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Abstract. Currently, there is a lack of genetic markers capable of effectively detecting 15 

polymorphisms in Clematis. Therefore, we developed new markers to investigate 16 

inter- and intraspecific diversity in Clematis. Based on the complete chloroplast 17 

genome of Clematis terniflora, simple sequence repeats were explored and primer 18 

pairs were designed for all ten adequate repeat regions (cpSSRs), which were tested in 19 

43 individuals of 11 Clematis species. In addition, the nuclear ITS region was 20 

sequenced in 11 Clematis species. Seven cpSSR loci were found to be polymorphic in 21 

the genus and serve as markers that can distinguish different species and be used in 22 

different genetic analyses, including cultivar identification to assist the breeding of 23 

new ornamental cultivars.  24 

 25 
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Introduction 29 

Simple sequence repeats (SSR) or microsatellites are widely distributed 30 

throughout nuclear and cytoplasmic genomes in eukaryotes (Litt and Luty, 1989). 31 

Because of their highly polymorphic nature, codominant inheritance, ubiquitous 32 

abundance and rapid mutation rates, SSRs have become useful markers for genetic 33 

diversity and population genetic analyses (Morgante et al., 2002; Selkoe and Toonen, 34 

2006). Furthermore, SSRs can be detected by standard PCR methods and can be 35 

transferable to related taxa (Chen et al., 2015). The chloroplast genome is widely used 36 

in plant taxonomic and systematic studies (Rajendrakumar et al., 2007; Tambarussi et 37 

al., 2009) because it is usually maternally inherited and slowly evolving, and has a 38 

low frequency of genetic recombination (Birky and Walsh, 1988) but a high frequency 39 

of microsatellite repeats (Bryan et al., 1999; Provan et al., 1999). For these reasons, 40 

chloroplast markers are especially useful in genetic diversity and population genetic 41 

structure analyses, phylogenetic and phylogeographic analyses, and in hybrid 42 

identification of plants.  43 

There are about 300 species in the genus Clematis L., which makes it the largest 44 

genus in Ranunculaceae (Grey, 2000; Wang and Li, 2005). The genus consists of 45 

typically vigorous, woody, climbing vines that are mainly distributed in the temperate 46 

zone of the northern hemisphere (Hao et al., 2013). The genus Clematis is famous for 47 

its diverse flower shapes and colors (Roh and Song, 1997); with the hundreds of 48 

cultivars, Clematis is known as the “Queen of the Vines”. Clematis cultivars are also 49 

used for medicinal purposes because triterpenoid saponins, flavonoids, and many 50 
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other compounds are present in various species (He et al., 2011).  51 

Previous studies on the classification and phylogeny on Clematis were mainly 52 

based on morphological traits; phyllotaxy, sepals, cotyledon, and calyces have been 53 

used to characterize different species of Clematis (Goodley, 1977; Tobe et al., 1980; 54 

Keener and Dennis, 1982; Essig, 1991). More recently, different molecular marker 55 

systems have been applied to studies of Clematis. Inter-simple sequence repeat 56 

markers (ISSR) have been used to fingerprint 32 vining cultivars and five non-vining 57 

Clematis species to assess their genetic relationships and cultivar identification 58 

(Nicole and Stan, 2005). Random amplified polymorphic DNA (RAPD) has been used 59 

to confirm Clematis hybrids (Tao et al., 2010), and sequences of chloroplast DNA 60 

such as the atpB-rbcL spacer region, matK, trnK, trnL intron, and trnL-trnF spacer 61 

region, as well as the nuclear actin I intron have been used for the analysis of 62 

phylogenetic relationships within the Clematis genus (Johansson and Jansen, 1993; 63 

Johansson, 1995; Miikeda et al., 1999, 2006; Slomba et al., 2004; Shuang et al., 2016). 64 

