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Abstract Despite the ubiquitous distributions and critical ecological functions of microorganisms in 24 

pedogenesis and ecosystem development in recently deglaciated areas, there are contrasting successional 25 

trajectories among bacteria and fungi, but the driving forces of community assembly still remain poorly 26 

resolved. In this study, we analyzed both bacterial and fungal lineages associated with seven different stages 27 

in the Hailuogou Glacier Chronosequence, to quantify their taxonomic composition and successional 28 

dynamics, and to decipher the relative contribution from the bottom-up control of soil nutrients and altered 29 

vegetation as well as top-down pressures from nematode grazers. Co-occurrence networks showed that the 30 

community complexity for both bacteria and fungi typically peaked at the middle chronosequence stages. The 31 

overlapping nodes mainly belonged to Proteobacteria and Acidobacteria in bacteria, and Ascomycota and 32 

Basidiomycota in fungi, which was further supported by the indicator species analysis. Variation in 33 

partitioning and structural equation modeling suggested that edaphic properties were the primary agents 34 

shaping microbial community structures, especially at the early stages. The importance of biotic factors, 35 

including plant richness and nematode feeding, increased during the last two stages along with the 36 

establishment of a coniferous forest, eventually governing the turnover of fungal communities. Moreover, 37 

bacterial communities exhibited a more compact network topology during assembly, thus supporting 38 

determinism, whereas the looser clustering of fungal communities illustrated that they were determined more 39 

by stochastic processes. These pieces of evidence collectively reveal divergent successional trajectories and 40 

driving forces for soil bacterial and fungal communities along a glacier forefield chronosequence. 41 

 42 

Key words: bacterial community assembly; driving forces; edaphic and biotic properties; fungal community 43 

assembly; Hailuogou Glacier Chronosequence; stochastic and deterministic processes. 44 

 45 
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1. Introduction 47 

Microbes are usually the first colonizers and keystone players to elicit a cascade of processes crucial for 48 

the development of higher-trophic level food webs, especially in many pristine environments, including 49 

glacier retreat areas (Bradley et al., 2016). Despite their ubiquity in terrestrial ecosystems and importance in 50 

ecological functioning, the diversity and distribution patterns of soil microbes at regional and global scales 51 

are far less understood than the respective distribution patterns of above-ground macro-organisms, such as 52 

plants and animals (Kazemi et al., 2016). The continuum of stages on glacier forefronts represents an ideal 53 

framework to study trajectories of microbial succession, as many glaciers have well-documented recession 54 

rates, and thus, the distance from the glacier provides a proxy of the time of the retreat, allowing for the 55 

examination of microbial succession along a spatial chronosequence (Walker et al., 2010). 56 

Broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance 57 

and substrate utilization, suggest that they could follow distinct trajectories and show contrasting dynamics 58 

during ecosystem succession (Hannula et al., 2017). In fact, a number of studies have investigated the effects 59 

of environmental factors on soil microbial abundance and community structure at different scales. Intriguing 60 

results from the pioneering studies of Brown and Jumpponen (2014) and Cutler et al. (2014) showed that 61 

bacteria and fungi exhibit contrasting successional trajectories. Brown and Jumpponen (2014) claimed that 62 

bacterial succession was influenced more by plant establishment than by the succession of fungal communities 63 

during pedogenesis. Furthermore, the presence of plants but not the plant identity itself played a crucial role 64 

in structuring bacterial communities along the chronosequence. In contrast, Cutler et al. (2014) found that 65 

fungi were closely linked to plant establishment but bacteria were less so. Moreover, bacterial communities 66 

seemed to converge along the chronosequence, whereas no evidence of convergence was found in the fungal 67 

community. The reasons for this discrepancy are uncertain, and our understanding of the patterns and drivers 68 

of soil microbial communities remains limited, hampering generalizations on the basis of available studies. 69 
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Besides the bottom-up control of nutrient quality and quantity from altered vegetation, microbial 70 

communities are also influenced by top-down pressure from nematodes and other grazers (Wardle, 2006). Soil 71 

nematodes use an exceptionally wide range of resources and form functional groups at each trophic level, 72 

thereby holding a central position in the food web (Grandy et al., 2016). Therefore, the development of holistic 73 

models that include the full soil-plant-microbe-nematode complex will provide important clues for 74 

understanding the whole ecosystem development. Recent empirical and theoretical studies have highlighted 75 

that both stochastic and deterministic processes govern the spatial distribution of microbial communities at 76 

different spatial and temporal scales (Caruso et al., 2011). Neutrality-based theories emphasize that 77 

communities are stochastically assembled by probabilistic dispersal, ecological drift or historical inertia 78 

(Hubbell, 2001). In contrast, according to deterministic models, successional changes are directional, with 79 

dissimilarities among patches and successional rates decreasing over time, as communities converge towards 80 

similar stable states resistant to further colonization and invasion (Clark, 2009). The knowledge gap is 81 

particularly pronounced in understanding the relative importance of these two processes as drivers for bacterial 82 

and fungal assemblages. The clustering of bacteria along the Lyman Glacier Chronosequence suggested that 83 

bacterial communities are compiled in a more deterministic fashion than fungal communities (Brown and 84 

