredict” function of “LS-GKM”. Then, the ROC curve was 

used to evaluate the prediction performance of TP1 gkm-SVM in TP3 data. In a similar way, 

we also tested the performance of gkm-SVM trained in TP3 in predicting TP1 stage specific 

enhancers. 

3. Generate SVM weights of all possible 10-mers 

The SVM weights of all possible 10-mers were generated by using the “gkmpredict” function 

of “LS-GKM”. A positive value means increasing chromatin accessibility, a negative value 

means decreasing accessibility, and value close to 0 means no impact on chromatin 

accessibility (i.e. function measured in this case).  

4. Infer ancestor sequence  

With the sequence alignment files between D. melanogaster and D. simulans or D. yakuba, we 

derived substitutions in the focal species lineage. The ancestor sequence was inferred from 

sequence alignment between D. melanogaster and D. simulans by using D. yakuba as an 

outgroup.  

5. Calculate deltaSVM 

We calculated the sum of weights of all 10-mers for ancestor sequence and focal sequence 

respectively. The deltaSVM is the sum of weights of the focal sequence minus the sum of 

weights of the ancestor sequence. A positive deltaSVM indicates substitutions increasing the 

chromatin accessibility in the focal sequence, and vice versa.  

6. Generate Empirical Null Distribution of deltaSVM  

Firstly, we counted the number of substitutions between each ancestor sequence and focal 

sequence. Then, we generated a random pseudo-focal sequence by randomly introducing the 

same number of substitutions to the ancestor sequence. Finally, we calculated the deltaSVM 
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between the pseudo-focal sequence and the ancestor sequence. We repeated this process 

10’000 times to get 10’000 expected deltaSVMs.  

7. Calculate p-value of deltaSVM 

The p-value was calculated as the probability that the expected deltaSVM is higher than the 

observed deltaSVM. The p-value can be interpreted as the probability that the observed 

deltaSVM could arise by chance under the assumptions of the randomisation.  

 

4.5.7 Gene ontology (GO) enrichment analysis 

We performed GO enrichment analysis for hourglass expression variability genes by using 

the topGO (Alexa et al. 2006) R package with the “elim” algorithm. 
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4.7 Supporting Information 
Supporting materials can be downloaded from: 

https://github.com/ljljolinq1010/Chromatin-accessibility-evolution-during-Drosophila-
embryogenesis/tree/master/supplementary_figures_tables 
 

 

Table S1: Spearman’s correlation coefficients for bigwig signals of replicates.  

Table S2: Top 10 enriched gene ontology terms (ranked by p-value) for the target genes 
of TP3 specific conserved promoters. 

Table S3: Top 10 enriched gene ontology terms (ranked by p-value) for the target genes 

of TP1 specific conserved promoters. 
Figure S1: The number of putative enhancers and promoters across development 

Figure S2: The proportion of relaxed definition conserved regulatory elements across 
development 
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Here the conservation means the distance between stage specific enhancers in the two species 

must be smaller than 1kb, not necessarily overlap. The figure legend is the same as Figure 2B 

and 2C. 

Figure S3: The proportion of enhancers with relaxed evidence of positive selection 
Here the evidence of positive selection means the deltaSVM p-value < 0.05. The figure legend 

is the same as Figure 5E. 
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5 A robust method for detecting positive selection on regulatory 

sequences detects recent adaptation in human brain enhancers 
Jialin Liu, marc Robinson-Rechavi  

This article is in preparation and should be submitted soon. 

 

 

5.1 Abstract 
There is a long standing hypothesis that divergent phenotypic traits between human and 

chimpanzee divergent traits might have been driven by regulatory level adaptions rather than 

protein sequence adaptations. Especially for cognitive abilities related traits which make our 

species unique and are plausibly adaptive, suggesting regulatory level adaptions may play an 

important role in the evolution of the human brain. A limitation to testing this has been the lack 

of a reliable way to detect positive selection on regulatory sequences. We present an in silico 

mutagenesis based approach to transcription factor binding sites evolution, based on a machine 

learning model of binding. Unlike other methods, this requires neither defining a priori neutral 

sites, nor detecting accelerated evolution, which have both been shown to be biased metrics for 

non-coding elements. The method is validated by a McDonald-Kreitman-like measure of 

polymorphism vs. divergence, by experimental binding site gains and losses, and by changes 

in expression levels. We scanned the signals of positive selection for CTCF binding sites in 29 

human and 11 mouse tissues or cell types. We found that human brain related cell types have 

the highest proportion of positive selection. This is consistent with the importance of adaptive 

evolution on gene regulation in the evolution of the human brain.  
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5.2 Introduction 
Changes in gene regulation have been suggested to constitute an important part of human 

evolution, maybe considerably more important than changes in protein sequences (King and 

Wilson 1975). This is because the divergence of orthologous proteins between human and 

chimpanzee are small relative to the apparently large anatomical and behavioral differences 

between the two species (King and Wilson 1975; Anon 2005). Although abundant gene 

expression differences exist between human and chimpanzee (Enard et al. 2002), a central 

question which is not well addressed is which of these changes on regulatory elements are 

adaptive, as opposed to neutral? A major reason for this is the lack of a null model of neutral 

evolution for regulatory elements.  

 
 
Genome wide studies of sequence level adaptive evolution in human genome have reported 

that genes with evidences of positive selection are mainly related with functional classes such 

as: immune response, spermatogenesis, and olfaction (Clark et al. 2003; Bustamante et al. 2005; 

Nielsen et al. 2005). Yet, many human and chimpanzee divergent traits (Varki and Altheide 

2005) cannot be explained by protein sequence adaptations. For example, there is little 

evidence to link protein sequence adaptations to cognitive abilities related traits, such as the 

size of brain, the number of neurons, and cortical connections (Franchini and Pollard 2015). 

This that indicates regulatory level adaptions may play an important role in shaping human 

brain evolution. The discovery of human accelerated regions (HARs), DNA sequences with 

increased substitution rates in the human lineage but conserved among other vertebrates or 

primates, has provided several suggestive evidences (Pollard et al. 2006; Prabhakar et al. 2006; 

Gittelman et al. 2015). For example, Gittelman et al. (2015) found the putative target genes 

of HARs enriched with many developmental related gene ontology terms, including brain and 

neuron development. In addition, Haygood et al. (2007) found that promoters with appreciably 

faster evolution rate than their associated introns are linked with genes involved in 

neurogenesis and glucose metabolism. Although these findings are promising, they may be 

biased by several factors. For example, the study of Gittelman et al. (2015) was restricted to 

highly conserved regions, which only constitute a small part of regulatory elements. What’s 

more, the methods they applied might not be detecting actual signal of positive selection. For 

example, the high evolution rate of promoters found in Haygood et al. (2007) may be due to 

high mutation rate, not positive selection.  
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To address the previous limitations and systematically assess the role of regulatory adaptations 

on human brain evolution, we first developed a method to detect positive selection of 

transcription factor binding sites (TFBSs) evolution based on binding affinity changes. This is 

achieved by comparing the observed binding affinity changes in evolution to a null distribution. 

The effects of substitutions on binding affinity change can be accurately predicted by 

deltaSVM (Lee et al. 2015), a machine leaning based method to predict the effects of regulatory 

variations de novo from sequence. As a proof-of-principle, we applied this method to several 

well-known transcription factors (such as CEBPA and CTCF) in species triples focused on 

human, mouse, or fly. We validated it by three approaches: TFBSs with evidence of positive 

selection have higher empirical binding affinity, higher substitution to polymorphism ratio in 

sequence, and lower variance in expression of neighboring genes. Then, we used this method 

to detect positive selection of CTCF binding sites in 29 human tissues or cell types. We found 

the highest positive selection in brain samples, followed by male reproductive system. For 

comparative purposes, we performed the same analysis in a more limited mouse dataset, where 

the highest positive selection is in digest system, with no special signal in the brain. Thus, we 

combine machine leaning and quantitative genetics to detect positive selection on regulatory 

sequences in a powerful and robust manner, and provide strong evidence for adaptive 

evolution in the human brain.  

 
5.3 Results  

5.3.1 Detecting positive selection on TFBSs 

Here we developed a computational model to detect positive selection on transcription factor 

biding sites (TFBSs), or any other elements for which we have experimental evidence similar 

to ChIP-seq (Figure 1) (see Methods). Briefly, a gapped k-mer support vector machine (gkm-

SVM) classifier was trained by using TFBSs (narrow peaks from ChIP-seq) as a positive 

training set and randomly sampled sequences from the genome as a negative training set 

(Figure 1I). Then, SVM weights of all possible 10-mers, the contributions of prediction 

transcription factor binding affinity (TFBA), were generated from the gkm-SVM. Based on 

this weight list, we can predict the impact of any substitution on TFBA by calculating 

deltaSVM, the difference of sum weights between a focal sequence (species A) and its ancestor 

sequence (Figure 1II B). The ancestor sequence was inferred from sequence alignment with a 

sister species and an outgroup (Figure 1II A). We use the principle of Orr's sign test, namely 

that adaptive changes should be consistently in one phenotypic direction, to propose that 
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TFBSs with a large deltaSVM evolved adaptively. The significance of the observed deltaSVM 

was evaluated by comparing it with a null distribution of deltaSVM, constructed by scoring the 

same number of random substitutions 10’000 times (Figure 1II C and D). This procedure 

results in a p-value reflecting the probability that the observed deltaSVM could arise by chance. 

Thus, by comparing to a null model of deltaSVM, our method can identify sets of substitutions 

whose effects on binding affinity change are inconsistent with random drift, and therefore 

imply the action of natural selection, pushing the TFBS either to a new fitness peak of either 

higher (positive deltaSVM) or lower (negative deltaSVM) affinity than its ancestral state. 

 

 
Figure 1: Illustration of the procedure for inferring positive selection 
The method includes two parts. Part I (left) is the gapped k-mer support vector machine (gkm-
SVM) model training. The gkm-SVM classifier was trained by using TFBSs as a positive 
training set and randomly sampled sequences from the genome as a negative training set. Then, 
SVM weights of all possible 10-mers, the contributions of prediction transcription factor 
binding affinity, were generated from the gkm-SVM.  Part II (right) part is the positive selection 
inference. The ancestor sequence was inferred from sequence alignment with a sister species 
(species B) and an outgroup (species C). Then, the binding affinity change (deltaSVM) of the 
two substitutions accumulated in the red branch leading to species A were calculated based on 
the weight list. The significance of the observed deltaSVM was evaluated by comparing it with 
a null distribution of deltaSVM, constructed by scoring the same number of random 
substitutions 10’000 times.  
 

