2	Improved Characterization of <i>Clematis</i> Based on New Chloroplast
3	Microsatellite Markers and Nuclear ITS Sequences
4	
5	Zhigao Liu ¹ , and Helena Korpelainen ^{2*}
6	
7	¹ College of Landscape Architecture, Zhejiang A & F University, Lin'an, Zhejiang
8	311300, China
9	² Department of Agricultural Sciences, Viikki Plant Science Centre, PO Box 27,
10	FI-00014 University of Helsinki, Finland
11	
12	
13	
14	*Corresponding author: helena.korpelainen@helsinki.fi

View metadata, citation and similar papers at core.ac.uk

1

brought to you by TCORE provided by Helsingin yliopiston digitaalinen arkisto

15	Abstract. Currently, there is a lack of genetic markers capable of effectively detecting
16	polymorphisms in Clematis. Therefore, we developed new markers to investigate
17	inter- and intraspecific diversity in Clematis. Based on the complete chloroplast
18	genome of Clematis terniflora, simple sequence repeats were explored and primer
19	pairs were designed for all ten adequate repeat regions (cpSSRs), which were tested in
20	43 individuals of 11 Clematis species. In addition, the nuclear ITS region was
21	sequenced in 11 Clematis species. Seven cpSSR loci were found to be polymorphic in
22	the genus and serve as markers that can distinguish different species and be used in
23	different genetic analyses, including cultivar identification to assist the breeding of
24	new ornamental cultivars.
25	

26 Additional key words: genetic markers; genetic variation; molecular identification;
27 ornamental plants, genetic relationships

Introduction

30	Simple sequence repeats (SSR) or microsatellites are widely distributed
31	throughout nuclear and cytoplasmic genomes in eukaryotes (Litt and Luty, 1989).
32	Because of their highly polymorphic nature, codominant inheritance, ubiquitous
33	abundance and rapid mutation rates, SSRs have become useful markers for genetic
34	diversity and population genetic analyses (Morgante et al., 2002; Selkoe and Toonen,
35	2006). Furthermore, SSRs can be detected by standard PCR methods and can be
36	transferable to related taxa (Chen et al., 2015). The chloroplast genome is widely used
37	in plant taxonomic and systematic studies (Rajendrakumar et al., 2007; Tambarussi et
38	al., 2009) because it is usually maternally inherited and slowly evolving, and has a
39	low frequency of genetic recombination (Birky and Walsh, 1988) but a high frequency
40	of microsatellite repeats (Bryan et al., 1999; Provan et al., 1999). For these reasons,
41	chloroplast markers are especially useful in genetic diversity and population genetic
42	structure analyses, phylogenetic and phylogeographic analyses, and in hybrid
43	identification of plants.
<u>1</u> 1	There are about 300 species in the genus <i>Clematis</i> I which makes it the largest

There are about 300 species in the genus *Clematis* L., which makes it the largest genus in Ranunculaceae (Grey, 2000; Wang and Li, 2005). The genus consists of typically vigorous, woody, climbing vines that are mainly distributed in the temperate zone of the northern hemisphere (Hao et al., 2013). The genus *Clematis* is famous for its diverse flower shapes and colors (Roh and Song, 1997); with the hundreds of cultivars, *Clematis* is known as the "Queen of the Vines". *Clematis* cultivars are also used for medicinal purposes because triterpenoid saponins, flavonoids, and many

51 other compounds are present in various species (He et al., 2011).

52	Previous studies on the classification and phylogeny on Clematis were mainly
53	based on morphological traits; phyllotaxy, sepals, cotyledon, and calyces have been
54	used to characterize different species of Clematis (Goodley, 1977; Tobe et al., 1980;
55	Keener and Dennis, 1982; Essig, 1991). More recently, different molecular marker
56	systems have been applied to studies of Clematis. Inter-simple sequence repeat
57	markers (ISSR) have been used to fingerprint 32 vining cultivars and five non-vining
58	Clematis species to assess their genetic relationships and cultivar identification
59	(Nicole and Stan, 2005). Random amplified polymorphic DNA (RAPD) has been used
60	to confirm Clematis hybrids (Tao et al., 2010), and sequences of chloroplast DNA
61	such as the <i>atpB-rbcL</i> spacer region, <i>matK</i> , <i>trnK</i> , <i>trnL</i> intron, and <i>trnL-trnF</i> spacer
62	region, as well as the nuclear actin I intron have been used for the analysis of
63	phylogenetic relationships within the Clematis genus (Johansson and Jansen, 1993;
64	Johansson, 1995; Miikeda et al., 1999, 2006; Slomba et al., 2004; Shuang et al., 2016).
65	Internal transcribed spacer (ITS) sequences have been analyzed to provide molecular
66	evidence for the current phylogeny of the genus, and also for the identification of
67	medicinal Clematis species (Ming et al., 2011, Xie et al., 2011; Xiao et al., 2012).
68	Classifications based on morphology and molecular methods have produced
69	diverging results. According to Osamu et al. (2006), the inconsistencies between
70	previous classification systems and molecular analyses indicate that several characters,
71	such as the presence of filament hairs and the position of the inflorescences on the
72	shoot (upper or lower part of stems), are homoplasious and do not clarify the

