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Abstract
MicroRNAs (miRNAs) regulate gene expression; many of them act in the retinal pig-
ment epithelium (RPE), and RPE degeneration is known to be a critical factor in age‐
related macular degeneration (AMD). Repeated injections with anti‐VEGFA (vascular 
endothelial growth factor A) are the only effective therapy in wet AMD. We investi-
gated the correlation between the expression of 18 miRNAs involved in the regula-
tion of the VEGFA gene in serum of 76 wet AMD patients and 70 controls. Efficacy of 
anti‐VEGFA treatment was evaluated by counting the number of injections delivered 
up to 12 years. In addition, we compared the relative numbers of deaths in patient 
with AMD and control groups. We observed a decreased expression of miR‐34‐5p, 
miR‐126‐3p, miR‐145‐5p and miR‐205‐5p in wet AMD patients as compared with 
controls. These miRNAs are involved in the regulation of angiogenesis, cytoprotec-
tion and protein clearance. No miRNA was significantly correlated with the treatment 
outcome. Wet AMD patients had greater mortality than controls, and their survival 
was inversely associated with the number of anti‐VEGFA injections per year. No as-
sociation was observed between miRNA expression and mortality. Our study empha-
sizes the need to clarify the role of miRNA regulation in AMD pathogenesis.
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1  | INTRODUC TION

Age‐related macular degeneration (AMD) is a complex eye disease; it 
is the leading cause of legal blindness in the elderly in the developed 
countries. AMD occurs in either dry or wet (neovascular) forms. Wet 
AMD is characterized by the sprouting of new vessels from chorio-
capillaris through the Bruch's membrane into the sub‐retinal space 
or the retina layers. Vascular endothelial growth factor A (VEGFA) 
and its receptor are crucial regulators of choroidal neovasculariza-
tion (CNV) in wet AMD.1 The vessels produced in CNV are fragile, 
and their contents tend to leak into the retina layers, promoting fi-
brogliosis which results in the formation of a disciform scar and se-
vere loss of vision if not properly treated.

Targeting VEGFA by anti‐VEGFA agents significantly improved 
the treatment of wet AMD outcome and, in fact, led to its removal 
from the list of incurable diseases.2 Bevacizumab (Avastin®), ran-
ibizumab (Lucentis®) and aflibercept (Eylea®) are used to prevent 
CNV activity. However, not all patients display a positive response 
to these drugs, and some of them are unresponsive to therapy.3 
Moreover, the relatively short half‐life of anti‐VEGFA drugs means 
that they need to be administered on a monthly basis, with the treat-
ment often lasting for the patient's life‐time. Therefore, new modes 
of treatments of wet AMD with the currently used and new drugs 
are being investigated to find compounds with greater efficacy and 
better safety than the present anti‐VEGFA–based therapies.

The goal of anti‐VEGFA therapy in wet AMD is to decelerate the 
worsening of visual acuity and to prevent the loss of vision. Although 
the use of VEGFA inhibitors revolutionized wet AMD therapy, sev-
eral issues still need to be resolved in the treatment of this disease. 
First, VEGFA is not the only protein involved in neovascularization. 
Second, neovascularization is not the only unwanted process on-
going in affected eyes. Third, individual susceptibility to therapy is 
influenced by genotype, epigenotype and environmental factors, all 
of which determine the expression of genes whose products are im-
portant for the therapeutic response.

Wet AMD is frequently associated with other systemic condi-
tions, primarily vascular complications that can be linked with in-
creased mortality.4-7 Therefore, although the question of whether 
wet AMD may be an independent risk factor for death is complex, it 
should be addressed as advanced age is the main factor in the patho-
genesis of AMD. Moreover, some reports suggest that therapy with 
intravitreous anti‐VEGFA injections can influence the mortality of 
wet AMD patients undergoing this kind of therapy.8-10

Several genetic factors, mainly related to the complement sys-
tem, have been identified as playing either a documented or a pu-
tative role in the pathogenesis of AMD, but the role of epigenetic 
control in AMD is much less clear.11-13 As epigenetic microRNAs 
(miRNAs) are an important element in the regulation of gene expres-
sion, a panel of miRNA species involved in the progression of wet 
AMD or the conversion of dry AMD into wet AMD should be clari-
fied in order to better understand AMD pathogenesis and to person-
alize wet AMD therapy. miRNAs now have an emerging role in the 
regulation of the expression of eukaryotic genes, and they are known 

to be involved in the pathogenesis of many human diseases.14 Their 
main function is to trigger the RNA interference (RNAi) pathway, ei-
ther to degrade mRNA produced by the target gene or to repress its 
translation. However, several other functions have been attributed 
to miRNAs, including transcriptional gene activation.15 Moreover, a 
single miRNA can be involved in the control of multiple genes be-
longing to a single molecular pathway or multiple pathways. A recent 
study has identified as many as 416 miRNAs which are expressed 
in RPE and choroid.16 Targeting these miRNAs in order to modulate 
their expression seems to be a promising strategy in AMD treatment 
as supported by experiments conducted in animal models of AMD.17

In the present work, we investigated the expression of VEGFA 
gene‐regulating miRNAs in the serum of wet AMD patients. In ad-
dition, we analysed mortality in the wet AMD patients and control 
groups without AMD.