5.3.2 Detecting positive selection on liver TFBSs in Mus musculus  

To demonstrate its application to real data, we first took advantage of a large set of TFBSs in 

liver of three mouse species (Mus musculus domesticus C57BL/6J, Mus musculus castaneus 

TFBSs Random	sequences

gkm-SVM	training	(10-mer)	

All	unique	10-mers SVM	weights
ATCGATCGAT

ATCCATCGAT

ATCGATGGAT

ATCGTTCGAT

ATGGATCGAT

3.12
2.80

0.01

-1.88

-2.81

-0.02

ATCGATCGAT

I.	Train	gkm-SVM	classifier

C.	10’000	times	random in	
silico		mutagenesis

deltaSVM

D.	Calculate	p-value	of	deltaSVM

Species	A	10-mers		Ancestor	10-mers		
B.	Calculate	deltaSVM

ATACATACATATCA

ATACATACACATCA

ATAGATAAAGATCA

Species	C

Species	B

Species	A

ATACATACAGATCA

A.		Infer	ancestor	sequence	

II.	Infer positive	selection for	one	TFBS

ATACATACAG:			0.72
TACATACAGA:			1.32
ACATACAGAT:		-0.31
CATACAGATC:			2.13
ATACAGATCA:			1.71

SUM:			5.57		

ATAGATAAAG:				1.73
TAGATAAAGA:				2.32
AGATAAAGAT:				0.22
GATAAAGATC:				3.11
ATAAAGATCA:				1.61

SUM:				8.99

deltaSVM=8.99-5.57=3.42

Ancestor	sequence		
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CAST/EiJ, and Mus spretus SPRET/EiJ), identified by ChIP-seq for three liver-specific 

transcription factors, CEBPA, FOXA1, and HNF4A (Stefflova et al. 2013). Here, we want to 

detect the positive selection occurred on the lineage leading to C57BL/6J after divergence from 

CAST/EiJ (Figure 2A). For the sake of simplicity, we only present the results of CEBPA in the 

main text. We also performed the same analyses for the other two transcription factors (FOXA1 

and HNF4A), and results were consistent. We first trained a gkm-SVM on 41’945 CEBPA 

binding sites in C57BL/6J (see Methods). The gkm-SVM can very accurately separate CEBPA 

binding sites and random sequences (Figure 2B). Then, a list of weights quantifying the 

contribution of each possible 10-mer to CEBPA biding affinity in liver was generated through 

a scoring function from the trained gkm-SVM. Among all C57BL/6J CEBPA binding sites, we 

focused on three categories: conserved binding site (conserved, 24’280 sites), lineage specific 

gain binding site (gain, 6’304 sites), and lineage specific loss binding site (loss, 6’692 sites). 

They were identified based on the experimental ChIP-seq peaks in the three species, using 

SPRET/EiJ as an outgroup (see Methods). Based on the whole genome pairwise alignments of 

C57BL/6J to CAST /EiJ and to SPRET/EiJ, we derived the substitutions accumulated on the 

C57BL/6J lineage for each CEBPA binding site (see Methods). We only kept binding sites 

with at least two substitutions, leading to 5’114, 1’445, and 1’497 sites left for conserved, gain 

and loss categories respectively. For each binding site, we calculated deltaSVM, the effect of 

all accumulated substitutions on the CEBPA binding affinity change. To infer the significance, 

for each biding site, we also generated a null distribution of deltaSVM based on 10’000 times 

random in silico mutagenesis (see Methods). We performed higher-tail test for both conserved 

and gain, and lower-tail test for loss.  
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Figure 2: Mouse CEBPA biding sites study 
A. Topological illustration of the phylogenetic relationships between the three mouse 

species used to detect positive selection on CEBPA binding sites. We want to detect 
positive selection which occurred on the lineage of C57BL/6J after divergence from 
CAST/EiJ, as indicated by the red branch. SPRET/EiJ is the outgroup used to infer 
binding site sequence in the ancestor of C57BL/6J and CAST/EiJ.  

B. Receiver operating characteristic (ROC) curve for gkm-SVM classification performance 
on CEBPA binding sites (5-fold cross validation). The AUC value represents the area 
under the ROC curve and provides an overall measure of predictive power.  

C. The left hand graphs are the distributions of deltaSVM for conserved, gain, and loss 
binding sites. The right hand graphs are the distributions of deltaSVM p-values (test for 
positive selection) for conserved, gain, and loss binding sites. 

D. The proportion of CEBPA binding sites with evidence of positive selection in conserved, 
gain, and loss binding sites. 

 

We plot the distributions of deltaSVMs and of its corresponding p-values for each binding site 

category (Figure 2C). As expected, the distribution of deltaSVMs is symmetric for conserved, 

but asymmetric for both gain and loss. Also as expected, for gain most binding sites have a 

positive deltaSVM, whereas, for loss most binding sites have a negative deltaSVM. These 

results confirm that the gkm-SVM based approach can accurately predict the effect of 

substitutions on transcription factor binding affinity change. For the distribution of p-values, 

in all binding site categories, there is a skew of p-values near zero, indicating that each category 

has some signal of positive selection. The gain has the most skewed distribution of p-values 

towards zero, followed by loss then conserved. Here after we will use 0.01 as a significant 

threshold to define positive selection, but results are robust to different thresholds. We found 
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almost 20% of gain experienced positive selection (Figure 2D), relative to 4% of loss and 2% 

of conserved.  

 

In summary, we found widespread positive selection driving the gain and loss of CEBPA 

binding sites. In addition, for conserved binding sites, we also found that some sites 

experienced positive selection to increase binding affinity. For the other two transcription 

factors (FOXA1 and HNF4A), we found highly consistent patterns (Figure S1, S2).  

 

5.3.3 Validation based on Chip-seq binding intensity 

For both conserved and gain, the sites which evolved under positive selection are predicted to 

have increased binding affinity. Thus the positive binding sites (PBSs) should have higher 

biding affinity than non-positive selection binding sites (NPBSs). To valid this prediction, we 

compared the ChIP-seq intensity in C57BL/6J between PBSs and NPBSs. Indeed, we found 

that the PBSs have significantly higher intensity than NPBSs (Figure 3A and B). In addition, 

the conserved generally have higher binding intensity than gain, indicating that recently 

evolved TFBSs have lower activity than conserved ones. For loss, however, the expectation is 

slightly more complex. Loss driven by positive selection is expected to have affected sites 

which were functionally important (if they were not important, they might have been lost by 

drift), so the ancestor binding affinity of positive loss is expected to be higher than of non-

positive loss. We used the ChIP-seq intensity from CAST/EiJ as an approximation for ancestor 

binding affinity. Indeed, we found the positive loss ones have higher intensity than non-positive 

loss in CAST/EiJ (Figure 3C). We performed the same validations in FOXA1 and HNF4A, 

with consistent results (Figure S3).  
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Figure 3: Comparison of biding intensity between positive sites and non-positive sites for 
mouse CEBPA.  
The number of binding sites in each category is indicated below each box. The p-values from 
a Wilcoxon test comparing categories are reported above boxes. The lower and upper intervals 
indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile range, or the 
maximum (respectively minimum) if no points are beyond 1.5 IQR (default behaviour of the R 
function boxplot). Positive sites are binding sites with evidence of positive selection 
(deltaSVM p-value < 0.01), non-positive sites are binding sites without evidence of positive 
selection. 
A. Conserved binding sites.  
B. Lineage specific gain binding sites. 
C. Lineage specific loss binding sites. We compare the binding intensity from CAST/EiJ, as 

an approximation for ancestral binding intensity, between positive loss binding sites and 
non-positive loss binding sites. 

 

5.3.4 Validating the inference of positive selection with human liver TFBSs 

To further validate our method, we took advantage of the abundant population genomics data 

and population transcriptomics data in humans. Here, we only have ChIP-seq in one species, 

human, so we cannot distinguish experimentally gain or loss of TFBSs. We inferred positive 

selection of CEBPA binding sites in the human lineage after divergence from chimpanzee 

(Figure 4A). As in mouse, the gkm-SVM trained from 15’806 CEBPA binding sites in human 

can very accurately separate TFBSs and random sequences (Figure 4B). For selection inference, 

we used all CEBPA binding sites with at least two substitutions (5’807 sites). We derived 

substitutions by using gorilla as an outgroup, and performed in silico mutagenesis approach to 

test positive selection. The distribution of deltaSVMs is slightly asymmetric, with a higher 

proportion of positive values (Figure 4C). This is because the binding sites in here contain both 

conserved and gain, but obviously no loss (since we detect only in the focal species). Based on 
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the distribution of p-values, we infer that 7.5% of CEBPA binding sites experienced positive 

selection on the human lineage.  

 
Figure 4: Human CEBPA biding sites study 
A. Topological illustration of the phylogenetic relationships between human, chimpanzee 

and gorilla. We detected positive selection which occurred on the lineage of human after 
divergence from chimpanzee, as indicated by the red branch. Gorilla is the outgroup 
used to infer binding site sequence in the ancestor of human and chimpanzee.  

B. Receiver operating characteristic (ROC) curve for gkm-SVM classification performance 
on CEBPA binding sites (5-fold cross validation). The AUC value represents the area 
under the ROC curve and provides an overall measure of predictive power.  

C. The left graph is the distribution of deltaSVM. The right graph is the distribution of 
deltaSVM p-values (test for positive selection). 

D. The ratio between the number of substitutions and the number of polymorphisms (SNPs) 
for CEBPA binding sites. Positive sites are binding sites with evidence of positive 
selection (deltaSVM p-value < 0.01), non-positive sites are binding sites without 
evidence of positive selection. The p-value from Fisher's exact test is reported above the 
bars. 

E. Comparison of expression variance of putative target genes (closest gene to a TFBS) 
between positive sites and non-positive sites. The number of binding sites in each category 
is indicated below each box. The p-values from a Wilcoxon test comparing categories are 
reported above boxes. The lower and upper intervals indicated by the dashed lines 
(“whiskers”) represent 1.5 times the interquartile range, or the maximum (respectively 
minimum) if no points are beyond 1.5 IQR (default behaviour of the R function boxplot). 
Positive sites are binding sites with evidence of positive selection (deltaSVM p-value < 
0.01), non-positive sites are binding sites without evidence of positive selection. 
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Mutations under positive selection will spread through a population rapidly, so they don't 

contribute to polymorphisms but do increase substitutions (McDonald and Kreitman 1991). 

Based on this theory, we predict that PBSs should have higher substitutions to polymorphisms 

ratios than NPBSs. To test this prediction, we counted the number of substitutions between 

human and chimpanzee, and of polymorphisms among human populations (see Methods), for 

PBSs and NPBSs respectively. As expected, we found that the PBSs have significant excesses 

of fixed nucleotide changes (Figure 4D), indicating that positive selection has shaped CEBPA 

binding sites evolution. This is an external validation of our method, as the input did not contain 

any information about polymorphism. 

 

Besides higher substitutions to polymorphisms ratio, we also expect that the expression of 

PBSs putative target genes (see Methods) should be under stronger constraints across human 

populations than of NPBSs putative target genes. Because the expression of PBSs target genes 

is an adaptive trait to the given environment for human, any changes in expression will reduce 

fitness. Moreover, recent adaptive sweeps might have reduced functional variability for the 

regulation of these genes. To measure evolutionary constraints of gene expression, we 

calculated the expression variance across human populations for PBSs target genes and NPBSs 

target genes separately. As expected, we found that PBSs target genes have significantly lower 

expression variance than NPBSs target genes, indicating stronger constraints.  

 

In summary, we found that PBSs have higher interspecies to population divergence in sequence, 

and lower variance in expression of putative target genes. In addition, we performed the same 

analyses in HNF4A, and results are consistent (Figure S4). These results strongly suggest that 

our method is detecting real adaptive evolution signals, not just statistically significant p-values 

due to some data bias.  

 

5.3.5 Detecting positive selection of TFBSs in Drosophila melanogaster 

By using a McDonald-Kreitman test framework (McDonald and Kreitman 1991), Ni et al. 

(2012) detected signatures of adaptive evolution on CTCF binding sites in D. melanogaster. 

They reported that positive selection has shaped CTCF binding evolution, and that newly 

gained binding sites show a stronger signal of positive selection than conserved sites. To further 

valid our method, we applied it to the same data as used in Ni et al. (2012). We detected positive 

selection in the D. melanogaster lineage after divergence from D. simulans (Figure 5A and 
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5B). Consistent with the findings of Ni et al. (2012), we observed widespread positive selection 

for both conserved and gain (Figure 5C). Their method does not report selection on specific 

sites, so that we cannot compare directly our results. In addition, the gain have a higher 

proportion of positive selection than conserved (Figure 5D). For lineage specific loss binding 

sites, however, we did not detect any signal of positive selection (Figure 5C). Interestingly, the 

proportion of positive selection in D. melanogaster is much higher than in Mus musculus. For 

example, we find almost 40% of gain under positive selection in D. melanogaster, twice the 

proportion in Mus musculus.  