Jumpponen, 2014). In contrast, in a steppe ecosystem in North China, Zhang et al. (2011, 2016) argued that 85 

environmental changes affect the assembly of bacterial communities primarily through stochastic processes. 86 

However, most previous studies have focused on only a single group of organisms or a single trophic level 87 

(but see e.g., Soininen et al., 2007; Norfolk et al., 2015). Recently, Jonsson et al. (2016) investigated seven 88 

different groups or organisms and discovered a more deterministic pattern for beetle community changes, but 89 

a more stochastic pattern for litter fungal community changes along with the age of the ecosystem. It is 90 

reasonable to speculate that deterministic and stochastic processes can play different roles in contrasting 91 

organisms during different (early vs. late) successional stages (Powell et al., 2015; Jonsson et al., 2016). 92 
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However, current evidence is mostly based on descriptive approaches, which may limit the evaluation of the 93 

relative importance between these two types of processes during ecosystem succession (Zhang et al., 2016). 94 

The Hailuogou Glacier Chronosequence provides an excellent place to study the relationship between 95 

vegetation succession and soil development, as its relatively mild and humid climate allows for rapid moraine 96 

colonization by plants and promotes fast ecosystem development. Along the approximately 2 km-long belt, a 97 

series of sites representing different stages of vegetation succession can be readily recognized, from a barren 98 

stage supporting only some mosses to a lush forest stage. At this site, several studies have investigated specific 99 

processes or organisms, such as pedogenesis (He and Tang, 2008; Zhou et al., 2013), plant succession (Zhong 100 

et al., 1997; Yang et al., 2014), soil nematodes (Lei et al., 2015) and microbial changes (Sun et al., 2016a). 101 

However, the understanding of the mechanistic underpinnings of community assembly is still highly 102 

fragmentary, especially for the holistic soil-plant-microbe-nematode complex. 103 

In this study, we used high-throughput Illumina paired-end sequencing of the bacterial small-subunit 104 

ribosomal RNA (16S rRNA) gene and the fungal ribosomal internal transcribed spacer (ITS) to determine 105 

both bacterial and fungal lineages associated with decadal scale stages of soil development in the Hailuogou 106 

Glacier Chronosequence. Our main objectives were to disentangle fungal and bacterial successional dynamics 107 

and community assembly as well as to decouple the effects of plant establishment, soil development and 108 

nematode grazing on microbial successional trajectories. We hypothesized that: (1) bacterial and fungal 109 

communities show hump-shaped responses to soil ageing, and the chronosequence enters into its retrogressive 110 

phase after 120 years of succession mainly due to the decreased nutrient availabilities; (2) edaphic properties 111 

serve as the primary agents in shaping bacterial communities, while the increasing abundance of lignin-rich 112 

coniferous tree species at later stages of succession exerts a greater impact on fungal communities; (3) 113 

stochastic processes dominate in microbial and microfauna community assemblages at the early stages, while 114 

deterministic factors are more prevalent in plants and at the later stages. To the best of our knowledge, this is 115 
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among the first attempts to integrate knowledge of the soil-plant-microbe-nematode complex in a glacier 116 

forefield, and it may provide a breakthrough for a more holistic view of ecosystem development in the warmer 117 

and increasingly ice-free future world (Grandy et al., 2016).118 
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2. Materials and methods 119 

2.1. Study sites 120 

The Hailuogou Glacier Chronosequence area has been described in detail in Zhou et al. (2013) and Lei 121 

et al. (2015). Briefly, the mean annual precipitation is about 2000 mm, with most (over 68%) occurring 122 

between June and October. The mean annual air temperature is 3.8 ºC, monthly averages ranging from -4.3 ºC 123 

in January (lowest) to 12.7 ºC in July (highest). The observed recession of the Hailuogou Glacier began in 124 

1823, and it has accelerated markedly since the early 20th century. This study was conducted on seven sites 125 

undergoing long-term primary succession starting from bare soil, to pioneer communities and eventually to 126 

the climax vegetation communities at different ages after deglaciation and at different distances from the 127 

glacier terminus (Fig. S1; Lei et al., 2015). The approximate age for each stage studied was calibrated with 128 

chronologies according to tree-rings and soil erosion rates assessed by 137Cs budget, and a seven-scale 129 

chronosequence (from stage 1, ca. 3 years since the glacier retreat, to stage 7, ca. 120 years; Fig. S1) was used. 130 

 131 

2.2. Sampling design 132 

At each chronosequence stage, three 5 × 5 m square experimental plots with a 10-m distance between the 133 

plots were established (except stages 1 and 2 where 2 × 2 m square plots with a 3-m distance between the plots 134 

were used due to the smaller area at the early stages). The taxa of plant communities were determined to the 135 

species level to assess plant richness, including tree, shrub and herb layers (Yang et al., 2014). If higher than 136 