73	phylogenetic relationships. However, leaf margin characters, which had not been
74	previously used to characterize Clematis, were found to be useful in defining
75	subgenera (Osamu et al., 2006).
76	Currently, there is a lack of SSR or cpSSR markers capable of effectively
77	detecting polymorphisms and confirming cultivar identity in Clematis. To improve
78	precision in genetic analyses on Clematis, we developed cpSSR markers to investigate
79	inter- and intraspecific diversity among Clematis samples. Such markers will also be
80	useful tools when searching for cytoplasm donors to breed new ornamental cultivars.
81	Additionally, we compared relationships among Clematis species based on two types
82	of genetic tools: cpSSR markers developed in this study and the common "phylogeny
83	tool" ITS sequencing, to test whether the results from both methods are congruent or
84	not.
85	
86	
87	Materials and Methods
88	
89	Sampling and DNA extraction
90	We analyzed 43 accessions that represent 11 Clematis species (Table 1) that were
91	collected from the Zhejiang province of China. All vouchers are deposited at the
92	Zhejiang A & F University. Total genomic DNA was extracted from dry leaf tissue
93	using the E.Z.N.A Plant DNA Mini Kit Spin Protocol (Omega Bio-tek, Inc.)
94	according to the manufacturer's instructions.

96 **Primer design**

97	The SSR locations were searched from the complete chloroplast genome of
98	Clematis terniflora (GenBank, accession KM652489.1) using the SSRIT tool
99	(http://archive.gramene.org/db/markers/ssrtool). Ten adequate SSR regions were
100	identified using the following criteria: length (at least ten copies for mononucleotide
101	repeats and at least six copies for other types of SSRs) of the repeat sequence and
102	good flanking primer sites. Then, primer pairs were designed for these regions using
103	Primer Premier 5.0
104	(http://downloads.fyxm.net/download-now-Primer-Premier-Others-Home-&-Education
105	n-101178.html) using following parameters: primer length of 20-25 bp, a PCR
106	product size of 100-300 bp, annealing temperature between 50-65°C, and a GC
107	content of 30-60% (Table 2). Primers used for ITS sequencing were ITS1 (5'-CTT
108	GGT CAT TTA GAG GAA GTA A-3') and ITS4 (5'-TCC TCC GCT TAT TGA TAT
109	GC-3') (Gardes and Bruns, 1993)
110	

111 PCR amplification and data analysis

112 PCR reactions for the selected ten SSR regions were carried out in 20-µl volumes

by mixing the following components: 11 μ l ddH₂O, 2 μ l 10 × buffer, 0.4 μ l 10 mM

114 dNTPs, 0.6 μl Dynazyme II DNA polymerase (Thermo Fisher Scientific, 2 U μl⁻¹), 2

115 μ l genomic DNA (about 20 ng) and 2 μ l both primers (5 pmol μ l⁻¹). The forward

116 primers were fluorescently labeled with FAM or HEX. The PCR reactions were

117	carried out with an initial denaturation for 45 s at 94° C, followed by 35 cycles of 30 s
118	at 94°C, 30 s at the cpSSR-specific annealing temperature (Table 2), 40 s of
119	elongation at 72°C, and with a final elongation at 72°C for 5 min. After amplification,
120	the PCR products were diluted 1:20-1:200 depending on the concentration (the final
121	concentration about 1 ng $\mu l^{\text{-}1}$) with Milli-Q water. The DNA fragments were analyzed
122	using a capillary electrophoresis system 3730 DNA Analyzer (Applied Biosystems).
123	The DNA fragment sizes were determined using Peak Scanner ver. 2.0 (Applied
124	Biosystems). The observed number of alleles (Na), effective number of alleles (Ne)
125	and polymorphism information content (PIC) were estimated with PowerMarker
126	V3.25 (Liu and Muse, 2005). Phylogenetic trees were constructed with PowerMarker
127	V3.25 using the UPGMA method based on genetic distances described by Nei (1983).
128	The PCR reactions preceding ITS sequencing were performed in a total volume
129	of 20 μl that contained 13 μl ddH2O, 2 μl 10 \times buffer, 0.4 μl 10 mM dNTP mix, 0.6 μl
130	of Dynazyme II DNA polymerase (2 U μ l ⁻¹), 2 μ l genomic DNA (about 20 ng), and 1
131	μ l both primers (5 pmol μ l ⁻¹). The PCR cycle was similar to that used for SSR
132	genotyping, but the annealing temperature was 50° C. Amplification products were
133	run in a 1% agarose gel, and the DNA fragments were excised and purified prior to
134	sequencing using the E.Z.N.A. Gel Extraction Kit (Omega Bio-Tek). Purified DNA
135	samples were sequenced at Macrogen Inc. using the same primers utilized in the PCR
136	reactions preceding ITS sequencing. The ITS sequences were manually checked using
137	Chromas 2.5.0 (http://chromas.software.informer.com) and then aligned using Clustal
138	X (http://www.clustal.org). The aligned data were analyzed using Mega 6.0