Internal transcribed spacer (ITS) sequences have been analyzed to provide molecular 65 

evidence for the current phylogeny of the genus, and also for the identification of 66 

medicinal Clematis species (Ming et al., 2011, Xie et al., 2011; Xiao et al., 2012). 67 

Classifications based on morphology and molecular methods have produced 68 

diverging results. According to Osamu et al. (2006), the inconsistencies between 69 

previous classification systems and molecular analyses indicate that several characters, 70 

such as the presence of filament hairs and the position of the inflorescences on the 71 

shoot (upper or lower part of stems), are homoplasious and do not clarify the 72 
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phylogenetic relationships. However, leaf margin characters, which had not been 73 

previously used to characterize Clematis, were found to be useful in defining 74 

subgenera (Osamu et al., 2006). 75 

Currently, there is a lack of SSR or cpSSR markers capable of effectively 76 

detecting polymorphisms and confirming cultivar identity in Clematis. To improve 77 

precision in genetic analyses on Clematis, we developed cpSSR markers to investigate 78 

inter- and intraspecific diversity among Clematis samples. Such markers will also be 79 

useful tools when searching for cytoplasm donors to breed new ornamental cultivars. 80 

Additionally, we compared relationships among Clematis species based on two types 81 

of genetic tools: cpSSR markers developed in this study and the common “phylogeny 82 

tool” ITS sequencing, to test whether the results from both methods are congruent or 83 

not.  84 

 85 

 86 

Materials and Methods 87 

 88 

Sampling and DNA extraction 89 

We analyzed 43 accessions that represent 11 Clematis species (Table 1) that were 90 

collected from the Zhejiang province of China. All vouchers are deposited at the 91 

Zhejiang A & F University. Total genomic DNA was extracted from dry leaf tissue 92 

using the E.Z.N.A Plant DNA Mini Kit Spin Protocol (Omega Bio-tek, Inc.) 93 

according to the manufacturer’s instructions. 94 
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 95 

Primer design 96 

The SSR locations were searched from the complete chloroplast genome of 97 

Clematis terniflora (GenBank, accession KM652489.1) using the SSRIT tool 98 

(http://archive.gramene.org/db/markers/ssrtool). Ten adequate SSR regions were 99 

identified using the following criteria: length (at least ten copies for mononucleotide 100 

repeats and at least six copies for other types of SSRs) of the repeat sequence and 101 

good flanking primer sites. Then, primer pairs were designed for these regions using 102 

Primer Premier 5.0 103 

(http://downloads.fyxm.net/download-now-Primer-Premier-Others-Home-&-Educatio104 

n-101178.html) using following parameters: primer length of 20-25 bp, a PCR 105 

product size of 100-300 bp, annealing temperature between 50-65C, and a GC 106 

content of 30-60% (Table 2). Primers used for ITS sequencing were ITS1 (5'-CTT 107 

GGT CAT TTA GAG GAA GTA A-3') and ITS4 (5'-TCC TCC GCT TAT TGA TAT 108 

GC-3') (Gardes and Bruns, 1993) 109 

 110 

PCR amplification and data analysis 111 

PCR reactions for the selected ten SSR regions were carried out in 20-μl volumes 112 

by mixing the following components: 11 μl ddH2O, 2 μl 10 × buffer, 0.4 μl 10 mM 113 

dNTPs, 0.6 μl Dynazyme II DNA polymerase (Thermo Fisher Scientific, 2 U μl-1), 2 114 

μl genomic DNA (about 20 ng) and 2 μl both primers (5 pmol μl-1). The forward 115 

primers were fluorescently labeled with FAM or HEX. The PCR reactions were 116 
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carried out with an initial denaturation for 45 s at 94 C, followed by 35 cycles of 30 s 117 

at 94C, 30 s at the cpSSR-specific annealing temperature (Table 2), 40 s of 118 

elongation at 72C, and with a final elongation at 72C for 5 min. After amplification, 119 

the PCR products were diluted 1:20-1:200 depending on the concentration (the final 120 

concentration about 1 ng μl-1) with Milli-Q water. The DNA fragments were analyzed 121 

using a capillary electrophoresis system 3730 DNA Analyzer (Applied Biosystems). 122 