3 m, the tree biomass was calculated with the allometric equations reported by Zhong et al. (1997). The 137 

biomass of the shrub and herb layers was obtained through destructive sampling within the central 2 × 2 m of 138 

each subplot (Yang et al., 2014). All sampled plant material was sorted by species, and then oven-dried and 139 

weighted. 140 

For soil sampling in mid-August 2016, a 50 × 50 cm quadrat was established in each of the three square 141 
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plots at each stage, and five soil cores were collected from the center and each corner of the quadrat using a 142 

5-cm diameter soil corer after removal of litter from soil surface by hand. The five soil cores were combined 143 

as one composite soil sample, and homogenized to pass through a 2-mm sieve after removing roots. 144 

Approximately 200 g soil was divided into three parts and the material was used for (1) the analysis of soil 145 

physicochemical properties, (2) the analysis of soil nematode communities, and (3) the estimation of soil 146 

microbial biomass and extraction of DNA (stored at -80 ºC). 147 

 148 

2.3. Soil physicochemical properties and nematode community analyses 149 

The methods and data for soil physicochemical properties and nematode community analyses were as 150 

detailed in Lei et al. (2015). Furthermore, the nematodes were identified to the genus level and the abundances 151 

were assessed as a proxy for their biomass. Briefly, the nematodes were extracted from 100 g soil samples 152 

using a modified cotton-wool filter method (McSorley and Frederick, 2004). The nematodes were killed at 153 

70 °C in formaldehyde with 1% glycerol. The fixed nematodes were transferred to anhydrous glycerol 154 

following the glycerol-ethanol method and mounted on a microscope slide. At least (when available) 150 155 

nematodes from each sample were counted and identified to the genus level using an inverted compound 156 

microscope. 157 

 158 

2.4. Microbial biomass assessments 159 

The microbial biomass was quantified by the chloroform-methanol extraction method based on Frostegård 160 

et al. (1991). The phospholipids were transformed by alkaline methanolysis into fatty acid methyl esters, and 161 

analyzed and quantified by a Hewlett-Packard 6890N-5973N gas chromatograph fitted with a 25 m capillary 162 

column (Agilent 25 m × 0.2 mm inner diameter × 0.33 μm film thickness). The gas chromatography conditions 163 

were set by the MIDI Sherlock program (MIDI, Inc. Newark, DE). The fatty acids i13:0, i15:0, a15:0, i16:0, 164 
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a17:0, i17:0, i19:0, 14:1ω5c, 15:1ω6c, 16:1ω7c, 16:1ω9c, 17:1ω8c, 18:1ω7c, 18:1ω9c, cy17:0 and cy19:0 165 

were summed for calculating the bacterial biomass, while 16:1ω5c, 16:1ω11c and 18:2ω6 were summed to 166 

indicate the fungal biomass (Hortal et al., 2013). 167 

 168 

2.5. Microbial DNA extraction and pyrosequencing 169 

Soil genomic DNA was extracted from approximately 0.5 g soil per homogenized sample using the 170 

PowerSoil® DNA Isolation Kit (MoBio Laboratories, Inc., Carlsbad, USA) according to the manufacturer’s 171 

instructions. The crude DNA extract was then purified by an UltraClean 15 DNA purification kit (MoBio, 172 

Carlsbad, CA, USA). DNA samples were diluted to 20 ng μl-1 before PCR amplification. The hypervariable 173 

regions V4-V5 of bacterial 16S rRNA genes were amplified using the barcode primers 515F (5′-174 

GTGCCAGCMGCCGCGG-3′) and 907R (5′-CCGTCAATTCMTTTRAGTTT-3′), and the fungal ITS1 175 

region was amplified by ITS1 (5'-CTTGGTCATTTAGAGGAAGTAA-3') and ITS2 (5'-176 

GCTGCGTTCTTCATCGATGC-3') (Schoch et al., 2012; Sun et al., 2016b). The MiSeq Reagent Kit v3 was 177 

used to construct Illumina libraries according to the manufacturer’s instructions. The PCR products from each 178 

sample were pooled and purified with QIAquick Gel Extraction kit (Qiagen), and high-throughput, paired-end 179 

sequencing was performed on the Illumina MiSeq PE300 platform. 180 

 181 

2.6. Sequence analyses 182 

The 1,282,898 and 1,400,981 raw sequences for bacteria and fungi, respectively, were processed using 183 

the pyrosequencing pipeline tools from the QIIME (http://qiime.sourceforge.net/) (Caporaso et al., 2010) and 184 

UPARSE software package (http://drive5.com/uparse/) (Edgar, 2013). Poor-quality sequences (shorter than 185 

200 bp length, Phred quality score lower than 15 and any ambiguous nucleotides) were discarded from the 186 

dataset (Sun et al., 2016b). The remaining high-quality sequences were clustered to operational taxonomic 187 
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units (OTUS) through UPARSE-OTU, which is a novel ‘greedy’ algorithm that performs chimera filtering and 188 

