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Abstract

We study Emb(Sj,Sn) the space of C∞ -smooth embeddings of spheres in spheres, Kn,j the
space of ‘long’ embeddings of Rj in Rn , and spaces of embeddings of spheres in euclidean space
Emb(Sj,Rn), and their framed analogues. We describe some of the basic features of these spaces:
their first non-trivial homotopy-groups, actions of operads of cubes on the most elementary of
these spaces, some natural maps between these spaces and their properties. In the process,
we give a new geometric description to Haefliger’s knots, showing, among other things, that
a graphing/spinning construction analogous to the Litherland deform-spun knot construction
gives an isomorphism of groups π2K4,1 → π0Emb(S3,S6).
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2 Ryan Budney

1 Introduction

This paper was motivated by a rather elementary observation: both π2K4,1 and π0K6,3 are
infinite-cyclic groups, so perhaps there is a geometrically-inspired isomorphism between the two.
We show that a graphing construction Ω2K4,1 → K6,3 induces an isomorphism π2K4,1 → π0K6,3 .
More generally we will study graphing constructions of the form ΩiKn,j → Kn+i,j+i . We describe
how these maps fit in with some of the basic geometric properties of these spaces: their first
non-trivial homotopy groups, the ‘concatenation’ monoid structure and the actions of operads
of little cubes on Kn,j and their framed analogues EC(j,Dn−j).

Section 2 briefly covers the most elementary relationships between the spaces Kn,j , Emb(Sj,Sn),
Emb(Sj,Rn), Emb(Dj ,Dn), Pn,j and the framed spaces EC(j,Dn−j) and PEC(j,Dn−j).

Section 3 begins with a ‘motivational’ proof of an old theorem of Haefliger’s, that π0Emb(Sj,Sn)
is a group provided n − j > 2, the group operation being connect-sum. The proof is via
a permutation of the main concepts of Haefliger’s original argument: A homotopy-equivalence
Emb(Sj,Sn) ≃ SOn+1×SOn−j

Kn,j reduces the problem to the monoid structure of π0Kn,j . There
is a fibration Kn,j → Pn,j → Kn−1,j−1 where Pn,j is a pseudoisotopy embedding space of discs.
A similar homotopy-equivalence Emb(Dj ,Dn) ≃ SOn ×SOn−j

Pn,j tells us that π1Kn−1,j−1 →
π0Kn,j is onto provided Emb(Dj ,Dn) is connected. That Emb(Dj ,Dn) is connected for n−j > 2
is a classical theorem originally due to Smale.

Section 4 investigates the extent to which the fibration Kn,j → Pn,j → Kn−1,j−1 is equivariant
with respect to an action of the operad of (j − 1)-cubes. These actions extend in a natural way
to an action of the operad of j -cubes on appropriate spaces of ‘framed’ embeddings EC(j,Dn) →
PEC(j,Dn) → EC(j − 1,Dn), which ultimately lead us in Section 5 to a (j+1)-cubes equivariant
fibre-sequence ΩPEC(j,Dn) → ΩEC(j − 1,Dn) → EC(j,Dn). At present the iterated loop-space
structures of the spaces EC(j,Dn) are largely mysterious. There are two very different theorems
that have something to say about these spaces. One is Morlet’s Comparison Theorem which
says EC(j,D0) ≃ Ωj+1(PL(j)/Oj) where PL(j) is a suitable space of PL-automorphisms of Rj ,
and Oj is the corresponding orthogonal group. The other, a theorem of the author’s, says that
EC(1,D2) ≃ Z × C2(P ⊔ {∗}), where P ⊂ K3,1 is the subspace of long knots which are prime.
C2(P ⊔ {∗}) indicates the free 2-cubes object on the space P ⊔ {∗}. Both theorem describe the
iterated loop space structure of some of the spaces EC(j,Dn), but the disparity in the answers is
rather perplexing. In a sense, this paper is an attempt to construct a few elementary connections
between the various spaces {EC(j,Dn) : j, n > 0}.

In Section 5 we give a geometric interpretation of the first non-trivial homotopy groups of the
spaces Kn,j provided 2n−3j−3 ≥ 0. In Proposition 5.1 we show that the map ΩKn−1,j−1 → Kn,j

induced from the fibration Kn,j → Pn,j → Kn−1,j−1 is homotopic to gr1 : ΩKn−1,j−1 → Kn,j

(gr1f)(t0, t1, · · · , tj−1) = (t0, f(t0) (t1, · · · , tj−1)) .

In the above formula, we think of a loop space ΩX as being a space of functions f : R → X
such that f(R \ I) = ∗. We show this map is epic between the 1st non-trivial homotopy
groups of ΩKn−1,j−1 and Kn,j respectively. The main technical ingredients we need are some
computations of Sinha, Scannell and Turchin, together with the dissertation of Goodwillie. The
first non-trivial homotopy group of Kn,1 is π2n−6Kn,1 ≃ Z, and we describe this isomorphism as
a signed count of quadrisecants, in direct analogy with a previous paper with Conant, Scannell
and Sinha [11].
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A family of embedding spaces 3

Section 6 mentions, in a very terse fashion, some basic results on the homotopy-type of the
spaces Kn,j . We describe what is known about several natural maps of the form: Kn,j → Kn+1,j ,
Kn,j → ΩKn+j,j , and Kn,j → ΩKn,j−1 .

We start with definitions of the spaces studied and notation.

Definition 1.1 • Dn := {x ∈ Rn : |x| ≤ 1} is called either the unit n-disc, respectively.
∂Dn = Sn−1 .

• I = [−1, 1] = D1 is the standard interval.

• The space of proper embeddings of a disc in a disc is denoted Emb(Dj ,Dn). We put
no requirements on the embeddings other than being proper, ie: f : Dj → Dn satisfies
f(Dj) ∩ ∂Dn = f(∂Dj). All our embedding spaces will be endowed with the weak C∞ -
topology [35].

• The space of embeddings of a j -sphere in an n-sphere Emb(Sj ,Sn).

• Kn,j , the space of long-embeddings of Rj in Rn . This is the space of all embeddings f :
Rj → Rn such that f(t1, t2, · · · , tj) = (t1, t2, · · · , tj, 0, · · · , 0) provided (t1, · · · , tj) /∈ Ij .

• Let Pn,j denote the space of embeddings f : Rk → Rn such that:

– f(t1, t2, · · · , tj) = (t1, t2, · · · , tj , 0, · · · , 0) for (t1, · · · , tj) /∈ [−1,∞) × Ij−1

– for all t1 ≥ 1 f(t1, t2, · · · , tj) = (t1, g(t2, · · · , tj)) where g ∈ Kn−1,j−1 is fixed and
depends only on f .

In the literature, Pn,j is either given the notation PE(Dj−1,Dn−1) [21], C(Dj−1,Dn−1)
[20] or cemb(Dj−1,Dn−1) [23], and is either called the pseudoisotopy embedding space, or
concordance embedding space respectively. We will call it the pseudoisotopy embedding
space.

PSfrag replacements

f ∈ EC(1,D2)

1−1

• EC(j,M ) is defined to be the space of embeddings f : Rj × M → Rj × M such that
supp(f) ⊂ Ij ×M . Here, supp(f) = {x ∈ Rj ×M : f(x) 6= x}. ‘EC’ stands for ‘cubically-
supported embeddings’. These embeddings are not required to be proper.

• PEC(j,M ) is the space of embeddings f : Rj × M → Rj × M such that supp(f) ⊂
[−1,∞)×Ij−1×M and there exists some function g ∈ EC(j − 1,M ) such that f(t1, t2, · · · , tj,m) =
(t1, g(t2, · · · , tj ,m)) for all (t1, t2, · · · , tj,m) ∈ [−1,∞)×Rj−1×M . Here the letters ‘PEC’
stand for cubically-supported embedding pseudo-isotopy space.
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4 Ryan Budney

• We will say a diagram of two maps A → B → C is a homotopy fibre sequence if there
exists a commutative diagram

A //

��

B //

��

C

��
F // E // B

such that F → E → B is a fibration and the vertical maps are homotopy-equivalences.