The DNA fragment sizes were determined using Peak Scanner ver. 2.0 (Applied 123 

Biosystems). The observed number of alleles (Na), effective number of alleles (Ne) 124 

and polymorphism information content (PIC) were estimated with PowerMarker 125 

V3.25 (Liu and Muse, 2005). Phylogenetic trees were constructed with PowerMarker 126 

V3.25 using the UPGMA method based on genetic distances described by Nei (1983). 127 

The PCR reactions preceding ITS sequencing were performed in a total volume 128 

of 20 μl that contained 13 μl ddH2O, 2μl 10 × buffer, 0.4 μl 10 mM dNTP mix, 0.6 μl 129 

of Dynazyme II DNA polymerase (2 U μl-1), 2 μl genomic DNA (about 20 ng), and 1 130 

μl both primers (5 pmol μl-1). The PCR cycle was similar to that used for SSR 131 

genotyping, but the annealing temperature was 50 C. Amplification products were 132 

run in a 1% agarose gel, and the DNA fragments were excised and purified prior to 133 

sequencing using the E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek). Purified DNA 134 

samples were sequenced at Macrogen Inc. using the same primers utilized in the PCR 135 

reactions preceding ITS sequencing. The ITS sequences were manually checked using 136 

Chromas 2.5.0 (http://chromas.software.informer.com) and then aligned using Clustal 137 

X (http://www.clustal.org). The aligned data were analyzed using Mega 6.0 138 
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(http://www.megasoftware.net) and genetic distances between species were 139 

determined using the Kimura-2 method (Kimura, 1980). Phylogenetic trees were 140 

drafted using the UPGMA method and the Kimura-2 parameter model in Mega 6.0.  141 

 142 

 143 

Results and Discussion 144 

 145 

Development and assessment of cpSSR primers for identifying Clematis species 146 

Aside from DNA sequencing-based investigations, there are only a limited 147 

number of molecular marker studies of Clematis. These include the report of ISSR 148 

primers (Nicole and Stan 2005) and randomly amplified polymorphic DNA (RAPD; 149 

Tao et al., 2010); however, none of these previous investigations have utilized SSR 150 

markers. The present study developed cpSSR markers based on the available 151 

chloroplast genome of C. terniflora and successfully applied them to investigate intra- 152 

and interspecific polymorphisms in Clematis. The polymorphic cpSSR markers can 153 

distinguish different species from each other and can be used in cultivar identification 154 

as well.  155 

All ten cpSSR markers gave clear amplification products and seven were 156 

polymorphic within the genus (Table 3). A total of 28 alleles were discovered in the 157 

ten cpSSR loci among the 11 representative Clematis species. All amplified fragments 158 

were around the predicted sizes (Table 2, Table 4), indicating that the detected 159 

polymorphism mainly arose from variation in the number of cpSSR repeats. All 160 
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markers amplified in all species, except for loci Clecp2 and Clecp7 in C. lasiandra, 161 

which was probably due to the failure of the primers to anneal at those locations. The 162 

allele numbers per locus ranged from one to seven within the genus (Table 3). The 163 

average number of alleles (Na), effective number of alleles (Ne), and polymorphism 164 

information content (PIC) were 2.8, 1.9, and 0.29, respectively, for the whole dataset 165 