139	(http://www.megasoftware.net) and genetic distances between species were
140	determined using the Kimura-2 method (Kimura, 1980). Phylogenetic trees were
141	drafted using the UPGMA method and the Kimura-2 parameter model in Mega 6.0.
142	
143	
144	Results and Discussion
145	
146	Development and assessment of cpSSR primers for identifying <i>Clematis</i> species
147	Aside from DNA sequencing-based investigations, there are only a limited
148	number of molecular marker studies of Clematis. These include the report of ISSR
149	primers (Nicole and Stan 2005) and randomly amplified polymorphic DNA (RAPD;
150	Tao et al., 2010); however, none of these previous investigations have utilized SSR
151	markers. The present study developed cpSSR markers based on the available
152	chloroplast genome of C. terniflora and successfully applied them to investigate intra-
153	and interspecific polymorphisms in Clematis. The polymorphic cpSSR markers can
154	distinguish different species from each other and can be used in cultivar identification
155	as well.
156	All ten cpSSR markers gave clear amplification products and seven were
157	polymorphic within the genus (Table 3). A total of 28 alleles were discovered in the
158	ten cpSSR loci among the 11 representative Clematis species. All amplified fragments
159	were around the predicted sizes (Table 2, Table 4), indicating that the detected
160	polymorphism mainly arose from variation in the number of cpSSR repeats. All

161	markers amplified in all species, except for loci Clecp2 and Clecp7 in C. lasiandra,
162	which was probably due to the failure of the primers to anneal at those locations. The
163	allele numbers per locus ranged from one to seven within the genus (Table 3). The
164	average number of alleles (Na), effective number of alleles (Ne), and polymorphism
165	information content (PIC) were 2.8, 1.9, and 0.29, respectively, for the whole dataset
166	(Table 3). In previous cpSSR-based studies, the mean PIC values equaled 0.19 in
167	common bean cultivars (Ceylan et al., 2014), 0.21 in cowpea (Pan et al., 2014), 0.32
168	in <i>Gladiolus</i> cultivars (Singh et al., 2017) and 0.60 in cotton (Li et al., 2014). These
169	examples show that PIC values of cpSSR markers can vary considerably and that the
170	value detected in this study falls within the observed range of variation.
171	The UPGMA dendrogram was constructed using all cpSSR allele information and
172	samples from the same species clearly grouped together (Figure 1). Five main clusters
173	were generated: C. lasiandra (37, 38), C. patens subsp. tientaiensis (41), and C.
174	henryi (27-30) grouped in clusters I, II, and III, respectively. C. terniflora (40), C.
175	chinensis var. anhweiensis (42), C. courtoisii (43), and C. hancockiana (35, 36) were
176	closely connected in the dendrogram and grouped with C. apiifolia (1-14) to form
177	cluster IV. C. brevicaudata (31-34), C. finetiana (15-26), and C. uncinata (39)
178	grouped as a cluster V.
179	
180	ITS sequencing

181 The sequenced ITS region covered the whole distance from the end of the 18S
182 rRNA gene to the beginning of the 26S rRNA gene (GenBank accession numbers