Part of this manuscript was produced while visiting the University of Rome ‘La Sapienza’,
Louvain-la-neuve, the American Institute of Mathematics and the University of Tokyo. I would
like to thank my hosts, Riccardo Longoni, Paolo Salvatore, Corrado De Concini, Magnus Jacob-
sson, Pascal Lambrechts, Victor Turchin, Toshitake Kohno and AIM, for their hospitality.

2 Basic relations between embedding spaces

This section describes some basic relationships between the spaces: Kn,j , EC(j,M ), Emb(Sj,Sn),
Emb(Sj,Rn), Emb(Dj ,Dn), Pn,j and PEC(j,M ). The essential spirit of the results is that all
homotopy questions about these spaces reduce to studying the spaces Kn,j and Pn,j .

Given a proper embedding f : Dj → Dn one could restrict that embedding to the boundary and
get an embedding of f|∂Dj : Sj−1 → Sn−1 . On a global level, this restriction defines a function:

Emb(Dj ,Dn) → Emb(Sj−1,Sn−1)

which is a fibration [62]. If N is an embedded Sj−1 in Sn−1 , N is said to be smoothly-slice
[41] if there exists a properly embedded manifold M ⊂ Dn , M diffeomorphic to Dj , so that
∂M = N . Thus the above fibration is onto the components of Emb(Sj−1,Sn−1) consisting of the
embeddings whose images are smoothly-slice knots. In this paper, as in this example, fibrations
are not required to have constant fibres, nor are fibrations required to be onto.

We give Emb(Sj−1,Sn−1) the base-point of the standard inclusion Sj−1 ≡ Sj−1×{0}n−j ⊂ Sn−1 .
With this base-point, the fibre of the above fibration has the homotopy-type of Kn,j .

Similarly, there is a fibration Kn,j → Pn,j → Kn−1,j−1 .

Proposition 2.1 There are homotopy-equivalences:

Emb(Dj ,Dn) ≃ SOn ×SOn−j
Pn,j

Emb(Sj−1,Sn−1) ≃ SOn ×SOn−j
Kn−1,j−1

Moreover, the homotopy fibre sequence Kn,j → Emb(Dj ,Dn) → Emb(Sj−1,Sn−1) fits into a
commutative diagram of 6 homotopy fibre sequences:

Kn,j //

��

Pn,j //

��

Kn−1,j−1

��
Kn,j //

��

Emb(Dj ,Dn) //

��

Emb(Sj−1,Sn−1)

��
* // Vn,j // Vn,j

preprint



A family of embedding spaces 5

Proof The homotopy equivalence Emb(Sj−1,Sn−1) ≃ SOn ×SOn−j
Kn−1,j−1 was given in [12].

We apply the same ideas to study Emb(Dj ,Dn). Let B ⊂ ∂Dj be an embedded (j − 1)-disc.
Consider the bundle Emb(Dj rel B,Dn) → Emb(Dj ,Dn) → Emb(B,Sn−1) given by restriction
to B . The base-space has the homotopy-type of Vn,j ≃ SOn/SOn−j and there is a natural map
[12]

SOn ×SOn−j
Emb(Dj rel B,Dn) → Emb(Dj ,Dn).

This is a homotopy-equivalence since it is a map of fibrations, which is a homotopy-equivalence
on the base and fibres respectively.

We note a basic fact about homotopy-fibres.

Proposition 2.2 Let p : E → B be a fibration. Let b ∈ B and e ∈ E be the base-points
of E and B respectively, with p(e) = b. Take e to be the base-point of F = p−1(b). Let
i : F → E be inclusion. Let R(F ) = {(a, h) : a ∈ F, h : [0, 1] → E, h(0) = p(a)} then the
map R(i) : R(F ) → E given by evaluation h(1) is a fibration, and πF : R(F ) → F given by
projection onto F is a homotopy-equivalence. The fibre of the map R(i) : R(F ) → E is the
space HF (i) = {h : [0, 1] → E, h(0) ∈ F, h(1) = e}, and the map p∗ : HF (i) → ΩB given by
post-composition with p is a weak homotopy-equivalence, giving a fibration:

ΩE → HF (i) → F

and a homotopy-commutative diagram

F
i // E

p // B

ΩE // HF (i) //

::uuuuuuuuuu

R(F )

≃ πF

OO

R(i)

<<
zzzzzzzz

We mention what is known about the fibrations EC(j,Dn) → Kn+j,j . This result is a compilation
of observations due to Goodwillie (unpublished), Sinha, Turchin and Salvatore.

Proposition 2.3 The homotopy fibre sequence

ΩjSOn → EC(j,Dn) → Kn+j,j

is trivial for j = 1, and also for n ≤ 2. There is a pull-back diagram of homotopy fibre sequences:

ΩjSOn

��

// ΩjSOn

��
EC(j,Dn)

��

// PΩj−1SOn

��
Kn+j,j // Ωj−1SOn

Where ΩjSOn → PΩj−1SOn → Ωj−1SOn is the path-loop fibration of the space Ωj−1SOn .

The classifying map Kn+j,j → ΩjSOn factors as a composite

ΩjVn+j,j

mono

&&LLLLLLLLLL

Kn+j,j

SH
99sssssssss

// Ωj−1SOn

preprint



6 Ryan Budney

where ‘SH ’ is the Smale-Hirsch map, Vn+j,j is the Stiefel manifold of linearly independent
j -frames in Rn+j , and ‘mono’ is the looping of a certain classifying map.

Framed and unframed pseudoisotopy embedding spaces are more directly related, as the forgetful
map PEC(j,Dn) → Pn+j,j is a homotopy-equivalence.

Proof The observation of the existence of the above pull-back diagram first appears in Turchin’s
work [77]. Turchin also observed that Kn+j,j → Ωj−1SOn factors through the Smale-Hirsch map,
where mono : ΩjVn+j,j → Ωj−1SOn is the (j − 1)-fold looping of the composite α ◦ β in the
diagram:

ΩGn+j,n
α // SOn

// Vn+j,n

ΩGn+j,j

≡ ⊥

OO

ΩVn+j,j

β

OO

ΩSOj

OO

Where ΩGn+j,n → SOn → Vn+j,n is the backing-up of the fibration SOn → Vn+j,n → Gn+j,n

where Gn+j,n is the Grassmanian of n-planes in Rn+j .

Goodwillie (unpublished) and Sinha [72] observed that SH : Kn,1 → ΩVn+1,1 is null-homotopic,
where their proof is simply an application of the definition of the derivative. We will give a
natural extension of their proof in Proposition 2.4.

The homotopy-class of the Smale-Hirsch map SH : Kn,j → ΩjVn,j is not so well understood.
One would expect it to be highly non-trivial as Haefliger [28] has shown that the kernel of
the map π0Kn,j → πjVn,j is the co-kernel of πn+1(SO,SOn−j) → πn+1(G,Gn−j), where SO =
lim
−→

(SO1 → SO2 → SO3 → · · · ) is the stable special orthogonal group, Gi is the space of degree

one maps of Si−1 , and G = lim
−→

(G1 → G2 → G3 → · · · ).

Proposition 2.4 The Smale-Hirsch map SH : Kn,j → ΩjVn,j fits into a homotopy-commutative
diagram

Kn,j

%%KKKKKKKKKK

SH // ΩjVn,j

ΩjVn−1,j−1

Ωj(i)

99rrrrrrrrrr

where i : Vn−1,j−1 → Vn,j is the fibre-inclusion of the fibration Vn−1,j−1 → Vn,j → Sn−1 .

Proof Consider the commutative diagram of spaces and maps:

Kn,j //

SH
��

Pn,j //

SH
��

Kn−1,j−1

SH
��

ΩjVn,j
// Ωj−1HF (i) // Ωj−1Vn−1,j−1

preprint



A family of embedding spaces 7

Here HF (i) is the homotopy-fibre of i. By Proposition 2.2 we can identify HF (i) with ΩSn−1 ,
thus Ωj−1HF (i) ≃ ΩjSn−1 .

