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BOREL SUBALGEBRAS OF ROOT-REDUCTIVE LIE ALGEBRAS

ELIZABETH DAN-COHEN

Abstract. This paper generalizes the classification in [DP2] of Borel subalge-
bras of gl

∞
. Root-reductive Lie algebras are direct limits of finite-dimensional

reductive Lie algebras along inclusions preserving the root spaces with respect
to nested Cartan subalgebras. A Borel subalgebra of a root-reductive Lie alge-
bra is by definition a maximal locally solvable subalgebra. The main general
result of this paper is that a Borel subalgebra of an infinite-dimensional in-
decomposable root-reductive Lie algebra is the simultaneous stabilizer of a
certain type of generalized flag in each of the standard representations.

For the three infinite-dimensional simple root-reductive Lie algebras more
precise results are obtained. The map sending a maximal closed (isotropic)
generalized flag in the standard representation to its stabilizer hits Borel sub-
algebras, yielding a bijection in the cases of sl∞ and sp

∞
; in the case of so∞

the fibers are of size one and two. A description is given of a nice class of toral

subalgebras contained in any Borel subalgebra. Finally, certain Borel subalge-
bras of a general root-reductive Lie algebra are seen to correspond bijectively
with Borel subalgebras of the commutator subalgebra, which are understood
in terms of the special cases.

1. Introduction

The representation theory of root-reductive Lie algebras is currently being ap-
proached through a structure theory program. Root-reductive Lie algebras are
direct limits of finite-dimensional reductive Lie algebras along inclusions preserving
the root spaces with respect to nested Cartan subalgebras. The appropriate gener-
alization in this context of the notion of a Borel subalgebra of a finite-dimensional
Lie algebra is that of a maximal locally solvable subalgebra. This paper describes
the Borel subalgebras of root-reductive Lie algebras, generalizing the results of
[DP2] in the case of gl∞.

The most general result of this paper, Theorem 3.1, states that a Borel subal-
gebra of an infinite-dimensional indecomposable root-reductive Lie algebra is the
simultaneous stabilizer of a certain type of generalized flag in each of the stan-
dard representations. Any root-reductive Lie algebra is the direct sum of finite-
dimensional Lie algebras and infinite-dimensional indecomposable root-reductive
Lie algebras. Since Borel subalgebras of a direct sum are precisely direct sums of
Borel subalgebras, the theorem can be used to understand Borel subalgebras of any
root-reductive Lie algebra.

Theorems 4.3, 4.10, and 4.16 address the infinite-dimensional simple root-reductive
Lie algebras. As in the case of gl∞ treated in [DP2], Borel subalgebras of sl∞ (or
so∞, sp∞) are stabilizers of maximal closed (isotropic) generalized flags in the
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2 ELIZABETH DAN-COHEN

standard representation. The correspondence between Borel subalgebras and max-
imal closed (isotropic) generalized flags is bijective in the cases of gl∞, sl∞, and
sp∞; whereas a Borel subalgebra of so∞ corresponds to one or two maximal closed
isotropic generalized flags. This phenomenon should not be surprising, since every
Borel subalgebra of so2n is the stabilizer of a pair of maximal isotropic flags in the
standard representation. We refer to any pair of maximal isotropic generalized flags
corresponding to a single Borel subalgebra of so∞ as twins.

A nice class of toral subalgebras contained in a Borel subalgebra of sl∞, so∞, or
sp∞ is described in Section 4.4. In these cases any Borel subalgebra is the span of
such a toral subalgebra and the nilpotent subalgebra. Thus irreducible representa-
tions of the Borel subalgebra are given by characters of the toral subalgebra.

Analysis of the general situation continues in Section 4.6. In Theorem 4.18
certain Borel subalgebras of a root-reductive Lie algebra g are seen to correspond
bijectively to the Borel subalgebras of [g, g]. It remains unknown whether every
Borel subalgebra of g yields a Borel subalgebra of [g, g] when intersected with [g, g].

The argument which leads to the classification of Borel subalgebras of sl∞, Theo-
rem 4.3, begins with Theorem 3.1 and Proposition 3.8, and continues with Lemmas
4.1 and 4.2. Many elements of the proofs are straightforward applications to sl∞ of
work on gl∞ seen in [DP3]. The proof of Theorem 3.1, by contrast, is quite differ-
ent from their proof in the case of gl∞; the modified proof allows for generalization
to the isotropic cases.

I wish to acknowledge Ivan Dimitrov and Ivan Penkov for explaining their work
in [DP2], and for sharing with me the proofs of the results announced there in
the form of a manuscript [DP3]. The debt I owe Ivan Penkov goes further, for he
introduced me to root-reductive Lie algebras and helped me greatly as I was first
learning about them. I wish to express my gratitude to Joseph Wolf, for his warm
guidance and frequent attention throughout the writing of this paper.

2. Preliminaries

2.1. Notation and a few definitions. Let V and V∗ be countable-dimensional
vector spaces over the field of complex numbers C, and let 〈·, ·〉 : V × V∗ → C be
a nondegenerate pairing. We denote by gl(V, V∗) the Lie algebra associated to the
associative algebra V ⊗ V∗. By sl(V, V∗) we denote the traceless part of gl(V, V∗),
i.e. [gl(V, V∗), gl(V, V∗)]. If 〈·, ·〉 : V × V → C is a symmetric nondegenerate form,

we denote by so(V ) the Lie subalgebra
∧2 V ⊂ gl(V, V ). If 〈·, ·〉 : V × V → C

is an antisymmetric nondegenerate form, we denote by sp(V ) the Lie subalgebra
Sym2(V ) ⊂ gl(V, V ).

By a result of Mackey [M, p. 171], as long as the pairing 〈·, ·〉 is nondegenerate,
the above algebras do not depend on the pairing, up to isomorphism. The usual
representatives of these isomorphism classes are called gl∞, sl∞, so∞, and sp∞,
respectively.

We will need a notion of the closure of a subspace of a vector space, with respect
to a pairing. That is, let X and Y be vector spaces, and let 〈·, ·〉 : X × Y → C
be any pairing. Given a subspace F ⊆ X , we consider the subspace F⊥⊥, denoted
F , to be its closure in X . A subspace F ⊆ X is said to be closed if F = F . One
important identity is that F⊥ = F⊥⊥⊥ for any F ⊂ X . As a result, for any F ⊂ X ,
the subspace F⊥ ⊂ Y is closed. Furthermore, the closure of any subspace is closed.
One may also check that the arbitrary intersection of closed subspaces is closed.
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If F ⊂ X is a closed subspace and F ⊂ G ⊂ X with dimG/F < ∞, then
G is closed. To see this, consider that dimG/F ≤ dimG/F = dimG/F ≤
dimF⊥/G⊥ ≤ dimG/F . Hence dimG/F = dimG/F < ∞, and since G ⊂ G,
we know G = G.

Now suppose 〈·, ·〉 : V ×V → C is a nondegenerate pairing. A subspace F ⊂ V is
said to be isotropic if F ⊂ F⊥, and coisotropic if F⊥ ⊂ F . If F ⊂ V is an isotropic

subspace, then its closure F is also isotropic. That is, F ⊂ F⊥ implies F ⊂ F⊥,

where F⊥ = F⊥⊥⊥ = F
⊥
.

If 〈·, ·〉 : V × V → C is a symmetric nondegenerate form, an isotropic subspace
M ⊂ V is maximal isotropic if and only if M is closed and dimM⊥/M ≤ 1. If
〈·, ·〉 : V × V → C is an antisymmetric nondegenerate form, a subspace M ⊂ V is
maximal isotropic if and only if M = M⊥.

2.2. Root-reductive Lie algebras. A Lie algebra g is locally finite if every finite
subset of g is contained in a finite-dimensional subalgebra, i.e. if g is a union of
finite-dimensional subalgebras. One interesting class of locally finite Lie algebras is
the root-reductive Lie algebras.

Definition 2.1. (1) An inclusion of finite-dimensional reductive Lie algebras

l ⊆ m is called a root inclusion if, for some Cartan subalgebra hm of m, the

subalgebra l ∩ hm is a Cartan subalgebra of l and each l ∩ hm-root space lα

is also a root space of m.

(2) A Lie algebra g is called root-reductive if it is isomorphic to a union
⋃

i∈Z>0
gi of nested reductive Lie algebras with respect to root inclusions for

a fixed choice of nested Cartan subalgebras hi ⊆ gi with hi−1 = hi ∩ gi−1.

To understand the structure of root-reductive Lie algebras one uses the following
theorem.

Theorem 2.2. [DP1] Let g be a root-reductive Lie algebra.

(1) There is a split exact sequence of Lie algebras

0 → [g, g] → g → g/[g, g] =: a → 0,

i.e. g ≃ [g, g] D a, with a abelian.

(2) The Lie algebra [g, g] is isomorphic to a direct sum of finite-dimensional

simple Lie algebras and copies of sl∞, so∞, and sp∞.

Since there are no nontrivial extensions of of an abelian Lie algebra by a finite-
dimensional simple Lie algebra, any root-reductive Lie algebra is isomorphic to a
direct sum of finite-dimensional Lie algebras and a root-reductive Lie algebra g in
which [g, g] is isomorphic to a direct sum of copies of sl∞, so∞, and sp∞.

Let g be an infinite-dimensional indecomposable root-reductive Lie algebra. Then
[g, g] ∼=

⊕

m sm as Lie algebras, where for each m the component sm is isomorphic
to sl∞, so∞, or sp∞. Let Vm denote the standard representation of sm, and let
(Vm)∗ denote the relevant dual representation. Consider Vm as a [g, g]-module on
which

⊕

n6=m sn acts trivially. By Proposition 4.2 of [DPS], there exists a g-module

structure on Vm extending the [g, g]-module structure. Likewise, there exists a g-
module structure on (Vm)∗ in which

⊕

n6=m sn acts trivially. One may check that

under this construction, the pairing 〈·, ·〉 : Vm × (Vm)∗ → C is g-invariant. By
the standard representations of g, we mean the representations Vm together with a
choice of g-module structure on each.
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A subalgebra of a root-reductive Lie algebra is called a toral subalgebra if it
consists of elements which are semisimple in the sense of Jordan decomposition
[DPS]. We denote the normalizer in g of a subalgebra k by ng(k).