OTU clustering simultaneously, based on the 97% similarity level. The PyNAST tool was used to align all 189 

selected representative sequences (De Santis et al., 2006). The bacterial sequences were classified using the 190 

Greengenes database (http://greengenes.lbl.gov/), and sequences with no hits were designated “unclassified”. 191 

Fungal taxonomy was queried by UNITE fungal ITS reference databases (Bengtsson-Palme et al., 2013). 192 

Bacterial and fungal sequences per sample were rarefied to 44,455 and 44,750 sequences, respectively, using 193 

Good’s coverage, Shannon index and Chao1 richness analyses. Relaxed neighbor-joining trees were generated 194 

for each subsampled and aligned FASTA file using CLEARCUT (v.1.0.9), as embedded in MOTHUR 195 

(Sheneman et al., 2006). Alpha diversity of soil bacterial and fungi was estimated by calculating the OTU 196 

richness. To estimate the β-diversity in soil microbial communities, nonmetric multidimensional scaling 197 

(NMDS) ordinations were generated using the R vegan package on the basis of Bray-Curtis dissimilarities. 198 

Sequencing data for bacterial and fungal communities were deposited in the National Center for 199 

Biotechnology Information (NCBI) Sequence Read Archive (http://trace.ncbi.nlm.nih.gov/Traces/sra/) under 200 

the accession numbers of PRJNA354498 (bacteria) and PRJNA354828 (fungi). 201 

 202 

2.7. Parameter calculations and statistical analyses 203 

Microbial network topological features To better understand community structure, characterize intra-204 

community interactions and identify potential shared niches, the co-occurrence network analysis was 205 

performed with the “igraph” R package. The 500 most abundant OTUs per chronosequence age were used to 206 

build individual networks based upon a similar approach used by Dini-Andreote et al. (2014) and Sun et al. 207 

(2017). Moreover, we also constructed networks using the most abundant 1000 OTUs to verify that the 208 

interpretation of the trends of network properties did not change. For simplicity, networks were only given for 209 

early (S1-2), middle (S3-5) and late (S6-7) stages. The numbers of nodes and edges, average degree and 210 
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clustering coefficient were calculated using the ‘igraph’ R package (Sun et al., 2017). 211 

Indicator species analyses Microbial indicator species analyses were performed using the multipatt 212 

function implemented in the indicspecies package in R with 99 999 permutations and allowing combinations 213 

between habitats to identify OTUs leading to changes in multivariate patterns (Rime et al., 2015). For this 214 

analysis, single- and doubleton OTUs were removed as they hold little indicator information (Rime et al., 215 

2015, 2016). Multiple testing corrections of P-values were performed using the fdrtool function, and indicator 216 

OTUs with P < 0.05 were considered significant. 217 

Correlations of microbial community structures with environmental factors To further investigate the 218 

effect of edaphic (pH, soil density, soil moisture, soil organic carbon, total phosphorus, total nitrogen) and 219 

biotic properties (plant richness, aboveground and litter biomass, and litter C/N) on the bacterial and fungal 220 

communities, redundancy analysis (RDA) with the vegan R package (R Development, Core Team, 2013) was 221 

used. The factors’ autocorrelation was excluded by using the envfit function in the vegan package before 222 

analyses. In addition, before the RDA analysis, a detrended correspondence analysis for the specific microbial 223 

groups was performed to confirm that the linear ordination method was appropriate for the analyses (gradient 224 

lengths < 3). The significance of the RDA model was tested by ANOVA based on 999 permutations (Oksanen 225 

et al. 2016; Sun et al., 2016b). Variance partitioning analysis (VPA) based on the redundancy analysis 226 

procedure was performed to quantify the relative contributions of environmental variables including biotic 227 

and edaphic  factors using the varpart procedure in the R package vegan (Oksanen et al. 2016). 228 

To visualize the complex relationships between microbial community richness and environmental 229 

variables, structural equation modeling (SEM) was used to identify the direct and indirect environmental 230 

effects. To simplify the model, we chose those characteristics strongly connected to bacterial and fungal 231 

richness, including edaphic factors (pH, total phosphorus and SOC), as well as biotic factors (plant richness 232 

and litter C/N). All included edaphic and biotic characteristics were subjected to logarithmic transformation 233 
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to meet the assumptions of normality. The SEM was conducted with the Amos 17.0 software package 234 