2  | MATERIAL S AND METHODS

2.1 | Patients

A total of 76 patients with wet AMD and 70 controls were enrolled 
in this study. The mean age of the patients was 79.5 years (range 
74.5‐84.5), whereas the mean age of controls was 73.8 years 
(68.6‐78.7). The patient group contained 18 males and 58 females; 
the numbers in the control group were 37 males and 33 females. 
Because of the differences in age and sex, all calculations were ad-
justed for these parameters. The controls were individuals without 
AMD or any other retinal disease who were undergoing cataract 
operation and were selected as described earlier.18 The criteria for 
patient selection were based on CNV in optical coherent tomog-
raphy (OCT) and/or fluorescein angiography (FAG). No patient re-
ported any genetic disease, and diabetes mellitus was an exclusion 
criterion. All patients with AMD were subjected to an examination 
in the Department of Ophthalmology of Kuopio University Hospital, 
involving best‐corrected visual acuity (VA), intraocular pressure, slit 
lamp, fundus and biomicroscopy examination, fundus photographs 
(Canon CX‐1 Hybrid Retinal Camera, Canon), FAG (Canon CX‐1) and/
or OCT (SPECTRALIS OCT2, Heidelberg Engineering). Real‐world 
data (RWD) were monitored for up to 12 years. Finnish national 
guidelines for modified PRN (pro re nata) were applied in the follow‐
up and treatments of wet AMD patients.19-22

Ethics Committee of the Kuopio University Hospital has ap-
proved the study, and the tenets of the Declaration of Helsinki are 
followed. All participants have been asked to sign an informed con-
sent form.

2.2 | Cataract surgery and wet AMD registries

Cataract surgery, wet AMD and anti‐VEGFA registries were gath-
ered at the Department of Ophthalmology, Kymenlaakso Central 
Hospital, Kotka, Finland. The registries of operations for phacoemul-
sification cataract surgery (ICD code: CJE20), of patients with wet 
AMD (ICD code: H35.31) and of intravitreal injections (ICD code: 
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CKD05), all from 03 September 2007, were combined. Patients 
under 65 years were excluded from the data analysis. Patient age 
and sex were registered as confounders. The study was approved by 
the Research Director and Chief Medical Officer of the Kymenlaakso 
Central Hospital, and the tenets of the Declaration of Helsinki were 
followed. Each patient gave a written informed consent.

2.3 | Blood samples, RNA isolation and 
miRNA expression

Blood samples were taken in the active phase of wet AMD and cen-
trifuged with a serum aliquot of 200 μl being used to isolate RNA 
with miRCURY Isolation Kit™ (Exiqon). The small RNA fraction was 
concentrated; the amount of elution buffer was reduced to 20 µL. 
The robustness of the RNA isolation and the quality of isolated 
RNA samples were checked using miRCURY microRNA QC PCR 
Panel (Exiqon). Quantitative real‐time PCR (real‐time qPCR) was 
performed with miRCURY LNA Universal RT microRNA PCR and 
MicroRNA LNA PCR primer set (Exiqon). Reverse transcription was 
carried in a total volume of 10 µL using 10 ng RNA. In the qt‐PCR 
experiments, cDNA was diluted 80× with nuclease‐free water and 
an aliquot of 4 µL was used for a 10 µL reaction. Real‐time qPCR 
was performed using ABI 7500 Fast instrument (Thermo Fisher 
Scientific). The PCR conditions were as follows: 10 minutes dena-
turation at 95°C followed by 45 amplification cycles at 95°C 10 sec-
onds, 60°C 1 minute, ramp‐rate of cooling 1.6°C/s. Every sample 
was assayed in duplicate with expression being calculated according 
to the 2‐ΔΔCt method.23,24 The expression of hsa‐miR‐423‐5p and 
hsa‐miR‐425‐5p served as a control. miRNAs targeting the VEGFA 
gene expression were chosen on the basis of the data from the miR-
TarBase (http://mirta rbase.mbc.nctu.edu.tw) and reference,25 and 
verified using TargetScanHuman database (http://www.targe tscan.
org). Only those miRNAs were selected which had been experimen-
tally validated with evidence emerging from reliable methods. They 
are listed in Table 1.