The Smale-Hirsch map SH : Pn,j → ΩjSn−1 is given by differentiation in the vertical direction.
The map h : [0, 3] × Rj × Pn,j → Sn−1 given by:

h(t, x1, · · · , xj , f) =







n( ∂f
∂x1

(x1, · · · , xj)) t = 0

n(f(x1 + t, x2, · · · , xj)− f(x1, · · · , xj)) 0 < t ≤ 2
pt−2(n(f(x1 + 2, x2, · · · , xj)− f(x1, · · · , xj))) 2 ≤ t ≤ 3

is a null-homotopy of the Smale-Hirsch map, giving the result. Here, p : [0, 1] × Sn−1 \ {−1} →
Sn−1 \ {−1} is a deformation-retraction of Sn−1 \ {−1} to {1} ⊂ Sn−1 . n : Rn \ {0} → Sn−1 is
the function n(v) = v

|v| .

Lastly, we relate Emb(Sj ,Rn) to Kn,j . For this proposition we will identify Ṙn with Sn via
stereographic projection. If we consider SOn+1 to be a SOn -bundle over S

n , then we can identify
the sub-bundle over Rn with Rn × SOn .

Proposition 2.5 [12] Let C ⋊ Kn,j = {(p, f) : f ∈ Kn,j, p ∈ Rn \ img(f)}. There is a
homotopy-equivalence

SOn ×SOn−j
(C ⋊Kn,j) → Emb(Sj,Rn)

provided n − j > 1. Given f ∈ Kn,j let ḟ ∈ Emb(Sj ,Sn) be the one-point compactification
of f . A pair (A, p) ∈ SOn × Rn can naturally be considered an element T(A,p) ∈ SOn+1 .
The homotopy-equivalence is given by the map which sends (A, p, f) ∈ SOn × (C ⋊Kn,j) to
T(A,p) ◦ ḟ ∈ Emb(Sj,Rn).

3 A motivational proof

We prove for n − j > 2 every proper embedding of Dj in Dn is isotopic, through proper
embeddings, to a linear inclusion, ie: π0Emb(Dk,Dn) = 0. This is an old result for which
there are several references [36, 28]. Our proof is ‘elementary’ in the sense that it uses only
elementary theorems about handlebody decompositions of manifolds which can be found in
textbooks [43, 57]. An elementary corollary is that π0Kn,j ≃ π0Emb(Sj,Sn) is a group, since
the map π1Kn−1,j−1 → π0Kn,j is an epic map of monoids.

Proposition 3.1 The spaces Emb(Dj ,Dn) and Pn,j are path-connected provided n− j > 2.

Proof Let e : Dj → Dn be a proper embedding, and let U be an open tubular neighbourhood
of e(Dj). Let F ≃ Sn−j−1 be a fibre for the unit normal bundle of e. Since n − j > 2, the
inclusion F →֒ Dn \ U is a homotopy-equivalence.

• Assume n ≥ 5. By the minimal handle presentation theorem we know Dn\U has a handle
presentation with precisely two handles: one a 0-handle and the other a (n − j − 1)-
handle. So Dn \ U is a Dj+1 -disc bundle over F and therefore a tubular neighbourhood
of F →֒ Dn \ U . As a bundle, Dn \ U is trivial since F bounds a disc. So we have
a diffeomorphism Dn \ U ≃ Sn−j−1 × Dj+1 . Consider the dual handle presentation of

preprint



8 Ryan Budney

Dn \ U . This allows us to think of Dn \ U as Sn−j−1 × Sj × I, union a (j + 1)-handle
and an n-handle. Consider a handle presentation for Sn−j−1 × Sj . By the Whitney trick
[43, 57], the core sphere of the (j + 1)-handle attachment can be isotoped to intersect
the belt-sphere of the j -handle transversely in a point. Thus one can isotope the core-
disc for the (j + 1)-handle attachment to be a submanifold M ⊂ Dn , M ≃ Dj+1 with
∂M = A ∪ e(Dj) with A ⊂ ∂Dn a disc. M provides us with an isotopy from e(Dj) to a
linear embedding of Dj in Dn .

• Consider n ≤ 4. The path-connectivity of Emb(D1,D4) is well-known and appears in
many places, for example, it is a special case of Proposition 5.6.

As a point of comparison, π0Kj+2,j is never a group [64, 41, 34, 67]. To see this, let f ∈ Kj+2,j

be a knot whose complement Cf has a non-trivial fundamental group, then if g ∈ Kj+2,j is any
knot, π1Cf#g ≃ π1Cf ∗Z π1Cg , in particular, π1Cf is a subgroup of π1Cf#g (see for example
Proposition 2.3.4 of [88]).

π0Kj+1,j is known to be trivial for all j except perhaps j = 3. This follows from the topological
Schoenflies theorem [7, 8, 53] and uniqueness of smooth structures on Dj+1 [74, 43]. Of course,
Kj,j is always a group.

Proposition 3.1 is a very special case of the results in Goodwillie’s dissertation [20] where he
gets sharp lower-bounds on the connectivity of arbitrary pseudoisotopy embedding spaces.

4 Actions of operads of little cubes on embedding spaces

The work of Boardman, Vogt and May [6, 51, 52] gives one a very simple criterion for recognising
if a space X has the homotopy-type of an n-fold loop-space, being that X admits an action of
the operad of little n-cubes, and that the induced monoid structure on π0X is that of a group.
A good reference for operads relevant to topology is the book of Markl, Shnider and Stasheff
[48].

There is an action of the operad of j -cubes on the spaces EC(j,M ) and Kn,j given by con-
catenation (see Definition 4.2). The first instance of an action of the operad of (j + 1)-cubes
on any space of the form EC(j,M ) was given by Morlet [59]. Morlet’s ‘Comparison Theorem’
states that EC(j, ∗) ≃ Ωj+1(PLj/Oj) (see [14] for a proof). Here PLj is the group of PL-
automorphisms of Rj (given a suitable topology) and Oj is the group of linear isometries of
Rj .

The first ‘hint’ of a higher cubes action on the spaces EC(j,M ) for M non-trivial would per-
haps be the work of Schubert [67]. Schubert demonstrated that the connect-sum pairing turns
π0K3,1 into a free commutative monoid on the isotopy-classes of prime long knots, where the
demonstration of commutativity involved ‘pulling one knot through another’.

preprint



A family of embedding spaces 9

PSfrag replacements

f#g

g#f
f

g

In ‘little cubes and long knots’ [9] this idea was extended to construct a (j + 1)-cubes action
on the spaces EC(j,M ) for an arbitrary compact manifold M . By an elementary construction,
this also gave an action of the operad of (j + 1)-cubes on Kn,j for all n − j ≤ 2. Schubert’s
theorem that π0K3,1 is a free commutative monoid over the isotopy classes of prime long knots
was extended to the theorem that K3,1 is a free 2-cubes object over the based space P ⊔ {∗}
where P ⊂ K3,1 is the subspace of prime long knots.

The freeness result K3,1 ≃ C2 (P ⊔ {∗}) implies that the group-completion of K3,1 , ΩBK3,1

has the homotopy-type of Ω2Σ2 (P ⊔ {∗}) [51]. Moreover, one can compute (recursively) the
homotopy-type of the path-components of P by the theorems in [10]. For applications, see [12].

There is a major ‘conceptual gap’ between the Morlet Comparison Theorem and the above result
on ΩBK3,1 . This gap is one of the motivations of this paper.

In this section we define actions of operads of little cubes on various pseudo-isotopy embedding
spaces, extending previous constructions [9].

Definition 4.1 • A (single) little n-cube is a function L : In → In such that L = l1×· · ·×ln
where each li : I → I is affine-linear and increasing ie: li(t) = ait+ bi for some 0 ≤ ai < 1
and bi ∈ R.

• Let CAutn denote the monoid of affine-linear automorphisms of Rn of the form L =
l1 × · · · × ln where li : R → R affine linear and increasing, and L(In) ⊂ In .

• Given a little n-cube L, we sometimes abuse notation and consider L ∈ CAutn by taking
the unique affine-linear extension of L to Rn .