(Smallwaters Corporation, Chicago, IL, USA). The criteria for the evaluation of structural equation modeling 235 

fit, such as the p-values, χ2 values, goodness-of-fit index (GFI) and the root mean square error of 236 

approximation (RMSEA), were adopted according to Hooper et al. (2008). 237 

Successional trajectories of different organisms To detect the response direction and magnitude of plants, 238 

nematodes and microbial communities, we calculated the trends in changes in richness and biomass compared 239 

with stage 1, the base point. All variables were transformed using natural logarithmic transformation before 240 

the analyses. 241 

Separating the respective importance of selection and chance effects The deterministic and stochastic 242 

changes were calculated as structural variations between every pair of plots using a modified method based 243 

on Zhang et al. (2011; 2016). Briefly, the structural variations for plant, nematode, bacterial and fungal 244 

communities were represented by Euclidean distances between the plots. The structural variation between 245 

plots at the initial stage S1 was taken as the base point, because that came merely from stochastic effects. Then, 246 

we calculated the effect of selection (S) = [(mean structural variation between S1 and the remaining six 247 

successional stages) - (base point)], and the effect of chance (C) = [(mean structural variation within the 248 

remaining six successional stage) - (base point)]. Both S and C might be positive or negative, corresponding 249 

to promoting or restraining structural changes, respectively, whereas their absolute values represent the 250 

magnitudes of their effects (Zhang et al., 2011). Then, for each successional stage, we calculated the 251 

importance of chance = . 252 

Changes in soil physicochemical characteristics, bacterial and fungal α-diversity, and the richness and 253 

biomass of plants, nematodes and microbial communities were also subjected to one-way analyses of variance 254 

(ANOVA) to determine the overall effects of chronosequence stages using SPSS 19.0 (SPSS Inc., Chicago, 255 
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IL). Significant differences among means were evaluated by Tukey’s honest significant difference (HSD) at p 256 

< 0.05.257 
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3. Results 258 

3.1. Changes in microbial community composition, structure and phylogenetic diversity 259 

The relatively high Good’s coverage values  ranging from 0.985 to 0.991 suggested that microbial 260 

communities were well sampled owing to the high depth of Illumina sequencing (Table S1). After filtering 261 

and removing chimeras, clustering of the reads resulted in a total of 5584 bacterial (2432 ± 380 per sample) 262 

and 4838 fungal (814 ± 298 per sample) non-singleton OTUs. Based on the classifiable sequences, the 263 

bacterial reads were mostly assigned to eight phyla in the following order: Proteobacteria (44.19%), 264 

Acidobacteria (21.25%), Bacteroidetes (9.11%), Planctomycetes (4.1%), Actinobacteria (3.57%), Chloroflexi 265 

(3.10%), Gemmatimonadetes (2.34%) and Verrucomicrobia (2.03%) (Fig. 1a). The fungal community was 266 

dominated by the phyla Ascomycota (48.14%), Basidiomycota (36.84%) and Zygomycota (4.13%) (Fig. 1b). 267 

The patterns of bacterial and fungal β-diversity were visualized with NMDS plots (Fig. 1c, d). The overall 268 

pattern of bacteria was differentiated into three clusters, stage 1 as cluster 1, stages 2–5 as cluster 2 and stages 269 

6–7 as cluster 3, without overlapping among the three clusters across the chronosequence (Fig. 1c). In contrast, 270 

two clusters including early (stages 1–5) and late (stages 6–7) stages were separated for fungal communities 271 

(Fig. 1d). Compared with the fungi, tighter clustering was observed for the bacteria in each age class (Fig. 1c, 272 

d). Trends in relative proportions of some bacterial phyla were consistent across the chronosequence, including 273 

the continuous decreases in Bacteroidetes, and increases in Acidobacteria and Alphaproteobacteria. In contrast, 274 

fungal phyla were randomly distributed and no general pattern was found (Fig. S2). 275 

 276 

3.2. Network topological characteristics and indicator species along the chronosequence 277 

The topological properties of the co-occurrence networks showed that community complexity for both 278 

bacteria and fungi typically peaked at the middle chronosequence stages, as visible as the highest number of 279 

nodes and edges (Fig. 2; Table S2). Compared with bacteria, the higher clustering coefficients, and lower 280 



 

15 
 

nodes and edges in fungi implied that the fungal networks scattered across multiple small and discrete clusters 281 

(Table S2). The overlapping nodes mainly belonged to bacterial groups Proteobacteria and Acidobacteria, and 282 

fungal groups Ascomycota and Basidiomycota (Fig. 2). The most abundant 71 bacterial and 59 fungal OTUs 283 

at the genus level were considered as indicator species (Fig. S3). OTUs associated with Acidiferrobacter, 284 

Geobacter, Hyphomicrobium, Polaromonas, Thiobacillus (Proteobacteria) and Arthobacter (Actinobacteria) 285 

were mainly found at the early stages 1 and 2. By contrast, Gp1, Gp2 and Granulicella (Acidobacteria), 286 

Bradyrhizobium, Burkholderia and Phenylobacterium (Proteobacteria), and Opitutus (Verrucomicrobia) 287 

mostly occurred at the last two stages. On the other hand, the middle three stages, including stages 3, 4 and 5, 288 

harbored a variety of these bacteria (Figs. 2, S3). Among fungal indicators, Massarina, Alternaria, Boeremia, 289 

Mortierella, Mycoarthris, Neobulgaria and Otidea were mainly present at the early stages, while Sebacina, 290 