2.4 | Data analysis

Data of miRNA expression are displayed by the bootstrap‐boosted 
mean ± standard deviation (SD). The number of injections per year 
in groups is presented as the bootstrap‐boosted medians and in-
terquartile ranges (lower [LQ, 25%] to upper [UQ, 75%] quartile). 
The significance of differences in miRNA expression in controls 
and wet AMD patients was estimated with bootstrap‐boosted un-
paired Student's t test and further validated by using the Benjamini‐
Hochberg correction (False Discovery rate (FDR) = 0.25). In the 
multivariate comparison analysis of miRNA expressions, the boot-
strap‐boosted Hotelling T test was applied. Mortality data were pre-
sented as odds ratios (OR) and the 95% confidence interval (95% CI) 
range. The estimates were calculated with the bootstrap‐boosted 
logistic regression (1000 iterations); OR was adjusted for age, sex 
and time of observation; and the goodness of fit in the model was es-
timated with the Hosmer‐Lemeshow statistics. The comparisons of 

death ratios and the numbers of injection per year between groups 
were estimated with the Fisher exact test or the bootstrap‐boosted 
Mann‐Whitney U test, respectively. All the bootstrapped estimates, 
except for the logistic regression, were performed with 10 000 itera-
tions. For cataract surgery, wet AMD and anti‐VEGFA registries, sta-
tistical analysis was performed using IBM SPSS Statistics 25 (SPSS 
Inc). Kaplan‐Meier curves were generated, and Cox regression was 
used to estimate hazard ratios (HR) for death between patients with 
wet AMD and anti‐VEGFA injections and the cohort (Tables S1 and 
S2). HRs were adjusted for confounders including patient age and 
sex. P‐values .05 or less were considered as statistically significant.

3  | RESULTS

Four out of 18 miRNAs regulating the expression of the VEGFA gene 
displayed a lower level of expression in patients with AMD than in 
controls: miR‐34a‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p 
(Figure 1). We observed a significantly elevated mortality ratio in 
wet AMD patients in comparison with controls (P = .021, Table 2).

The wet AMD patients who died during the treatment had re-
ceived a higher number (>3 injections/year (P = .0013) of anti‐VEGFA 
injections than those who survived (Table 3). In Cox regression anal-
ysis adjusted for age and sex, cataract surgery patients with wet 
AMD and anti‐VEGFA injections (mean number of 9.8 ± 8.9 anti‐
VEGFA injections during the follow‐up) had HR 2.05 for death, 95% 
CI 1.59‐2.64, when compared to the cataract surgery patients with-
out wet AMD (P < .001, Figure 2). No association was observed be-
tween mortality and the expression of any miRNA (data not shown).

TA B L E  1   miRNAs targeting the VEGFA (vascular endothelial 
growth factor A) gene

miRNA miRBase/miRTarBase entry

hsa‐miR‐15a‐5p MIMAT0000068/MIRT004275

hsa‐miR‐16‐5p MIMAT0000069/MIRT003890

hsa‐miR‐17‐5p MIMAT0000070/MIRT025302

hsa‐miR‐20a‐5p MIMAT0000075/MIRT004450

hsa‐miR‐20b‐5p MIMAT0001413/MIRT004451

hsa‐miR‐29b‐3p MIMAT0000100/MIRT003813

hsa‐miR‐34a‐5p MIMAT0000255/MIRT004513

hsa‐miR‐93‐5p MIMAT0000093/MIRT004055

hsa‐miR‐106a‐5p MIMAT0000103/MIRT004465

hsa‐miR‐106b‐5p MIMAT0000680/MIRT004466

hsa‐miR‐125a‐5p MIMAT0000443/MIRT004445

hsa‐miR‐126‐3p MIMAT0000445/MIRT003428

hsa‐miR‐145‐5p MIMAT0000437/MIRT006215

hsa‐miR‐195‐5p MIMAT0000461/MIRT004273

hsa‐miR‐200b‐3p MIMAT0000318/MIRT006440

hsa‐miR‐205‐5p MIMAT0000266/MIRT004518

hsa‐miR‐361‐5p MIMAT0000703/MIRT004447

hsa‐miR‐378a‐3p MIMAT0000732/MIRT004277

http://mirtarbase.mbc.nctu.edu.tw
http://www.targetscan.org
http://www.targetscan.org
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4  | DISCUSSION

MiRNAs are an emerging topic, for example as biomarkers and ther-
apeutic targets of diseases, including AMD. We observed decreased 
serum levels of miR‐34‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p 
in wet AMD patients as compared with non‐AMD controls.