A locally finite Lie algebra s is locally solvable if every finite subset of s is
contained in a solvable subalgebra, i.e. if s is a union of finite-dimensional solvable
subalgebras. The nilpotent subalgebra of a locally solvable Lie algebra is defined to
be the span of all elements which are nilpotent in the sense of Jordan decomposition.
The following is an essential result about representations of locally solvable Lie
algebras:

Lemma 2.3. [DP3] Let s be a locally finite locally solvable Lie algebra, i.e. s =
⋃

i si with si finite-dimensional and solvable. If W is an irreducible s-module which

is a union of finite-dimensional si-modules Wi, then dimW = 1.

Finally, a subalgebra of a root-reductive Lie algebra is called a Borel subalgebra

if it is maximal locally solvable.

2.3. Generalized flags. The definitions in this section, apart from those of biva-
lent closed and Borel generalized flag, were made in [DP2] to study Borel subalge-
bras of gl∞. Let X be a complex vector space. A chain in X is a set of subspaces
of X totally ordered by inclusion. A generalized flag F in X is a chain in X such
that each subspace F ∈ F has an immediate predecessor or an immediate successor
in the inclusion ordering, and for every nonzero x ∈ X there exists an immediate
predecessor-successor pair F ′ ⊂ F ′′ ∈ F with x ∈ F ′′ \F ′. Let A be the ordered set
of immediate predecessor-successor pairs, and denote by F ′

α the predecessor and by
F ′′
α the successor of each pair α ∈ A. Since every subspace in F is either the im-

mediate predecessor or the immediate successor of another subspace, a generalized
flag F may be considered as F = {F ′

α, F
′′
α}α∈A.

Let x ∈ X be nonzero. Then we denote by F ′
x and F ′′

x the predecessor and
successor, respectively, of the immediate predecessor-successor pair such that x ∈
F ′′
x \ F ′

x, obtained from the definition of a generalized flag. A generalized flag G is
considered to be a refinement of F if F ′

x ⊂ G′
x ⊂ G′′

x ⊂ F ′′
x for every nonzero x ∈ X .

A generalized flag F = {F ′
α, F

′′
α}α∈A is maximal (with respect to refinements) if

dimF ′′
α/F

′
α = 1 for all α ∈ A.

Suppose C is a chain of subspaces in X satisfying the property that for each
x ∈ X , there exists a subspace C ∈ C containing x, as well as a subspace C ∈ C not
containing x. (This is not terribly restrictive, as one sufficient condition is that 0
and X be elements of C.) Then one may obtain a generalized flag fl(C) by defining:

fl(C) := {
⋃

x/∈C∈C

C,
⋂

x∈C∈C

C}06=x∈X .

If F = fl(C), then for each nonzero x ∈ X , one has F ′
x =

⋃

x/∈C∈C C and F ′′
x =

⋂

x∈C∈C C. The generalized flag obtained from a chain is not necessarily a subset
of that chain, nor must it contain every subspace in the chain. Take as an example
a chain of the form

0 ( V1 ( V2 ( V3 ( · · · (
⋃

Vi ( · · · ( W3 ( W2 ( W1 ( X.

If on the one hand
⋃

i Vi 6=
⋂

j Wj , then the generalized flag obtained from this
chain is

0 ( V1 ( V2 ( V3 ( · · · (
⋃

Vi (
⋂

Wj ( · · · ( W3 ( W2 ( W1 ( X.
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If on the other hand
⋃

i Vi =
⋂

j Wj , then the generalized flag obtained from this
chain is

0 ( V1 ( V2 ( V3 ( · · · ( · · · ( W3 ( W2 ( W1 ( X.

Now suppose that there is a bilinear form X × Y → C. For any chain C of
subspaces of X , one may consider the set of subspaces given by C⊥ := {C⊥}C∈C,
which is a chain in Y . A generalized flag F is said to be closed if F = fl(F⊥⊥). A
generalized flag is closed if and only if every immediate succesor is closed while every
immediate predecessor has as its closure either itself or its immediate successor. In
the context of closed generalized flags, we use the term good pair to refer to any
immediate predecessor-successor pair of which the predecessor is closed. A closed
generalized flag is a maximal closed generalized flag if and only if every good pair
has codimension 1.

We say that a closed generalized flag F is bivalent if every good pair has codi-
mension 1 or ∞. Let F be a bivalent closed generalized flag in X . A generalized flag
G refining F is called Borel1 if whenever a nonzero x ∈ X yields a good pair with
infinite codimension F ′

x ⊂ F ′′
x in F, it holds that dimG′′

x/G
′
x = 1 and G′

x = F ′′
x ;

and otherwise F ′
x = G′

x ⊂ G′′
x = F ′′

x . Note that maximal closed generalized flags
are a subset of the bivalent closed generalized flags, and that any maximal closed
generalized flag may be considered as a Borel generalized flag refining itself.

If F = {F ′
α, F

′′
α} is a generalized flag in V , then the stabilizer of F in gl(V, V∗)

may be calculated as StF =
∑

α F ′′
α ⊗ (F ′

α)
⊥ [DP2]. This is not hard to check, and

a proof is given in [DP3]. Also, the span of the nilpotent elements of StF (that is
to say its nilpotent subalgebra, since StF is locally solvable as seen below) is given
by the formula

∑

α F ′′
α ⊗ (F ′′

α )
⊥ [DP2].

The following proposition is a consequence of a more complicated statement in
[DP3], and I present an alternative proof.

Proposition 2.4. Let F be a maximal generalized flag in V . Then the stabilizer

in gl(V, V∗) of F is a locally solvable subalgebra.

Proof. Let X ⊂ V and Y ⊂ V∗ be finite-dimensional subspaces such that the
restriction of 〈·, ·〉 to X × Y is nondegenerate. Let d be the dimension of X , and of
course X⊗Y ∼= gld. Observe that gl(V, V∗) may be exhausted by such subalgebras.

For i = 1, . . . , d there exists αi ∈ A such that dim(X ∩ F ′′
αi
) = i. Let Xi :=

X ∩ F ′′
αi
. Then

0 ⊂ X1 ⊂ · · · ⊂ Xd−1 ⊂ Xd = X

is a maximal flag inX . Choose for each i an element xi ∈ Xi\Xi−1. For each i there

exists βi ∈ A such that xi ∈ F ′′
βi
\F ′

βi
. Then StF∩(X⊗Y ) =

∑d
i=1 Xi⊗((F ′

βi
)⊥∩Y ).

One may check that (F ′
βi
)⊥∩Y ⊂ X⊥

i−1, where the perpendicular complement of

F ′
βi

is taken in V∗ and the perpendicular complement of Xi−1 is taken in Y . This

follows immediately from the fact that Xi−1 ⊂ F ′
βi
. Therefore StF ∩ (X ⊗ Y ) ⊂

∑d
i=1 Xi ⊗X⊥

i−1. The latter expression is the stabilizer of the maximal flag X in
X ⊗ Y , which is solvable since it is a Borel subalgebra. Therefore StF ∩ (X ⊗ Y ) is
solvable. It follows that StF is locally solvable. �

1It may turn out that the only Borel generalized flags which are of interest are the maximal
closed generalized flags.
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2.4. Isotropic generalized flags. Now let 〈·, ·〉 : V × V → C be a bilinear form.
We will say that F is an isotropic generalized flag in V if every F ∈ F is an isotropic
subspace of V , and F is a generalized flag in

⋃

F∈F F . As before, we say an isotropic

generalized flag F is closed if F = fl(F⊥⊥). Again, an isotropic generalized flag is
closed if and only if every immediate succesor is closed while every immediate
predecessor has as its closure either itself or its immediate successor. A closed
isotropic generalized flag F in V is a maximal closed isotropic generalized flag if
and only if the subspace

⋃

F∈F F is a maximal isotropic subspace of V , and every
good pair has codimension 1.

If F is a generalized flag in V , let Fiso denote the pairs of F which are isotropic,
i.e. Fiso := {F ′

α, F
′′
α : F ′′

α ⊂ (F ′′
α )

⊥}.

3. Subspaces stable under a Borel subalgebra

3.1. Generalized flags in the standard representations. The following result
motivates the definition given in section 2.3 of a Borel generalized flag.

Theorem 3.1. Any Borel subalgebra of an infinite-dimensional indecomposable

root-reductive Lie algebra is the simultaneous stabilizer of a Borel generalized flag

in each of the standard representations.

Proof. Let g be an infinite-dimensional indecomposable root-reductive Lie algebra,
and let b ⊂ g be a Borel subalgebra. Let [g, g] ∼=

⊕

m sm be the decomposition into
simple root-reductive Lie algebras, where sm is isomorphic to one of sl∞, so∞, and
sp∞ for each m. Let Vm denote the standard representations of g, as defined in
section 2.2. For each m, let Cm be a maximal chain of closed b-stable subspaces in
Vm. Take Fm := fl(Cm).

Let F ′ ⊂ F ′′ be any immediate predeccessor-successor pair in Fm. One can
see immediately that there are no closed subspaces properly between F ′ and F ′′.
Observe that F ′′ is closed, since it is obtained as the intersection of closed subspaces
of Vm. If F ′ is not closed, then F ′ = F ′′ because there are no closed subspaces
properly between F ′ and F ′′. This implies that Fm is a closed generalized flag.

If F ′ is closed, then dim(F ′′/F ′) is either 1 or infinite. In detail, let G be any
b-stable subspace F ′ ⊂ G ⊂ F ′′. If dimF ′′/F ′ < ∞, then dimG/F ′ < ∞, and
hence G is closed, which implies that G is equal to either F ′ or F ′′. That is,
if dimF ′′/F ′ < ∞, then F ′′/F ′ is an irreducible b-module, hence 1-dimensional.
Thus Fm is a bivalent closed generalized flag.

Let Dm be obtained from Fm by adding a maximal chain of b-stable subspaces
between every pair good F ′ ⊂ F ′′ with dim(F ′′/F ′) = ∞. Let Gm := fl(Dm).
Clearly Gm is a refinement of Fm. Let 0 6= x ∈ Vm be such that F ′

x closed and
dimF ′′

x /F
′
x = ∞. The maximality of Dm implies dimG′′

x/G
′
x = 1. Moreover,

F ′
x ( G′

x, otherwise G′′
x would be a closed b-stable subspace. Similarly, G′

x is a
closed b-stable subspace with F ′

x ( G′
x ⊂ F ′′

x , and therefore G′
x = F ′′

x . Thus Gm is
a Borel generalized flag refining Fm.