• The space of j little n-cubes Cn(j) is the space of maps L : ⊔j
i=1I

n → In such that the
restriction of L to the interior of its domain is an embedding, and the restriction of L to
any connected component of its domain is a little n-cube. Given L ∈ Cn(j), denote the
restriction of L to the i-th copy of In by Li . By convention Cn(0) is taken to be a point.
This makes the union ⊔∞

j=0Cn(j) into an operad, called the operad of little n-cubes Cn
[51].
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10 Ryan Budney

• There is an action of CAutn on EC(n,M) given by

µ : CAutn × Emb(Rn ×M,Rn ×M) → Emb(Rn ×M,Rn ×M)

µ(L, f) = (L× IdM ) ◦ f ◦ (L−1 × IdM )

In the above formula, L−1 is the inverse of L in the group of affine-linear isomorphisms
of Rn . We write the above action as µ(L, f) = L.f . There is an action of CAutj on Kn,j

defined in the same way.

We now define an ‘obvious’ j -cubes action on Kn,j and EC(j,M ). The associated multiplication
in π0Kn,j is called the connect-sum operation.

Definition 4.2 ki : Cj(i) × (Kn,j)
i → Kn,j , ki : Cj(i) × EC(j,M )i → EC(j,M ) is defined by

the rule ki(L1, · · · , Li, f1, · · · , fi) = L1.f1 ◦ · · · ◦ Li.fi .

We will give an extension of the above j -cubes action on EC(j,M ) to a (j +1)-cubes action in
the next definition.

Definition 4.3 • Given j little (n + 1)-cubes, L = (L1, · · · , Lj) ∈ Cn+1(j) define the j -
tuple of (non-disjoint) little n-cubes Lπ = (Lπ

1 , · · · , L
π
j ) by the rule Lπ

i = li,1 × · · · × li,n
where Li = li,1 × · · · × li,n+1 . Similarly define Lt ∈ Ij by Lt = (Lt

1, · · · , L
t
j) where

Lt
i = li,n+1(−1).

PSfrag replacements

{0}n × R

Lt

Lπ

Rn × {0}

L

• The action of the operad of little (n + 1)-cubes on the space EC(n,M) is given by the
maps κj : Cn+1(j) × EC(n,M )j → EC(n,M) for j ∈ {1, 2, · · · } defined by

κj(L1, · · · , Lj, f1, · · · , fj) = Lπ
σ(1).fσ(1) ◦ L

π
σ(2).fσ(2) ◦ · · · ◦ L

π
σ(j).fσ(j)

where σ : {1, · · · , j} → {1, · · · , j} is any permutation such that Lt
σ(1) ≤ Lt

σ(2) ≤ · · · ≤

Lt
σ(j) . The map κ0 : Cn+1(0) × EC(n,M)0 → EC(n,M) is the inclusion of a point ∗ in

EC(n,M), defined so that κ0(∗) = IdRn×M .

Theorem 4.4 [9] For any compact manifold M and any integer n ≥ 0 the maps κj for
j ∈ {0, 1, 2, · · · } define an action of the operad of little (n+ 1)-cubes on EC(n,M ).

In the definition of EC(n,M), if one replaces the condition that the support of f is contained in
In×M with it being contained in Dn ×M one obtains a homotopy-equivalent space ED(n,M)
and by the same constructions in Definition 4.3, one also obtains an action of the operad of
unframed little (n+ 1)-discs on ED(n,M ).

preprint



A family of embedding spaces 11

Example 4.5

PSfrag replacements

L1

L2

L3

111

1

−1−1−1

−1

,, ,

κ3

Lt
3

Lt
2

Lt
1

f3

f1 f2 f3

Lt
1 < Lt

3 < Lt
2 so σ = (23) and κ3(L1, L2, L3, f1, f2, f3) = Lπ

1 .f1 ◦L
π
3 .f3 ◦L

π
2 .f2 , which explains

why we see the figure-8 knot ‘inside’ of the trefoil on the left hand side of the picture.

We give an analogous action of Cn on PEC(n,M).

Definition 4.6 κj : Cn(j)× PEC(n,M )j → PEC(n,M) for j ∈ {1, 2, · · · } is defined by

κj(L1, · · · , Lj , f1, · · · , fj) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

where σ : {1, · · · , j} → {1, · · · , j} is any permutation such that Lt
σ(1) ≤ Lt

σ(2) ≤ · · · ≤ Lt
σ(j) .

Proposition 4.7 The maps κ∗ define an action of the operad of little n-cubes on PEC(n,M).

Proof We need to verify the three axioms of a cubes action.

(1) Identity. Let IdIn be the identity n-cube, then κ1(IdIn , f) = IdIn .f = f by design.

(2) Symmetry. We need to verify that κn(L.α, f.α) = κn(L, f).
Let

κj(L, f) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

and
κj(L.α, f.α) = Lασ′(1).fασ′(1) ◦ Lασ′(2).fασ′(2) ◦ · · · ◦ Lασ′(j).fασ′(j)

Thus we are assuming let σ, σ′ ∈ Sn satisfy Lt
σ(1) ≤ · · · ≤ Lt

σ(n) and Lt
ασ′(1) ≤ · · · ≤

Lt
ασ′(n) . Up to the ambiguity in our choice of σ and σ′ we can assume σ′ = α−1σ , giving

the result.

(3) Associativity. We need to verify the diagram below commutes:

Cn(m)×
(

Cn(j1)× PEC(n,M)j1 × · · · × Cn(jm)× PEC(n,M )jm
)

//

��

Cn(m)× PEC(n,M )m

��
Cn(j1 + · · · + jm)× PEC(n,M )j1+···+jm // PEC(n,M)
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12 Ryan Budney

Given something in the top-left corner, consider what it maps to in the bottom-right
corner, going around both ways. One gets a composite of functions of the form Li.Li,p.fi,p
in some order. The point being, either way around the diagram, one gets a giant composite
of the same collection of functions, perhaps in different orders. The point being, the order
of composition is irrelevant as our definition only allows re-ordering of functions with
disjoint supports.

Proposition 4.8 Both the fibre-inclusion and projection maps in the fibration

EC(n,M ) → PEC(n,M) → EC(n− 1,M )

are maps of little n-cubes objects.

Proof We need to check equivariance of the map PEC(n,M ) → EC(n− 1,M ), where to be
precise, we are identifying {1}×Rn−1×M with Rn−1×M via the map (1, t2, t3, · · · , tn,m) 7−→
(t2, t3, · · · , tn,m).

If we restrict

κj(L1, · · · , Lj , f1, · · · , fj) = Lσ(1).fσ(1) ◦ Lσ(2).fσ(2) ◦ · · · ◦ Lσ(j).fσ(j)

to {1} × Rn−1 ×M we get the composite

Lπ
σ(1).fσ(1)|{1}×Rn−1×M ◦ Lπ

σ(2).fσ(2)|{1}×Rn−1×M ◦ · · · ◦ Lπ
σ(j).fσ(j)|{1}×Rn−1×M

which is just
κj(L1, · · · , Lj , f1|{1}×Rn−1×M , · · · , fj|{1}×Rn−1×M )

5 Knot graphing and spinning

In this section we investigate the ‘graphing’ maps

gr1 : ΩKn−1,j−1 → Kn,j, gr1 : ΩEC(j − 1,Dn) → EC(j,Dn)

defined in the introduction. We compute their effect on the first non-trivial homotopy groups
of ΩKn−1,j−1 and Kn,j respectively and show they are equivariant with respect to an action of
an operad of cubes.

Proposition 5.1 The fibrations

EC(j,Dn) → PEC(j,Dn) → EC(j − 1,Dn) and Kn,j → Pn,j → Kn−1,j−1

‘back up’ to homotopy fibre sequences

ΩPEC(j,Dn) → ΩEC(j − 1,Dn) → EC(j,Dn) and ΩPn,j → ΩKn−1,j−1 → Kn,j

where the fibre-inclusions gr1 : ΩEC(j − 1,Dn) → EC(j,Dn) and gr1 : ΩKn−1,j−1 → Kn,j are
given by the formulae (gr1f)(t0, t1, · · · , tj−1,m) = (t0, f(t0)(t1, · · · , tj−1,m)) and (gr1f)(t0, t1, · · · , tj−1) =
(t0, f(t0)(t1, · · · , tj−1)) respectively. gr1 : ΩEC(j − 1,Dn) → EC(j,Dn) commutes with the ac-
tion of the operad of little (j + 1)-cubes on the domain and range respectively.
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Proof In the case of the fibration EC(j,Dn) → PEC(j,Dn) → EC(j − 1,Dn)

HF (i) = {f : [0, 1] → PEC(j,Dn), f(0) = IdRj×Dn , f(1) ∈ EC(j,Dn)}

and the map HF (i) → ΩEC(j − 1,Dn) defined in Proposition 2.2 is a weak homotopy equiva-
lence. All embedding spaces are dominated by CW-complexes [63], and if a space is dominated
by a CW-complex, it has the homotopy-type of a CW-complex [85]. The class of spaces having
the homotopy-type of CW-complexes is closed under the kinds path and loop-space construc-
tions given above [56], thus HF (i) → ΩEC(j − 1,Dn) is a homotopy-equivalence as both of the
spaces involved have the homotopy-type of CW-complexes.