 

 
Figure 5: D. melanogaster CTCF biding sites study 
A. Topological illustration of the phylogenetic relationships between the three Drosophila 

species used to detect positive selection on CTCF binding sites. We want to detect 
positive selection which occurred on the lineage of D. melanogaster after divergence 
from D. simulans, as indicated by the red branch. D. yakuba is the outgroup used to 
infer binding site sequence in the ancestor of D. melanogaster and D. simulans.  

B. Receiver operating characteristic (ROC) curve for gkm-SVM classification performance 
on CEBPA binding sites (5-fold cross validation). The AUC value represents the area 
under the ROC curve and provides an overall measure of predictive power.  

C. The left hand graphs are the distributions of deltaSVM for conserved, gain, and loss 
binding sites. The right hand graphs are the distributions of deltaSVM p-values (test for 
positive selection) for conserved, gain, and loss binding sites. 

D. The proportion of CEBPA binding sites with evidence of positive selection in conserved 
and gain binding sites. 
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5.3.6 Adaptive evolution of CTCF binding sites across tissues in human 

To study the adaptive evolution of TFBSs between different human tissues, especially test 

whether there is stronger adaptive evolution on human brain, we applied our method to 80074 

CTCF binding sites across 29 adult tissues or primary cell types (see Table S2). CTCF is well 

known as a transcriptional repressor, but it also involved in transcriptional insulation and 

chromatin architecture remodelling (Phillips and Corces 2009). We chose CTCF because it 

was the factor with the largest number of tissues or primary cell types studied in a consistent 

manner, by the ENCODE consortium (The ENCODE Project Consortium 2012). Moreover 

CTCF is highly conserved in higher eukaryotes and is involved in diverse cellular processes 

(Phillips and Corces 2009), giving us the opportunity to compare positive selection on TFBSs 

of the same factor in different tissues and species. For the sake of simplicity, we use cell type 

not tissue hereafter.  

 

The gkm-SVM model trained from one cell type can accurately predict the biding sites in 

another cell type, and the model trained with all CTCF binding sites has better performance 

than the model trained with cell type specific binding sites (Figure S5), so we did not train 

different models for different cell types, but we used a general gkm-SVM instead. Based on 

the p-value distribution of deltaSVM (Figure S6A), we detected 3.52% of binding sites having 

evolved under positive selection on the human lineage after divergence from chimpanzee. We 

found PBSs associated with a lower number of active cell types (Figure S7A) than NPBSs, 

consistent with the prediction that pleiotropy can limit adaptive evolution (Wagner and Zhang 

2011). 

 

We next ranked the cell types according to the proportion of binding sites that exhibit 

statistically significant evidence of positive selection (Figure 6A). Generally, we found 

nervous system has the highest rank. Specifically, among all the nervous related cell types, 

only the brain related cell types (choroid plexus epithelial cell, brain microvascular 

endothelial cell, retinal pigment epithelial cell, astrocyte of the cerebellum and astrocyte of 

the spinal cord) have higher proportion of positive selection than other system related cell 

types. For example, we did not find that tibial nerve has higher adaptation than other cell types. 

Notabally, we did not find high adaptation for in vitro differentiated neural cell, this may 

reflect that in vitro differentiated cells do not preserve the signal of specific in vivo 
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differentiated cells. Overall, these results suggest that, at gene regulatory evolution level, 

adaptive evolution mainly targeted brain related cell types. 

 
Figure 6: Proportion of positive CTCF binding sites in different tissues or cell types. 
Positive binding sites are binding sites with evidence of positive selection (deltaSVM p-
value < 0.01). Colours correspond to broad anatomical systems. 
A. CTCF binding sites in 29 human tissues or cell types. 
B. CTCF binding sites in 11 mouse tissues.  
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To test whether the high regulatory adaptive evolution in brain is typical of human, we 

trained gkm-SVM (Figure S8) on comparable CTCF binding data from 11 mouse adult tissues 

(Table S2). We investigated adaptive evolution in M. musculus branch after divergence from 

M. spretus. The extent of evolutionary divergence between M. musculus and M. spretus is 

in the same order of magnitude as that between human and chimpanzee (Enard et al. 2002). 

Similarly to human, we detected 3.54% binding sites which evolved under positive selection 

(Figure S6B). However, we did not find that brain related tissues (olfactory, cortical plate and 

cerebellum) have higher adaptive regulatory evolution than others in mouse, unlike human 

(Figure 6B).  

 

5.4 Discussion 

5.4.1 A robust test for positive selection on regulatory elements 

Detecting positive selection on regulatory sequences has long been a difficult problem (Zhen 

and Andolfatto 2012). Inferring positive selection is generally based on rejecting a null model 

of neutral evolution, so a suitable neutral reference is crucial. Generally, for the current 

sequence based methods, nearby non-coding regions of interested regulatory elements have 

been chosen as neutral reference (Andolfatto 2005; Haygood et al. 2007; Arbiza et al. 2013). 

But this might be problematic. For example, to infer positive selection on promoters, Haygood 

et al. (2007) compared the sequence evolution rates between promoters and its adjacent introns. 

This is based on the assumption that introns are selectively neutral, and thus represent the 

background mutation rate. However, since introns can perform various important functions 

(Fedorova and Fedorov 2003), the higher evolution rate of some promoters than its associated 

introns may reflect negative selection on these introns, rather than positive selection on 

promoters.  

 
Our approach does not assume a subset of neutral sites and not compare sequence evolutionary 

rates, but instead consider the effects of variations on regulatory activities (Berg et al. 2004; 

Moses 2009; Smith et al. 2013). In this study, specifically, we consider the effects of variations 

on transcription factor binding affinity. We compared the observed binding affinity change to 

the expectation under a no-selection model to assess when neutrality can be rejected. In 

addition, our approach should have higher power than sequence based methods even if 

appropriate neutral reference sites be used in this type of method (Smith et al. 2013). Indeed, 

positive selection on a background of negative selection might not elevate the the evolutionary 
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rate of a TFBS above the neutral expectation, yet consistent changes in binding affinity can 

still be detectable (Figure S9). Moreover, this method could also be applied to other cis-

regulatory related regions such as open chromatin regions or histone modification regions. The 

only need is to have experimental ChIP-seq or similar data, on which the gkm-SVM model 

should be trained.  

 

To go beyond providing a p-value for neutrality rejection, we validated our method in several 

ways. Firstly, with the ChIP-seq based empirical measurements, we validated the accuracy of 

deltaSVM for predicting transcription factor biding affinity change. For example, for lineage 

specific gain TFBSs, we found positive selection TFBSs have higher binding affinity than non-

positive selection TFBSs (Figure 3B). This is consistent with our prediction that the positive 

gain TFBSs are the ones with higher intensity increase than neutral expectation. Secondly, with 

a substitution to polymorphism MK-like-test, we found that the positive selection TFBSs have 

higher substitution to polymorphism ratio than non-positive selection TFBSs (Figure 4D). This 

is consistent with the prediction that positive selection will increase substitutions but remove 

polymorphism (McDonald and Kreitman 1991). Thirdly, with gene expression data across 

populations, we found that the nearby genes of positive selection TFBSs have lower expression 

variance than of non-positive selection TFBSs (Figure 4E). This is consistent with the 

prediction that positive selection will increase the fitness of organism, so the corresponding 

phenotype will be under stronger constraints among populations. Fourthly, we found the 

positive selection TFBSs have lower number of active cell types than non-positive selection 

TFBSs (Figure S7). This is consistent with the prediction that pleiotropy can limit adaptation 

(Wagner and Zhang 2011). Finally, we found the high adaptive cell types do not always have 

high number of substitutions (Figure S9). This indicates that our method is not just detecting 

fast evolving cell types in terms of regulatory sequence evolution, but those where the 

evolution is putatively adaptive.  

 

Despite its advantages, our method can still be improved. For example, in the null model of 

sequence evolution, we assume independent mutation patterns at each base-pair site and a 

uniform mutation rate over all sites. But both mutation rate and pattern can depend on 

neighbouring nucleotides (Krawczak et al. 1998). In addition, our analysis focuses only on 

point mutations, ignoring insertions and deletions. It will be of interest in future work to 

integrate both context dependent information and structural variations into the null model. 
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5.4.2 The importance of regulatory adaptation on human brain evolution. 

There are several cases of genes with signatures of sequence level positive selection in 

human lineage which have a function in brain (Vallender and Lahn 2004). For example, 

ASPM, a gene function in regulating brain size, has been reported to experienced positive 

selection after the split of human and chimpanzee (Zhang 2003). However, such genes are not 

prominent in genome wide studies of sequence level adaptive evolution in the human genome 

(Clark et al. 2003; Bustamante et al. 2005; Nielsen et al. 2005; Daub et al. 2017). 

 

Our results are consistent with the hypothesis of importance of adaptive regulatory evolution 

in human brain evolution (King and Wilson 1975). Appling our in-silico mutagenesis 

framework to transcription factor binding sites of CTCF, we tested positive selection on 

increasing binding affinity, on the human lineage after divergence from chimpanzee. We 

compared the proportion of CTCF binding sites with evidence of positive across 29 cell types, 

and found brain related cell types have higher proportion of positive selection than other cell 

types. These brain related cell types are functionally related with cognitive abilities. For 

example, for astrocyte, abnormal astrocytic signalling can cause synaptic and network 

imbalances, leading to cognitive impairment (Santello et al. 2019). In addition, for choroid 

plexus epithelial cell, its atrophy has been reported to related with Alzheimer disease, a 

neurodegenerative disorder with progressive memory and cognitive impairment (Kaur et al. 

2016). While we did not find a similar pattern by applying the same analysis to mouse, it 

isn't possible yet to conclude to a human or primate specific pattern. Indeed, the mouse 

analyses have two potential caveats. First, for the olfactory bulb and cortical plate in the mouse 

analyses, there is no corresponding anatomical structures in the human analyses. It is an open 

question whether the human olfactory bulb and cortical also have high adaptation. Second, the 

human analyses were based on ChIP-seq at cell type level but the mouse analyses were based 

on ChIP-seq at tissue level. In mouse, the astrocyte in cerebellum may also have high 

adaptation like the astrocyte in human, but the signal might be diluted by other cell types in 

cerebellum.  

 

These findings refine many previous studies (Enard et al. 2002; Pollard et al. 2006; Prabhakar 

et al. 2006; Haygood et al. 2007; Gittelman et al. 2015). Firstly, for example, the evidences of 

positive selection of previous studies are based on human accelerated regions (HARs). As we 



  103 
 

discussed in the introduction, these regions may not reflect positive selection but high mutation 

rate. However, based on all the validations performed in this study, the positive selection 

signals detected by our method appear quite robust. Secondly, to link the HARs to brain, 

previous studies generally performed gene ontology (GO) enrichment analyses on putative 

target genes of these HARs. In this way, Gittelman et al. (2015) found HARs linked with 

some developmental related GO terms, including brain and neuron development. However, 

based on comparing the rate of positive selection between regulatory elements in different 

tissues, we think our results provide more direct and clear evidences for human brain adaptation.  

 

These results also extend the study from Enard et al. (2002), investigated the gene expression 

evolution in different tissues (blood, liver and brain) in the three primates, and three rodents. 

For primate analyses, they found brain experienced accelerated gene expression evolution 

in the human evolutionary lineage relative to the chimpanzee, whereas such an acceleration 

is not observed in liver and blood. For rodent, they did not found brain has stronger 

acceleration than others. Our results are remarkably consistent with these, and suggest that 

this acceleration in human brain might be driven by enhanced positive selection not relaxed 

purifying selection.  