Consider sm ⊂ gl(Vm, (Vm)∗). Observe that the stabilizer in gl(Vm, (Vm)∗) of Gm

is equal to the stabilizer in gl(Vm, (Vm)∗) of any maximal generalized flag refining
Gm, which by Proposition 2.4 is locally solvable. As a result, StGm

∩ sm is locally
solvable.
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Since each flag Gm is stable under b, indeed b ⊂
⋂

m StGm
. Calculate

[
⋂

m

StGm
,
⋂

m

StGm
] ⊂ (

⋂

m

StGm
) ∩ [g, g]

=
⊕

m

(StGm
∩ sm).

Since each StGm
∩ sm is locally solvable, it follows that

⊕

m(StGm
∩ sm) is locally

solvable. Therefore
⋂

m StGm
is a locally solvable subalgebra of g. Since b is

maximal locally solvable, finally b =
⋂

m StGm
. �

The general case is resumed in Section 4.6.

3.2. Isotropic subspaces in the standard representation of so∞. Suppose
b ⊂ so(V ) is a Borel subalgebra.

Proposition 3.2. A maximal b-stable isotropic subspace of V is maximal isotropic.

Lemma 3.3. Suppose M ⊂ V is a maximal b-stable isotropic subspace. If G is a

b-stable subspace with M ⊂ G ⊂ M⊥, then G ∩G⊥ = M .

Proof of Lemma 3.3. Observe that M ⊂ G⊥ ⊂ M⊥. Since G ∩G⊥ is b-stable and
isotropic, and moreoverM ⊂ G∩G⊥, the maximality ofM impliesG∩G⊥ = M . �

Proof of Proposition 3.2. SinceM is isotropic, its closureM is also isotropic. More-
over, M is stable under b because M is stable under b, by the g-invariance of 〈·, ·〉.
By the maximality of M , indeed M is closed.

Let C be a maximal chain of b-stable subspaces of V between M and M⊥. Let
F := fl(C), so that 0 ⊂ M ⊂ F ⊂ M⊥ ⊂ V is a generalized flag in V . Write
F = {F ′

α, F
′′
α}α∈A. By Lemma 2.3, irreducible b-modules are one dimensional, so it

must be that dimF ′′
α/F

′
α = 1 for all α ∈ A.

Suppose Y ∈ b. Since Y stabilizes the generalized flag 0 ⊂ M ⊂ F ⊂ M⊥ ⊂ V ,
it follows that Y ∈ M ⊗ V +

∑

α F ′′
α ⊗ (F ′

α)
⊥ + V ⊗ M . I will show that in fact

Y ∈ M ⊗ V + V ⊗M .
Now Y =

∑

i vi ⊗ wi + Z, for some vi ∈ F ′′
αi

\ F ′
αi

and wi ∈ (F ′
αi
)⊥ \ M and

Z ∈ M⊗V +V ⊗M . One may safely assume that the set {vi} is linearly independent
modulo M and modulo F ′

β for all β.
Let σ : V ⊗ V → V ⊗ V denote the linear map which swaps the two factors.

Since Y ∈
∧2

V , we calculate −Y = σ(Y ) =
∑

i wi ⊗ vi + σ(Z). Hence

(1)
∑

i

vi ⊗ wi + wi ⊗ vi = −Z − σ(Z).

Looking at the left hand side of (1), one can see that
∑

i vi ⊗ wi + wi ⊗ vi is an
element of M⊥⊗M⊥, whereas the right hand side is an element of M⊗V +V ⊗M .
Hence the right hand side of (1) is an element of (M⊥⊗M⊥)∩ (M ⊗V +V ⊗M) =
M ⊗M⊥ +M⊥ ⊗M .

For each i we have wi ∈ M⊥ \M , so there exists βi ∈ A such that wi ∈ F ′′
βi
\F ′

βi
.

Since wi ∈ F ′′
βi

∩ (F ′
αi
)⊥, Lemma 3.3 implies that βi ≥ αi.

Assume, for the sake of a contradiction, that
∑

i vi ⊗ wi is nonzero. Let β :=
maxi{βi}, where this set is nonempty by hypothesis. So β = β1 = · · · = βk and
β > βi for i 6= 1, . . . , k. Meanwhile β ≥ αi for all i. By assumption {vi} is linearly
independent modulo F ′

β , so in fact αi = β for at most one i.
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(1) First suppose that α1 = β. Then αi < β for i 6= 1, i.e. vi ∈ F ′
β for i 6= 1.

Equation (1) yields

v1 ⊗ w1 + w1 ⊗ v1 = −
∑

i6=1

(vi ⊗ wi + wi ⊗ vi)− Z − σ(Z)

∈ F ′
β ⊗M⊥ +M⊥ ⊗ F ′

β .

This contradicts the fact that v1, w1 ∈ F ′′
β \ F ′

β .

(2) Now suppose that αi < β for all i. For i = 1, . . . , k, there exist unique
bi ∈ C and w′

i ∈ F ′
β such that wi = biw1 + w′

i. Then equation (1) yields

w1 ⊗ (b1v1 + · · ·+ bkvk) = −

k
∑

i=1

w′
i ⊗ vi −

∑

i6=1,...,k

wi ⊗ vi −
∑

i

vi ⊗ wi

−Z − σ(Z)

∈ F ′
β ⊗M⊥ +M⊥ ⊗M.

Since w1 /∈ F ′
β , it follows that b1v1 + · · ·+ bkvk ∈ M . The fact that b1 = 1

contradicts the assumption that the set {vi} is linearly independent modulo
M .

Either case leads to a contradiction. Therefore
∑

i vi ⊗ wi = 0, and Y = Z ∈
M ⊗ V + V ⊗M .

Thus Y ·M⊥ ⊂ M . Since Y ∈ b was arbitrary, indeed b ·M⊥ ⊂ M . Let L be
any isotropic subspace containing M . Then M ⊂ L ⊂ M⊥, so L is stable under
b. Since M is a maximal b-stable isotropic subspace, L = M . Therefore M is a
maximal isotropic subspace. �

Proposition 3.4. There exists a maximal isotropic subspace M ⊂ V which is stable

under b. Furthermore, there exists a maximal chain C of closed b-stable subspaces

in V containing M , with the additional property that C⊥ ⊂ C.

Proof. As a corollary to Proposition 3.2, there exists a maximal isotropic subspace
M ⊂ V which is stable under b. (Observe that 0 is a b-stable isotropic subspace of
V , and that the union of nested b-stable isotropic subspaces is a b-stable isotropic
subspace. Hence there exists a subspace M ⊂ V which is a maximal b-stable
isotropic subspace. By Proposition 3.2, M is a maximal isotropic subspace of V .)

Suppose C is a chain of closed b-stable subspaces with M ∈ C and C⊥ ⊂ C.
Suppose further that D is a closed b-stable subspace such that C ∪ {D} is a chain.
Then D := C ∪ {D,D⊥} is a chain of closed b-stable subspaces with M ∈ D and
such that D⊥ ⊂ D. To see that D is a chain, consider first the fact that since M
and M⊥ are elements of C, the subspace D is either isotropic or coisotropic, i.e.
either D ⊂ D⊥ or D⊥ ⊂ D. It remains to show that for any C ∈ C, either C ⊂ D⊥

or D⊥ ⊂ C. But this follows immediately from the fact that either D ⊂ C⊥ or
C⊥ ⊂ D, since C⊥ ∈ C and C is closed. Hence a chain which is maximal with
respect to chains C of closed b-stable subspaces containing M such that C⊥ ⊂ C is
in fact a maximal chain of closed b-stable subspaces. �

3.3. Isotropic subspaces in the standard representation of sp∞. Suppose
b ⊂ sp(V ) is a Borel subalgebra. The propositions in this section are completely
analogous to those in the previous section, but their proofs admit significant sim-
plifications.
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Proposition 3.5. A maximal b-stable isotropic subspace of V is maximal isotropic.

Lemma 3.6. Suppose M ⊂ V is a maximal b-stable isotropic subspace. If G′ and

G′′ are s-stable subspaces with M ⊂ G′ ⊂ G′′ ⊂ M⊥ and dimG′′/G′ = 1, then

G′′ ∩ (G′)⊥ = M .

Proof of Lemma 3.6. Observe that M ⊂ (G′)⊥ ⊂ M⊥. Since G′ ∩ (G′)⊥ is b-
stable and isotropic, and moreover it contains M , the maximality of M implies
G′ ∩ (G′)⊥ = M . The inclusion M = G′ ∩ (G′)⊥ ⊂ G′′ ∩ (G′)⊥ has codimension
0 or 1. Suppose, for the sake of a contradiction, that G′′ ∩ (G′)⊥ = M ⊕ Cx.
Then x ∈ M⊥, and 〈x, x〉 = 0 since the pairing 〈·, ·〉 is antisymmetric. Hence
〈M⊕Cx,M⊕Cx〉 = 0, and M⊕Cx is isotropic. It is also b-stable. This contradicts
the maximality of M . Hence G′′ ∩ (G′)⊥ = M . �

Proof of Proposition 3.5. Let F = {F ′
α, F

′′
α}α be defined in the same fashion as

in the proof of Proposition 3.2. Suppose Y ∈ b. Again, Y ∈ M ⊗ V +
∑

α F ′′
α ⊗

(F ′
α)

⊥+V ⊗M , so Y =
∑

i vi⊗wi+Z, for some vi ∈ F ′′
αi
\F ′

αi
and wi ∈ (F ′

αi
)⊥ \M

and Z ∈ M ⊗ V + V ⊗ M . One may safely assume that the set {vi} is linearly
independent modulo M and modulo F ′

β for all β.

Since Y ∈ Sym2(V ), we calculate Y = σ(Y ) =
∑

i wi ⊗ vi + σ(Z). Hence

(2)
∑

i

vi ⊗ wi − wi ⊗ vi = Z − σ(Z).

As in the proof of Proposition 3.2, the right hand side of (2) is an element of
M ⊗M⊥ +M⊥ ⊗M .

For each i we have wi ∈ F ′′
βi

\ F ′
βi
, where M ⊂ F ′

βi
⊂ F ′′

βi
⊂ M⊥. Since

wi ∈ F ′′
βi

∩ (F ′
αi
)⊥, we obtain from Lemma 3.6 that βi > αi. The rest of the proof

follows the same outline as the proof of Proposition 3.2, with the simplification that
Case (1) has already been ruled out. �

Proposition 3.7. There exists a maximal isotropic subspace M ⊂ V which is stable

under b. Furthermore, there exists a maximal chain C of closed b-stable subspaces

in V containing M , with the additional property that C⊥ ⊂ C.