We compute an explicit homotopy-inverse for ΩEC(j − 1,Dn) → HF (i). Let bǫ,t : R → R be
a C∞ -smooth function such that bǫ,t(x) = t for all x ≥ t, bǫ,t(x) = x for all x ≤ t − ǫ with
b′ǫ,t(x) > 0 for x ∈ (−∞, t). Consider an element of f ∈ ΩEC(j − 1,Dn) to be a function
from f : R → EC(j − 1,Dn) that is constant the base-point outside of [−1, 1]. Given f ∈
ΩEC(j − 1,Dn) we define f̃ ∈ HF (i)

f̃(t)(t1, · · · , tj ,m) = (t1, f(bǫ,2t−1(t1))(t2, t3, · · · , tj ,m))

This is a homotopy-inverse since the composite ΩEC(j − 1,Dn) → HF (i) → ΩEC(j − 1,Dn) is
homotopic to the identity (take ǫ → 0). The composite ΩEC(j − 1,Dn) → HF (i) → EC(j,Dn)
is also homotopic to gr1 , by taking ǫ → 0.

We can now verify that gr1 : ΩEC(j − 1,Dn) → EC(j,Dn) is a map of (j + 1)-cubes objects.
First, we describe the (j+1)-cubes action on ΩEC(j − 1,Dn) induced from the j -cubes action on
EC(j − 1,Dn). Given i little (j +1)-cubes L = (L1, · · · , Li) let Lα = (Lα

1 , · · · , L
α
i ) ∈ C1(1)

i be

their projections on the 1st coordinate, and let Lβ = (Lβ
1 , · · · , L

β
i ) ∈ Cj(1)

i be their projections
on the remaining j -coordinates. The (j + 1)-cubes action on ΩEC(j − 1,Dn) is given by κ′

defined below:

κ′i(L1, · · · , Li, F1, · · · , Fi) := κi(L
β
1 , · · · , L

β
i , L

α
1 .F1, · · · , L

α
i .Fi) (1)

= Lβπ
σ(1).L

α
σ(1).Fσ(1) ◦ L

βπ
σ(2).L

α
σ(2).Fσ(2) ◦ · · · ◦ L

βπ
σ(i).L

α
σ(i).Fσ(i) (2)

Here Lα
i .Fi is the C1 -action on ΩEC(j − 1,Dn) and Lβ

i acts on this via the Cj -action on
EC(j − 1,Dn). The composition operation ◦ is induced from composition, and σ ∈ Si is any

permutation such that Lβt
σ(1) ≤ Lβt

σ(2) ≤ · · · ≤ Lβt
σ(i) .

Consider applying the map gr1 :

gr1 : ΩEC(j − 1,Dn) ∋ F 7−→ ((t0, t, v) 7−→ (t0, F (t0)(t, v))) ∈ EC(j,Dn)

Observe that gr1(L
βπ
σ(p).L

α
σ(p).Fσ(p)) = Lπ

σ(p).gr1(Fσ(p)) thus

gr1(κ
′
i(L1, · · · , Li, F1, · · · , Fi)) = Lπ

σ(1).gr1(Fσ(1)) ◦ L
π
σ(2).gr1(Fσ(2)) ◦ · · · ◦ L

π
σ(i).gr1(Fσ(i)) (3)

= κi(L1, · · · , Li, gr1(F1), · · · , gr1(Fi)) (4)

since gr1 commutes with ◦.

We explore the connection between the maps gr1 and the Litherland deform-spun knot con-
struction.

Given a topological space X , we will denote the space of continuous functions f : S1 ≡ R/2Z →
X by LX , and call LX the free loop space on X . Consider the map Pn : In → In given by
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14 Ryan Budney

(t1, t2, · · · , tn) 7−→ ( t2+2
3 cos(πt1),

t2+2
3 sin(πt1), t3, · · · , tn) Pn is an embedding on the interior of

In , and is globally one-to-one except for the equality Pn(−1, t2, t3, · · · , tn) = Pn(1, t2, · · · , tn).

PSfrag replacements

Pn

Definition 5.2 Given f ∈ LKn−1,j−1 , if f ′ : Rj → Rn is the function f ′(t0, t1, · · · , tj−1) =
(t0, f(t0)(t1, · · · , tj−1)), observe that Pn◦f

′◦P−1
j is defined on the image of Pj , and on ∂img(Pj)

it agrees with the standard inclusion Rj → Rn . Let gr1(f) ∈ Kn,j be the unique extension of
Pn◦f

′◦P−1
j such that gr1(f)|Rj\img(Pj) agrees with the standard inclusion Rj = Rj×{0}n−j ⊂ Rn

on Rj \ img(Pj).

Proposition 5.3 The diagram

LKn−1,j−1
gr

1 // Kn,j

ΩKn−1,j−1

OO

gr
1

99ssssssssss

is homotopy-commutative.

Proof There exists a 1-parameter family Pn(t) : I
n → In for t ∈ [0, 1] satisfying Pn(0) = Pn ,

Pn(1) = IdIn , such that for all t ∈ (0, 1] the function Pn(t) : In → In is an embedding.
Substituting Pn(t) for Pn in the definition of gr1 : LKn−1,j−1 → Kn,j gives the desired homotopy.

We assume for all f ∈ Kn,j , img(f) ∩ (Rn \ Dn) = Rj \ Dn . Technically, this condition de-
scribes a subspace of Kn,j but since it is homotopy-equivalent, it causes no harm. Consider the
fibration Diff(Dn, f) → Diff(Dn) → Kn,j(f) given by restriction. The map Diff(Dn) → Kn,j is
null homotopic. So the induced map ΩKn,j(f) → Diff(Dn, f) gives an injection πi+1Kn,j(f) →
πiDiff(Dn, f) for all i. Given an element g ∈ π1Kn,j(f), let g̃ ∈ π0Diff(Dn, f) be the corre-
sponding element.

Proposition 5.4 Given f ∈ Kn−1,j−1 and g ∈ π1Kn−1,j−1(f) as above, denote the 1-point
compactification of gr1g by gr1g ∈ Emb(Sj,Sn). Provided g̃ ∈ π0Diff(Dn−1, f) corresponds to
g under the map π1Kn−1,j−1(f) → π0Diff(Dn−1, f), the manifold pair

[

(∂Dn−1, ∂Dj−1)×D2
]

∪
[

(Dn−1, img(f) ∩Dn−1)×g̃ S
1
]

(called the g̃ -spun knot, as in [19, 47, 41]) is diffeomorphic to the pair (Sn, img(gr1g)).

Proof Let U ≃ D2 × Sn−2 be a closed tubular neighbourhood of {0}2 × Rn−2 ⊂ Ṙn , then
(

Sn \ U, img(gr1g)
)

is diffeomorphic to the pair
[

(Dn−1, img(f) ∩Dn−1)×g̃ S
1
]

.
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Definition 5.5 An element f ∈ π0Kn,j is said to have (Gromoll) degree i if f ∈ img(gri) and
f /∈ img(gri+1). If f is not in the image of gr1 , we say it has degree 0.

The terminology of ‘degree’ comes from the pseudoisotopy theory of discs and spheres [4, 5, 84,
25]. In the next proposition we compute the first non-trivial homotopy groups of the spaces
Kn,j , Emb(Sj ,Sn), and Emb(Sj ,Rn). The key step is to show that every element of π0Kn,j has
degree at least n− j − 2, which reduces to Goodwillie’s dissertation.