 

5.4.3 Regulatory adaptation in other tissues  

Generally, we found that male reproduction system (prostate and foreskin) has higher adaptive 

regulatory evolution than female reproduction system (ovary, uterus and vagina). This is 

consistent with the observation of high adaptive sequence evolution in human male 

reproduction (Wyckoff et al. 2000; Nielsen et al. 2005), and probably caused by sexual 

selection related selective pressures, such as sperm competition. However, for testis, we 

found very similar proportion of adaptive evolution with female reproduction system. This 

suggests that the high expression divergence in testis (Brawand et al. 2011) is mainly caused 

by relaxed purifying selection. But why does testis not have high adaptive evolution of TFBSs 

like prostate and foreskin? This might be related with a recent finding that the transcription in 

testis serves to correct germline mutations through 'transcriptional scanning' (Xia et al. 2018). 

In addition, we also observed high adaptive regulatory evolution in immune and endocrine 

systems. Like in male reproduction system, these systems also have high adaptive sequence 

evolution (Clark et al. 2003; Bustamante et al. 2005; Nielsen et al. 2005). These results suggest 

that for most cell types, excepting brain related cell types, the adaptive evolution patterns on 
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sequence level and on regulatory level are very similar, with high adaptive regulatory evolution 

usually coupled with high adaptive sequence evolution, although the magnitude of adaptive 

sequence evolution appears lower than regulatory adaptive evolution. This also raises a very 

interesting question of why brain has high adaptive regulatory evolution but not adaptive 

sequence evolution? This might be related to selective pressure against misfolding in brain 

proteins (Drummond and Wilke 2008; Roux et al. 2017). 

 

5.5 Materials and Methods 

5.5.1 Mutagenesis for positive selection  

1. Training of the gapped k-mer support vector machine (gkm-SVM) 

gkm-SVM is a method for regulatory DNA sequence prediction by using k-mer frequencies 

(Ghandi et al. 2014) . For the gkm-SVM training, we followed the approach of Lee et al. (2015). 

Firstly, we defined a positive training set and its corresponding negative training set. The 

positive training set is ChIP-seq narrow peaks of transcription factors. The negative training 

set is an equal number of sequences which randomly sampled from the genome with matched 

the length, GC content and repeat fraction of the positive training set. This negative training 

set was generated by using “genNullSeqs”, a function of gkm-SVM R package (Ghandi et al. 

2016). Then, we trained a gkm-SVM with default parameters except -l=10 (meaning we use 

10-mer as feature to distinguish positive and negative training sets). The classification 

performance of the trained gkm-SVM was measured by using receiver operating characteristic 

(ROC) curves with fivefold cross-validation. The gkm-SVM training and cross-validation were 

achieved by using the “gkmtrain” function of “LS-GKM : a new gkm-SVM software for large-

scale datasets” (Lee 2016). For details, please check https://github.com/Dongwon-Lee/lsgkm.  

2. Generate SVM weights of all possible 10-mers 

The SVM weights of all possible 10-mers were generated by using the “gkmpredict” function 

of “LS-GKM”. The positive value means increasing binding affinity, the negative value means 

decreasing binding affinity, the value close to 0 means functionally neutral.  

3. Infer ancestor sequence 

The ancestor sequence was inferred from sequence alignment with a sister species and an 

outgroup.  

4. Calculate deltaSVM 

We calculated the sum of weights of all 10-mers for ancestor sequence and focal sequence 

respectively. The deltaSVM is the sum weights of focal sequence minus the sum weights of 
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ancestor sequence. The positive deltaSVM indicating substitutions increased the binding 

affinity in the focal sequence, vice versus.  

5. Generate Empirical Null Distribution of deltaSVM  

Firstly, we counted the number of substitutions between the ancestor sequence and the focal 

sequence. Then, we generated a random pseudo-focal sequence by randomly introducing the 

same number of substitutions to the ancestor sequence. Finally, we calculated the deltaSVM 

between the pseudo-focal sequence and the ancestor sequence. We repeated the above 

processes 10’000 times to get 10’000 expected deltaSVMs.  

6. Calculate p-value of deltaSVM 

For both conserved and lineage specific gain TFBSs, the p-value was calculated as the 

probability that the expected deltaSVM is higher than the observed deltaSVM. For lineage 

specific lose TFBSs, the p-value was calculated as the probability that the expected deltaSVM 

is lower than the observed deltaSVM. The p-value can be interpreted as the probability that the 

observed deltaSVM could arise by chance.  

 

5.5.2 Mouse validation analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks and their corresponding intensity (normalized read count) datasets 

of three liver specific transcription factors (CEBPA, FOXA1 and HNF4A) in three mouse 

species (C57BL/6J, CAST/EiJ, SPRET/EiJ) were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 2013, accessed in 

May, 2018 ). Peaks were called with SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL). 

To account for both technical and biological variabilities of peak calling, Stefflova et al. (2013) 

carried out the following approaches. For each transcription factor in each species, they first 

called three sets of peaks: one for each replicate (replicate peek), and one for a pooled dataset 

of both replicates (pooled peak). Then, the peaks detected from the pooled dataset were used 

as a reference to search for overlaps in the two other replicates. When a pooled peak overlapped 

with both replicate peeks (at least one base pair overlap), it was kept for downstream analyses. 

For the number of peaks and average peak length, please check Table S1. 

2. Peak coordinates transfer 

Based on pairwise genome alignments between C57BL/6J and CAST/EiJ or SPRET/EiJ, 

Stefflova et al. (2013) transferred the coordinates of ChIP-seq peaks in both CAST/EiJ and 

SPRET/EiJ to its corresponding coordinates in C57BL/6J.  
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3. Sequence alignment files 

The sequence alignment files between C57BL/6J and CAST/EiJ or SPRET/EiJ were 

downloaded from https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 

2013, accessed in May, 2018).  

4. Define different types of binding sites 

1) Conserved binding sites 

The conserved binding sites were defined as peaks in C57BL/6J which have overlapping peaks 

(at least one base pair overlap) in the other two species by genome alignment.  

2) Lineage specific gain binding sites 

The lineage specific gain binding sites defined as peaks in C57BL/6J with no overlapping peaks 

(at least one base pair overlap) in the other two species.  

3) Lineage specific loss binding sites 

The lineage specific loss binding sites defined as peaks in CAST/EiJ which overlapping peaks 

in SPRET/EiJ but not in C57BL/6J.  

 

5.5.3 Human validation analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks datasets of two liver specific transcription factors (CEBPA and 

HNF4A) in human were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG01 (Schmidt et al. 2010, accessed in 

October, 2018). Peaks were called with SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL). 

Negligible variation was observed between the individuals in terms of peak calling, so Schmidt 

et al. (2010) pooled replicates into one dataset for peak calling.  

2. Sequence alignment files 

The pairwise whole genome alignments between human and chimpanzee or gorilla were 

downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in December, 

2018).  

3. Single nucleotide polymorphism (SNP) data 

Over 36 million SNPs for 1,092 individuals sampled from 14 populations worldwide were 

downloaded from phase I of the 1000 Genomes Project 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ (1000 

Genomes Project Consortium 2012, accesed in December, 2018). As suggested by Luisi et al. 
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(2015), we only used SNPs of a subset of 270 individuals from YRI, CEU, and CHB 

populations.  

4. Liver expression data 

The library site normalized expression data of 175 livers was downloaded from downloaded 

from The Genotype Tissue Expression (GTEx) project https://gtexportal.org/home/ (GTEx 

Consortium 2017, Release V7, accessed in December, 2018). We further transformed it with 

log2. 

5. Putative target genes of TFBSs 

We assigned the nearest gene to each TFBS as its putative target gene.  

 

5.5.4 Fly validation analysis  

1. ChIP-seq data 

The narrow ChIP-seq peaks of transcription factor CTCF in three drosophila species (D. 

melanogaster, D. simulans and D. yakuba) were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24449 (Ni et al. 2012, accessed in 

January, 2019). Peaks were called with QuEST(Valouev et al. 2008) at a False Discovery Rate 

(FDR) <1%. We obtained 2’182, 2’197 and 2’993 peaks with average length of 243bp, 240bp 

and 201bp for D. melanogaster, D. simulans and D. yakuba respectively. 

2. Peak coordinates transfer 

The peaks identified in D. simulans and D. yakuba were translated onto D. melanogaster 

coordinates by using pslMap (Zhu et al. 2007).  

3. Sequence alignment files 

The pairwise whole genome alignments between D. melanogaster and D. simulans or D. 

yakuba were downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in 

January, 2019).  

4. Define different types of binding sites. These were defined as in human, using D. 

melanogaster vs. D. simulans and D. yakuba. 

 

5.5.5 Human CTCF analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks of transcription factor CTCF across 29 tissues or cell types (Table 

S2) were downloaded from ENCODE (The ENCODE Project Consortium 2012). We did not 

use ChIP-seq datasets from cell lines, and only kept ChIP-seq datasets from tissues and primary 
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cells. Briefly, peaks were called with MACS (Zhang et al. 2008) separately for each replicate. 

Irreproducible Discovery Rate (IDR) analysis was then performed (Li et al. 2011). Final peaks 

are the set of peak calls that pass IDR at a threshold of 2%. Peaks identified in different tissues 

or cell types were integrated by intersecting all peaks across datasets, with at least one base 

pair overlap used as the merge criteria. Overall we obtained 118970 merged peaks.  

2. Sequence alignment files 

The pairwise whole genome alignments between human and chimpanzee or gorilla were 

downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in December, 

2018).  

 

5.5.6 Mouse CTCF analysis  

1. CHiP-seq data  

The narrow ChIP-seq peaks of transcription factor CTCF across 11 tissues (Table S2) were 

downloaded from ENCODE (The ENCODE Project Consortium 2012). Briefly, peaks were 

called with MACS (Zhang et al. 2008) separately for each replicate. Irreproducible Discovery 

Rate (IDR)) analysis was then performed. Final peaks are the set of peak calls that pass IDR at 

a threshold of 2%. Peak identified in different tissues/cell types were integrated by intersecting 

all peaks across data sets, with at least 1 base pair overlap used as the merge criteria. Overall 

we obtained 112657merged peaks.  

2. Sequence alignment files 

The sequence alignment file between C57BL/6J and SPRET/EiJ, please check “Mouse 

validation analysis” part of Materials and Methods. The sequence alignment file between 

C57BL/6J and Caroli/EiJ were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 2013, accessed in 

May, 2018).  
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5.7 Supporting Information 
Supporting materials can be downloaded from: 
https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-
regulatory-sequences/tree/master/supplementary_figures_tables 
 

 
Table S1: The number of peaks and average peak length for CEBPA, FOXA1 and 

HNF4A in three mouse species C57BL/6J, CAST/EiJ and SPRET/EiJ. 

Table S2: The CTCF ChIP-seq datasets information for human and mouse. 
 

Figure S1: mouse FOXA1 biding sites study 

The figure legend is the same as Figure 2. 

Figure S2: mouse HNF4A biding sites study 

The figure legend is the same as Figure 2. 

Figure S3: Comparison of biding intensity between positive sites and non-positive sites 

for mouse FOXA1 and HNF4A 

The figure legend is the same as Figure 3. 

Figure S4: human HNF4A biding sites study 

The figure legend is the same as Figure 4. 

Figure S5: Receiver operating characteristic (ROC) curves for gkm-SVM classification 

performance on human CTCF binding sites. 

AUC values represent areas under the ROC curve and provide an overall measure of 

predictive power.  

A. The results of a 5-fold cross validation on neural CTCF binding sites and matched random 

sequences.  