(Table 3). In previous cpSSR-based studies, the mean PIC values equaled 0.19 in 166 

common bean cultivars (Ceylan et al., 2014), 0.21 in cowpea (Pan et al., 2014), 0.32 167 

in Gladiolus cultivars (Singh et al., 2017) and 0.60 in cotton (Li et al., 2014). These 168 

examples show that PIC values of cpSSR markers can vary considerably and that the 169 

value detected in this study falls within the observed range of variation.   170 

The UPGMA dendrogram was constructed using all cpSSR allele information and 171 

samples from the same species clearly grouped together (Figure 1). Five main clusters 172 

were generated: C. lasiandra (37, 38), C. patens subsp. tientaiensis (41), and C. 173 

henryi (27-30) grouped in clusters I, II, and III, respectively. C. terniflora (40), C. 174 

chinensis var. anhweiensis (42), C. courtoisii (43), and C. hancockiana (35, 36) were 175 

closely connected in the dendrogram and grouped with C. apiifolia (1-14) to form 176 

cluster IV. C. brevicaudata (31-34), C. finetiana (15-26), and C. uncinata (39) 177 

grouped as a cluster V.    178 

 179 

ITS sequencing 180 

The sequenced ITS region covered the whole distance from the end of the 18S 181 

rRNA gene to the beginning of the 26S rRNA gene (GenBank accession numbers 182 
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KY201178- KY201188). The length of the entire ITS region (ITS1+5.8S+ITS2) from 183 

the 11 Clematis species varied between 534-562 bp. The ITS1 and ITS2 regions 184 

varied from 156-180 and 218-224 bp, respectively. C. courtoisii and C. hancockiana 185 

had the longest and C. henryi the shortest ITS regions. Among all species, the length 186 

of the 5.8S rRNA varied between 158-159 bp. The average GC content was 61.6% for 187 

the entire ITS region, 60.3% for ITS1, 68.5% for ITS2, and 53.2% for the 5.8S rRNA 188 

region (Table 5). Thus, some length variation was detected for the ITS regions among 189 

the Clematis species. 190 

The numbers of variable sites and parsimony-informative sites within the ITS 191 

region equaled 79 and 38, and accounted for 13.8% and 6.6%,of the sites within the 192 

entire ITS region, respectively. The numbers of variable sites and 193 

parsimony-informative sites within ITS1, ITS2, and 5.8S rRNA regions were 39, 33, 7, 194 

and 24, 11, 3, respectively. Thus, variation was abundant and included both SNPs and 195 

indels. The studied species were characterized by considerable divergence, with 196 

genetic distances varying between 0.008-0.073 (Table 6). The smallest distance was 197 

0.008, which was found between C. hancockiana and C. patens subsp. tientaiensis, 198 

while C. finetiana and C. courtoisii were the most divergent species with a distance 199 

value of 0.073. The average pairwise genetic distance equaled 0.039. 200 

When a dendrogram was constructed for the 11 Clematis species using the 201 

UPGMA method, we discovered four clusters (Figure 2). The first cluster (I) was 202 

composed of C. lasiandra, C. apiifolia, C. henryi, C. brevicaudata, and C. uncinata. 203 

C. chinensis var. anhweiensis; C. terniflora were grouped in cluster II; C. courtoisii, C. 204 
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hancockiana, and C. patens subsp. tientaiensis were grouped in cluster III; and C. 205 

finetiana was separated from the other species in cluster IV. These sequencing results 206 

correspond previous analyses quite well (Ming et al., 2011; Xie et al., 2011).                  207 

 208 

Molecular markers as characterization and phylogenetic tools 209 

It is widely recognized that the traditional use of morphological traits for taxon 210 

identification has several limitations, which include the misidentification of a taxon 211 

due to the phenotypic plasticity of the traits studied, the existence of cryptic taxa or 212 

the applicability of certain morphological keys only for a particular life stage 213 

(Valentini et al., 2009). In Clematis, the presence of filament hairs and the position of 214 

the inflorescences on the shoot (upper or lower part of stems) are homoplasious and 215 

do not inform phylogenetic relationships (Osamu et al., 2006). It is worth noting that 216 

convergent evolution may also confuse the interpretation of morphological traits; for 217 

instance, in the family Brassicaceae, there has been prevalent convergent evolution of 218 

several traits through time (Huang et al., 2016). 219 

The species C. lasiandra, C. apiifolia, C. henryi, and C. brevicaudata included in 220 

our study share a common character of serrate leaf margins, which is supposed to be 221 

an indication of a close evolutionary relationship. Also, their pairwise genetic 222 

distances based on ITS sequences were quite small (0.010-0.022). The character state 223 

of entire leaf margins is shared by the other seven investigated Clematis species and 224 

therefore, the ITS-based relationships were found to correspond morphologically. For 225 

the most part, our results on Clematis relationships based on ITS regions agreed with 226 