Tomentella, Russula and Inocybe appeared mostly at the later stages (Fig. S3b). 291 

 292 

3.3. Correlations of microbial communities with edaphic and biotic factors 293 

The availability of most nutrients increased along the chronosequence, including dissolved organic carbon 294 

and total and inorganic (NH4
+, NO3

-) nitrogen, and similar patterns were also found for litter C/N and 295 

aboveground biomass (Table S3). However, the total and bioavailable P concentration, as well as plant litter 296 

biomass increased firstly until stage 3 and then decreased at the later stages (Table S3). Three clusters of 297 

bacterial communities and two of fungal communities were differentiated by the redundancy analysis (Fig. 3a, 298 

b). Furthermore, among the environmental factors, pH, total phosphorus, soil organic carbon as well as litter 299 

C/N and plant richness were strongly related to microbial communities according to the length and angle of 300 

axes (Fig. 3a, b). The variation partitioning analysis showed that edaphic properties were more important than 301 

biotic factors in determining the bacterial and fungal community structure, especially at the early stages 1–5. 302 

At the last two stages along with forest establishment, the importance of biotic factors as well as the interaction 303 
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of biotic and edaphic factors increased (Fig. 3c, d). Across the chronosequence, edaphic and biotic factors 304 

explained 31.63 and 10.79% of bacterial variation, and 32.91 and 19.30% of fungal variation, respectively 305 

(Fig. 3c, d). 306 

The SEM models met the significance criteria according to their χ2, p, AIC and RMSEA values (Fig. 3e, 307 

f). Combining the direct and indirect effects, total absolute effects of environmental factors ranked according 308 

to the following order: edaphic factors, total phosphorus (0.66), pH (0.64), SOC (0.44), and biotic factors, 309 

plant richness (0.36) and nematode grazing (0.25) in bacteria, and SOC (0.62), fungal-feeding nematodes 310 

(0.57), pH (0.52), plant richness (0.48) and total phosphorus (0.10) in fungi (Fig. 3e, f). 311 

 312 

3.4. Contrasting responses and driving forces in different groups of organisms 313 

Richness and biomass of the four organismal groups exhibited similar responses, yet distinct magnitudes 314 

along the chronosequence (Fig. 4a, b). The most pronounced responses in richness were observed in plants 315 

and nematodes, and the smallest responses in bacteria (Fig. 4a). On the other hand, biomass responses were 316 

greatest in fungi, followed by bacteria, plants and nematodes (Fig. 4b). Most groups of organisms reached 317 

their maximum richness at stage 5, maximum biomass at stage 6, and then the values decreased at the later 318 

stages, except for the highest richness in bacteria observed at stage 2 and the continuous increase detected in 319 

the biomass of plants (Fig. 4). An increase in the fungi/bacteria ratio as well as fungi-/bacteria-feeding 320 

nematodes was observed in the last two stages (Fig. S4). 321 

Stochastic processes dominated changes in bacterial and fungal communities, while deterministic 322 

processes dominated the shaping of plant communities (Fig. 4c). In contrast, in nematodes, the deterministic 323 

and stochastic processes were approximately equal (Fig. 4c). At the last two stages, the importance of 324 

determinism increased for bacteria and fungi. Compared with bacteria, the fungal community composition 325 

was more strongly driven by stochasticity (Fig. 4c). 326 
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 327 

4. Discussion 328 

Microbial communities are the main drivers of organic matter decomposition to expedite pedogenesis, to 329 

facilitate the establishment of vascular plants, and to accelerate the successional dynamics of ecosystems 330 

(Bradley et al., 2016). According to a previous survey, the length of the growing season on the present study 331 

site is approximately 6 months, much longer than, for instance, the 3-month growing season of the Lyman 332 

Glacier area (Cázares et al., 2005). Therefore, the accumulation rates of organic C and N were 3–4 times and 333 

7–11 times as high as those detected for other glacial chronosequences, respectively (He and Tang, 2008). The 334 

seven stages of the 120-year succession could be separated into three and two distinct clusters for bacterial 335 

and fungal communities, respectively (Figs. 1, 3). The pattern coincided with the vegetation dynamics: barren 336 

land with some mosses at stage 1, broadleaved shrubs and trees at stages 2–5, and lastly the climax stage with 337 

a coniferous Abies fabri and Picea brachytyla dominated forest at stages 6 and 7 (Lei et al., 2015). At the 338 

middle stages, the presence of more niches created by a greater plant diversity and, accordingly, a greater 339 

variety of organic substrates entering the soil, as well as less severe environmental stresses resulted in most 340 

diverse bacterial and fungal communities (Sun et al., 2016a; Table S1, 3; Figs. 1, 2). Most organismal groups 341 

of the plant-microbiota-nematode complex reached their maximum richness at stage 5 and maximum biomass 342 

at stage 6, after which the values decreased significantly (Fig. 4). Our findings were well in accordance with 343 

the Intermediate Disturbance Hypothesis, which states that the diversity of competing species is expected to 344 

be maximized at intermediate frequencies and intensities of disturbance or environmental changes (Connell, 345 