The proof is identical to that of Proposition 3.4.

3.4. Maximal closed generalized flags in the standard representation. The
following proposition is an improvement of Theorem 3.1 in the special cases of the
infinite-dimensional simple root-reductive Lie algebras.

Proposition 3.8. Any Borel subalgebra of sl(V, V∗) is the stabilizer of a maximal

closed generalized flag in V . Any Borel subalgebra of so(V ) or sp(V ) is the stabilizer
of a maximal closed generalized flag F in V with F ∪ F⊥ ∪ {M,M⊥} a chain for

some maximal isotropic subspace M ⊂ V .

Proof. If g = sl(V, V∗), let C be a maximal chain of closed b-stable subspaces in V .
If g = so(V ), let M be a b-stable maximal isotropic subspace in V , and let C be a
maximal chain of closed b-stable subspaces in V , with M ∈ C and C⊥ ⊂ C, as in
Proposition 3.4. If g = sp(V ), let M be a b-stable maximal isotropic subspace in
V , and let C be a maximal chain of closed b-stable subspaces in V , with M ∈ C
and C⊥ ⊂ C, as in Proposition 3.7.

Let F := fl(C), as in the proof of Theorem 3.1. Observe that if g is one of so(V )
and sp(V ), then F∪F⊥∪{M,M⊥} is a chain. That is, the maximality of C implies
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that F∪C is a chain, and that F⊥ ⊂ C. Since M,M⊥ ∈ C, indeed F∪F⊥∪{M,M⊥}
is a chain.

We will show that F is a maximal closed generalized flag. By the proof of
Theorem 3.1, F is a bivalent closed generalized flag, so it remains to show that
every good pair of F has codimension 1.

Suppose, for the sake of a contradiction, that there exists a good pair F ′ ⊂ F ′′ of
F with dim(F ′′/F ′) = ∞. Let D be a maximal chain of b-stable subspaces between
F ′ and F ′′, and let G := fl(D). Consider G = {G′

β , G
′′
β}β. It was seen in the proof

of Theorem 3.1 that G′
β = F ′′ for all β. That is, (G′

β)
⊥ = (F ′′)⊥ for all β.

Of course b stabilizes the generalized flag 0 ⊂ F ′ ⊂ G ⊂ F ′′ ⊂ V . Now consider
g ⊂ gl(V, V∗), where in the isotropic cases V∗ = V . The stabilizer in gl(V, V∗) of the
generalized flag 0 ⊂ F ′ ⊂ G ⊂ F ′′ ⊂ V is

F ′ ⊗ V∗ +
∑

β

G′′
β ⊗ (G′

β)
⊥ + V ⊗ (F ′′)⊥ = F ′ ⊗ V∗ +

∑

β

G′′
β ⊗ (F ′′)⊥ + V ⊗ (F ′′)⊥

= F ′ ⊗ V∗ + V ⊗ (F ′′)⊥.

Hence b · F ′′ ⊂ F ′, i.e. b stabilizes any subspace between F ′ and F ′′. This contra-
dicts the fact that there are no closed b-stable subspaces between F ′ and F ′′.

This concludes the proof that F is a maximal closed generalized flag in V . It was
previously noted that if g is so(V ) or sp(V ), then F ∪ F⊥ ∪ {M,M⊥} is a chain.
Moreover, the proof of Theorem 3.1 gives that b = StF. �

4. Borel subalgebras

4.1. Borel subalgebras of sl∞. In this section it is shown that Borel subalgebras
of sl∞ correspond to maximal closed generalized flags in the standard representa-
tion. Let b ⊂ sl(V, V∗) be a Borel subalgebra. Here we denote by StF the stabilizer
in sl(V, V∗) of any generalized flag F in V .

Lemma 4.1. Let F be a maximal closed generalized flag in V . For any u ∈ V ,

StF · u =











F ′
u F ′

u = F ′′
u ;

F ′
u F ′

u ⊂ F ′′
u is the only good pair of F;

F ′′
u otherwise.

Proof. Fix u ∈ V . Consider F = {F ′
α, F

′′
α}α∈A. There are three cases to consider.

Suppose first that there exists α ∈ A for which (F ′
α)

⊥∩u⊥ * (F ′′
α )

⊥. Then there

exists y ∈ (F ′
α)

⊥ ∩ u⊥ such that y /∈ (F ′′
α )

⊥. Hence there exists x ∈ F ′′
α such that

〈x, y〉 = 1. Then StF = Spanα∈A{v ⊗ w − 〈v, w〉x ⊗ y : v ∈ F ′′
α , w ∈ (F ′

α)
⊥}. Let

v ∈ F ′′
α and w ∈ (F ′

α)
⊥. Since (v⊗w−〈v, w〉x⊗y) ·u = 〈u,w〉v−〈u, y〉x = 〈u,w〉v,

indeed StF · u =
⋃

u/∈F ′
α
F ′′
α . It is easy to check that

StF · u =

{

F ′
u F ′

u = F ′′
u ;

F ′′
u otherwise.

Suppose second that (F ′
α)

⊥ = (F ′′
α )

⊥ for all α ∈ A. Then StF =
∑

α F ′′
α ⊗ (F ′

α)
⊥,

which is to say that the stabilizer of F in gl(V, V∗) is already traceless. Let v ∈ F ′′
α

and w ∈ (F ′
α)

⊥. Since (v ⊗ w) · u = 〈u,w〉v, indeed StF · u =
⋃

u/∈F ′
α
F ′′
α . Again

StF · u =

{

F ′
u F ′

u = F ′′
u ;

F ′′
u otherwise.
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Suppose third that (F ′
α)

⊥ ∩ u⊥ ⊂ (F ′′
α )

⊥ for all α ∈ A and that there exists
γ ∈ A for which (F ′

γ)
⊥ 6= (F ′′

γ )
⊥. Then (F ′

γ)
⊥ ∩ u⊥ ⊂ (F ′′

γ )
⊥ ( (F ′

γ)
⊥ implies that

(F ′
γ)

⊥ ∩ u⊥ = (F ′′
γ )

⊥. Thus (F ′′
γ )

⊥ ⊂ u⊥, and hence u ∈ F ′′
γ = F ′′

γ . If u ∈ F ′
γ ,

then u⊥ ∩ (F ′
γ)

⊥ = (F ′
γ)

⊥. Hence u ∈ F ′′
γ \ F ′

γ . This argument implies that F has

exactly one good pair. One may check that StF = (
∑

α∈A F ′′
α ⊗ (F ′

α)
⊥)∩sl(V, V∗) =

∑

γ 6=α∈A F ′′
α ⊗ (F ′

α)
⊥ + F ′′

γ ⊗ (F ′′
γ )

⊥. In this case, StF · u = F ′
u. �

Lemma 4.2. If F and G are maximal closed generalized flags in V with StF ⊂ StG,
then F = G.

Proof. Let F = {F ′
α, F

′′
α}α∈A and G = {G′

β , G
′′
β}β∈B. For each α ∈ A choose

uα ∈ F ′′
α \F ′

α. If there is exactly one γ ∈ A such that G′
γ = G′

γ , define A
′ := A\{γ}.

Otherwise, let A′ := A.
Since StF ⊂ StG, it follows that

StF · uα ⊂ StG · uα.

For any α ∈ A′, Lemma 4.1 implies that StF · uα = F ′′
α . Therefore for any α ∈ A′,

indeed F ′′
α = F ′′

uα
= StF · uα ⊂ StG · uα ⊂ G′′

uα
.

We will show that F ′′
α = G′′

uα
for all α ∈ A′. There are two cases to consider.

(1) Suppose F ′
α = F ′′

α . Then Lemma 4.1 implies that for any u /∈ F ′′
α , indeed

F ′′
α ⊂ StF · u. Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It

follows that G′
uα

⊂ F ′′
α . Thus G

′
uα

⊂ F ′′
α ⊂ G′′

uα
. Since uα ∈ F ′′

α , it must be
that G′

uα
( F ′′

α . Since G is a maximal closed generalized flag, necessarily
F ′′
α = G′′

uα
.

(2) Suppose F ′
α is closed. Then Lemma 4.1 implies that for any u /∈ F ′

α, indeed
F ′′
α ⊂ StF ·u. Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It follows

that G′
uα

⊂ F ′
α. Thus G

′
uα

⊂ F ′
α ⊂ F ′′

α ⊂ G′′
uα

. Since G is a maximal closed
generalized flag, necessarily F ′′

α = G′′
uα

.

If A = A′, then the proof is done, since a generalized flag is determined by its set
of successors. Assume therefore that A 6= A′, in which case it remains to show that
F ′′
γ = G′′

uγ
. Observe first that F ′

γ =
⋃

α<γ F
′′
α =

⋃

α<γ G
′′
uα

. Since dimF ′
α/F

′′
γ = ∞

for any α > γ, it must hold that F ′′
γ =

⋂

α>γ F
′
α =

⋂

α>γ F
′′
α =

⋂

α>γ G
′′
uα

. Since

dimF ′′
γ /F

′
γ = 1, it follows that F ′

γ ⊂ F ′′
γ is a pair in G. Thus F ′′

γ = G′′
uγ
, and

consequently F = G. �

The following result fully describes Borel subalgebras of sl(V, V∗).

Theorem 4.3. A subalgebra of sl(V, V∗) is a Borel subalgebra if and only if it is the

stabilizer of a maximal closed generalized flag in V . Furthermore, the map F 7→ StF
is a bijection between maximal closed generalized flags in V and Borel subalgebras

of sl(V, V∗).

Proof. Let F be an arbitrary maximal closed generalized flag in V . Because StF
equals the stabilizer of any maximal generalized flag refining F, Proposition 2.4
yields that StF is locally solvable. Hence there exists a Borel subalgebra b with
StF ⊂ b. By Proposition 3.8, there is a maximal closed generalized flag G in V
with b = StG. It follows from Lemma 4.2 that F = G. As a result, StF = b is
a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed generalized
flags in V to Borel subalgebras of sl(V, V∗). Proposition 3.8 implies that the map
is surjective, and Lemma 4.2 implies that it is injective. �
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4.2. Borel subalgebras of so∞. In this section it is shown that Borel subalge-
bras of so∞ almost correspond to maximal closed isotropic generalized flags in the
standard representation. Let b ⊂ so(V ) be a Borel subalgebra. Here we denote by
StF the stabilizer in so(V ) of any generalized flag F in V , and we denote by StF,gl
the stabilizer of F in gl(V, V ). Of course, StF = StF,gl ∩ so(V ).