12 
 

the ITS sequence analyses presented by Ming et al. (2011) and Xie et al. (2011), 227 

which were based on nuclear ITS and plastid data.  228 

In the cpSSR-derived tree, the seven species with entire leaf margins were sorted 229 

into three clades: C. terniflora, C. chinensis var. anhweiensis, C. courtoisii and C. 230 

hancockiana clustered together in the subgroup of clade IV; C. uncinata and C. 231 

finetiana were in the same subgroup of clade V; and C. patens subsp. tientaiensis 232 

formed clade II. Among them, C. chinensis var. anhweiensis and C. terniflora had a 233 

close relationship based on both cpSSR and ITS data. Also, C. courtoisii and C. 234 

hancockiana belonged to the same group in both UPGMA trees. However, the 235 

grouping schemes of the other seven species were quite different in cpSSR- and 236 

ITS-based trees. For example, C. lasiandra and C. apifolia belonged to two separate 237 

clusters in the cpSSR tree, while they were grouped into the same cluster in the 238 

ITS-based tree. Thus, the trees produced with cpSSR markers and ITS sequences did 239 

not correspond with each other, possibly because of lineage sorting or introgression 240 

(Wendel and Doyle, 1998), the relatively narrow range of markers and sequences used 241 

in this study, or the size homoplasy for cpSSR markers, which may limit the 242 

phylogenetic power of cpSSRs (Wheeler et al., 2014). The main strength of SSRs and 243 

comparable markers is rather in species and genotype identification instead of 244 

revealing phylogenetic relationships.   245 

To the best of our knowledge, this is the first report on the development and use 246 

of any kind SSR markers in the genus Clematis. These markers can be used in further 247 

studies on genetic diversity, population genetics and phylogeography of Clematis, as 248 
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well as assist in the breeding of new ornamental cultivars.  249 
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Table 1. Information of the Clematis samples used for cpSSR and ITS analyses 
 

Number Taxon Origin Coordinates Sample size Altitude (m) 

1 C. finetiana Tian mu mountain (Lin an) 30°15’37.56’’N, 119°16’57.92’’E 3 499-589 
2 C. finetiana 
3 C. finetiana 
4 C. finetiana Wu li village (Lin an) 30°19’36.66’’N, 119°15’24.72’’E 5 399-500 
5 C. finetiana 
6 C. finetiana 
7 C. finetiana 
8 C. finetiana 
9 C. finetiana Ling long mountain (Lin an) 30°13’03.61’’N, 119°40’02.67’’E 6 111-144 
10 C. finetiana 
11 C. finetiana 
12 C. finetiana 
13 C. finetiana 
14 C. finetiana 
15 C. apiifolia Tian mu mountain (Lin an) 30°10’02.33’’N, 119°01’44.13’’E 9 533-610 
16 C. apiifolia 
17 C. apiifolia 
18 C. apiifolia 
19 C. apiifolia 
20 C. apiifolia 
21 C. apiifolia 
22 C. apiifolia 
23 C. apiifolia 
24 C. apiifolia Ban shan village (Lin an) 30°14’35.82’’N, 119°14’14.44’’E 3 553-661 
25 C. apiifolia 
26 C. apiifolia 
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27 C. henryi Sankou mountain (Anji county) 30°24’30.05’’N, 119°40’35.96’’E 4 670-733 
28 C. henryi 
29 C. henryi 
30 C. henryi 
31 C. brevicaudata Longgang village (Shaoxing county) 29°50’17.47’’N, 120°39’26.93’’E 4 431 
32 C. brevicaudata 
33 C. brevicaudata 
34 C. brevicaudata 
35 C. hancockiana Qianqiu mountain (Lin an) 30°19’54.09’’N, 119°16’02.61’’E 2 579-597 
36 C. hancockiana 
37 C. lasiandra Wu li village (Lin an) 30°16’27.88’’N, 119°06’16.28’’E 2 503 
38 C. lasiandra 
39 C. uncinata Wu li village (Lin an) 30°16’27.88’’N, 119°06’16.28’’E 1 503 
40 C. terniflora Ling long mountain (Lin an) 30°13’18.21’’N, 119°40’06.62’’E 1 97 
41 C. patens subsp. 