The expression of miR‐34a‐5p may occur in response to oxida-
tive stress, a major factor of AMD pathogenesis.26 miR‐34a‐5p nega-
tively regulates angiogenesis, which is essential for the development 
of wet AMD.27,28 The up‐regulation of miR‐34a‐5p was reported 
to be involved in drusen formation in AMD through the down‐reg-
ulation of the triggering receptor expressed in myeloid/microglial 
cells‐2 (TREM2).29 This receptor is involved in the clearance of the 
aggregated Aβ42 peptide from the extracellular space. One target 
of miR‐34a‐5p is heat shock protein family A (Hsp70) that functions 
as a molecular chaperone and exerts a cytoprotective effect by re-
folding proteins that have been misfolded in the presence of oxida-
tive stress.30 Decreased miR‐34a‐5p serum levels in wet AMD may 
evoke increased cellular stress and microglia activation that lead to 
the wet AMD phenotype. miR‐126‐3p belongs to the angiomiR family 
of miRNAs which are involved in regulating angiogenesis. The role of 
miR‐126 in the promotion of angiogenesis was first correlated with 
targeting of the Spred‐1 gene, which encodes for a negative regulator 
of MAP kinase signalling.31 miR‐126 has been identified as a positive 
regulator of angiogenesis in chronic heart failure and a negative reg-
ulator of the inflammatory response in human cardiac microvascular 
endothelial cells.32,33 Zhou and colleagues observed that the function 
of miR‐126 was strand and cell‐type specific in animal models of oc-
ular angiogenesis as well as in a mouse model of wet AMD.34 They 
reported that miR‐126‐3p repressed VEGFA expression in RPE cells in 
two ways: directly targeting VEGFA 3’‐UTR and by a novel mechanism 
involving the regulation of αB‐crystallin promoter activity. However, 
overexpression of miR‐126p enhanced laser‐induced choroidal 
neovascularization. In addition to the VEGFA control, miR‐126‐3p 
down‐regulation is associated with increased inflammation, epithelial‐
mesenchymal transition (EMT), regulatory proteins expression and 

F I G U R E  1   Relative expression of the 
miRNAs involved in the regulation of 
the VEGFA gene in serum of wet AMD 
patients (red) as compared with controls 
(green). Data are shown as bootstrap‐
boosted mean ± SD; the bootstrap‐
boosted Mann‐Whitney U test was used 
to calculate the Benjamini‐Hochberg‐
corrected P values, and in the multivariate 
comparison analysis, the bootstrap‐
boosted Hotelling T test was applied. 
Significance of differences estimated with 
bootstrap‐boosted unpaired Student's 
t test and further validated with the 
use of Benjamini‐Hochberg correction 
(FDR = 0.25); N = 76 for patients with 
AMD and 70 for controls; *P < .05

TA B L E  2   Mortality in wet AMD patients and controlsa

Group Death ratio OR 95% CI P

Wet AMD (76) 0.276 4.180 (1.228; 16.683) .021

Controls (70) 0.085

aData presented as the odds ratio and the 95% confidence interval (95% 
CI) range. The estimates were calculated with the bootstrap‐boosted 
logistic regression (1000 iterations); OR was adjusted for age, sex and 
time of observation; and the goodness of fit of the model was estimated 
with the Hosmer‐Lemeshow statistics (P = .450). 

TA B L E  3   Average number of anti‐VEGFA injections per year in 
wet AMD patients who died during the treatment and those who 
surviveda

Eye Status Injections/year P

Left Dead 3.28 (1.90; 4.38) .0013

Survived 1.31 (0.09; 3.25)

Right Dead 2.65 (1.28; 3.98) .068

Survived 1.19 (0.06; 2.53)

aData presented as median and interquartile range (lower [LQ, 25%] to 
upper [UQ, 75%] quartile); n = 54 survivors and n = 20 non‐survivors. 
Significance estimated with the Mann‐Whitney U test. All estimates 
(median, LQ, UQ and Mann‐Whitney U statistics) were bootstrap‐
boosted with 10 000 iterations. 
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cellular proliferation.35-38 Therefore, miR‐126‐3p may be an import-
ant epigenetic regulator in the development of wet AMD. miR‐145‐5p 
is known to be a negative regulator of angiogenesis.39 Decreased lev-
els miR‐145‐5p levels enhance the secretion of IL‐1β, TNF‐α and IL‐6 
during hypoxia.40 Therefore, miR‐145‐5p can be considered as a ther-
apeutic target to suppress the inflammatory response and to prevent 
the apoptosis occurring in hypoxic conditions, a characteristic of wet 
AMD.41,42 miR‐205‐5p was shown to regulate EMT through the PI3K/
AKT pathway.43,44 Autophagy, a key lysosomal clearance mechanism, 
has been linked to the PI3K/AKT signalling.45 Impaired autophagy is 
related to increased inflammation, extracellular matrix remodelling 
and RPE degeneration in AMD, and the EMT is involved in choroi-
dal neovascularization (CNV) in wet AMD.46,47 A direct relationship 
between miR‐205 and VEGFA was confirmed in human breast cancer 
cells, when the suppression of endogenous miR‐205 resulted in an 
increase in the expression of VEGFA.48