B. The gkm-SVM trained in B cell used to predict neural CTCF binding sites and matched 

random sequences. 

C. The gkm-SVM trained in all 29 tissues/cell types used to predict neural CTCF binding 

sites and matched random sequences. 

D. The results of a 5-fold cross validation on B cell CTCF binding sites and matched random 

sequences.  

E. The gkm-SVM trained in neural cell used to predict B cell CTCF binding sites and 

matched random sequences. 
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F. The gkm-SVM trained in all 29 tissues/cell types used to predict B cell CTCF 

binding sites and matched random sequences. 

Figure S6: The distribution of deltaSVM and deltaSVM p-values for CTCF biding sites 

in human and mouse 
Figure S7: Comparison of the number of active tissues/cell types for CTCF biding sites 

between positive sites and non-positive sites.  

The p-values from a Wilcoxon test comparing categories are reported above boxes. The lower 

and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the 

interquartile range, or the maximum (respectively minimum) if no points are beyond 1.5 IQR 

(default behaviour of the R function boxplot). Positive sites are binding sites with evidence 

of positive selection (deltaSVM p-value < 0.01), non-positive sites are binding sites without 

evidence of positive selection. 

Figure S8: Receiver operating characteristic (ROC) curve for gkm-SVM classification 

performance on mouse CTCF binding sites. 

The result comes from a 5-fold cross validation on all CTCF binding sites from 11 

tissues and matched random sequences. The AUC value represents areas under the 

ROC curve and provides an overall measure of predictive power. 

Figure S9: Average number of substitutions for non-positive CTCF binding sites in 

different tissues/cell types. 

Non-positive binding sites are binding sites with evidence of positive selection (deltaSVM 

p-value >= 0.01). The number of substitutions measured by The pairwise whole genome 

alignments between human and chimpanzee. 

A. CTCF binding sites in 29 human tissues/cell types. 

B. CTCF binding sites in 11 mouse tissues. 
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6.1 Abstract 
Gene expression is in part a stochastic process 1–3, which is at odds with the need for precise 

expression levels in biological processes such as embryonic development. To study the tension 

between precision and stochasticity of gene expression during development, we quantified 

expression variability of single embryo transcriptomes throughout fly Drosophila 

melanogaster embryogenesis, from 150 samples over eight developmental stages. We found 

that expression variability follows an hourglass pattern, with lower variability at extended 

germband, the phylotypic stage. We explain this pattern by stronger histone modification 

mediated transcriptional noise control at this stage. In addition, we propose that histone 

modifications contribute to mutational robustness in regulatory elements, and thus to conserved 

expression levels. These results provide insight into the role of robustness in the phenotypic 

and genetic patterns of evolutionary conservation in animal development. 

 

6.2 Introduction  
Phenotypes can vary even among isogenic individuals in homogenous environments, 

suggesting that stochastic effects contribute to phenotypic diversity 4,5. Gene expression 

variability among genetically identical individuals under uniform conditions, hereafter 

"variability", is one of the most important stochastic processes in the mapping of genotype to 

phenotype. It is caused by a combination of molecular noise (stochastic biochemical effects, 

e.g., transcriptional burst process based transcriptional noise) and other effects (variation in 

cells and their environment, e.g., distribution of molecules at cell division) 2,3,6. Precise 

regulation of gene expression is notably important during development 7, where it controls the 

exact timing and level of gene expression to make a functional embryo. However, this process 

inevitably has to deal with stochasticity 8. 
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This tension between precision and stochasticity in development raises questions, such as how 

expression variability is controlled or buffered during development. And whether some stages 

are more robust to gene expression stochasticity. This is especially interesting in relation to the 

“phylotypic” stage, in mid-embryonic development, and the corresponding “hourglass” model 

of Evo-Devo 9,10. The phylotypic stage is characterized by conserved morphology inside a 

phylum, which extends to the molecular level, notably lower expression divergence between 

species or strains 11–15. To answer these questions, we investigated expression variability 

across fly embryonic development. 

 

6.3 Results  
We generated 288 single embryo 3’ end transcriptomes using BRB-seq 16, at eight 

developmental stages covering the whole fly embryogenesis, with 3h intervals (Figure 1A). 

After quality control, 239 samples were kept (Figure S1, S2). On average, we obtained over 

5 million uniquely mapped reads of protein coding genes per embryo. Based on 

multidimensional scaling analysis (MDS), 150 embryos follow the developmental trajectory, 

while there is a small cluster of 89 embryos collected at different time points mixed together 

(Figure 1B). The samples in this cluster appear to be unfertilized eggs (Methods and Figure 

S3). All further analysis was performed only on the 150 fertilized embryos. 

 

 
Figure 1: Studying expression variability throughout embryogenesis 
A. Method outline. We performed single embryo BRB-seq16 at eight developmental stages, 

indicated by different colored dots. The number of samples collected at each stage is 
indicated in the colored triangles. Embryo images adapted from 17 and used with 
permission from Springer Nature (License Number: 4547630238607) and from the 
authors.   

B. Multidimensional scaling analysis (MDS) of 239 high quality samples. Different colors 
indicate different stages. The samples can be split into two groups: a small cluster in the 
top-left delimited by two red lines; and the remaining samples, which are organized 
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according to embryonic stage. Only the 150 samples which follow embryonic stages 
were used for further analysis. 

 

We measured expression variability as Adjusted SD, standard deviation (SD) of expression 

between replicates corrected for expression level (Methods and Figures S4-6). This 

expression variability follows an hourglass pattern overall, with a global minimum at E3 

(Figure 2A), corresponding to the phylotypic stage of fly 14. There is also a local minimum 

at E6. This is consistent with the pattern of transcriptome divergence between fly and 

mosquito Anopheles gambiae, with the global minimum at E3, and a local minimum at E6 
18. Our observations are robust to the use of different variability metrics (Figure S7), and to 

sampling (bootstrap analysis, Figure S8). Bootstrap results also suggest that the minimum 

of variability extends over E3 to E4. The embryo transcriptome is dominated by zygotic 

transcripts 2.5h after egg laying19, so the high variability in E1 and E2 is not directly caused 

by maternal transcripts. We didn’t find any significant functional enrichment for genes 

which follow the hourglass variability pattern. Overall, expression variability is not equally 

distributed throughout embryogenesis, and gene expression at the phylotypic stage appears 

more robust to stochastic factors than at other stages.  

 

 
Figure 2: The phylotypic stage (E3) has lower expression variability 
The number of individual samples used in each development stage is indicated below each 
box. The number of genes analyzed is indicated in the top-left corner of each plot. The lower 
and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the 
interquartile range (IQR), and the box shows the lower and upper intervals of IQR together 
with the median. The black dot in each box indicates the mean.  
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A. Expression variability pattern of all genes which passed quality control. We performed 
pairwise Wilcoxon tests between any two stages to test the significance. The multiple test 
corrected p-values (Benjamini–Hochberg method) are shown in Table S1; they are all < 
10−7. 

B. Expression variability pattern of genes expressed at all stages. We performed pairwise 
Wilcoxon tests between any two stages to test the significance. The multiple test corrected 
p-values (Benjamini–Hochberg method) are shown in Table S2; they are all < 10−5 except 
E2 vs. E4, for which p-values = 0.24. 
 

The variation in expression variability could either be due to changes in the set of active 

genes, with genes differing in their intrinsic variability levels, or to genome-wide changes 

in the regulation of variability. To test this, we first reproduced our results restricted to the 

subset of genes which are expressed at all stages. Under the first explanation, we would 

expect to lose the hourglass variability pattern, but the pattern is maintained (Figure 2B). 

We performed additional tests: restricting to genes with constant expression level over 

development (Figure S9A); restricting to transcription factors (Figure S9B); and contrasting 

genes with dispersed or precise promoters (Figure S10), following Schor et al 20. Dispersed 

promoters seem to be more robust to mutations, which might also translate into robustness 

to noise.  Despite a loss of power with fewer genes, there remains an hourglass pattern of 

expression variability in all cases. Interestingly, the precise promoter genes have higher 

variability than the dispersed promoter genes except at E3, thus a strongest hourglass pattern. 

Overall, these results suggest that the lower variability at E3 is due to genome-wide 

regulation mechanisms more than to changes in the gene set.  

 

Histone modifications can regulate transcriptional noise 21–25, notably through the 

modulation of transcriptional burst frequency 22–24. For example, high levels of histone 

modifications can increase chromatin accessibility, leading to an increase in transcriptional 

burst frequency, which leads to minimizing noise. To check this role of histone modifications, 

we analyzed four available euchromatin histone modifications at six developmental stages 26. 

For each gene, we calculated the mean modification signal (background-subtracted tag 

density) separately for proximal promoters and for gene bodies 23.  Higher modification signal 

genes tend to have lower variability for all histone modifications (Figure 3A). This supports a 

role in minimizing transcriptional noise, and is consistent with previous studies in yeast and 

mammals 22,23.  
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Figure 3: Histone modification signal and expression variability 
Red and blue represent histone modification signals calculated on the proximal promoter 
(4kb around the transcription start site – TSS) and the gene body, respectively.   
A. Spearman’s correlation coefficient between histone modification signal (background-

subtracted tag density) and expression variability. Here, for each gene, both its 
variability and its histone modification signal are the mean value across stages. ***, P 
< 0.001; **, P < 0.01; *, P < 0.05, NS, P ≥ 0.05. 

B. Proximal promoter H3K4Me3 signal (Z score relative to intergenic signal) in different 
stages. Corresponding stages of our expression variability data are indicated below. The 
lower and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times 
the interquartile range (IQR), and the box shows the lower and upper intervals of IQR 
together with the median. We performed pairwise Wilcoxon tests between any two stages 
to test the significance. The multiple test corrected p-values (Benjamini–Hochberg method) 
are shown in Table S3; they are all <10−7 except 4-8h vs. 12-16h, for which p-value = 0.68. 

C. Gene body H3K4Me3 signal (Z score relative to intergenic signal) in different stages. 
Corresponding stages of our single embryo BRB-seq data are indicated below. The lower 
and upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the 
interquartile range (IQR), and the box shows the lower and upper intervals of IQR together 
with the median. We performed pairwise Wilcoxon tests between any two stages to test the 
significance. The multiple test corrected p-values (Benjamini–Hochberg method) are 
shown in Table S4; they are all < 10−5 except 0-4h vs. 20-24h, for which p-value = 0.26; 
and 8-12h vs. 16-20h, for which p-value = 0.26. 

 

The gene-level relation between histone modifications and expression variability raises the 

possibility that the pattern of expression variability across development could be driven by 

changes in histone modification signal. To compare histone modification signal between stages, 

we normalized gene and promoter signal by that on intergenic regions (Methods), which are 

not expected to change histone modification signal between stages. All histone marks present 

an hourglass-like pattern, with the highest signal at 8-12h (except for H3K4Me1 on gene body, 

where it is a local but not global maximum), corresponding to E3 and E4, i.e. the lowest 

expression variability, for both promoters and gene body (Figures 3B-C, S11). Moreover, for 

all histone marks on gene body, as well as H3K4Me1 on promoters, there is another local 

maximum at 16-20h, corresponding to E6. Generally, these results support changes in histone 
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modification signal over development, with a correspondence between stronger histone 

modification signal and lower expression variability.  