Proposition 5.6 (1) Kn,j is (2n − 3j − 4)-connected for all n and j . If we assume that
2n−3j−3 ≥ 0, then the first non-trivial homotopy group of Kn,j is in dimension 2n−3j−3

and π2n−3j−3Kn,j ≃

{

Z j = 1 or n− j is odd
Z2 j > 1 and n− j is even

(2) Emb(Sj ,Sn) is min{(2n − 3j − 4), (n − j − 1)}-connected. If we let m = min{2n − 3j −
3, n−j−1}, provided 2n−3j−3 ≥ 0 the first non-trivial homotopy-group of Emb(Sj,Sn)
is in dimension m and is isomorphic to:

πmEmb(Sj,Sn) ≃























Z 2n− 3j − 3 < n− j − 1, (j = 1 or n− j odd)
Z 2n− 3j − 3 > n− j − 1, n − j even
Z2 2n− 3j − 3 < n− j − 1, j > 1 and n− j even
Z2 2n− 3j − 3 > n− j − 1, n − j odd
Z⊕ Z2 2n− 3j − 3 = n− j − 1

(3) Emb(Sj ,Rn) is min{2n−3j−4, n−j−2} connected for all n and j . Provided 2n−3j−3 ≥ 0
the first non-trivial homotopy group of Emb(Sj,Rn) is in dimension m = min{2n − 3j −
3, n − j − 1} and is given by:

πmEmb(Sj,Rn) ≃























Z 2n− 3j − 3 < n− j − 1, (j = 1 or n− j odd)
Z2 2n− 3j − 3 < n− j − 1, j > 1 and n− j even
Z 2n− 3j − 3 > n− j − 1
Z2 2n− 3j − 3 = n− j − 1, (j = 1 or n− j odd)
Z⊕ Z2 2n− 3j − 3 = n− j − 1, j > 1 and j even

(4) The space Pn,j is (2n − 2j − 5)-connected, and Emb(Dj ,Dn) is min{(2n − 2j − 5), (n −
j − 1)}-connected for all n and j .

Proof (4) The result on Pn,j follows directly from Goodwillie’s dissertation [20]. The result
on Emb(Dj ,Dn) is then a corollary of Proposition 2.1.

(1) There is a computation of the 3rd stage of the Goodwillie tower for Kn,1 in [11]. This is a
(2n− 6)-connected map Kn,1 → AM3 . AM3 is shown to have the homotopy-type of the 3-fold
loop-space on the homotopy fibre of the inclusion Sn−1 ∨ Sn−1 → Sn−1 × Sn−1 . The first non-
trivial integral homology group of Kn,1 is computed by Victor Turchin [78] (see the computations
for the homology of the complexes CT0D

even and CT0D
odd for j = 4, i = 2), H2n−6(Kn,1;Z) ≃

Z, thus π2n−6Kn,1 ≃ Z by the Hurewicz Theorem. We inductively compute the first non-trivial
homotopy groups of Kn,j . Consider the fibre-sequence Kn+1,j+1 → Pn+1,j+1 → Kn,j with
base-case j = 1. Thus, for all j ≥ 2 π2n−6−jKn+j,j+1 ≃ π2n−6Kn,1/img(π2n−6Pn+1,2). When
j = 2n−6 this gives π0K3n+j−6,2n−5 ≃ π2n−6Kn,1/img(π2n−6Pn+1,2). Haefliger’s [28] has shown
that π0K2n+j−6,2n−5 ≃ Z if n is even and Z2 if n is odd, giving the result.
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(2) Proposition 2.1 gives us a homotopy equivalence Emb(Sj ,Sn) ≃ SOn+1 ×SOn−j
Kn,j . Since

SOn+1/SOn−j ≡ Vn+1,j+1 is (n − j − 1)-connected, the homotopy LES of the fibration Kn,j →
Emb(Sj,Sn) → Vn+1,j+1 tells us that Emb(Sj ,Sn) is min{n − j − 1, 2n − 3j − 4}-connected.
Since the bundle Emb(Sj ,Sn) → Vn+1,j+1 is split, we can compute the first non-trivial homotopy
group of Emb(Sj ,Sn) directly.

(3) For Emb(Sj ,Rn) we use the homotopy equivalence Emb(Sj,Rn) ≃ SOn ×SOn−j
(C ⋊Kn,j)

from Proposition 2.5. The bundles C ⋊ Kn,j → Kn,j and SOn ×SOn−j
(C ⋊Kn,j) → Vn,j are

split, so the computation follows as in case (2).

Proposition 5.6 proves that Munson’s lower bound [61] on the connectivity of Emb(Sj ,Rn) of
min{2n − 3j − 4, n− j − 2} is sharp.

We devote the rest of this section to a geometric description of the generator of π2n−6Kn,1 .

Take a ‘long’ immersion f : R → R3 ⊂ Rn having two regular double points f(t1) = f(t3),
f(t2) = f(t4) with t1 < t2 < t3 < t4 ∈ R. Let Tfi be the tangent space to img(f) at ti . Let P1

be the orthogonal complement to Tf1⊕Tf3 , and P2 the orthogonal complement of Tf2⊕Tf4 .

. .
PSfrag replacements

Rn

P1
P2

P1 and P2 are (n−2)-dimensional, so if S1 and S2 are the unit sphere of P1 and P2 respectively
they are both (n− 3)-dimensional. There is a ‘resolution function’ r : S1 × S2 → Kn,1 given by
perturbing f near the double points via a bump-function prescribed by (v1, v2) ∈ S1 × S2 . We
claim r is a generator of H2n−6(Kn,1;Z).

To verify that r generates H2n−6(Kn,1;Z) one could work back through the computations of
Turchin and Vassiliev [78, 81]. We supply an alternative ‘geometric’ argument which is inspired
by the work [11]. The idea is to construct an integral co-homology class ν2 ∈ H2n−6(Kn,1;Z)
such that if x ∈ H2n−6(Kn,1;Z) is suitably represented by a manifold then ν2(x) is a signed
count of the number of alternating quadrisecants along the family of long knots x.

Definition 5.7 Given two points x, y ∈ Rn let [x, y] denote the oriented line segment in Rn ,
starting at x and ending at y . An alternating quadrisecant in C4(R

n) is a point (x1, x2, x3, x4) ∈
C4(R

n) such that [x1, x4] ⊂ [x3, x2] as an oriented subinterval. We are using the notation
CkM = {x ∈ Mk : xi 6= xj ∀ i 6= j}.

Let AQn ⊂ C4(R
n) denote the set of all alternating quadrisecants. Let C ′

4(R) = {t ∈ C4(R) :
t1 < t2 < t3 < t4}. Given f ∈ Kn,1 let AQn(f) ⊂ C ′

4(R) denote the pull-back of AQn . More
generally, if f : X → Kn,1 define AQn(f) ⊂ X × C ′

4(R) as the pull-back of AQn .
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Given an closed, oriented (2n − 6)-dimensional manifold X and a map f : X → Kn,1 such
that f∗ : X ×C ′

4(R) → C4(R
n) is transverse to AQn , AQn(f) ⊂ X ×C4(R) is a 0-dimensional

submanifold with oriented normal bundle. A well-defined integer invariant of f , ν2(f) ∈ Z would
then be given by the difference of the number of positively oriented points vs. the number of
negatively oriented points. The sign of each point of AQn(f) could be computed by a formula
analogous to the one in Proposition 6.2 of [11].

In the next two lemmas, we prove that every f : X → Kn,1 is approximated by f̃ such that f̃∗
is transverse to AQn , thus ν2(f) is well-defined.

Lemma 5.8 Given f ∈ Kn,1 , let Nf = {(t, v) : t ∈ R, v ∈ Rn, v ⊥ img(f ′(t))} be the normal
bundle of f , and let Nǫf ⊂ Nf the disc-bundle of radius ǫ. Let exp(ǫ,f) : Nǫf → Rn be the
exponential map (t, v) 7−→ f(t) + v . Let Γ : Kn,1 → (0,∞] be the exponential radius function,
Γ(f) = sup{ǫ : exp(ǫ,f) is an embedding}. We claim Γ is continuous.