Definition 4.4. Let F = {F ′
α, F

′′
α}α∈A and G = {G′

β, G
′′
β}β∈B be maximal closed

isotropic generalized flags. We say that F and G are twins if A and B have maximal

elements, denoted ∞, such that:

(1) {F ′
α, F

′′
α}α∈A\{∞} = {G′

β , G
′′
β}β∈B\{∞};

(2) F ′
∞ is closed and dim(F ′

∞)⊥/F ′
∞ = 2; and

(3) F ′′
∞ 6= G′′

∞ are the two maximal isotropic subspaces containing F ′
∞.

Condition (1) of this definition forces F ′
∞ = G′

∞. As for condition (3), it makes
sense after condition (2) because whenever L ⊂ V is a closed isotropic subspace with
dimL⊥/L = 2, there are exactly two maximal isotropic subspaces containing L. We
say that F has a twin if F = {F ′

α, F
′′
α}α∈A is a maximal closed isotropic generalized

flag with a maximal element ∞, such that F ′
∞ is closed and (F ′′

∞)⊥ = F ′′
∞. If F

has a twin, let tw(F) denote the twin of F. That is, tw(F) is obtained from F by
replacing F ′′

∞ with the other maximal isotropic subspace containing F ′
∞. Note that

tw is an involution on the set of maximal closed isotropic generalized flags that
have twins. Generalizing a phenomenon already present in the case of so2n, the
maximal closed isotropic generalized flags F and tw(F) have the same stabilizer in
so(V ).

Lemma 4.5. Let F be a maximal generalized flag in V such that F∪F⊥∪{M,M⊥}
is a chain for some maximal isotropic subspace M ⊂ V . Then StFiso

= StF.

Proof. Clearly StF ⊂ StFiso
. Let Z ∈ StFiso

be arbitrary.
Let F = {F ′

α, F
′′
α}α∈A. First one must show that StF =

∑

α∈A,F ′′
α⊂M F ′′

α ∧(F ′
α)

⊥.

For any x ∈ F ′′
α and y ∈ (F ′

α)
⊥, on the one hand x ⊗ y ∈ StF,gl, but on the

other hand since F ∪ F⊥ is a chain, in fact y ⊗ x ∈ StF,gl. In detail, there exists
β ∈ A for which y ∈ F ′′

β \ F ′
β . Since F ∪ F⊥ is a chain, and y ∈ (F ′

α)
⊥ and y /∈ F ′

β ,

it follows that F ′
β ( (F ′

α)
⊥. Moreover since dim(F ′

α)
⊥/(F ′′

α )
⊥ ≤ 1, it must be

that F ′
β ⊂ (F ′′

α )
⊥, and thus F ′′

α = (F ′′
α )

⊥⊥ ⊂ (F ′
β)

⊥. So x ∈ (F ′
β)

⊥, and hence

y ⊗ x ∈ F ′′
β ⊗ (F ′

β)
⊥ ⊂ StF,gl. Thus the map of vector spaces (which is not a map

of Lie algebras):

ϕ :
∑

α∈A

F ′′
α ⊗ (F ′

α)
⊥ →

∧2
V

x⊗ y 7→ x⊗ y − y ⊗ x

in fact has its image in StF. As ϕ|StF = 2 · Id, indeed ϕ maps surjectively onto

StF. Because
∑

F ′′
α ⊗ (F ′

α)
⊥ is spanned by elements of the form x⊗ y, with x ∈ F ′′

α

and y ∈ (F ′
α)

⊥ for some α ∈ A, likewise StF is spanned by elements of the form
x⊗ y − y ⊗ x, with x ∈ F ′′

α and y ∈ (F ′
α)

⊥ for some α ∈ A.
Suppose M 6= M⊥. Observe that M ⊂ M⊥ is a pair in the generalized flag F. In

this case, StF is in fact spanned by elements of the form x⊗ y− y⊗ x, with x ∈ F ′′
α

and y ∈ (F ′
α)

⊥ for α ∈ A which are not equal to the pair M ⊂ M⊥. To see this,
consider that the term in StF corresponding to the pair M ⊂ M⊥ is M⊥⊗M⊥. Let
m ∈ M⊥ \M . Observe that M⊥ ⊗M⊥ = M⊥ ⊗M +M ⊗M⊥ +C(m⊗m). Now
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M⊥⊗M+M⊗M⊥ ⊂
∑

(M⊂M⊥) 6=α∈A F ′′
α ⊗(F ′

α)
⊥ and m⊗m ∈ Sym2(V ). Since σ

fixes M⊥ ⊗M +M ⊗M⊥ and m⊗m, it follows that StF =
(
∑

(M⊂M⊥) 6=α∈A F ′′
α ⊗

(F ′
α)

⊥
)

∩
∧2V .

Moreover, StF is spanned by elements of the form x⊗y−y⊗x, with x ∈ F ′′
α ⊂ M

and y ∈ (F ′
α)

⊥. (Explicitly, if M⊥ ⊂ F ′
α, then y ∈ (F ′

α)
⊥ ⊂ M⊥⊥ = M .) This

concludes the proof that StF =
∑

α∈A,F ′′
α⊂M F ′′

α ∧ (F ′
α)

⊥.

Now

StFiso,gl =
∑

F ′′
α⊂M

F ′′
α ⊗ (F ′

α)
⊥ + V ⊗M⊥,

because it is the stabilizer of Fiso ∪ {M ⊂ V }, which is a generalized flag in V .
Then Z = X + Y for some X ∈

∑

F ′′
α⊂M F ′′

α ⊗ (F ′
α)

⊥ and Y ∈ V ⊗M⊥.

Note that Z = −σ(Z), i.e. X + Y = −σ(X) − σ(Y ). That is, Y + σ(X) =
−σ(Y )−X , and the left hand side of this equation is clearly an element of V ⊗M⊥,
while the righthand side is clearly an element of M⊥ ⊗ V . So Y + σ(X) ∈ (V ⊗
M⊥)∩(M⊥⊗V ) = M⊥⊗M⊥. Now σ(Y +σ(X)) = σ(Y )+X = −(Y +σ(X)), and

therefore Y +σ(X) ∈ (M⊥⊗M⊥)∩
∧2

(V ) =
∧2

M⊥. Let η := Y +σ(X) ∈
∧2

M⊥.
So Z = X − σ(X) + η. Clearly X − σ(X) ∈ StF. Observe that either M ⊂ M⊥

is a pair in F, in which case M⊥ ⊗M⊥ ⊂ StF,gl, or else M = M⊥, in which case

M ⊗M ⊂ StF,gl. Since η ∈
∧2 M⊥ ⊂ StF, it follows that Z ∈ StF. �

Lemma 4.6. Let F = {F ′
α, F

′′
α}α∈A be a maximal closed isotropic generalized flag

in V . Then StF =
∑

α∈A F ′′
α ∧ (F ′

α)
⊥, and moreover StF is locally solvable.

Proof. Let M denote
⋃

α∈A F ′′
α , which is a maximal isotropic subspace of V . Let C

be any maximal chain in V containing F∪F⊥, and let H := fl(C). Note that Hiso is
a refinement of F. We will show that H ∪H⊥ ∪ {M,M⊥} is a chain. Then Lemma
4.5 gives that StH = StHiso

. Since Hiso is a refinement of F, and moreover since
F is a maximal closed isotropic generalized flag in M , it holds that StHiso

= StF.
By Proposition 2.4, StH,gl is locally solvable. Hence StF = StHiso

= StH ⊂ StH,gl

is locally solvable. The formula for StF is seen in the proof of Lemma 4.5 to be a
formula for StH = StHiso

.
It remains to show that H ∪ H⊥ ∪ {M,M⊥} is a chain. Clearly M and M⊥ =

⋂

F∈F F
⊥ are automatically compatible with C, and they remain compatible with

H, and consequently also with H⊥. Now suppose H, I ∈ H, and one must show that
eitherH⊥ ⊂ I or I ⊂ H⊥. IfH and I are both isotropic, then I ⊂ M ⊂ M⊥ ⊂ H⊥.
If H and I are both coisotropic, then H⊥ ⊂ M ⊂ M⊥ ⊂ I. It remains to deal with
the cases

• H ⊂ M ⊂ M⊥ ⊂ I;
• I ⊂ M ⊂ M⊥ ⊂ H .

In the first case, F ′ ⊂ H ⊂ F ′′ for some immediate predecessor-successor pair
F ′ ⊂ F ′′ in F. Thus (F ′′)⊥ ⊂ H⊥ ⊂ (F ′)⊥. Since dim(F ′)⊥/(F ′′)⊥ ≤ 1, it must be
the case that H⊥ is either (F ′)⊥ or (F ′′)⊥. Since F⊥ ∪ {I} is a chain, H⊥ either
contains or is contained in I.

In the second case, F ′ ⊂ I ⊂ F ′′ for some immediate predecessor-successor pair
F ′ ⊂ F ′′ in F. Since dim(F ′)⊥/(F ′′)⊥ ≤ 1, either H ⊂ (F ′′)⊥ or (F ′)⊥ ⊂ H . If
H ⊂ (F ′′)⊥, then I ⊂ F ′′ = F ′′ ⊂ H⊥, i.e. I ⊂ H⊥.

Now assume that (F ′)⊥ ⊂ H . Suppose there exists F ∈ F with F⊥ ⊂ H and
F ( F ′. Then H ⊂ F ⊂ F ′ ⊂ I, and there is nothing left to show. It remains to
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treat the case when H ⊂ F⊥ for all F ∈ F with F ( F ′. Of course F ′ =
⋃

F(F ′ F .

Hence (F ′)⊥ = (
⋃

F(F ′ F )⊥ =
⋂

F(F ′ F⊥. So H ⊂
⋂

F(F ′ F⊥ = (F ′)⊥ ⊂ H .

Hence H = (F ′)⊥, i.e. H⊥ = F ′ which is either F ′ or F ′′. Since F∪ {I} is a chain,
H⊥ either contains or is contained in I. �

Lemma 4.7. Let F be a maximal closed isotropic generalized flag in V . If u ∈
⋃

F∈F F , then

StF · u =

{

F ′′
u F ′

u = F ′
u

F ′
u F ′

u = F ′′
u .

Thus StF · u = F ′′
u .