 

Several studies have suggested that mechanisms which confer robustness to stochastic 

variation can also buffer the effects of genetic variation 7,27,28. If histone modifications can 

buffer the effect of genetic variation on gene expression, we should observe that genes with 

higher histone modification signal are less sensitive to mutations in their regulatory regions, 

and are thus less conserved. Indeed, genes with higher histone modification signal tend to 

have less conserved core promoter sequences 29 (49 bp upstream TSS and 10 bp downstream 

from the TSS) between species (phastCons score; Figure 4A). They are also less conserved 

within a population (promoter nucleotide diversity π; Figure S12). The phastCons pattern 

remains using 200 bp or 400 bp regions, but disappears using 1 kb regions (Figure S13), 

indicating a relatively narrow region around the TSS under this balance of selection and 

robustness. 

 

 
Figure 4: Histone modification signal and promoter sequence conservation 
The promoter sequence conservation is the mean of the phastCons score over experimentally 
identified core promoter regions (49 bp upstream TSS to 10 bp downstream of the TSS) 29. 
A. Spearman’s correlation coefficient between histone modification signal (background-

subtracted tag density) and promoter sequence conservation. Red and blue represent 
histone modification signals calculated from the proximal promoter (4 kb around the 
TSS) and gene body respectively. Here, for each gene, the histone modification signal is 
the mean value across stages. ***, P < 0.001; **, P < 0.01; *, P < 0.05, NS, P ≥ 0.05. 

B. Variation of promoter sequence conservation for stage specific genes. The number of 
genes in each development stage is indicated below each box. We performed pairwise 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Ph
as

ct
Co

ns
 s

co
re

n=549 n=422 n=461 n=484 n=416 n=569 n=329 n=494

E1 E2 E3 E4 E5 E6 E7 E8

A B

0.32

0.36

0.40

Tr
an

sc
rip

to
m

e 
in

de
x 

of
 

Ph
as

tC
on

s 
sc

or
e

E1 E2 E3 E4 E5 E6 E7 E8

C

H3K4Me1

H3K4Me3

H3K9Ac

H3K27Ac

Correlation with promoter Phastcons

Spearman's Rho−1
.0

−0
.8

−0
.6

−0
.4

−0
.2 0.
0

promoter gene body

***

***

***

***

***

***

***

***



  121 
 

Wilcoxon test between any two stages to test the significance. The multiple test corrected 
p-values (Benjamini–Hochberg method) are shown in Table S5. 

C. Transcriptome index of promoter phastCons score across development. The grey area 
indicates 95% confidence interval estimated from bootstrap analysis. 

 
Since histone modifications appear to buffer genetic variation in gene expression, and since 

the E3 stage has stronger modification signals, the lower expression divergence in E3 

between species 14 might be caused either by stronger purifying selection on mutations in 

regulatory regions, or by histone modifications buffering the consequences of mutations in 

these regions. In the first case, we expect genes specifically expressed at E3 to have higher 

sequence conservation on promoters. In the second case, we expect the opposite pattern, 

since mutations that are buffered would behave nearly neutrally. To test this, we identified 

genes specifically expressed in each stage and compared their promoter sequence 

conservation. We found that genes specific of E3 have a relatively weak promoter sequence 

conservation (Figure 4B), supporting a stronger buffering mechanism rather than stronger 

purifying selection on sequences. The transcriptome indexes of conservation and of diversity  

(mean promoter sequence conservation and mean π, respectively, weighted by expression) 

extend this observation to the full transcriptome (Figure 4C; Figure S14). These results 

support a role of buffering effects on regulatory mutations in the hourglass pattern of 

expression divergence in fly embryogenesis.  

 

6.4 Discussion  
We have found an uneven distribution of variability, and thus of robustness of the process 

of gene expression, across development, which mirrors the hourglass Evo-Devo model 9,10. 

Stage E3 is the most robust to stochastic variation on gene expression, with lower expression 

variability, and is the phylotypic stage of fly, with conservation between species 14. Our 

results support a role of increased gene and promoter histone modification signal in the lower 

variability in the phylotypic stage.  

 

Although mutational robustness can evolve under natural selection theoretically 30, the 

conditions are too restrictive to be relevant in practice. Thus, we propose that the mutational 

buffering effect of histone modifications is a by-product of selection for minimizing 

transcriptional noise. The mutational buffering analyses have two potential caveats. First, our 

results were based solely on promoter analysis, and it remains to be seen how much these 

observations extend to other regulatory elements. Second, we only considered nucleotide 
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substitution changes, but not insertion, deletion and turnover. For these large effect 

mutations, purifying selection might be more efficient than mutational robustness to keep 

conserved expression level. Thus it is possible that both purifying selection and mutational 

robustness together shape the lower expression divergence in the fly phylotypic stage. 

Overall, our results support an important role for the control of expression variability by 

histone modifications in embryonic gene expression and in the evolution of development. 

 

6.5 Materials and Methods  

6.5.1 Availability of code 

Data files and analysis scripts are available on GitHub: 

https://github.com/ljljolinq1010/expression-noise-across-fly-embryogenesis. 

 

6.5.2 Availability of data 

Expression datasets have been deposited to the Gene Expression Omnibus with accession 

number GSE128370.  

 

6.5.3 Embryo collection and RNA extraction 

Fly lines (w1118) were obtained from the Bloomington stock center and reared at room 

temperature on a standard fly medium with 12 hours light dark cycle. The fly medium we used 

is composed of: 6.2 g Agar powder (ACROS N. 400400050), 58.8 g Farigel wheat (Westhove 

N. FMZH1), 58.8 g yeast (Springaline BA10), 100 mL grape juice; 4.9 mL Propionic acid 

(Sigma N. P1386), 26.5 mL of Methyl 4-hydroxybenzoate (VWR N. ALFAA14289.0) solution 

(400 g/L) in 95% ethanol, 1 L Water. 100 to 150 flies were transferred to cages, which were 

sealed to a grape agar plate (1:1 mixture of 6% agar and grape juice). We used 4 separate cages 

to collect the embryos. The adults were kept overnight on this plate before being transferred to 

a new plate supplemented with yeast paste. Synchronization of eggs on this plate lasted for 2 

hours before being swapped with a new plate supplemented with yeast paste. We let the adults 

lay eggs for 30 min before removing the plate and letting the eggs incubate for the desired time. 

Eggs were harvested using the following protocol. First a 1:1 bleach (Reactolab 99412) 1x PBS 

mix was poured on the plate and incubated for 2 min. During this incubation, we used a brush 

to lightly scrape the surface to mobilize the embryos. We then poured the PBS-bleach mixture 

through a sieve, washed the plate with 1x PBS, and poured the wash on the same sieve. We 

washed the sieve several time with 1x PBS until the smell of bleach disappeared. Single 
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embryos were then manually transferred to Eppendorf containing 50 µL beads and 350 µL 

Trizol (lifetechnologies AM9738). The tubes were homogenized in a Precellys 24 Tissue 

Homogenizer at 6000 rpm for 30 seconds. Samples were then transferred to liquid nitrogen for 

flash freezing and stored at –80°C. For RNA extraction, tubes were thawed on ice, 

supplemented with 350 µL of 100% Ethanol before homogenizing again with the same 

parameters. We then used the Direct-zol™ RNA Miniprep R2056 Kit, with the following 

modifications: we did not perform DNAse I treatment, we added another 2 min centrifugation 

into an empty column after the RNA Wash step, finally elution was performed by adding 8 µL 

of RNAse-free water to the column, incubation at room temperature for 2 min and then 

centrifugation for 2 min. RNA was transferred to a low-binding 96 well plate and stored at -

80°C. 

 

6.5.4 Bulk RNA Barcoding and sequencing (BRB-seq)  

The BRB-seq is a technique for multiplexed RNA-seq 16 which is able to provide high-quality 

3’ transcriptomic data at a low cost (e.g. 10-fold lower than Illumina Truseq Stranded mRNA-

seq). The data (fastq files) generated from BRB-seq are multiplexed and asymmetrical paired 

reads. Read R1 contains a 6 bp sample barcode, while read R2 contains the fragment sequence 

to align to the reference genome. 

1. Library preparation 

RNA quantity was assessed using picogreen (Invitrogen P11496). Samples were then grouped 

according to their concentration in 96-well plates and diluted to a final concentration 

determined by the lowest sample concentration on the plate. RNA was then used for gene 

expression profiling using BRB-seq. In short, the BRB-seq protocol starts with oligo-dT 

barcoding, without TSO for the first-strand synthesis (reverse transcription), performed on each 

sample separately. Then all samples are pooled together, after which the second-strand is 

synthesized using DNA PolII Nick translation. The sequencing library is then prepared using 

cDNA augmented by an in-house produced Tn5 transposase preloaded with the same adapters 

(Tn5-B/B), and further enriched by limited-cycle PCR with Illumina compatible adapters. 

Libraries are then size-selected (200 - 1000 bp), profiled using High Sensitivity NGS Fragment 

Analysis Kit (Advanced Analytical, #DNF-474), and measured using Qubit dsDNA HS Assay 

Kit (Invitrogen, #Q32851). In total, we generated four libraries. For details of library 

information, please check Table S20. 

2. Sequencing  
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Libraries were mixed in equimolar quantities and were then sequenced on an Illumina Hi-Seq 

2500 with pair-end protocol (read R2 with 101 bp) at the Lausanne Genomic Technologies 

Facility.  

 

6.5.5 RNA-seq analysis 

1. Generating expression matrix  

The fastq files were first demultiplexed by using the “Demultiplex” tool from BRB-seqTools 

suite (available at https://github.com/DeplanckeLab/BRB-seqTools). Then, we trimmed the 

polyA sequences of the demultiplexed files by using the “Trim” tool. Next, the STAR aligner 
31 was used to map the trimmed reads to the reference genome of fly Drosophila melanogaster 

(BDGP6, Ensembl release 91 32). Finally, the read count of each gene was obtained with HTSeq 
33. 

2. Filtering samples and genes 

Low-quality samples need to be filtered out, since they might bias results of downstream 

analyses. In order to assess sample quality, we calculated the number of uniquely mapped reads 

and of expressed genes for each sample 34. We removed samples with <0.3 million uniquely 

mapped reads or with <4500 expressed genes (Figure S1). We confirmed that these filtered 

samples are indeed outliers in a multidimensional scaling analysis (MDS) (Figure S15). Since 

lowly expressed genes have larger technical error, to minimize the technical noise, we need 

to remove lowly expressed genes as well. We first calculated counts per million (cpm) with 

the edgeR package 35 for each gene. Then we removed genes with mean cpm across samples 

≤1, as suggested by Lun et al.34. Finally, for the remaining genes, we re-transformed their 

cpm values to the original count values for the downstream normalization analysis. After 

filtering, we obtained an expression count matrix with 239 samples (Figure S2) and 8004 

protein coding genes. 

3. Normalization and batch effect correction 

Because BRB-Seq retains only the 3ʹ end of the transcript, we performed sample 

normalization by using quantile normalization with log transformation in the voom package 36, 

but without transcript length normalization. To remove potential batch effects across the 

four libraries, we applied the ComBat function in the sva package 37 to the normalized and 

log2 transformed expression data. For genes with expression values less than 0 after Combat, 

or with original expression values equal to 0, we change its values to 0 after Combat 

correction as suggested by Kolodziejczyk et al 38. 
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6.5.6 Multidimensional scaling analysis (MDS) 

A number of factors could be invoked to explain the two groups observed in our 

multidimensional scaling analysis (MDS) (Figure 1B), but they should also explain that only 

one group is structured according to developmental time. The obvious hypothesis that they 

correspond to male and female embryos does not explain that structure, and is also not 

supported by examining X/autosome gene expression ratios (Figure S16). An alternative 

hypothesis is that samples in the small cluster are unfertilized eggs. If an egg is not fertilized, 

after completion of meiosis, development will be arrested 39, but they are visually 

indistinguishable. This hypothesis is confirmed by at least two lines of evidence, in addition 

to the lack of developmental time structure. First, for expression correlation, all samples in 

the small cluster are highly correlated with unfertilized egg, while the correlations in the 

other samples gradually decrease with development (Figure S3A). Second, all the samples 

from the small cluster are enriched with meiosis related genes (Figure S3B). Thus we 

excluded the small cluster for downstream analyses, i.e. we used 150 embryos with an 

average of 18 individuals per developmental stage. 