Proof Given f ∈ Kn,1 with Γ(f) finite, at least one of the two following statements are true.

(1) The derivative of exp(Γ(f),f) has a critical point on its boundary. These are called focal-
points of f (see [58] §6) and are known to occur at distances 1/κf(t) from f(t) where κf(t)
is the curvature of f at t.

(2) There are points (t1, v1), (t2, v2) ∈ NΓ(f)f with t1 < t2 such that f(t1) + v1 = f(t2) + v2
with Γ(f) = |v1| = |v2|.

In case (1), mint∈R{1/κf(t)} is a continuous function of f ∈ Kn,1 since κ only depends on the
1st and 2nd derivatives of f .

All functions f that satisfy case (2) have a neighbourhood that also satisfy case (2). To see
this, make the definition ξn,i = {(L, v) : L ∈ Gn,i and v ∈ L⊥} here Gn,i is the Grassman
manifold of i-dimensional subspaces of Rn . We think of ξn,i as the space of affine i-dimensional
subspaces of Rn , since one obtains every i-dimensional subspace uniquely as a sum L + v .
Intersection defines a continuous function C2(ξn,n−1) → ξ̇n,n−2 where ξ̇n,n−2 is the one-point
compactification of ξn,n−2 .

Given f : X → Kn,1 with X compact, we call min{Γ(f(x)) : x ∈ X} the exponential radius of
f .

Lemma 5.9 Every x ∈ H2n−6(Kn,1;Z) represented by a manifold f : M → Kn,1 can be
perturbed so that f∗ is transverse to AQn . Thus ν2 is a well-defined element of H2n−6(Kn,1;Z).

Proof Let R be the exponential radius of f . Let bǫ : R → R be a C∞ -smooth function such
that bǫ(x) = 0 for all |x| ≥ ǫ, bǫ(x) > 0 for all x ∈ (−ǫ, ǫ), and b(0) = 1. Let bǫ,t(x) = bǫ(x− t).

Partition the interval I into m equal-length sub-intervals I1, · · · , Im such that for every x ∈ X ,
the convex hull of f(x)(Ij) is contained in νR/2f(x). We can do this because there is a uniform

upper bound on |f(x)′(t)| for all x ∈ X , t ∈ R, and let ǫ = 2/m. Consider the function f̃ :
X×(Rn)k×R → Rn given by f̃(x, v1, · · · , vk, t) = f(t)+

∑k
i=1 bǫ,ti(t)vi . In some neighbourhood

U of 0 in (Rn)k , the restriction of f̃ to X × U × R is adjoint to a map f : X × U → Kn,1 ,
this is because embeddings form an open subset of the space of all ‘long’ smooth maps from R
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to Rn [35]. Consider a point (x, T ) of AQn(f). Let T = (t1, t2, t3, t4). For each i, ti and ti+1

cannot both be elements of some common Ij .

Thus f∗ : X ×U ×C ′
4(R) → C4(R

n) is transverse to AQn . By the Transversality Theorem [26],
f can be approximated by a map X → Kn,1 such that the induced map X × C4(R) → C4(R

n)
is transverse to AQn .

Proposition 5.10 ν2(r) = ±1, thus H2n−6(Kn,1;Z) is generated by r .

Proof In our picture of the ‘immersed trefoil’ f : R → R3 ⊂ Rn there are no quadrisecants,
excepting the ‘degenerate’ one consisting of the double-points. Thus, only one point of the image
of r contains a quadrisecant – the one which is an embedded trefoil in R3 .

Since Kn,1 is (2n− 7)-connected, by the Hurewicz Theorem π2n−6Kn,1 ≃ Z is generated by any
map r̃ : S2n−6 → Kn,1 homologous to r . Attachment of an (n − 3)-handle to S1 × S2 × [0, 1]
along S1 × {∗} × {1} gives a cobordism between S1 × S2 and S2n−6 . Since r|S1×{∗} is null, r
extends over the cobordism. Let r̃ be the restriction of this cobordism to S2n−6 .

6 Survey

So far, much of this paper has been devoted to studying the map gr1 : ΩKn,j → Kn+1,j+1 . As we
have seen, these maps fit into the pseudoisotopy formalism in a rather natural way. We mention
other natural maps between the spaces Kn,j and some of their basic properties.

Proposition 6.1 The natural inclusion Rn → Rn+1 induces an inclusion i : Kn,1 → Kn+1,1 .
There exists a map ĩ : Kn,1 → ΩKn+1,1 and a commutative diagram

Kn,1
i //

ĩ $$IIIIIIIII
Kn+1,1

ΩKn+1,1

p

99ssssssssss

where p : ΩKn+1,1 → Kn+1,1 is an evaluation map, meaning that if f ∈ ΩKn+1,1 , then p(f) =
f(0). p is null-homotopic, thus i is null-homotopic.

Proof Let bt : R → R be a C∞ -smooth function satisfying supp(bt) ⊂ [t − 1, t + 1], with
bt(x) ≥ 0 for all x ∈ R, and b′t(x) = 0 precisely when x ∈ (R \ (t − 1, t + 1)) ∪ {t}. Let
Bt(x) = (0, 0, · · · , 0, bt(x)) ∈ Rn+1 .

Given f ∈ Kn,1 , consider the function F : I× [0, 1] × [0, 1] × R → Rn+1 defined as

F (t, a, c, x) = a (i(f)(x)) + c (Bt(x))

we define

ĩ(f)(x) =































1
2F (1, 1, 3t, 2x) 0 ≤ t ≤ 1

3
1
2F (1, 2 − 3t, 1, 2x) 1

3 ≤ t ≤ 2
3

1
2F (1, 0, 3 − 3t, 2x) 2

3 ≤ t ≤ 1
1
2F (−1, 1,−3t, 2x) −1

3 ≤ t ≤ 0
1
2F (−1, 2 + 3t, 1, 2x) −2

3 ≤ t ≤ −1
3

1
2F (−1, 0, 3 + 3t, 2x) −1 ≤ t ≤ −2

3
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At present it is not known if ĩ : Kn,1 → ΩKn+1,1 is null-homotopic. The adjoint of ĩ, ΣKn,1 →
Kn+1,1 is the direct-analogue of the ‘Freudenthal suspension map for configuration spaces’ [17]
ΣCkR

n → CkR
n+1 which is known to induce an isomorphism on the 1st non-trivial homology

groups provided n > 1, thus one might expect ĩ to be non-trivial. But ΣKn,1 and Kn+1,1 do
not have isomorphic first homology groups, Σ2Kn,1 and Kn+1,1 do. Thus one might suspect
that there are two distinct null-homotopies of ĩ that give an essential map Kn,1 → Ω2Kn+1,1 .
It is not immediately clear how to construct such a map, if one exists.

There are null-homotopies of the inclusions Kn,j → Kn+j,j for all j > 0 defined analogously.

Question 6.2 • For each n and j , what is the smallest i such that Kn,j → Kn+i,j is
null-homotopic?

• Is there a ‘Freudenthal suspension map’ Σ2Kn,j → Kn+1,j provided 2n − 3j − 3 ≥ 0? or
j = 1?

Another natural map relating the spaces Kn,j . has the form R : Kn,j → ΩKn,j−1 . Given
f ∈ Kn,j , let f̃ ∈ ΩKn,j−1 is given by f̃(t)(t1, · · · , tj−1) = f(t1, · · · , tj−1, t) − (0, · · · , 0, t).
Clearly if 2n − 3j − 3 ≥ 0 this map is exactly (2n − 3j − 3)-connected. Analogous maps in
pseudoisotopy theory have been studied using the Morlet Disjunction Lemma (see for example
[20]), but this map does not appear to be studied in any depth. Notice the relation R◦gr1 = Ωi.

Proposition 6.3 There is a homotopy-equivalence Kn,n → ΩKn,n−1 .