Proof. Let F = {F ′
α, F

′′
α}α∈A, and let u ∈

⋃

α F ′′
α . Lemma 4.6 states that StF =

∑

α F ′′
α ∧(F ′

α)
⊥. Fix β ∈ A, and let x ∈ F ′′

β and y ∈ (F ′
β)

⊥. Then (x⊗y−y⊗x)·u =

〈u, y〉x − 〈u, x〉y = 〈u, y〉x, since 〈
⋃

α F ′′
α ,

⋃

α F ′′
α 〉 = 0. Hence StF · u =

⋃

u/∈F ′

β

F ′′
β .

The lemma follows easily. �

Lemma 4.8. Suppose F = {F ′
α, F

′′
α}α∈A and G = {G′

β , G
′′
β}β∈B are maximal closed

isotropic generalized flags in V with StF ⊂ StG. If
⋃

α∈A F ′′
α 6=

⋃

β∈B G′′
β, then A

and B have maximal elements ∞ with F ′
∞ = G′

∞ closed and dim(F ′
∞)⊥/F ′

∞ = 2.

Proof. Let M :=
⋃

F∈F F and N :=
⋃

G∈GG, and suppose M 6= N . The maximal-
ity of F and G implies that both M and N are maximal isotropic subspaces. Thus
neither M nor N contains the other, and there exist m ∈ M \N and n ∈ N \M .
There exists α ∈ A for which m ∈ F ′′

α \ F ′
α. For any y ∈ (F ′

α)
⊥, it holds that

m ⊗ y − y ⊗m ∈ StF ⊂ StG. Since m /∈ N , indeed y − cm ∈ N for some c ∈ C.
Hence (F ′

α)
⊥ ⊂ N ⊕ Cm. As a result M ⊂ M⊥ ⊂ (F ′

α)
⊥ ⊂ N ⊕ Cm. Hence

M = (M ∩N)⊕Cm. Of course M ∩N is necessarily closed, being the intersection
of two closed subspaces of V .

Consider the chain M ∩N ⊂ M ⊂ M⊥ ⊂ (M ∩N)⊥. Since dimM⊥/M ≤ 1, and
dimM/(M ∩N) = dim(M ∩N)⊥/M⊥ = 1, it must be that dim(M ∩N)⊥/(M ∩N)
is either 2 or 3.

Also note that n ∈ (M ∩ N)⊥, since N is isotropic. Observe that M ∩ N ⊂
N ⊂ N⊥ ⊂ (M ∩N)⊥, and since dimN⊥/N ≤ 1, and dimN/(M ∩N) = dim(M ∩
N)⊥/N⊥, it must be the case that dimN/(M ∩N) = 1. Thus N = (M ∩N)⊕Cn.

Suppose, for the sake of a contradiction, that dim(M ∩N)⊥/(M ∩N) = 3. Then
there exist u ∈ M⊥ \M and v ∈ (M ∩N)⊥ \M⊥ such that 〈u, u〉 = 〈m, v〉 = 1, and
〈u, v〉 = 〈v, v〉 = 0. So n = am+ bu+ cv + x for some a, b, c ∈ C and x ∈ M ∩N .
Now m⊗ u− u⊗m ∈ StF ⊂ StG, and StG ·N ⊂ N , so

(m⊗ u− u⊗m) · n = (m⊗ u− u⊗m) · (am+ bu+ cv + x)

= 〈am+ bu+ cv + x, u〉m− 〈am+ bu+ cv + x,m〉u

= bm− cu

∈ N = (M ∩N)⊕ C(am+ bu+ cv + x).

Therefore (bm−cu)−λ(am+bu+cv) ∈ M ∩N for some λ ∈ C. So (b−λa)m−(c+
λb)u− λcv = 0, which implies b = c = 0. It follows that N = M . This contradicts
the hypothesis that M 6= N . It follows that dim(M ∩N)⊥/(M ∩N) = 2.
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Since n ∈ (M ∩ N)⊥ \ M⊥, necessarily 〈m,n〉 6= 0. Assume without loss of
generality that 〈m,n〉 = 1. It remains to show that A and B have elements ∞ such
that F ′

∞ = G′
∞ = M ∩N .

We will show that if F ′′
α * M ∩ N , then F ′′

α = M . Suppose there exists z ∈
F ′′
α \M ∩N . Rescaling z, it holds that z = m+ w for some w ∈ M ∩N . For any

x ∈ M ∩N , observe that x⊗n−n⊗x ∈ StF, and (x⊗n−n⊗x) · z = (x⊗n−n⊗
x) · (m+w) = 〈m+w, n〉x−〈m+w, x〉n = x. Hence M ∩N ⊂ StF ·F

′′
α ⊂ F ′′

α ⊂ M .
Since z ∈ F ′′

α and z /∈ M ∩N , it must be that F ′′
α = M .

Likewise, if G′′
β * M∩N then G′′

β = N . Suppose there exists z ∈ G′′
β\M∩N . The

proof that M ∩N ⊂ StF ·G
′′
β is analogous to the argument in the above paragraph.

So M ∩N ⊂ StF ·G′′
β ⊂ StG ·G′′

β ⊂ G′′
β ⊂ N . Since z ∈ G′′

β and z /∈ M ∩N , it must

be that G′′
β = N .

Thus each of A and B has a maximal element ∞ such that F ′
∞ = G′

∞ = M ∩N .
It was already observed thatM∩N is closed, and also that dim(M∩N)⊥/(M∩N) =
2. �

Lemma 4.9. Suppose F and G are maximal closed isotropic generalized flags in V
with StF ⊂ StG. If F 6= G, then F and G are twins; in either case, StF = StG.

Proof. Let F = {F ′′
α , F

′
α}α∈A and G = {G′′

β, G
′′
β}β∈B. If

⋃

α∈A F ′′
α 6=

⋃

β∈B G′′
β , then

let ∞ ∈ A,B be as in Lemma 4.8, and define A′ := A \ {∞} and B′ := B \ {∞}.
Otherwise, let A′ := A and B′ := B. For each α ∈ A′ choose uα ∈ F ′′

α \ F ′
α.

Since StF ⊂ StG, of course

StF · uα ⊂ StG · uα.

Lemma 4.8 implies that uα ∈
⋃

β∈B′ G′′
β , so by Lemma 4.7 that is F ′′

α = F ′′
uα

⊂ G′′
uα

.

We will show that F ′′
α = G′′

uα
for all α ∈ A′. There are two cases to consider.

(1) Suppose F ′
α = F ′′

α . Then Lemma 4.1 implies that for any u /∈ F ′′
α , indeed

F ′′
α ⊂ StF · u. Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It

follows that G′
uα

⊂ F ′′
α . Thus G

′
uα

⊂ F ′′
α ⊂ G′′

uα
. Since uα ∈ F ′′

α , it must be
that G′

uα
( F ′′

α . Since G is a maximal closed generalized flag, necessarily
F ′′
α = G′′

uα
.

(2) Suppose F ′
α is closed. Then Lemma 4.1 implies that for any u /∈ F ′

α, indeed
F ′′
α ⊂ StF ·u. Observe that G′

uα
is stable under StF and uα /∈ G′

uα
. It follows

that G′
uα

⊂ F ′
α. Thus G

′
uα

⊂ F ′
α ⊂ F ′′

α ⊂ G′′
uα

. Since G is a maximal closed
generalized flag, necessarily F ′′

α = G′′
uα

.

On the one hand, if
⋃

α∈A F ′′
α =

⋃

β∈B G′′
β , then F = G, since a generalized flag

is determined by its successors. If, on the other hand,
⋃

α∈A F ′′
α 6=

⋃

β∈B G′′
β , then

we have shown that {F ′
α, F

′′
α : α ∈ A′} = {G′

β , G
′′
β : β ∈ B′}. Lemma 4.8 implies

that F ′
∞ = G′

∞ is a closed isotropic subspace with dim(F ′
∞)⊥/F ′

∞ = 2. There are
precisely two maximal isotropic subspaces containing F ′

∞, and they must be F ′′
∞

and G′′
∞, respectively. Therefore G = tw(F). We omit the proof of the fact that

StF = Sttw(F). �

The following result fully describes Borel subalgebras of so(V ).

Theorem 4.10. A subalgebra of so(V ) is a Borel subalgebra if and only if it is the

stabilizer of a maximal closed isotropic generalized flag in V . Furthermore, a fiber

of the map

F 7→ StF
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from maximal closed isotropic generalized flags in V to Borel subalgebras of so(V )
is either a single maximal closed isotropic generalized flag which has no twin, or a

pair of twins.

Proof. Let b be a Borel subalgebra of so(V ). Proposition 3.8 states that b is the
stabilizer of a maximal closed generalized flag F in V with F∪F⊥∪{M,M⊥} being
a chain for some maximal isotropic subspace M ⊂ V . By Lemma 4.5, b = StFiso

.
Observe that Fiso is a maximal closed isotropic generalized flag in V , since the
union of the isotropic subspaces in F must be M . Hence every Borel subalgebra of
so(V ) is the stabilizer of a maximal closed isotropic generalized flag in V .

Let F be an arbitrary maximal closed isotropic generalized flag in V . By Lemma
4.6, StF is locally solvable. Hence there exists a Borel subalgebra b with StF ⊂ b.
We have seen that there is a maximal closed isotropic generalized flag G with
b = StG. It follows from Lemma 4.9 that StF = StG. This means that StF is
a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed isotropic
generalized flags in V to Borel subalgebras of so(V ). Proposition 3.8 implies that
the map is surjective. Lemma 4.9 implies that if StF = StG, then either F = G,
or F and G are twins. Since StF = Sttw(F) whenever F has a twin, we have shown
that a fiber of the map is either a single maximal closed isotropic generalized flag
which has no twin, or a pair of twins. �

4.3. Borel subalgebras of sp∞. In this section it is shown that Borel subalgebras
of sp∞ correspond to maximal closed isotropic generalized flags in the standard
representation. Let b ⊂ sp(V ) be a Borel subalgebra. Here we denote by StF
the stabilizer in sp(V ) of any generalized flag F in V , and we denote by StF,gl the
stabilizer of F in gl(V, V ). Of course, StF = StF,gl∩sp(V ). If X and Y are subspaces
of V , we denote their symmetrizer by X&Y := {x ⊗ y + y ⊗ x : x ∈ Y, y ∈ Y } ⊂
Sym2(V ).

Lemma 4.11. Let F be a maximal generalized flag in V such that F ∪ F⊥ ∪ {M}
is a chain for some maximal isotropic subspace M ⊂ V . Then StFiso

= StF.