 

6.5.7 Metrics of expression variability 

Expression variability is generally measured by the coefficient of variation (CV) 40. However, 

a gene’s CV is strongly dependent on its RNA abundance (Figure S4). While this is an inherent 

property of time-interval counting processes (such as a Poisson process), it makes the 

comparison of variability between different conditions difficult 38,41. Distance to median (DM, 

the distance between the squared CV of a gene and its running median) has been proposed as 

a variability metric that is independent of expression level 38,41,42. However, the DM is still 

strongly negatively correlated with the mean expression level in our data (Figure S5). To avoid 

this dependency, we developed another variability measure, the adjusted standard deviation 

(adjusted SD), by calculating the ratio between observed SD and expected SD. Following the 

same approach as Barroso et al. 43, we performed polynomial regressions to predict the 

expected SD from mean expression. Since the adjusted SD metric works much better than DM 

in terms of accounting for the confounding effects of mean expression (Figure S6), we adopted 

it as a measure of expression variability in our study. As observed in yeast 42,44, we found that 

essential genes and hubs (proteins in the center of protein-protein interaction network) have 

lower expression variability than other genes (Figure S17), indicating selection to reduce it. 
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This observation provides a control that we are indeed measuring biologically relevant 

expression variability. 

Detailed calculation of expression variability: 

1. Adjusted SD.  

For each gene, we computed standard deviation (SD) in each stage and over all stages. Then 

we fitted a polynomial model to predict the global (across all stages) SD from the global mean 

expression. We increased the degrees of the model until there was no more significant 

improvement (tested with ANOVA, p<0.05 as a significant improvement). Then, based on this 

best fitting model, for each gene, we computed its predicted global SD based on its global mean 

expression. Finally, the adjusted SD of a gene in one stage is this gene’s SD in its corresponding 

stage divided by its predicted global SD. This method is derived from Barroso et al. 43, but 

computing adjusted SD rather than adjusted variance. 

2. Distance to median: the distance between the squared coefficient of variation (CV) of a 

gene and its running median. 

For each gene, we computed its squared CV in each stage and over all stages. Then, we ordered 

genes based on their global (across all stages) mean expression. Next, we defined series of 

sliding windows of 50 genes with 25 genes overlap, starting from lowest global mean 

expression. Finally, the distance to median of a gene in one stage is the stage specific log10 

squared CV minus the median of global log10 squared CV in this gene’s corresponding 

window. R code was modified from the DM function of the scran package 34.  

 

6.5.8 Bootstrap analysis 

For each stage, we randomly sampled the same number of samples. Then, we computed the 

adjusted SD based on these random samples. We repeated the first two steps 500 times. Each 

time, we only kept the median of the adjusted SD for each stage. Thus in each stage we obtained 

500 medians. Finally, we performed a Wilcoxon test to test the significance of the difference 

between the bootstrapped values of different stages. 

 

6.5.9 ChIP-Seq data analysis 

1. Histone modification signal datasets  

The signal data files of four euchromatin histone modification marks (H3K4me1, H3K4me3, 

H3K9ac, and H3K27ac) at six developmental stages (0-4h, 4-8h, 8-12h, 12-16h. 16-20h, 20-

24h) were downloaded from modENCODE 26 (NCBI GEO: GSE16013) (March, 2018). The 
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signal is smoothed, background-subtracted tag density. The signal was precomputed along 

the genome in 35-bp windows.  

2. Histone modification signal for promoter and gene body  

For each gene, as suggested by Nicolas et al. 23,  we separately calculated the mean signal 

of its proximal promoter (2 kb upstream to 2 kb downstream for transcription start site (TSS)) 

and of its gene body (TSS to transcription end site (TES)) by using the bedtools “map” 

command 45. The TSS and TES information was retrieved from Ensembl release 91 32.  For 

a gene with several TSS and TES, we use its mean coordinates.  

3. Histone modification signal Z score transformation 

For each modification mark in each stage, the signal value was transformed into a Z score by 

subtracting the mean signal across intergenic regions and dividing by the standard deviation 

signal of the intergenic regions. The intergenic region were defined by removing all proximal 

promoter regions and gene body regions with the bedtools “subtract” command 45. Our 

assumption is that on average such intergenic regions are not the target of active histone 

modification signal, and thus allow to normalize between libraries. Then, for each gene, we 

re-calculated the mean signal (Z score) of its proximal promoter (2 kb upstream to 2 kb 

downstream for transcription start site (TSS)) and of its gene body (TSS to transcription end 

site (TES)) by using the bedtools “map” command 45. 

 

6.5.10 Identification of stage specifically expressed genes 

Following the same approach as previously 46, we first defined 8 stage specific expressed 

artificial expression profile (Figure S18A). Then, for each gene, we performed Pearson’s 

correlation between its real expression and this artificial expression. Finally, for each 

artificial expression profile, we kept genes with top 10% correlation coefficient as the 

corresponding stage specifically expressed genes (Figure S18B). 

 

6.5.11 Identification of hourglass expression variability genes 

Similar to the stage specifically expressed gene identification approach, we correlated each 

gene’s variability profile with the median across all genes. Then, we kept genes with the top 

10% correlation coefficient as the ones following the global hourglass variability profile.  
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6.5.12 Identification of genes expressed at all stages 

For each gene, we calculated the average expression across replicates in each stage. Then, 

we defined the average expression > 1 as expressed.  

 

6.5.13 Identification of genes with constant expression across all stages 

For each gene, we first preformed one-way analysis of variance (ANOVA) to compare the 

means of expression in different stage. Then, we calculated the q-values for multiple test 

correction. Finally, the constantly expressed genes were defined as genes with q-values > 

0.05.   

 

6.5.14 Gene ontology (GO) enrichment analysis 

We performed GO enrichment analysis for hourglass expression variability genes by using 

the topGO 47 R package with the “elim” algorithm.  

 

6.5.15 Single Nucleotide Polymorphism (SNP) data 

The SNP data for 205 D. melanogaster inbred lines were downloaded from the Drosophila 

Genetic Reference Panel (DGRP 48) (December, 2018).  

 

6.5.16 Nucleotide diversity (π) calculation 

We calculated nucleotide diversity of promoters with vcftools 49.  

 

6.5.17 Transcriptome index analysis  

A "transcriptome index" 50,51 is a weighted mean of a feature over all genes, where the 

weights are the expression levels of the genes at each condition (e.g., developmental stage). 

The transcriptome index of phastCons was calculated as:  

 
where s is the developmental stage, phastConsi is the promoter sequence conservation score 

of gene i, n is the total number of genes, and eis is the expression level (log transformed) of 

gene i in developmental stage s. For the transcriptome index of nucleotide diversity (π) the 

same formula is used, replacing phastConsi by πi. 
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6.5.18 Meiosis related genes and transcription factors  

The Meiosis  related genes and transcription factors were downloaded from AmiGO 52 (May, 

2018).  

 

6.5.19 Individual unfertilized eggs RNA-seq data 

The normalized and log transformed expression matrix of individual unfertilized eggs was 

downloaded from NCBI GEO: GSE68062 53 (May, 2018). 

 

6.5.20 Dispersed and precise promoters 

The annotation of genes with dispersed or precise promoters was downloaded from Schor et 

al 20 (June, 2019). Dispersed promoters are often associated with ubiquitously expressed 

genes, have more dispersed patterns of transcriptional initiation, and do not contain a TATA 

box. On the contrary, precise promoters are typically associated with restricted tissue-specific 

expression and with a TATA box, and have a single predominant TSS. 

 

6.5.21 Essential gene annotation and protein connectivity datasets 

The gene essentiality and protein connectivity datasets were downloaded from OGEE v2 54 

(March, 2018). 

 

6.5.22 PhastCons score 
The pre-computed sequence conservation score phastCons 55 of fly genome was downloaded 

from http://hgdownload.soe.ucsc.edu/goldenPath/dm3/phastCons15way/ (February, 2018). 

Higher value means higher conservation.  

 

6.5.23 Experimentally validated core promoters 

Experimentally validated transcription start sites (TSSs) were downloaded from the 

Eukaryotic Promoter Database (EPD) 29 (May, 2018). For a gene with several TSSs, we 

selected the most representative one (the TSS that has been validated by the largest number 

of samples). The core promoter region was defined as 49 bp upstream TSS to 10 bp 

downstream of the TSS 29. We used EPD defined TSSs here because they are more accurate 

for defining core promoters, whose function is expected to be related to sequence 

conservation. Whereas for histone modification signal for promoter and gene body we used 
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Ensembl defined TSSs to be consistent with the source of TES information, and precision 

was less important in defining broader proximal promoters. 
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Table S1: variability (adjusted SD) comparison between any two stages (all genes). 
Table S2: variability (adjusted SD) comparison between any two stages (genes expressed 

at all stages). 

Table S3: proximal promoter H3K4Me3 signal (Z score) comparison between any two 
stages.  

Table S4: gene body H3K4Me3 signal (Z score) comparison between any two stages.  

Table S5: promoter sequence conservation comparison between any two stages. 
Table S6: variability (adjusted SD) comparison between any two stages, the E1 stage also 

contains samples from the small clusters.  
Table S7: variability (coefficient of variation) comparison between any two stages. 
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Table S8: variability (distance to median) comparison between any two stages. 
Table S9: bootstrapped median variability comparison between any two stages. 

Table S10: variability (adjusted SD) comparison between any two stages (Genes with 
constant expression level over development). 

Table S11: variability (adjusted SD) comparison between any two stages (transcription 

factors). 
Table S12: variability (adjusted SD) comparison between any two stages (dispersed 

promoter genes). 
Table S13: variability (adjusted SD) comparison between any two stages (precise 

promoter genes). 

Table S14: proximal promoter H3K4Me1 signal (Z score) comparison between any two 
stages.  

Table S15: gene body H3K4Me1 signal (Z score) comparison between any two stages.  

Table S16: proximal promoter H3K27Ac signal (Z score) comparison between any two 
stages.  

Table S17: gene body H3K27Ac signal (Z score) comparison between any two stages.  
Table S18: proximal promoter H3K9Ac signal (Z score) comparison between any two 

stages.  

Table S19: gene body H3K9Ac signal (Z score) comparison between any two stages.  
Table S20: RNA-seq library information.  

Figure S1: Relationship between uniquely mapped reads and expressed genes 
Each dot represents one sample. The black dots indicate low quality samples with <4500 

expressed genes or with <0.3 million uniquely mapped reads. The 239 orange colored samples 

were retained for downstream analysis ("high quality samples"). 

Figure S2: Proportion of retained samples in each development stage 

The number of retained samples and of total samples in each stage is indicated in the bottom 

of each bar. 

Figure S3: Evidence that the samples from the small cluster are unfertilized eggs 

A. Boxplot of Spearman’s correlation coefficients (rho) of expression between individual 

unfertilized eggs and each sample from the small cluster or from the large cluster, showing 

that the small cluster has an expression profile of unfertilized eggs. The lower and upper 

intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile 
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range (IQR), and the box shows the lower and upper intervals of IQR together with the 

median. 

B. Expression heat map of meiosis related genes across all samples, showing that their 

expression decreases over development for the large cluster, but is high in all samples of 

the small cluster, consistent with unfertilized eggs.  

For testing of an alternative explanation of the two clusters as being males and females, see 

Figure S16. 

