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Abstract

Background: Balanced translocation carriers are burdened with fertility issues due to improper chromosome
segregation in gametes, resulting in either implantation failure, miscarriage or birth of a child with chromosomal
disorders. At the same time, these individuals are typically healthy with no signs of developmental problems, hence
they often are unaware of their condition. Yet, because of difficulties in conceiving, balanced translocation carriers
often turn to assisted reproduction, some of whom may also undergo preimplantation genetic testing for
aneuploidy (PGT-A) to improve the likelihood of achieving a successful pregnancy.

Case report: We describe a female patient, who pursued in vitro fertilization (IVF) treatment coupled with PGT-A
following two consecutive miscarriages, unaware of her genetic condition. PGT-A was performed on blastocyst-
stage embryos and the results of comprehensive chromosome screening from a first IVF cycle demonstrated
reciprocal segmental aberrations on chromosome 7 and chromosome 10 in two out of four embryos. Due to
distinct embryo profiles, the couple was then referred for genetic counselling and subsequent parental karyotyping
revealed the presence of a previously undetected balanced translocation in the mother.

Conclusions: These results confirm previous reports that genome-wide PGT-A can facilitate the identification of
balanced translocation carriers in IVF patients, providing explanation for poor reproductive outcome and allowing
adjustments in treatment strategies.
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Background
Any chromosomal aberrations in prospective parents,
especially translocations, are often associated with
reproductive failure, regardless of parental age. Balanced
translocations can be categorized into reciprocal translo-
cations, characterized by the exchange of genetic mater-
ial between the two non-homologous chromosomes, and
Robertsonian translocations, which occur as a result of a
fusion of two acrocentric chromosomes (chromosomes
13, 14, 15, 21 or 22). Both reciprocal and Robertsonian
translocations are one of the most common chromo-
somal abnormalities and the estimated frequency of all
balanced structural rearrangements in the general

population is 0.2–0.4% [1, 2]. Because there is very little
or no loss of genetic material, balanced translocation
carriers are phenotypically healthy, but they are at
increased risk of having fertility issues. The defective
chromosome segregation during meiosis can lead to
unbalanced karyotype in the germ cells that can be
transmitted to the embryo [3–5], resulting in either
recurrent miscarriages or birth of a child with severe
congenital disorders [6, 7]. Most translocation carriers
are unaware of their condition, until parental karyotyp-
ing or genetic analysis of either aborted foetus or
affected newborn is performed. Once diagnosed, more
personalized treatment strategies are offered, and such
couples can opt for the use of gamete donation or in
vitro fertilization (IVF) treatment coupled with
preimplantation genetic diagnosis (now also known as
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preimplantation genetic testing for structural rearrange-
ments, or PGT-SR) to increase the chance of a successful
pregnancy [8–11]. Following PGT-SR, only chromosom-
ally balanced embryos are chosen for transfer based on
the results of genetic analysis.
Here, we report a couple, who turned to assisted

reproduction after experiencing two consecutive preg-
nancy losses. The couple chose to undergo preimplanta-
tion genetic testing for aneuploidy (PGT-A) to increase
the likelihood of pregnancy per embryo transfer and
reduce the risk of miscarriage. Comprehensive chromo-
some screening (CCS) revealed distinct copy-number
changes on chromosome 7 and chromosome 10 in
trophectoderm biopsies of two IVF embryos, which sub-
sequently led to retrospective identification of a balanced
translocation in the mother. In total, the patient under-
went two IVF/PGT-A cycles and in the second cycle a
pregnancy was established following the transfer of an
euploid embryo, resulting in a birth of a healthy baby.

Case presentation
Material and methods
Patients
We report a 26-year-old female and her 28-year-old
healthy male partner, who experienced difficulties in
becoming pregnant since 2015. Female patient had a
regular menstrual cycle, but was previously diagnosed
with endometriosis in 2012 following laparoscopy, for
which she received treatment with goserelin acetate
implant (Zoladex®). In January and October 2016, the
couple experienced two first trimester miscarriages after
natural conception at 5/6 weeks (gestational sac and yolk
sac were visible by obstetric ultrasonography) and at 4/5
weeks (only gestational sac was visible) of gestation,
respectively. The couple then turned to assisted
reproduction in 2017 due to fertility issues. Because of
history of endometriosis, the female patient underwent
laparoscopy again in April 2017, but no endometriotic
lesions were found and fallopian tubes were patent. The
female patient was then followed up for multiple cycles
for the presence of a dominant follicle. In addition, she
was administered with alpha chorionic gonadotropin
(Ovitrelle®) and dihydrogesterone (Duphaston®) but
failed to conceive. In September 2017, the couple
enrolled into IVF/PGT-A program at fertility clinic at
West-Tallinn Central Hospital for elective embryo trans-
fer to assist in achieving a successful pregnancy. An in-
formed consent was also obtained, allowing to use
supernumerary/affected embryos for research purposes.