Proof. Clearly StF ⊂ StFiso
. Let Z ∈ StFiso

be arbitrary.
Let F = {F ′

α, F
′′
α}α∈A. We first show that StF =

∑

α∈A,F ′′
α⊂M F ′′

α&(F ′
α)

⊥.

For any x ∈ F ′′
α and y ∈ (F ′

α)
⊥, we know on the one hand that x ⊗ y ∈ StF,gl,

but on the other hand from the fact that F ∪ F⊥ is a chain, we find that also
y ⊗ x ∈ StF,gl. In detail, we have y ∈ F ′′

β \ F ′
β for some β ∈ A. Since F ∪ F⊥

is a chain, and y ∈ (F ′
α)

⊥ and y /∈ F ′
β , we have F ′

β ( (F ′
α)

⊥. Moreover since

dim(F ′
α)

⊥/(F ′′
α )

⊥ ≤ 1, we have F ′
β ⊂ (F ′′

α )
⊥, and thus F ′′

α ⊂ (F ′′
α )

⊥⊥ ⊂ (F ′
β)

⊥. So

x ∈ (F ′
β)

⊥, and we see that y ⊗ x ∈ F ′′
β ⊗ (F ′

β)
⊥ ⊂ StF,gl. Hence the map of vector

spaces (which is not a map of Lie algebras):

ϕ :
∑

α∈A

F ′′
α ⊗ (F ′

α)
⊥ → Sym2(V )

x⊗ y 7→ x⊗ y + y ⊗ x

in fact has its image in b. From the fact that ϕ|b = 2 · Id, we find that ϕ maps
surjectively onto b. Since

∑

F ′′
α ⊗ (F ′

α)
⊥ is spanned by elements of the form x⊗ y,

with x ∈ F ′′
α and y ∈ (F ′

α)
⊥, we see that b is spanned by elements of the form

x⊗ y + y ⊗ x, with x ∈ F ′′
α and y ∈ (F ′

α)
⊥.
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In fact, b is spanned by elements of the form x ⊗ y + y ⊗ x, with x ∈ F ′′
α ⊂ M

and y ∈ (F ′
α)

⊥. (Explicitly, if M ⊂ F ′
α, then y ∈ (F ′

α)
⊥ ⊂ M⊥⊥ = M .)

Now

StFiso,gl =
∑

F ′′
α⊂M

F ′′
α ⊗ (F ′

α)
⊥ + V ⊗M,

because it is the stabilizer of Fiso ∪ {M ⊂ V }, which is a generalized flag in V .
Then Z = X + Y for some X ∈

∑

F ′′
α⊂M F ′′

α ⊗ (F ′
α)

⊥ and Y ∈ V ⊗M .

Since Z = σ(Z), we have X +Y = σ(X)+σ(Y ). So Y −σ(X) = σ(Y )−X , and
the left hand side of the equation is clearly an element of V ⊗M , while the righthand
side is clearly an element of M ⊗V . So Y −σ(X) ∈ (V ⊗M)∩ (M ⊗V ) = M ⊗M .
Now σ(Y − σ(X)) = σ(Y )−X = Y − σ(X), and therefore Y − σ(X) ∈ (M ⊗M)∩
Sym2(V ) = Sym2(M). Let η := Y − σ(X) ∈ Sym2(M). So Z = X + σ(X) + η.
Clearly X + σ(X) ∈ StF. Since η ∈ Sym2(M) ⊂ StF, we have Z ∈ StF. �

Lemmas 4.12, 4.13, and 4.15 may be proved in the same manner as the analogous
statements in Section 4.2 with only straightforward modifications needed, so the
proofs are omitted.

Lemma 4.12. Let F = {F ′
β , F

′′
β }β∈B be a maximal closed isotropic generalized flag

in V . Then StF =
∑

β F
′′
β&(F ′

β)
⊥, and moreover StF is locally solvable.

Lemma 4.13. Let F be a maximal closed isotropic generalized flag in V . If u ∈
⋃

F∈F F , then

StF · u =

{

F ′′
u F ′

u = F ′
u

F ′
u F ′

u = F ′′
u .

Thus StF · u = F ′′
u .

Proposition 4.14. If F and G are maximal closed isotropic generalized flags in V
with StF ⊂ StG, then

⋃

F∈F F =
⋃

G∈GG.

Proof. Let M :=
⋃

F∈F F and N :=
⋃

G∈GG. The maximality of F and G implies
that both M and N are maximal isotropic subspaces. We will show that 〈M,N〉 =
0. Suppose, for the sake of a contradiction, that there exist m ∈ M and n ∈ N
such that 〈n,m〉 6= 0. Then (m⊗m) ·n = 〈n,m〉m. Since Sym2(M) ⊂ StF, we have
shown that m ∈ StF ·N ⊂ StG ·N ⊂ N . But 〈n,m〉 6= 0, which contradicts the fact
that N is isotropic. Hence 〈M,N〉 = 0, and N ⊂ M⊥ = M . By the maximality of
N , we have M = N . �

Lemma 4.15. If F and G are maximal closed isotropic generalized flags in V with

StF ⊂ StG, then F = G.

The following result fully describes Borel subalgebras of sp(V ).

Theorem 4.16. A subalgebra of sp(V ) is a Borel subalgebra if and only if it is the

stabilizer of a maximal closed isotropic generalized flag in V . Futhermore, the map

from maximal closed isotropic generalized flags of V to Borel subalgebras of sp(V )

F 7→ StF

is bijective.
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Proof. Let b be a Borel subalgebra of sp(V ). Proposition 3.8 states that b is the
stabilizer of a maximal closed generalized flag F in V with F ∪ F⊥ ∪ {M} being a
chain for some maximal isotropic subspace M ⊂ V . By Lemma 4.5, b = StFiso

.
Observe that Fiso is a maximal closed isotropic generalized flag in V , since the
union of the isotropic subspaces in F must be M . Hence every Borel subalgebra of
sp(V ) is the stabilizer of a maximal closed isotropic generalized flag in V .

Now let F be an arbitrary maximal closed isotropic generalized flag in V . By
Lemma 4.12, StF is locally solvable. Hence there exists a Borel subalgebra b with
StF ⊂ b. We have seen that there is a maximal closed isotropic generalized flag
G with b = StG. It follows from Lemma 4.9 that F = G. As a result, StF = b

is a Borel subalgebra. Hence F 7→ StF gives a map from maximal closed isotropic
generalized flags in V to Borel subalgebras of sp(V ). Proposition 3.8 gives that the
map is surjective, and Lemma 4.15 implies that it is injective. �

4.4. Explicit formulas. One can find a nice kind of toral subalgebra in a Borel
subalgebra b of one of the simple infinite-dimensional root-reductive Lie algebras.
In each case, there exist toral subalgebras t ⊂ b such that b = t+n, where n denotes
the nilpotent subalgebra of b. Hence irreducible representations of b are given by
characters of t. The relevant formulas are shown in Figure 1. A similar analysis is
seen in the case of gl∞ in [DP2]. For more about toral subalgebras, see [DPS].

If b ⊂ sl(V, V∗) is a Borel subalgebra, then b is the stabilizer in sl(V, V∗) of
a unique maximal closed generalized flag F = {F ′

α, F
′′
α}α∈A in V . It is also the

stabilizer in sl(V, V∗) of a unique maximal closed generalized flag G = {G′
β, G

′′
β}β∈B

in V∗. Let C denote the good pairs of A, and we may also identify C with the subset
of good pairs of B. There exist 1-dimensional subspaces Lγ ⊂ V and Mγ ⊂ V∗ for
γ ∈ C such that 〈Lγ ,Mc〉 = δγcC, and such that F ′′

γ = F ′
γ ⊕ Lγ and (F ′

γ)
⊥ =

(F ′′
γ )

⊥ ⊕Mγ . In fact, one can go so far as to require that there exist vector space
complements Xα of F ′

α in F ′′
α for α ∈ A \ C, and vector space complements Yβ

of G′
β in G′′

β for β ∈ B \ C, such that V = (
⊕

γ∈C Lγ) ⊕ (
⊕

α∈A\C Xα) and

V∗ = (
⊕

γ∈C Mγ)⊕ (
⊕

β∈B\C Yβ). The associated toral subalgebra of b is

t = (
⊕

γ∈C

Lγ ⊗Mγ) ∩ sl(V, V∗).

The same construction produces toral subalgebras inside of Borel subalgebras of
gl(V, V∗) as well, and the formulas for gl(V, V∗) are also given in Figure 1.

If b ⊂ so(V ) is a Borel subalgebra, then b is the stabilizer in so(V ) of a maximal
closed isotropic generalized flag F = {F ′

α, F
′′
α}α∈A in V . Let G := fl(F⊥ ∪ {V }) =

{G′
β, G

′′
β}β∈B. There exist 1-dimensional subspaces Lγ ⊂ V and Mγ ⊂ V for γ ∈ C

such that 〈Mγ ,Mc〉 = 0 and 〈Lγ ,Mc〉 = δγcC, and such that F ′′
γ = F ′

γ ⊕ Lγ and

(F ′
γ)

⊥ = (F ′′
γ )

⊥ ⊕ L−γ for all γ ∈ C. In fact, one can go so far as to require
that there exist vector space complements Xα of F ′

α in F ′′
α for α ∈ A \ C, and

vector space complements Yβ of G′
β in G′′

β for β ∈ B \ C, as well as a vector space

complement S (necessarily of dimension 0 or 1) of
⋃

α F ′′
α in (

⋃

α F ′′
α )

⊥, such that
V = (

⊕

γ∈C Lγ ⊕Mγ) ⊕ (
⊕

α∈A\C Xα)⊕ (
⊕

β∈B\C Yβ) ⊕ S. The associated toral

subalgebra is

t =
⊕

γ∈C

Lγ ∧Mγ .
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Figure 1. Formulas for the stabilizer b ⊂ g of a maximal closed
(isotropic) generalized flag {F ′

α, F
′′
α} in V , the nilpotent subalgebra

n of b, and the toral subalgebra t associated to lines Lγ and Mγ .

g b n t

gl(V, V∗)
∑

α F ′′
α ⊗ (F ′

α)
⊥

∑

α F ′′
α ⊗ (F ′′

α )
⊥

⊕

γ∈C Lγ ⊗Mγ

sl(V, V∗) (
∑

α F ′′
α ⊗ (F ′

α)
⊥) ∩ sl(V, V∗)