Figure S4: Relationship between average expression and coefficient of variation at each 

stage 
Pearson’s correlation between average expression and coefficient of variation in each 

development stage is indicated in the top left of each subfigure. 

Figure S5: Relationship between average expression and distance to median at each stage 
Pearson’s correlation between average expression and distance to median in each development 

stage is indicated in the top left of each subfigure. 

Figure S6: Relationship between average expression and adjusted SD at each stage 
Pearson’s correlation between average expression and adjusted SD in each development stage 

is indicated in the top left of each subfigure. 

Figure S7: Variation of expression variability across development using alternate 

measures of variability 

A. Variability measured by adjusted SD; unlike in Figure 2, the variability in E1 was 

calculated using all samples from both small and large clusters. 

B. Variability measured by coefficient of variation (CV). 

C. Variability measured by distance to median (DM). 

The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any 

two stages to test the significance. The multiple test corrected p-values (Benjamini–Hochberg 

method) are shown in Tables S6, S7 and S8. 

Figure S8: Bootstrap analysis of the variability calculation 
We performed pairwise Wilcoxon test between any two stages to test the significance. The 

multiple test corrected p-values (Benjamini–Hochberg method) are shown in Table S9. 

Figure S9: Variation of expression variability across development for different categories 
of genes 

A. Genes with constant expression level over development. 
B. Transcription factor.  



  133 
 

The legend is the same as for Figure 2. We performed pairwise Wilcoxon test between any 

two stages to test the significance. The multiple test corrected p-values (Benjamini–Hochberg 

method) are shown in Tables S10 and S11. 

Figure S10: Variation of expression variability across development for dispersed 
promoter genes and for precise promoter genes 

For each stage, the first and the second box represents dispersed promoter genes and precise 

promoter genes respectively. The legend is the same as for Figure 2. We performed pairwise 

Wilcoxon test between any two stages to test the significance separately for dispersed promoter 

genes and for precise promoter genes. The multiple test corrected p-values (Benjamini–

Hochberg method) are shown in Tables S12 and S13. 

Figure S11: Histone modification signal across development 

The legend is the same as for Figure 3B and 3C. The median signal value in each 

development stage is indicated above each box. We performed pairwise Wilcoxon test 

between any two stages to test the significance. The multiple test corrected p-values 

(Benjamini–Hochberg method) for H3K4Me1, H3K27Ac and H3K9Ac are shown in Tables 

S14-S19. 

Figure S12: Spearman’s correlation coefficient between histone modification signal 
and promoter nucleotide diversity (π). 

The legend is the same as for Figure 4A. 

Figure S13: Spearman’s correlation coefficient between histone modification signal 
and promoter sequence conservation for different definitions of promoter width 

The figure legend is the same as in Figure 4A. 

A. Promoter defined as 200 bp around TSS 

B. Promoter defined as 400 bp around TSS 

C. Promoter defined as 1000 bp around TSS 

Figure S14: transcriptome index of π across development.  

The legend is the same as for Figure 4C. 

Figure S15: Multidimensional scaling analysis for all samples  

Different colors indicate different stages. The solid triangles represent high quality samples 

according to Figure S1; the hollow triangles represent low quality samples which were 

discarded.  
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Figure S16: Mapping of X/autosome gene expression ratios to the multidimensional 

scaling analysis plot 
We calculated the ratio of mean expression between genes from the X chromosome and from 

the autosomes for each sample. Red represents high ratio, blue represents low ratio. For 

Drosophila, dosage compensation is achieved by increasing expression of X chromosome 

genes in males.  Since the dosage compensation is still incomplete during development, 

females should have a higher ratio of mean expression between genes from the X chromosome 

and from the autosomes. Here, we found both high ratio samples and low ratio samples are 

well mixed in both the cluster and large clusters. Thus, we reject the hypothesis that the two 

different clusters are due to sex.  

Figure S17: Relationship between expression variability and protein importance 

We used the average variability across all development stages. 

A. Spearman’s correlation between expression variability and proportion of essential genes. 

We split genes into 10 equally sized bins based on expression variability. The Spearman’s 

correlation is calculated by using the median variability and proportion of essential genes 

in the ten bins. The Spearman’s correlation coefficient and p-value are indicated in the top-

right. 
B. Spearman’s correlation between connectivity in a protein-protein interaction network and 

expression variability. The coefficient and p-value are indicated in the top-right. 

Figure S18: Detection of stage specific genes 
A. The artificial expression profile. 

B. The expression of identified stage specific genes. The bold black line represents the 

median expression, the two gray lines represent 25th and 75th quantiles of expression, 

respectively.  
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7 Outlook  
 
The work presented in this thesis has focused on the interplay between animal development 

and molecular evolution. I found the phylotypic period to be more conserved than other stages 

in terms of both gene sequence and regulation evolution. In addition, the phylotypic period is 

also lacking adaptive evolution on both gene sequence and regulation. Finally, the phylotypic 

period is even robust to both genetic and non-genetic variations on gene expression. These 

results together suggest that the phylotypic period is an evolutionary lockdown, sensitive to all 

kinds of variations. I hope that my PhD work will contribute to providing some fundamental 

insights into evolution and development. Here, I would like to briefly summarize my results 

and discuss possible extension of my work in the field of Evo-Devo. 

 

In chapter 2, I found that genes expressed at the phylotypic stage underwent stronger purifying 

selection on sequence evolution, supporting the hourglass model. Further analyses indicate that 

stronger purifying selection on sequences in middle development is driven by temporal 

pleiotropy of these genes. However, after removing this temporal pleiotropy effect by 

comparing the sequence evolution rate for stage specific genes, the hourglass pattern still holds 

true (Piasecka et al. 2013). So, excepting temporal pleiotropic effect, there should be other 

factors which may also constraint the sequence evolution of genes expressed at the phylotypic 

stage. One possibility is that genes specifically expressed at the phylotypic stage were shared 

by many cell different cell types in this stage, so it may under stronger functional pleiotropic 

constraints. The recent published mouse organogenesis single cell RNAseq dataset (Cao et al. 

2019) can be used to identify gene activity in each cell type and to test this hypothesis in the 

future. 

 

In chapter 3, I investigated the evidence of positive selection on protein-coding genes in 

relation to their expression over development. Overall, there is a consistent signal that positive 

selection mainly affects genes and pathways expressed in late embryonic development and in 

adult. These findings were further supported by using more recent positive selection signals 

(Coronado-Zamora et al. 2019) and by using organ level developmental transcriptomes 

(Cardoso-Moreira et al. 2019). Notably, I observed some evidence of positive selection in early 

development. For most changes in the early development, however, there are no clear 

consequences on the adult morphology Kalinka and Tomancak (2012). This raises a question 
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of why there are higher adaptive evolution in early development than in the phylotypic stage? 

One explanation, proposed by Kalinka and Tomancak (2012), suggests that many variations in 

early development often result from adaptation to diverse ecological circumstances. For future 

work, it would be of great interest to study which traits regulated by these early development 

related adaptive genes and how it contributes to the ecological adaptations.  

 

In chapter 4, I studied the evolutionary conservation, divergence and positive selection on gene 

regulation. I found the phylotypic stage has higher proportion of conserved regulatory elements 

and less proportion of stage specific gain regulatory elements. Notably, I also found the 

phylotypic stage has lower proportion enhancers with evidence of positive selection, 

suggesting the contribution of positive selection shape the hourglass expression divergence 

pattern. Why are the phylotypic stage specific regulatory elements so conserved? One 

possibility, as suggested by Raff (1996), is that the genes expressed at the phylotypic stage are 

very crucial for the high interdependence of different developmental modules at this stage. 

For example, in C. elegans, Zalts and Yanai (2017) found the phylotypic stage enriched with 

‘integration genes’, their expression resulting from interactions among the cell types across 

germ layers. These integration genes were enriched with gene ontology (GO) terms such as 

cell-communication and signalling functions. So, future work should focus on identifying the 

target genes of conserved enhancers by using Hi-C (genome-wide chromosome conformation 

capture assays) technology (Lieberman-Aiden et al. 2009). And then, with classic 

developmental biology approaches, to study the function of these genes on animal development. 

In addition, since the regulatory elements identified in this study are based on whole-embryo 

DNase-Seq, it still unclear whether the higher regulatory conservation in the phylotypic stage 

is true for all cell types and for only some specific cell types? With the rapid development of 

single cell ATAC-seq (Buenrostro et al. 2015), a future improvement of this work can be to 

focus on the evolution of regulatory elements in the single cell level.  

 

In chapter 5, I first developed a method to detect positive selection on TFBS evolution based 

on binding affinity changes. My approach does not assume a subset of neutral sites and doesn 

not compare sequence evolution rates. Despite its advantages, my method can still be improved 

in the future. For example, in the null model of sequence evolution, I assume mutation pattern 

is independently at each base-pair site and mutation rate is uniform over all sites. But in the 

reality, both mutation rate and pattern will depend on its neighbouring nucleotides (Krawczak 
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et al. 1998). In addition, the analysis focuses only on point mutations, ignoring insertions and 

deletions. It will be of interest in future work to integrate both context dependent information 

and structural variations into the null model. Then, I adopted this method to detect positive 

selection of CTCF binding sites in 29 human tissues and cell types. I found the highest positive 

selection is in brain then male reproductive system. Since here I only studied one transcription 

factor, it remains to be seen how much these observations extend to other transcription factors. 

In addition, the method I developed in this study can be used to study the non-coding adaptive 

evolution of human specific morphological traits and be applied to other species. 

 

In chapter 6, I studied how expression noise affects different developmental stages of fly 

embryogenesis. I found that expression noise follows an hourglass pattern, with lower noise at 

the phylotypic stage. One of the most important findings in this study is that histone 

modifications can confer the robustness to both stochastic and genetic gene expression 

variation. So, both lower expression noise and expression divergence in the phylotypic stage 

can be explained by stronger histone modification signal in this stage. Although I found some 

evidence to show that the phylotypic stage has higher histone modification signal, with the 

development of quantitative ChIP-Seq methods (Bonhoure et al. 2014; Orlando et al. 2014), 

future work should focus on directly comparing absolute histone modification signals 

between stages. In addition, I found that all of the four euchromatin histone modifications 

(H3KeMe1, H3K4Me3, H3K9Ac and H3K27Ac) have higher signal in the phylotypic stage, 

and are negatively correlated with expression noise. This raises a question: is the lower 

expression noise in the phylotypic stage driven by the cooperation of the four marks or is it 

only driven by some of them? In addition, there are other noise buffering mechanisms than 

histone modifications. For example, noise can be buffered by some specific regulatory motifs, 

such as negative feedback loops and incoherent feed-forward loops (Becskei and Serrano 

2000; Alon 2007; Chalancon et al. 2012), or by microRNAs (Hornstein and Shomron 2006; 

Wu et al. 2009; Schmiedel et al. 2015; Schmiedel et al. 2017), or filtered by using cellular 

compartmentalization (Stoeger et al. 2016). What is the contribution of other factors on the 

lower expression noise in the phylotypic stage is also an interesting question.  

 

In conclusion, I suggest that the higher conservation at the phylotypic period is caused by 

stronger purifying selection, stronger mutational robustness and less positive selection. In 

addition, I propose that the mutational robustness is a by-product of selection for minimizing 
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non-genetic expression variations. These results are important to understanding how the 

genotype-phenotype map is maintained in the face of stochasticity and mutation. Since all these 

findings are based on datasets from whole embryo level, with the development of single cell 

biology, I hope that we will soon be able to study Evo-Devo at single cell level. On the one 

hand, we can check whether the patterns observed at whole body are also hold true for all cell 

types or only for some cell types? On the other hand, single cell omics provide opportunities, 

for the first time, to systematically study the origin and evolution of cell types.  
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