IVF treatment and embryo biopsy
Controlled ovarian stimulation was performed using re-
combinant follicle-stimulating hormone, followed by a
gonadotropin-releasing hormone (GnRH) antagonist

protocol. Final oocyte maturation was triggered by hu-
man chorionic gonadotropin administration 36–38 h
prior to oocyte retrieval. In total 19 oocytes have been
retrieved and all of them were fertilized by conventional
IVF. The presumed zygotes were then cultured in a
SAGE-1 single step media (Origio, Denmark) until day 5
blastocyst stage. Subsequent embryo morphological
evaluation was performed according to the criteria set
by Gardner and Schoolcraft [12]. Trophectoderm (TE)
biopsy was performed on four embryos that reached the
blastocyst stage using RI Saturn 5 Active™ Laser and on
average 5–10 cells were aspirated per embryo. Following
TE biopsy, all blastocysts were vitrified using MediCult
Vitrification Cooling medias (Origio).

Comprehensive chromosome screening
For PGT-A, commercially available VeriSeq PGS kit
(Illumina Inc., USA) was used for next-generation
sequencing (NGS)-based aneuploidy screening. Briefly,
TE biopsies were whole-genome amplified (WGA) ac-
cording to ligation-mediated PCR-based SurePlex proto-
col (Illumina Inc., USA). The quality of WGA products
was controlled on 1.5% agarose gel and the amount of
amplified material was quantified by Qubit dsDNA HS
Assay kit (Thermo Fisher Scientific, USA). Next,
successfully amplified samples were used for library
preparation, according to the manufacturer’s VeriSeq
PGS kit protocol, and were sequenced on the Illumina
MiSeq system. Subsequent CCS was performed using
Illumina BlueFuse Multi v4.3 software with an embed-
ded aneuploidy calling algorithm. Based on TE biopsy
results, embryo classification was performed according
to Preimplantation Genetic Diagnosis International
Society (PGDIS) guidelines and recommendations for
embryo prioritization (PGDIS, 2016).

Cytogenetic karyotyping
For blood cell karyotyping, conventional GTG-banding
technique (G-bands by trypsin using Giemsa; band level
550) was used for staining metaphase chromosomes from
peripheral blood lymphocytes. Chromosome aberrations
were classified according to the International System for
Human Cytogenetic Nomenclature (ISCN2016).

Results
The initial PGT-A analysis was performed on four TE
biopsies, from which one embryo was predicted to be
euploid (Embryo 2); two had recurrent segmental aber-
rations, involving distal regions of chromosomes 7 and
10 (Embryo 3 and Embryo 4); and one (Embryo 1) had a
chaotic profile, characterized by multiple chromosome
gains and losses (Table 1). Because of the distinct nature
of detected segmental aberrations, which is common to
translocation carriers, the couple was referred to genetic
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counselling, and parental karyotyping confirmed the
presence of a reciprocal translocation in the mother
(Fig. 1). As translocation carriers exhibit alternations in
meiosis, segregation of quadrivalents during the meiotic
division can produce germ cells with normal and
balanced translocated karyotypes, and/or cells with un-
balanced karyotype, according to adjacent I or adjacent
II modes or 3:1 chromosomal segregation [13]. Such

meiotic chromosome segregation patterns have also
been previously observed in single sperm cells, derived
from male translocation carriers [5], but depending on
chromosomes involved, the overall proportion of differ-
ent meiotic segregation modes can vary between male
and female carriers [3]. In our case, the data indicated
that Embryo 3 and 4 have inherited one normal and one
derivative chromosome from the mother via adjacent II

Table 1 Results of preimplantation genetic testing for aneuploidy (PGT-A)

IVF cycle Embryo ID Embryo Grade PGT-A result

1 1 5AB Chaotic with multiple chromosome gains and losses

2 5AB 46,XX / 46,XX,t(7;10)(q21.11;q11.23)a

3 4BB 46,XY,del (7)(pter-q21.11)/dup (10)(pter-q11.23)

4 5AB 46,XX,dup (7)(q21.11-qter)/del (10)(q11.23-qter)

2 5 4AB 46,XX,del (3)(q26.1-q29)

6 4AB 45,XY,-6, del (7)(pter-q21.11)/dup (10)(pter-q11.23); multiple
mosaic aneuploidies

7 5BB 46,XX / 46,XX,t(7;10)(q21.11;q11.23)a

aEuploid embryos were re-classified after the detection of balanced translocation in the mother

Fig. 1 Maternal karyotype. Chromosome banding retrospectively revealed a translocation 46,XX,t(7;10)(q21.11;q11.23) in the mother. a Full
maternal karyotype. b Detailed representation of translocated chromosomes 7 and 10. Arrows indicate breakpoints in rearranged chromosomes
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and adjacent I segregation, respectively (Fig. 2). Due to
the diagnosis of a balanced translocation in the mother,
the only euploid embryo from the first IVF cycle was re-
classified as either 46,XX or 46,XX,t(7;10)(q21.11;q11.23)
and transferred, but without resulting in pregnancy.
Because most reciprocal translocations have various segre-
gation modes, depending on chromosomes involved,
localization of breakpoints and translocated segment sizes
and carrier gender [14, 15], empirical data on the risks for
viable unbalanced offspring can be lacking, and for each
individual couple risk estimation is based on the detected
balanced translocation and family history. In the current

case, no further counselling was requested by the couple
after the diagnosis of a balanced translocation in the
mother, and the female patient continued with IVF treat-
ment and embryo testing. In the second cycle, following
the same stimulation protocol, three embryos were biop-
sied and analysed (Table 1). Although Embryo 6 presented
with monosomy 6 and multiple aneuploidies, segmental
rearrangements of chromosome 7 and 10 were also de-
tected, signifying the defective meiotic segregation pat-
terns of translocated chromosomes. Based on the
outcome of embryo chromosome screening from the sec-
ond IVF cycle, Embryo 7 with a balanced 46,XX/46,XX,