183	KY201178- KY201188). The length of the entire ITS region (ITS1+5.8S+ITS2) from
184	the 11 Clematis species varied between 534-562 bp. The ITS1 and ITS2 regions
185	varied from 156-180 and 218-224 bp, respectively. C. courtoisii and C. hancockiana
186	had the longest and C. henryi the shortest ITS regions. Among all species, the length
187	of the 5.8S rRNA varied between 158-159 bp. The average GC content was 61.6% for
188	the entire ITS region, 60.3% for ITS1, 68.5% for ITS2, and 53.2% for the 5.8S rRNA
189	region (Table 5). Thus, some length variation was detected for the ITS regions among
190	the Clematis species.
191	The numbers of variable sites and parsimony-informative sites within the ITS
192	region equaled 79 and 38, and accounted for 13.8% and 6.6%, of the sites within the
193	entire ITS region, respectively. The numbers of variable sites and
194	parsimony-informative sites within ITS1, ITS2, and 5.8S rRNA regions were 39, 33, 7,
195	and 24, 11, 3, respectively. Thus, variation was abundant and included both SNPs and
196	indels. The studied species were characterized by considerable divergence, with
197	genetic distances varying between 0.008-0.073 (Table 6). The smallest distance was
198	0.008, which was found between C. hancockiana and C. patens subsp. tientaiensis,
199	while C. finetiana and C. courtoisii were the most divergent species with a distance
200	value of 0.073. The average pairwise genetic distance equaled 0.039.
201	When a dendrogram was constructed for the 11 Clematis species using the
202	UPGMA method, we discovered four clusters (Figure 2). The first cluster (I) was
203	composed of C. lasiandra, C. apiifolia, C. henryi, C. brevicaudata, and C. uncinata.
204	C. chinensis var. anhweiensis; C. terniflora were grouped in cluster II; C. courtoisii, C.

205 hancockiana, and C. patens subsp. tientaiensis were grouped in cluster III; and C.

206 finetiana was separated from the other species in cluster IV. These sequencing results

207 correspond previous analyses quite well (Ming et al., 2011; Xie et al., 2011).

208

209 Molecular markers as characterization and phylogenetic tools

210 It is widely recognized that the traditional use of morphological traits for taxon identification has several limitations, which include the misidentification of a taxon 211 due to the phenotypic plasticity of the traits studied, the existence of cryptic taxa or 212 213 the applicability of certain morphological keys only for a particular life stage (Valentini et al., 2009). In Clematis, the presence of filament hairs and the position of 214 the inflorescences on the shoot (upper or lower part of stems) are homoplasious and 215 216 do not inform phylogenetic relationships (Osamu et al., 2006). It is worth noting that convergent evolution may also confuse the interpretation of morphological traits; for 217 instance, in the family Brassicaceae, there has been prevalent convergent evolution of 218 219 several traits through time (Huang et al., 2016).

The species *C. lasiandra*, *C. apiifolia*, *C. henryi*, and *C. brevicaudata* included in our study share a common character of serrate leaf margins, which is supposed to be an indication of a close evolutionary relationship. Also, their pairwise genetic distances based on ITS sequences were quite small (0.010-0.022). The character state of entire leaf margins is shared by the other seven investigated *Clematis* species and therefore, the ITS-based relationships were found to correspond morphologically. For the most part, our results on *Clematis* relationships based on ITS regions agreed with

the ITS sequence analyses presented by Ming et al. (2011) and Xie et al. (2011),

228 which were based on nuclear ITS and plastid data.

229	In the cpSSR-derived tree, the seven species with entire leaf margins were sorted
230	into three clades: C. terniflora, C. chinensis var. anhweiensis, C. courtoisii and C.
231	hancockiana clustered together in the subgroup of clade IV; C. uncinata and C.
232	finetiana were in the same subgroup of clade V; and C. patens subsp. tientaiensis
233	formed clade II. Among them, C. chinensis var. anhweiensis and C. terniflora had a
234	close relationship based on both cpSSR and ITS data. Also, C. courtoisii and C.
235	hancockiana belonged to the same group in both UPGMA trees. However, the
236	grouping schemes of the other seven species were quite different in cpSSR- and
237	ITS-based trees. For example, C. lasiandra and C. apifolia belonged to two separate
238	clusters in the cpSSR tree, while they were grouped into the same cluster in the
239	ITS-based tree. Thus, the trees produced with cpSSR markers and ITS sequences did
240	not correspond with each other, possibly because of lineage sorting or introgression
241	(Wendel and Doyle, 1998), the relatively narrow range of markers and sequences used
242	in this study, or the size homoplasy for cpSSR markers, which may limit the
243	phylogenetic power of cpSSRs (Wheeler et al., 2014). The main strength of SSRs and
244	comparable markers is rather in species and genotype identification instead of
245	revealing phylogenetic relationships.
246	To the best of our knowledge, this is the first report on the development and use
247	of any kind SSR markers in the genus Clematis. These markers can be used in further
248	studies on genetic diversity, population genetics and phylogeography of Clematis, as

249 well as assist in the breeding of new ornamental cultivars.