Proof There are homotopy-equivalences Kn,n ≃ EC(n, ∗) and Kn,n−1 ≃ EC(n− 1, I) given by
the fibrations in Proposition 2.3. Restriction to Rn−1 × I gives a map EC(n, ∗) → EC(n− 1, I)
which is homotopic to a fibration, whose fibre is EC(n, ∗)2 . The fibre-inclusion map EC(n, ∗)2 →
EC(n, ∗) is homotopic to the composition operation (the homotopy being given by the (n+ 1)-
cubes action on EC(n, ∗)), so the homotopy fibre of EC(n, ∗)2 → EC(n, ∗) is EC(n, ∗), but by
Proposition 2.2, this is also ΩEC(n − 1, I).

Whether or not Kn,n−1 is path-connected is called the smooth Schoenflies problem in dimension
n. Kn,n−1 is known to be connected for all n except perhaps n = 4. For n = 2 this is the
classical smooth Schoenflies theorem (see for example [2], [70] is a good reference for all things
closely related to the classical Schoenflies theorem). For n = 3 this is Alexander’s theorem [2].
For n ≥ 5 it follows from the affirmative solution to the topological Schoenflies theorem [53, 7, 8]
plus the uniqueness of smooth structures on a disc [74, 43]. Scharlemann [69] has some partial
results in dimension 4 but progress has been very slow in this realm.

A metric g on Sn is said to be round if it has constant sectional curvature, or equivalently, if
the isometry group of (Sn, g) acts transitively on the bundle of oriented orthonormal frames of
Sn . Let Mn denote the space of round Riemann metrics on Sn .

Proposition 6.4 Mn has the same homotopy-type as Kn,n .

Proof Mn is a Diff+(Sn)-homogeneous space, where the isotropy subgroup is SOn+1 . Propo-
sition 2.1 says Kn,n ≃ Diff+(Sn)/SOn+1 .

preprint



20 Ryan Budney

Smale [73] and Hatcher [30] have proved that Kn,n is contractible for n = 2 and n = 3 respec-
tively. That K1,1 is contractible follows from an averaging argument, or equivalently from the
‘length’ classification of connected closed 1-dimensional Riemann manifolds via Proposition 6.4.

In general, Kn,n is an (n+1)-fold loop space [9, 59, 14] whose (n+1)-fold delooping is PL(n)/On

[14, 59]. As of yet, there have been no direct descriptions of the homotopy-type of PL(n)/On ,
and essentially nothing seems to be known about K4,4 .

Farrell and Hsiang computed the rational homotopy of Kn,n in a range.

Theorem 6.5 [18] Provided 0 ≤ i < min{n−4
3 , n−7

2 }

πiKn,n ⊗Q ≃

{

Q 4|i+ 1
0 otherwise

The reason for the bound i < min{n−4
3 , n−7

2 } is that this is Igusa’s stable range [37]. Roughly
this is where πiPn,n can be related to K-theory.

Antonelli, Burghelea and Kahn [4, 5] have shown that H∗Kn,n is not finitely-generated for n ≥ 7.

The spaces Kj+2,j are in the realm of ‘traditional’ co-dimension 2 knot theory, on which there
is a plethora of literature. The majority of the literature focuses on π0Kj+2,j in that isotopy
classes of knots are the fundamental objects. Some good general references are Kawauchi [41],
Hillman [34] and Ranicki [64]. Not much is known about the homotopy-type of the components
of Kj+2,j for j > 1.

Question 6.6 Let f ∈ Kj+2,j be a connect-sum of two non-trivial knots. The action of the
operad of (j +1)-cubes on Kj+2,j gives a map Sj → Kj+2,j(f). Is this map essential? Is Kj+2,j

free as an object over the operad of (j + 1)-cubes?

The homotopy type of K3,1 has been worked out in the papers of Budney [10, 9] building
on the work of Hatcher [29, 31, 32], with [10] being a good reference. In [9] it was shown
that Question 6.6 has an affirmative answer. Moreover, K3,1 ≃ C2(P ⊔ {∗}), where P ⊂ K3,1

is the subspace of long knots which are prime. This is a space-level analogue of Schubert’s
connect-sum decomposition of knots [67]. The homotopy-type of P was worked out in [10].
The description turns out to be recursive, in terms of an indexing of the components of K3,1

by a collection of vertex-labelled trees in [13]. One peculiarity of the homotopy-type of K3,1 is
there is a ‘fractal-like’ C2 -structure, in the sense that there is a map K3,1 × S1 → P which is a
homotopy-equivalence onto a subspace of components of P .

There have been several computations of π0Kn,j . From Proposition 5.6, the first non-trivial
homotopy-group of Kn,j is in dimension 2n− 3j − 3, thus π0Kn,j = 0 for 2n − 3j − 3 > 0.

Along the 2n − 3j − 3 = 0 line there is π0K3,1 which is the free commutative monoid on π0P
[67]. Provided j > 1, there are Haefliger’s computations [28]:

π0Kn,j ≃

{

Z j ≡ 3(mod 4)
Z2 j ≡ 1(mod 4)

The generator being given by Haefliger’s Borromean rings construction [27]. This generator is
also the image of r via the graphing construction gr2d−2 : π2d−2Kd+2,1 → π0Kn,j (see Proposi-
tions 5.6, 5.10) where n = 3d, j = 2d− 1.
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The work of Haefliger [28], Milgram [55], Kreck and Skopenkov [44] gives π0Kn,j along the
2n− 3j − 3 = −1 line, provided n− j > 2. Their computations are:

π0Kn,j ≃







0 j ≡ 2(mod 4)
Z4 j ≡ 4(mod 8)
Z2 ⊕ Z2 j ≡ 0(mod 8)

The technique of Haefliger [28] involves two main steps. The first step is the construction of
an isomorphism π0Kn,j ≃ Cn−j

j where Cn−j
j is the group of concordance classes of embed-

dings of Sj in Sn . This step is formally analogous to our Proposition 3.1. Using a Thom-type
construction, Haefliger constructs an isomorphism between Cn−j

j and a multi-relative homo-
topy group Cn

j ≃ πj+1(G;SO,Gn−j) where SO = lim
−→

(SO1 → SO2 → SO3 → · · · ) is the stable

special-orthogonal group, Gn is the space of degree 1 maps Sn−1 → Sn−1 , and G is the stable
analogous G = lim

−→
(G1 → G2 → G3 → · · · ). This reduces the computation of π0Kn,j to rather

traditional problems common to surgery theory [64]: homotopy groups of spheres and orthogonal
groups.

The recent work of Takase [76] proves that any embedding of S4k−1 → S6k can be extended to
an embedding of (S2k×S2k)\D4k → S6k . Takase gives a rather explicit formula for determining
the isotopy class of an element of Emb(S4k−1,S6k) that simplifies Haefliger’s characteristic class
computations [27].

The work of Volic, Lambrechts and Turchin [45] gives the homology of H∗(Kn,1;Q) for n ≥ 4
as the homology of a DGA by showing the collapse of the Vassiliev spectral sequence. Turchin
has found a Poisson Algebra structure for this DGA [77, 78], which motivated the author’s
construction of the 2-cubes action on K3,1 . At present the exact relationship with the induced
Poisson algebra structure coming from the 2-cubes action on Kn,1 given by Salvatore [65] is
not known. Nor has the relationship between Salvatore’s 2-cubes action on EC(1,Dn) and the
author’s [9] been worked-out.

One would assume that constructions having the flavour of Mostovoy’s [60] or something like An-
derson and Hsiang’s ‘bounded embedding spaces’ [3] could give suitable good geometric models
for the iterated classifying-spaces BjKn,j that could relate to the two theorems:

(1) BK3,1 ≃ ΩΣ2(P ⊔ {∗}) [9].

(2) BnKn,n ≃ Ω(PL(n)/On) [14, 59].

To be a little less vague, a ‘good geometric model’ would mean the construction of a space Xn,j

homotopy-equivalent to BjKn,j which is either naturally a subspace of the space embeddings
of Dj in Dn or Rj in Rn respectively. Ideally, Xn,j would be closely related to Salvatore’s
construction of the iterated classifying space [66].

It would be useful to give a new proof of the Morlet Comparison Theorem Kn,n ≃ Ωn+1(PL(n)/On)
that uses the ‘innate’ Cn+1 -action on Kn,n = EC(n, ∗) given in Theorem 4.4. A sufficiently
clear proof would perhaps inform on how to construct geometric models for all the spaces
Bj+1EC(j,Dn).
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