1978). 346 

 347 

4.1 Contrasting assemblage patterns for bacterial and fungal communities along the chronosequence 348 

The co-occurrence networks analysis revealed that community complexity for both bacteria and fungi 349 
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typically peaked at the middle chronosequence stages, as indicated by the highest number of nodes and edges 350 

(Fig. 2; Table S2). Furthermore, compared with fungi, the lower clustering coefficients, and the higher nodes 351 

and edges in bacteria, implied a more compact topology with more direct paths of communication in the 352 

bacterial community (Figs. 1, 2; Table S2). The overlapping nodes mainly belonged to bacterial groups 353 

Proteobacteria and Acidobacteria, and fungal groups Ascomycota and Basidiomycota (Fig. 2), which may 354 

play critical ecological functions relating to ecosystem succession. This speculation was further supported by 355 

the indicator species analysis (Fig. S3). Indicator OTUs associated with Acidiferrobacter, Geobacter, 356 

Hyphomicrobium, Polaromonas, Thiobacillus (Proteobacteria), and Arthobacter (Actinobacteria) were 357 

mainly found at the early stages 1 and 2, as only these highly specialized organisms can thrive in an 358 

oligotrophic surrounding with extreme UV irradiation and temperature fluctuations (Rime et al., 2016). By 359 

contrast, Gp1, Gp2 and Granulicella (Acidobacteria), Bradyrhizobium, Burkholderia and Phenylobacterium 360 

(Proteobacteria), and Opitutus (Verrucomicrobia) mostly occurred at the last two stages. Meanwhile, some 361 

root-associated ectomycorrhizal fungi and other taxa capable of degrading complex organic C sources (Fig. 362 

S3; Rime et al., 2015), including Phenylobacterium, Granulicella, Bradyrhizobium, Burkholderia and 363 

Opitutus proliferated at later stages. At the middle stages, lower environmental stress and more niches created 364 

by the higher quantity and quality of plant species and litter contributed to the higher OTU richness and 365 

diversity (Sun et al., 2016a; Table S1, 2, 3; Figs. 2, 3). 366 

The lower microbial OTU and plant species richness (Table S1; Fig. 4), as well as the significant decrease 367 

in nematode densities along with the disappearance of some rare genera of nematodes from higher trophic 368 

guilds (Lei et al., 2015) implied that stage 7 shows some declining characteristics, although this does not 369 

completely support our hypothesized retrogressive phase in the Hailuogou Glacier Chronosequence after 120 370 

years of development. Moreover, the emerging retrogression might be largely related to the reduced 371 

bioavailability of phosphorus (Table S1), as soil microorganisms strongly compete with plants for the essential 372 
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nutrients (Zhou et al., 2013; Lei et al., 2015). Our findings were well in accordance with other findings 373 

indicating that long-term reduction in the available P and transition from N to P limitation is the common 374 

driver of retrogression across diverse systems (Peltzer et al., 2010). The strength of responses in phylogenetic 375 

richness was greater for plants and nematodes than for fungi and bacteria, while most pronounced responses 376 

in biomass were observed in fungi, followed by bacteria, plants, and lastly nematodes (Fig. 5). Thus, the 377 

species richness of plants, as well as the biomass and phylogenetic structure of bacteria and fungi are sensitive 378 

bioindicators, which could contribute to improved predictions of the direction and intensity of primary 379 

succession in glacier forefields. 380 

 381 

4.2. Divergent driving forces for bacterial and fungal community assemblage along the chronosequence 382 

Variation partitioning analysis and structural equation models highlighted the different roles of edaphic 383 

and biotic factors in determining soil bacterial and fungal richness (Fig. 3e, f). Generally, the edaphic 384 

properties were more important than biotic factors in shaping the microbial communities, which is an expected 385 

result given that the soil directly provides the substrate for the microbial communities. Our results are in 386 

agreement with Chen et al. (2016), who observed that the variation in soil microbial communities in Tibetan 387 

alpine grasslands was explained mainly by edaphic factors (soil organic carbon, C:N ratio, pH and soil texture), 388 

and to a lower degree by biotic factors (aboveground biomass and plant richness), and even less by climatic 389 

factors, including mean annual precipitation. These results provide strong support to the hypothesis that 390 

edaphic factors are the dominant drivers of spatial variation in soil microbial communities at regional and 391 

global scales. 392 

In bacteria, the most prevailing ecological drivers seemed to be the soil pH, soil organic carbon and total 393 

phosphorus, as assessed by their total effects (Fig. 3e). Indeed, there is growing evidence that soil pH 394 

represents a key regulator in shaping the distribution of soil bacterial communities at regional scales (Fierer 395 



 

20 
 

and Jackson, 2006; Lauber et al., 2009). The apparent direct influence of soil pH on the bacterial community 396 

composition is probably due to the narrow pH ranges for the optimal growth of bacteria (Cao et al., 2016). 397 