251	Acknowledgments: This work was supported by the Nikolai and Ljudmila
252	Borisoff Foundation and the Fund of Forestry Key Disciplines of ZheJiang Province
253	(China).
254	
255	
256	Literature Cited
257	
258	Birky CW Jr, Walsh JB (1988) Effects of linkage on rates of molecular evolution.
259	Proc Natl Acad Sci USA 85:6414–6418
260	Bryan GJ, Mcbicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic
261	simple sequence repeat markers in chloroplast genomes of Solanaceous plants.
262	Theor Appl Gen 99:859–867
263	Ceylan A, Öcal, N, MikailAkbulut M (2014) Genetic diversity among the Turkish
264	common bean cultivars (Phaseolus vulgaris L.) as assessed by SRAP, POGP and
265	cpSSR markers. Biochem Syst Ecol 54:219-229
266	Chen H, Liu L, Wang L, Wang S, Somta P, Cheng X (2015) Development and
267	validation of EST-SSR markers from the transcriptome of adzuki bean (Vigna
268	angularis). PLOS One 10:1–14
269	Essig FB (1991) Seedling morphology in Clematis (Ranunculaceae) and its
270	taxonomic implications. Sida 14:377-390

271	Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for
272	basidiomycetes-application to the identification of mycorrhizae and rusts. Mol
273	Ecol 2:113–118
274	Goodley EJ (1977) Imbricate sepals in Clematis. <u>N Zeal J Bot</u> 15:775–776
275	Hao DC, Gu XJ, Xiao PG, Peng Y (2013) Chemical and biological research of
276	Clematis medicinal resources. Chin Sci Bull 58:1120-1129
277	He YX, Li L, Zhang K, Liu ZR (2011) Cytotoxic triterpene saponins from
278	Clematis mandshurica. J Asian Nat Prod Res 13:1104–1109
279	Huang C-H, Sun R, Hu Y, Zeng L, Zhang N, Cai L, Zhang Q, Koch MA,
280	Al-Shehbaz I, Edger PP, J. Pires JC, Tan D-Y, Zhong Y, Ma H (2016)
281	Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested
282	radiations and supports convergent morphological evolution. Mol Biol Evol
283	33:394-412
284	Johansson JT, Jansen RK (1993) Chloroplast DNA variation and phylogeny of the
285	Ranunculaceae. Plant Syst Evol 187:29–49
286	Johansson JT (1995) A revised chloroplast DNA phylogeny of the Ranunculaceae.
287	Plant Syst Evol 9 (Suppl.):253–262
288	Keener CS, Dennis WM (1982) The subgeneric classification of Clematis
289	(Ranunculaceae) in temperate North America north of Mexico. Taxon 31:37-44
290	Kimura M (1980) A simple method for estimating evolutionary rate base substitution
291	comparative studies nucleotide sequences. J Mol Evol 16:111-120
292	Li P, Li Z, Liu H, Hua J (2014) Cytoplasmic diversity of the cotton genus as

293 revealed by chloroplast microsatellite markers. Genet Resour Crop Evol

61:107-119

- 295 Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro
- amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J
- 297Hum Gen 44:397–401
- 298 Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for
- 299 genetic marker analysis. Bioinformatics 21:2128–2129
- 300 Miikeda O, Kita K, Handa T, Yukawa T (2006) Phylogenetic relationships of
- 301 *Clematis* (Ranunculaceae) based on chloroplast and nuclear DNA sequences. Bot
- 302 J Linn Soc 152:153–168
- 303 Miikeda O, Koga S, Handa T, Yukawa T (1999) Subgeneric relationships in
- 304 Clematis (Ranunculaceae) by DNA sequences. In S Andrews, A Leslie, C
- 305 Alexander, eds, Taxonomy of Cultivated Plants. Third International Symposium.
- 306 Royal Botanic Gardens, London, UK, pp. 355–358
- 307 Ming J, Qiao ZY, Rong RL (2011) ITS sequence analysis of eight medicinal

308 plants in *Clematis* L. Chin Trad Herb Drugs 42:1802–1806

- 309 Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially
- associated with nonrepetitive DNA in plant genomes. Nature Gen 30:94–200
- 311 Nicole G, Stan CH (2005) Intersimple sequence repeat fingerprinting and genetic
- 312 variation in a collection of *Clematis* cultivars and commercial germplasm. Hortic
- 313 Sci 40:1982–1987
- Pan L, Li Y, Guo R, Wu H, Hu Z, Chen C (2014) Development of 12 chloroplast