A B

C D

Fig. 2 Identified meiotic segregation patterns and consequent embryo genomic profiles from reciprocal translocation carrier. Chromosomes,
involved in balanced translocation in the mother (a), form a quadrivalent structure during meiotic pairing (b). Upon chromosome segregation,
normal, balanced and unbalanced oocytes were generated as a result alternate segregation, adjacent I and adjacent II segregation (c). Upon
fertilization, these oocytes give rise to embryos with or without genomic imbalances, as was identified by PGT-A (d)
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t(7;10)(q21.11;q11.23) karyotype was chosen for transfer,
resulting in a singleton pregnancy and live birth in De-
cember 2018.

Discussion
In this case report, we described a retrospective identifi-
cation of a balanced reciprocal translocation carrier,
based on the embryonic profiles obtained after PGT-A.
This discovery together with diagnosed endometriosis
provided an extensive aetiology on reproductive failure
in the female patient. We have also corroborated previ-
ous reports, indicating that PGT-A can identify patients
at risk of carrying balanced genomic rearrangements
upon observations made in the embryos [16–18].
The frequency of adverse reproductive outcomes can

reach up to 5% in translocation carriers, compared to < 1%
in general population [19]. Even though subfertile couples,
undergoing IVF treatment, have an increased prevalence
of structural chromosomal rearrangements in comparison
to a general population [20–25], routine prenatal karyotyp-
ing is not a part of the standard IVF work-up. Instead, se-
lective karyotyping can be indicated for patients with
recurrent implantation failure [25] or recurrent pregnancy
loss (RPL) [26], which was generally defined as ≥3 con-
secutive miscarriages [27]. Because our patient had a his-
tory of endometriosis, which was considered as a
confounding factor, and experienced two early consecutive
pregnancy losses, she was not referred for genetic testing
based on the genetic counselling guidelines in Estonia that
adopted the previously existing RPL definition. However,
there has been a significant debate regarding the definition
of RPL and patient management, and recent ESHRE
guidelines recommend that a diagnosis of RPL should be
considered after ≥2 consecutive pregnancy losses [28].
Since miscarriage poses a tremendous psychological bur-
den for any couple, especially to female patients, IVF/
PGT-A option may still seem attractive, despite the con-
troversy and high costs [29]. However, adequately adopted
selective karyotyping prior to IVF, especially in patients
with a history of miscarriages and/or in cases of severe
male infertility, can hold additional clinical and financial
benefits [26]. First, parental karyotyping can provide the
genetic cause of infertility, as chromosomal abnormalities
can lead to gametogenesis failure [30–32]. This informa-
tion can be important to patients and can aid in patient
management and informed decision making for best treat-
ment options. Second, in case of identified structural rear-
rangements, such as balanced translocations, PGT-SR can
be indicated to avoid the transfer of an affected embryo
with unbalanced karyotype [8, 10]. Unlike PGT-A, PGT-
SR involves diagnosis of inherited structural rearrange-
ments in the embryo, thus it is more likely to be reim-
bursed by national healthcare systems.

Traditionally, PGT-SR has been performed using fluor-
escent in situ hybridization, but genome-wide screening
via array comparative genomics hybridization or NGS
can be performed. Although conceptually PGT-SR is
different from PGT-A, comprehensive chromosome
screening of the whole genome can have an additional
diagnostic value, as it allows to detect other chromo-
somal imbalances, unrelated to parental translocation,
that would normally be missed by targeted approaches.
In our case, Embryo 5 had a balanced profile for chro-
mosomes 7 and 10, but a full segmental deletion on
chromosome 3 was also detected. Nowadays, NGS tech-
niques with increased sensitivity and resolution are very
rapidly implemented into the clinical practice for full
genome screening, as they can also detect chromosomal
mosaicism [33]. Although extensive knowledge about
the effect of mosaic aneuploidies on pregnancy is lack-
ing, this approach allows to perform embryo ranking
and subsequent transfer of the most viable embryos first,
based on their genomic content and degree of mosai-
cism [34]. However, chromosomal mosaicism at blasto-
cyst stage still represents a major clinical challenge in
patient management, especially when only mosaic em-
bryos are available for transfer.
In conclusion, we reported a case of retrospective

balanced translocation carrier identification via blasto-
cyst biopsy analysis. Given that conventional karyotyping
is not routinely performed in fertility treatment, the in-
creased use of PGT-A will likely facilitate the detection
of undiagnosed balanced translocation carriers among
IVF patients.
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