tientaiensis 
Nan shan village (Tian tai county) 29°07’56.05’’N, 121°19’18.44’’E 1 735 

42 C. chinensis var. 
anhweiensis 

Liu an city anhui province 31°05’52.80’’N, 115°44’54.49’’E 1 791 

43 C. courtoisii Tian mu mountain (Lin an) 30°12’23.21’’N, 119°04’11.24’’E 1 477 
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Table 2. Ten cpSSR primer pairs developed for Clematis used in this study 

 

Locus Repeat type Primer sequence (5' to 3') 
TM 
(℃) 

Product size (bp) 

Clecp1 [T/A]19 
F: TTTGTTCATGCGGTACTCCTTT 

59 138 
R: ATCTTGTCTATTCCCACGGTTC 

Clecp2 [T]14 
F: AAGATACCGCTGTGCCAGGATA 

61 125 
R: AGAAGCCGAGTAAGCGGATTGG 

Clecp3 [A/T]16 
F: ATTTTCTATAACCTACCGTCTT 

50 116 
R: TTGACTTCTACTATTTTGGTTG 

Clecp4 [A]12 
F: GATAGGGGTCAATAAAAGAAAA 

53 111 
R: ATAGGTGCATACAGTAGGCTCA 

Clecp5 [A/T]29 
F: TTGTTTTCCACATCGTGATTTC 

60 195 
R: TGTCCACTCACTTTATTTTCTGAAC 

Clecp6 [A/T]36 
F: ATGGGGAGATAAAGAAATAGAG 

52 152 
R: TACCAAAATAGGATGAAATAGG 

Clecp7 [G/A]22 
F: ACCAGTTGTTGCTGATACCTCCTT  

61 128 
R: CGGTCGTTGTGGTCGGACTCTA 

Clecp8 [A/T]21 
F: AATGAAAGGGATGTTGAAAGAG 

567 170 
R: CTGTCACGTACACGTAGGAATA 

Clecp9 [T/C]20 
F: TAGGGATATGGAACGAAAGGAA 

60 204 
R: ATTAATTCTCTAGCCCCGCTGT 

Clecp10 [T/A]30 
F: TCTATGAAATGCCAATCCAACA 

56 209 
R: AAAAACTTATAGGGCGTGGATAAA 
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Table 3. Summary of genetic variation statistics for each cpSSR locus among all 
Clematis samples  

 

Locus Samples   Na Ne PIC 

Clecp1 43 7 3.23 0.65 

Clecp2 43 1 1.00 0.00 

Clecp3 43 1 1.00 0.00 

Clecp4 43 4 2.88 0.59 

Clecp5 43 2 1.05 0.04 

Clecp6 43 2 1.37 0.24 

Clecp7 43 1 1.00 0.00 

Clecp8 43 3 1.62 0.35 

Clecp9 43 2 1.93 0.37 

Clecp10 43 5 3.74 0.68 

Mean   2.8 1.9 0.29 

 
Na, the observed number of alleles; Ne, effective number of alleles; PIC, 
polymorphism information content
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Table 4. Detected allele sizes of 10 cpSSR loci in different Clematis species  

 
-, no amplification 

Locus 
C. 