315	microsatellite markers in Vigna unguiculata (Fabaceae) and amplification in
316	Phaseolus vulgaris. Appl Plant Sci 2: 1300075. DOI: 10.3732/apps.1300075
317	Provan J, Soranzo N, Wilson NJ, Goldetein DB, Powell W (1999) A low mutation
318	rate for chloroplast microsatellites. Genetics 153:943-947
319	Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram
320	RM (2007) Simple sequence repeats in organellar genomes of rice: frequency and
321	distribution in genic and intergenic regions. Bioinformatics 23:1-4
322	Roh MD, Song CY (1997) Effect of temperature and photoperiod on growth and
323	flowering of potted dwarf Clematis. Korean Soc Hort Sci 38:429-434
324	Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to
325	using and evaluating microsatellite markers. Ecol Lett 9:615-629
326	Shuang XY, Hui JL, Le LL, Shuai L, Jin YL, Lin YP, Lei X (2016) Taxonomic
327	status of Clematis acerifolia var. elobata, based on molecular evidence.
327 328	status of <i>Clematis acerifolia</i> var. <i>elobata</i> , based on molecular evidence. Phytotaxa 268:209–219
327 328 329	status of <i>Clematis acerifolia</i> var. <i>elobata</i> , based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR
327 328 329 330	status of <i>Clematis acerifolia</i> var. <i>elobata</i> , based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene
327328329330331	 status of <i>Clematis acerifolia</i> var. <i>elobata</i>, based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene 10:31-36
 327 328 329 330 331 332 	 status of <i>Clematis acerifolia</i> var. <i>elobata</i>, based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene 10:31-36 Slomba JM, Garey JR, Essig FB (2004) The actin I intron–a phylogenetically
 327 328 329 330 331 332 333 	 status of <i>Clematis acerifolia</i> var. <i>elobata</i>, based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene 10:31-36 Slomba JM, Garey JR, Essig FB (2004) The actin I intron–a phylogenetically informative DNA region in <i>Clematis</i> (Ranunculaceae). SIDA 21:879–886
 327 328 329 330 331 332 333 334 	 status of <i>Clematis acerifolia</i> var. <i>elobata</i>, based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene 10:31-36 Slomba JM, Garey JR, Essig FB (2004) The actin I intron–a phylogenetically informative DNA region in <i>Clematis</i> (Ranunculaceae). SIDA 21:879–886 Tambarussi EV, Melotto-Passarin DM, Gonzalez SG, Brigati JB, de Jesus FA,
 327 328 329 330 331 332 333 334 335 	 status of <i>Clematis acerifolia</i> var. <i>elobata</i>, based on molecular evidence. Phytotaxa 268:209–219 Singh N, Pal AK, Roy RK, Tamta S, Rana TS (2017) Development of cpSSR markers for analysis of genetic diversity in <i>Gladiolus</i> cultivars. Plant Gene 10:31-36 Slomba JM, Garey JR, Essig FB (2004) The actin I intron–a phylogenetically informative DNA region in <i>Clematis</i> (Ranunculaceae). SIDA 21:879–886 Tambarussi EV, Melotto-Passarin DM, Gonzalez SG, Brigati JB, de Jesus FA, Barbosa AL, Dressano K, Carrer H (2009) In silico analysis of simple

- 337 Appl Biotechn 9:344–352
- 338 Tao Y, Yin WL, Mark SR (2010) Confirmation of *Clematis* hybrids using
- 339 molecular markers. Sci Hort 125:136–145
- **Tobe H** (1980) Morphological studies on the genus *Clematis* Linn., VII.
- 341 Reinvestigation of *Clematis* williamsii A. Gray and proposal of its taxonomic
- transfer to *Clematopsis*. Bot Mag, Tokyo 93:135–148
- 343 Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends
- 344 in Ecol Evol 24:110-117
- 345 Wang WT, Li LQ (2005) A new system of classification of the genus Clematis
- 346 (Ranunculaceae). Acta Phytotax *Sin* 43:431–488
- 347 Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome
- history and molecular evolution. *In* D Soltis, P Soltis, J Doyle, eds, Molecular
- 349 Systematics of Plants, 2nd edn. Chapman and Hall, New York, pp. 265–296
- 350 Xiao L, Pei W, Long Z, Hua AJ (2012) rDNA-ITS sequence analysis of the
- 351 traditional mongolian medicinal plants in *Clematis* L. Acta Acad Med Neimongol
- 352 34:325–330
- 353 Xie L, Wen J, Li LQ (2011) Phylogenetic analyses of *Clematis* (Ranunculaceae)
- Based on sequences of nuclear ribosomal ITS and three plastid regions. Syst Bot
- 355 36:907–921