Therefore, there was a shift in dominance from bacterial to fungal energy channels with an increasing soil age, 398 

indicated by the increase in fungi/bacteria ratio as well as fungi-/bacteria-feeding nematodes at the last two 399 

stages (Fig. S4), as a result of the higher tolerance to environmental changes for fungi (Bokhorst et al., 2017). 400 

Meanwhile, soil organic matter sources have been routinely identified as having a pervasive effect on the 401 

microbial communities, especially for bacteria (Vries et al., 2012). The explaining capacity of biotic factors 402 

and the interaction of biotic and edaphic factors increased with the establishment of a coniferous forest at the 403 

last two stages (Fig. 3c, d). Apart from serving as immediate decomposers, a large proportion of fungi can act 404 

as endophytes, mutualists or pathogens with tight biotrophic interactions; therefore, it is assumed that there 405 

would be a strong coupling of plant-fungal distribution patterns at regional scales (Wardle, 2006; Chen et al., 406 

2017). Our observations demonstrate that plants governed the turnover of soil fungal communities and 407 

functional characteristics through the succession in the glacier retreat area, likely due to the continuous input 408 

of detritus and differences in litter biochemistry among plant species (Fig. 3). Moreover, fungi-feeding 409 

nematodes exerted more negative effects on fungal communities, thus creating a stronger top-down control 410 

for fungi than bacteria (Fig. 3e, f), which also contributed to the dominance of biotic factors for fungal 411 

assemblages.  412 

Compared with bacteria, fungal communities are more determined by stochastic factors, as indicated by 413 

the looser clustering (Figs. 2, 3) and higher importance of chance (Fig. 4). A likely explanation for this pattern 414 

is that fungi might be dispersally more constrained than bacteria, and therefore more determined by historical 415 

effects. In support of this hypothesis, Wilkinson et al. (2012) also showed that the ‘propagule rain’ of bacteria 416 

smaller than 20 µm would reduce or eliminate the priority effects, thus resulting in a more deterministic 417 

community assembly when compared to fungi. On the other hand, during the early stages, the patchy 418 
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distribution of soil resources accounts for the lottery of competition among microbial communities (Caruso et 419 

al., 2011). As the ecosystem develops over time, the increasing plant cover reduces heterogeneity in light and 420 

nutrient resources, and competition begins to play a dominant role, which would result in more deterministic 421 

processes. This was evidenced by the higher importance of selection at the later stages in both bacterial and 422 

fungal communities (Fig. 4c). 423 

 424 

5. Conclusions 425 

The bacterial and fungal communities exhibited dramatic differences in successional trajectories across 426 

the glacier chronosequence and also in the relative importance of driving deterministic vs. stochastic processes. 427 

Edaphic properties were the primary agents shaping the microbial community structures, especially at the 428 

early stages. The explaining capacity of biotic factors as well as the interactions between biotic and edaphic 429 

factors increased at the last two stages along with the increasing importance of forest cover, eventually 430 

governing the fungal turnover. Moreover, bacterial communities showed a more compact network topology 431 

during assembly, thus supporting determinism, whereas the looser clustering in fungal communities illustrated 432 

that they were more determined by stochastic processes. The biomass and phylogenetic structure of bacteria 433 

and fungi could be used as sensitive bioindicators for soil heath, enabling to make improved predictions of the 434 

rate, direction and magnitude of primary succession. In future studies, a model-data approach integrating field 435 

observations, laboratory incubations and elemental measurements as well as metagenomic analyses can 436 

expand our knowledge on the sensitivity and resilience of these fragile ecosystems under future environmental 437 

changes. 438 

 439 
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Figure captions 578 

Figure 1. Taxonomic proportions and nonmetric multidimensional scaling (NMDS) ordinations of bacterial 579 
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(a, c) and fungal (b, d) diversities at different successional stages along the Hailuogou Glacier 580 

Chronosequence. 581 

Figure 2. Co-occurrence network analysis of bacterial and fungal communities at different successional stages 582 

along the Hailuogou Glacier Chronosequence. 583 

Figure 3. Redundancy ordinations (a, b), variation partitioning analysis (c, d) and structural equation modeling 584 

(e, f) of the selected environmental variables for microbial community structures along the Hailuogou Glacier 585 

Chronosequence. AP, available phosphorus; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus. 586 

In e and f, solid and dashed arrows represent positive and negative correlations, respectively. The thickness of 587 

the arrows reflects the magnitude of the standardized coefficients. GFI, goodness-of-fit index; RMSEA, root 588 

mean square error of approximation. 589 

Figure 4. Responses of richness (a), biomass (b) and the relative importance of change effect (C) in different 590 

groups of organisms at different successional stages along the Hailuogou Glacier Chronosequence. Different 591 

letters indicate significant differences (p < 0.05) among seven successional stages according to Tukey’s HSD 592 

for one-way ANOVA. 593 
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