finetiana 
C. apiifolia C. henryi 

C. 
brevicaudata 

C. 
hancockiana 

C. 
lasiandra 

C. uncinata 
C. 

terniflora 

C.patens 
subsp. 

tientaiensis 

Clematis 
chinensis var. 
anhweiensis 

C. 
courtoisii 

Clecp1 140,141 135 133,136,137 135 127 135 133 135 127 135 127 
Clecp2 122 122 122 122 122 - 122 122 122 122 122 
Clecp3 112 112 112 112 112 112 112 112 112 112 112 
Clecp4 108 106 105,106 107 106 105 106 106 106 106 107 
Clecp5 193 193 193 193 193,194 193 193 193 193 193 193 
Clecp6 149 149 149 150 149 150 149 149 150 149 149 
Clecp7 124 124 124 124 124 - 124 124 124 124 124 
Clecp8 168,169 168 173 168 168 169 169 168 169 168 168 
Clecp9 204 203 203,204 203,204 204 204 203 204 204 204 204 

Clecp10 231,232 229,230,231 232 229,230 232 230 231 232 237 232 232 
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Table 5. GenBank accession numbers, length (bp), and GC content (%) of ITS sequences in 11 Clematis species 
 

Accession number Species 
ITS region  ITS1  ITS2  5.8S 

length GC content  length GC content  length GC content  length GC content 

KY201178 C. chinensis var. 
anhweiensis 

549 62.1   169 59.8  221 70.6   159 52.8 

KY201179 C. apiifolia 552 61.4  173 60.1  220 68.2   159 53.5 
KY201180 C. brevicaudata 543 61.3  164 59.2  220 68.6   159 53.5 
KY201181 C. courtoisii 562 63.2  180 63.9  220 68.6   158 54.4 
KY201182 C. finetiana 543 59.3  166 58.4  218 67.0   159 49.7 
KY201183 C. hancockiana 562 63.4  180 63.9  224 69.2   158 54.4 
KY201184 C. henryi 534 60.1  156 57.7  219 67.1   159 52.8 
KY201185 C. lasiandra 550 60.4  172 59.9  219 66.2   159 52.8 
KY201186 C. patens subsp. 

tientaiensis 
560 63.4  180 64.4  222 68.9   158 54.4 

KY201187 C. terniflora 549 61.8  169 59.2  221 70.1   159 52.8 
KY201188 C. uncinata 541 60.8  163 57.1  219 69.0   159 53.5 
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Table 6. Pairwise divergence of Clematis species based on ITS sequences  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kimura-2 parameter model was used to calculate genetic distances

   Species  
Genetic distance 

1 2 3 4 5 6 7 8 9 10 11 

1:   C. chinensis var. anhweiensis -           
2:   C. terniflora 0.020 -          
3:   C. brevicaudata 0.032 0.036 -         
4:   C. henryi 0.036 0.040 0.022 -        
5:   C. lasiandra 0.038 0.042 0.016 0.010 -       
6:   C. apiifolia 0.038 0.044 0.014 0.016 0.010 -      
7:   C. finetiana 0.060 0.065 0.042 0.044 0.038 0.040 -     
8:   C. uncinata 0.040 0.044 0.028 0.030 0.032 0.030 0.050 -    
9:   C. courtoisii 0.050 0.058 0.052 0.054 0.056 0.054 0.073 0.052 -   
10:  C. hancockiana 0.038 0.046 0.040 0.042 0.044 0.042 0.060 0.040 0.012 -  
11:  C. patens subsp. tientaiensis 0.036 0.044 0.036 0.038 0.040 0.038 0.056 0.038 0.020 0.008 - 
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Fig. 1. A dendrogram of Clematis samples based on cpSSR variation. The sample numbers follow 

those in Table 1. The clusters are numbered from I to V. 
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Fig. 2. A dendrogram of 11 Clematis species based on ITS sequence information. The sample 

numbers follow those in Table 1. The clusters are numbered from I to IV. 

 

 

 