Number	Taxon	Origin	Coordinates	Sample size	Altitude (m)
1	C. finetiana	Tian mu mountain (Lin an)	30°15'37.56''N, 119°16'57.92''E	3	499-589
2	C. finetiana				
3	C. finetiana				
4	C. finetiana	Wu li village (Lin an)	30°19'36.66''N, 119°15'24.72''E	5	399-500
5	C. finetiana				
6	C. finetiana				
7	C. finetiana				
8	C. finetiana				
9	C. finetiana	Ling long mountain (Lin an)	30°13'03.61''N, 119°40'02.67''E	6	111-144
10	C. finetiana				
11	C. finetiana				
12	C. finetiana				
13	C. finetiana				
14	C. finetiana				
15	C. apiifolia	Tian mu mountain (Lin an)	30°10'02.33''N, 119°01'44.13''E	9	533-610
16	C. apiifolia				
17	C. apiifolia				
18	C. apiifolia				
19	C. apiifolia				
20	C. apiifolia				
21	C. apiifolia				
22	C. apiifolia				
23	C. apiifolia				
24	C. apiifolia	Ban shan village (Lin an)	30°14'35.82''N, 119°14'14.44''E	3	553-661
25	C. apiifolia				
26	C. apiifolia				

Table 1. Information of the *Clematis* samples used for cpSSR and ITS analyses

27	C. henryi	Sankou mountain (Anji county)	30°24'30.05''N, 119°40'35.96''E	4	670-733
28	C. henryi				
29	C. henryi				
30	C. henryi				
31	C. brevicaudata	Longgang village (Shaoxing county)	29°50'17.47''N, 120°39'26.93''E	4	431
32	C. brevicaudata				
33	C. brevicaudata				
34	C. brevicaudata				
35	C. hancockiana	Qianqiu mountain (Lin an)	30°19'54.09''N, 119°16'02.61''E	2	579-597
36	C. hancockiana				
37	C. lasiandra	Wu li village (Lin an)	30°16'27.88''N, 119°06'16.28''E	2	503
38	C. lasiandra				
39	C. uncinata	Wu li village (Lin an)	30°16'27.88''N, 119°06'16.28''E	1	503
40	C. terniflora	Ling long mountain (Lin an)	30°13'18.21''N, 119°40'06.62''E	1	97
41	C. patens subsp.	Nan shan village (Tian tai county)	29°07'56.05''N, 121°19'18.44''E	1	735
	tientaiensis				
42	C. chinensis var.	Liu an city anhui province	31°05'52.80''N, 115°44'54.49''E	1	791
	anhweiensis				
43	C. courtoisii	Tian mu mountain (Lin an)	30°12'23.21''N, 119°04'11.24''E	1	477

Locus	Repeat type	Primer sequence (5' to 3')	TM (℃)	Product size (bp)	
Clecn1	$[T/\Delta]_{10}$	F: TTTGTTCATGCGGTACTCCTTT	59	138	
Cicepi		R: ATCTTGTCTATTCCCACGGTTC	57	150	
Cleon?	[T].	F: AAGATACCGCTGTGCCAGGATA	61	125	
Cicepz	L I]14	R: AGAAGCCGAGTAAGCGGATTGG	01	123	
Class?		F: ATTTTCTATAACCTACCGTCTT	50	116	
Cleeps	$[A/1]_{16}$	R: TTGACTTCTACTATTTTGGTTG	50	110	
Clean	[4]	F: GATAGGGGTCAATAAAAGAAAA	52	111	
Clecp4	[A]12	R: ATAGGTGCATACAGTAGGCTCA	55		
C1 5	[A/T] ₂₉	F: TTGTTTTCCACATCGTGATTTC	60	105	
Cleeps		R: TGTCCACTCACTTTATTTTCTGAAC	00	195	
Class		F: ATGGGGAGATAAAGAAATAGAG	50	150	
Clecpo	[A/ 1]36	R: TACCAAAATAGGATGAAATAGG	32	132	
Clear 7	[C/A]	F: ACCAGTTGTTGCTGATACCTCCTT	61	120	
Cleep/	$[\mathbf{G}/\mathbf{A}]_{22}$	R: CGGTCGTTGTGGTCGGACTCTA	01	128	
Class		F: AATGAAAGGGATGTTGAAAGAG	567	170	
Cleeps	[A/ 1]21	R: CTGTCACGTACACGTAGGAATA	307	170	
Clean		F: TAGGGATATGGAACGAAAGGAA	60	204	
Cleepy	$[1/C]_{20}$	R: ATTAATTCTCTAGCCCCGCTGT	00	204	
<u>C110</u>	[T] / A]	F: TCTATGAAATGCCAATCCAACA	5(200	
Clecp10	[1/A]30	R: AAAAACTTATAGGGCGTGGATAAA	30	209	