∑

α F ′′
α ⊗ (F ′′

α )
⊥ (

⊕

γ∈C Lγ ⊗Mγ) ∩ sl(V, V∗)

so(V )
∑

α F ′′
α ∧ (F ′

α)
⊥

∑

α F ′′
α ∧ (F ′′

α )
⊥

⊕

γ∈C Lγ ∧Mγ

sp(V )
∑

α F ′′
α&(F ′

α)
⊥

∑

α F ′′
α&(F ′′

α )
⊥

⊕

γ∈C Lγ&Mγ

If b ⊂ sp(V ) is a Borel subalgebra, then b is the stabilizer in sp(V ) of a unique
maximal closed isotropic generalized flag F = {F ′

α, F
′′
α}α∈A in V . Let G := fl(F⊥ ∪

{V }) = {G′
β , G

′′
β}β∈B. Let C denote the good pairs of A, and we may also consider

C as a subset of B. There exist 1-dimensional subspaces Lγ ⊂ V and Mγ ⊂ V for
γ ∈ C such that 〈Lγ ,Mc〉 = δγcC and 〈Mγ ,Mc〉 = 0, and such that F ′′

γ = F ′
γ ⊕ Lγ

and (F ′
γ)

⊥ = (F ′′
γ )

⊥ ⊕ Mγ . In fact, one can go so far as to require that there
exist vector space complements Xα of F ′

α in F ′′
α for α ∈ A \ C, and vector space

complements Yβ of G′
β in G′′

β for β ∈ B \ C, such that V = (
⊕

γ∈C Lγ ⊕ Mγ) ⊕

(
⊕

α∈A\C Xα)⊕ (
⊕

β∈B\C Yβ). The associated toral subalgebra is

t =
⊕

γ∈C

Lγ&Mγ.

4.5. Two examples. Let V be the vector space with basis {xi : i ∈ Z6=0}, and let
V∗ be the span of the elements {x∗

i ∈ V ∗ : i ∈ Z6=0}, where 〈·, ·〉 : V × V∗ → C is
defined by 〈xi, x

∗
j 〉 := δij . Consider for i ∈ Z6=0 the subspace Fi := Span{xj : j ≤

i} ⊂ V . For each i the subspace Fi ⊂ V is closed. The chain

· · · ⊂ F−2 ⊂ F−1 ⊂ F1 ⊂ F2 ⊂ · · ·

is a maximal closed generalized flag in V , and let b denote its stabilizer in sl(V, V∗),
which is a Borel subalgebra of sl(V, V∗). This example arises naturally from the
finite-dimensional picture, since b is the union of Borel subalgebras of finite-dimensional
subalgebras isomorphic to sln exhausting sl(V, V∗). Explicitly, let Vn := Span{xj :
−n ≤ j ≤ n} ⊂ V and (Vn)∗ := Span{x∗

j : −n ≤ j ≤ n} ⊂ V∗, and define

gn := sl(V, V∗) ∩ Vn ⊗ (Vn)∗. Then gn ∼= sl2n, and one may check that b ∩ gn is a
Borel subalgebra of gn.

For the second example, let g be the Lie algebra sl(V, V∗) D CX , where one takes
X to have the same commutation relations as the formal sum

∑

i>0 xi⊗ (x∗
i +x∗

−i),
in the notation of the first example. One may check that g is a root-reductive Lie
algebra. The Borel subalgebra b of the first example is a locally solvable subalgebra
of g. In fact b is a Borel subalgebra of g. To check this claim, it suffices to show that
b is self-normalizing in g, in light of Proposition 4.17 below. Suppose Y ∈ sl(V, V∗)
and a ∈ C are such that Y + aX ∈ ng(b). Then Y ∈ gn for some n. Consider the
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element Z := xn+1 ⊗ x∗
n+1 − xn+2 ⊗ x∗

n+2 ∈ b, and compute

[Y + aX,Z] = a[X,Z]

= a[xn+1 ⊗ (x∗
n+1 + x∗

−n−1) + xn+2 ⊗ (x∗
n+2 + x∗

−n−2), Z]

= a(−xn+1 ⊗ x∗
−n−1 + xn+2 ⊗ x∗

−n−2).

Since −xn+1 ⊗ x∗
−n−1 + xn+2 ⊗ x∗

−n−2 /∈ b, it must be that a = 0. Hence ng(b) ⊂
sl(V, V∗), so ng(b) = b. Thus b is an example of a Borel subalgebra of sl(V, V∗) which
remains maximal locally solvable when considered as a subalgebra of sl(V, V∗) D

CX .

4.6. General case. Theorem 3.1 states that any Borel subalgebra of an infinite-
dimensional indecomposable root-reductive Lie algebra is the simultaneous stabi-
lizer of a Borel generalized flag in each of the standard representations. That is, if g
is an infinite-dimensional indecomposable root-reductive Lie algebra, the image of
the map {Fm} 7→

⋂

m StFm
from families of Borel generalized flags in the standard

representations of g to subalgebras of g contains the Borel subalgebras of g. At
the same time, the image of the map {Fm} 7→

⋂

m StFm
from families of maximal

closed generalized flags in the standard representations of g to subalgebras of g is
contained in the Borel subalgebras of g. It is not the case that the simultaneous
stabilizer of any family of Borel generalized flags in the standard representations is
a Borel subalgebra. For instance, there exist Borel generalized flags in V which are
not maximal closed, and the stabilizer of any such flag is not a Borel subalgebra of
sl(V, V∗).

We can calculate the intersection of a Borel subalgebra b of an infinite-dimensional
indecomposable root-reductive Lie algebra g with any simple direct summand of
[g, g]. Let [g, g] ∼=

⊕

m sm be the decomposition into simple direct summands, and
let Vm be the standard representations of g. Using Theorem 3.1, we know that
for each m there exist a bivalent closed generalized flag Fm in Vm and a Borel
generalized flag Gm refining Fm such that b =

⋂

m StGm
. Fix m, and consider

Fm = {F ′
α, F

′′
α}α∈A. Let B ⊂ A denote the pairs α such that F ′

α is closed and
dimF ′′

α/F
′
α = ∞. Then one may check via a calculation similar to one in the proof

of Proposition 3.8 that b∩ sm = StGm
∩ sm = (

∑

α∈A\B F ′′
α ⊗ (F ′

α)
⊥ +

∑

β∈B F ′′
β ⊗

(F ′′
β )

⊥)∩sm. Clearly if B is nonempty, then b∩sm is not a Borel subalgebra of sm.

Proposition 4.17. If b ⊂ [g, g] is a Borel subalgebra of [g, g], then the normalizer

ng(b) is a Borel subalgebra of g. Moreover, if b′ is a Borel subalgebra of g containing

b, then b′ = ng(b).

Proof. Note that b ⊂ ng(b) ∩ [g, g]. For any X ∈ ng(b) ∩ [g, g], it must be that
b + CX is a locally solvable subalgebra of [g, g], since [b + CX, b + CX ] ⊂ b. By
the maximality of b, we know b = b+CX , i.e. X ∈ b. Therefore b = ng(b)∩ [g, g].

Compute [ng(b), ng(b)] ⊂ ng(b)∩ [g, g] = b. As a result ng(b) is a locally solvable
subalgebra of g.

Let b′ be any Borel subalgebra of g containing b. Then b′ ∩ [g, g] is a locally
solvable subalgebra of [g, g] containing b. By the maximality of b, it holds that
b = b′ ∩ [g, g]. Therefore [b′, b] ⊂ [b′, b′] ⊂ b′ ∩ [g, g] = b, i.e. b′ ⊂ ng(b). By the
maximality of b′, we have b′ = ng(b). Thus ng(b) is a Borel subalgebra of g, and
the second statement of the proposition also follows. �
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As a corollary of Proposition 4.17, the simultaneous stabilizer in g of a maximal
closed (isotropic) generalized flag in each of the standard representations is indepen-
dent of the choices made in defining the action of g on its standard representations.
Another easy conseqence is the following theorem.

Theorem 4.18. Let g be an arbitrary root-reductive Lie algebra. The map b 7→
ng(b) yields a bijection from the set of Borel subalgebras of [g, g] to the set of Borel

subalgebras of g whose intersection with [g, g] is a Borel subalgebra of [g, g].

Proof. Proposition 4.17 implies that the map b 7→ ng(b) from Borel subalgebras of
[g, g] to subalgebras of g lands inside the set of Borel subalgebras of g. It was also
seen in the proof that if b is a Borel subalgebra of [g, g], then ng(b) ∩ [g, g] = b.
That is, the composition of the first map with the map from Borel subalgebras of
g to subalgebras of [g, g] given by intersecting, i.e. b 7→ b∩ [g, g], is the map b 7→ b.
The image of the map b 7→ ng(b) is precisely the set of Borel subalgebras of g which
yield Borel subalgebras when intersected with [g, g]. �

This yields a large class of Borel subalgebras of g which are in bijection with
the Borel subalgebras of [g, g]. Since [g, g] decomposes into a direct sum of simple
root-reductive Lie algebras, Borel subalgebras of [g, g] can be understood as direct
sums of Borel subalgebras of the simple direct summands of [g, g]. This is a good
context in which to view the results of this paper on Borel subalgebras of sl∞, so∞,
and sp∞, the three infinite-dimensional simple root-reductive Lie algebras.

The question remains open whether there exists a root-reductive Lie algebra g

containing a Borel subalgebra b ⊂ g such that b ∩ [g, g] is not a Borel subalgebra
of [g, g]. If one could show that no such examples exist, then Theorem 4.18 would
become a classification of the Borel subalgebras of root-reductive Lie algebras. This
outcome would be nice in a way, yet it seems to me unlikely. I would conjecture that
this phenomenon does occur. Such Borel subalgebras might seem pathological, but
I do not see any simple way to preclude their existence. Indeed, the commutator
subalgebra [g, g] is not as large in g as one might think. As an illustration, a root-
reductive Lie algebra g and a maximal toral subalgebra t ⊂ g are constructed in
[DPS] with t ∩ [g, g] = 0, a far cry from a maximal toral subalgebra of [g, g]. In
light of this, one might reasonably hope to construct explicitly an example of a
Borel subalgebra b ⊂ g such that b ∩ [g, g] is not a Borel subalgebra of [g, g]. This
last remaining gap in a basic understanding of Borel subalgebras of root-reductive
Lie algebras would be closed by either producing such an example or proving that
none exists.
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