Table 2. Ten cpSSR primer pairs developed for *Clematis* used in this study

Locus	Samples	Na	Ne	PIC
Clecp1	43	7	3.23	0.65
Clecp2	43	1	1.00	0.00
Clecp3	43	1	1.00	0.00
Clecp4	43	4	2.88	0.59
Clecp5	43	2	1.05	0.04
Clecp6	43	2	1.37	0.24
Clecp7	43	1	1.00	0.00
Clecp8	43	3	1.62	0.35
Clecp9	43	2	1.93	0.37
Clecp10	43	5	3.74	0.68
Mean		2.8	1.9	0.29

Table 3. Summary of genetic variation statistics for each cpSSR locus among all

 Clematis samples

Na, the observed number of alleles; Ne, effective number of alleles; PIC, polymorphism information content

Locus	C. finetiana	C. apiifolia	C. henryi	C. brevicaudata	C. hancockiana	C. lasiandra	C. uncinata	C. terniflora	C.patens subsp. tientaiensis	Clematis chinensis var. anhweiensis	C. courtoisii
Clecp1	140,141	135	133,136,137	135	127	135	133	135	127	135	127
Clecp2	122	122	122	122	122	-	122	122	122	122	122
Clecp3	112	112	112	112	112	112	112	112	112	112	112
Clecp4	108	106	105,106	107	106	105	106	106	106	106	107
Clecp5	193	193	193	193	193,194	193	193	193	193	193	193
Clecp6	149	149	149	150	149	150	149	149	150	149	149
Clecp7	124	124	124	124	124	-	124	124	124	124	124
Clecp8	168,169	168	173	168	168	169	169	168	169	168	168
Clecp9	204	203	203,204	203,204	204	204	203	204	204	204	204
Clecp10	231,232	229,230,231	232	229,230	232	230	231	232	237	232	232

 Table 4. Detected allele sizes of 10 cpSSR loci in different Clematis species

-, no amplification

A	Species	ITS region			ITS1	_	ITS2	5.8S		
Accession number		length	GC content	length	GC content	length	GC content	length	GC content	
KY201178	C. chinensis var. anhweiensis	549	62.1	169	59.8	221	70.6	159	52.8	
KY201179	C. apiifolia	552	61.4	173	60.1	220	68.2	159	53.5	
KY201180	C. brevicaudata	543	61.3	164	59.2	220	68.6	159	53.5	
KY201181	C. courtoisii	562	63.2	180	63.9	220	68.6	158	54.4	
KY201182	C. finetiana	543	59.3	166	58.4	218	67.0	159	49.7	
KY201183	C. hancockiana	562	63.4	180	63.9	224	69.2	158	54.4	
KY201184	C. henryi	534	60.1	156	57.7	219	67.1	159	52.8	
KY201185	C. lasiandra	550	60.4	172	59.9	219	66.2	159	52.8	
KY201186	C. patens subsp. tientaiensis	560	63.4	180	64.4	222	68.9	158	54.4	
KY201187	C. terniflora	549	61.8	169	59.2	221	70.1	159	52.8	
KY201188	C. uncinata	541	60.8	163	57.1	219	69.0	159	53.5	

Table 5. GenBank accession numbers, length (bp), and GC content (%) of ITS sequences in 11 Clematis species

Species -		Genetic distance											
		1	2	3	4	5	6	7	8	9	10	11	
1:	C. chinensis var. anhweiensis	-											
2:	C. terniflora	0.020	-										
3:	C. brevicaudata	0.032	0.036	-									
4:	C. henryi	0.036	0.040	0.022	-								
5:	C. lasiandra	0.038	0.042	0.016	0.010	-							
6:	C. apiifolia	0.038	0.044	0.014	0.016	0.010	-						
7:	C. finetiana	0.060	0.065	0.042	0.044	0.038	0.040	-					
8:	C. uncinata	0.040	0.044	0.028	0.030	0.032	0.030	0.050	-				
9:	C. courtoisii	0.050	0.058	0.052	0.054	0.056	0.054	0.073	0.052	-			
10:	C. hancockiana	0.038	0.046	0.040	0.042	0.044	0.042	0.060	0.040	0.012	-		
11:	C. patens subsp. tientaiensis	0.036	0.044	0.036	0.038	0.040	0.038	0.056	0.038	0.020	0.008	-	

 Table 6. Pairwise divergence of Clematis species based on ITS sequences

Kimura-2 parameter model was used to calculate genetic distances

Fig. 1. A dendrogram of *Clematis* samples based on cpSSR variation. The sample numbers follow those in Table 1. The clusters are numbered from I to V.

Fig. 2. A dendrogram of 11 *Clematis* species based on ITS sequence information. The sample numbers follow those in Table 1. The clusters are numbered from I to IV.