There is a complex network of miRNA interactions regulating 
gene expression; that is, a single miRNA may be involved in the 
control of up to 200 genes and a single transcript may have rec-
ognition sites for many miRNAs.49 Variations in miRNA expression 
levels may be caused by different factors—host gene mutations or 
polymorphisms, alterations of proteins associated with miRNA bio-
genesis or the effects of related long non‐coding RNAs (lncRNAs). 
For example, the expression of VEGFA may be up‐regulated by ln-
cRNA MALAT1, which targets miR‐145, resulting in the promotion of 
angiogenesis in brain microvascular endothelial cells.50 In summary, 
miR‐34a‐5p, miR‐126‐3p, miR‐145‐5p and miR‐205‐5p may regulate 
cellular inflammation, modifications to both the extracellular matrix 
and phenotype as well as altering cellular proliferation all of which 
may contribute to the clinical signs of wet AMD.

Ertekin et al found that 11 miRNAs (miR‐21, miR‐25‐3p, miR‐140, 
miR‐146b‐5p, miR‐192, miR‐335, miR‐342, miR‐374a, miR410, 

miR‐574‐3p and miR‐660‐5p) were down‐regulated and five others 
(miR‐17‐5p, miR‐20a, miR‐24, miR‐106a and miR‐223) up‐regulated 
in the plasma of 33 wet AMD patients.51 None of these miRNAs 
were studied in our cohort. The role of genetic background in the 
regulation of inflammation and neovascularization was supported by 
the bioinformatics data reported by Strafella et al, showing an asso-
ciation of rs11671784 (miR‐27A, G > A) and rs2910164 (miR‐146A, 
C > G) single nucleotide polymorphisms in AMD.52 The complexity 
of AMD pathogenesis increases when non‐genetic data are analysed 
with genetic and epigenetic data.53 However, a bioinformatics anal-
ysis of epigenetics, pharmacogenetics, comorbidities and genetic 
counselling in AMD is a promising way to open new perspectives for 
personalized medicine and help to identify phenotype differences 
between dry and wet AMD.53-56

Anti‐VEGFA therapy in wet AMD is considered to be safe for 
patients, even although some side‐effects have been reported.12,57 
Moreover, Papudesu et al showed that AREDS2 participants with 
wet AMD in one eye at baseline had a statistically significant in-
creased risk for mortality compared with patients having no or only 
a few drusen.58 Moreover, a visual acuity less than 20/40 was as-
sociated with a reduced survival. In our material, 93% of patients 
had a visual acuity equal or less than 20/40 in the treated eye after 
follow‐up of one year. Those patients who had received anti‐VEGFA 
therapy had a greater risk of mortality than non‐treated individu-
als. In another population‐based study, Dalvin et al concluded that 
anti‐VEGFA therapy in wet AMD patients was not associated with 
mortality as compared with non‐treated individuals, including pa-
tients with AMD.59 Gopinah et al detected a positive correlation 
between advanced AMD and mortality.60 Hanhart et al noted an 
increased mortality in wet AMD patients after myocardial infarc-
tion (MI) treated with bevacizumab as compared to non‐treated 
individuals.9,10 Previously, these authors also observed increased 

F I G U R E  2   Registry of cataract surgery 
patients operated after 3 September 
2007. Patients with wet AMD (ICD code: 
H35.31) and intravitreal injections (ICD 
code: CKD05) (blue) were compared 
to the cataract cohort (red). Kaplan‐
Meier curves were generated, and Cox 
regression was used to estimate hazard 
ratios (HR) for death between wet AMD 
patients with anti‐VEGFA injections and 
cataract cohort. All patients were 65 years 
or older. In wet AMD patients, after 
adjusting for age and sex, HR for death 
was 2.05; 95% CI 1.59‐2.64; P < .001 
when compared to cataract surgery 
patients without wet AMD. N = 330 for 
wet AMD patients and N = 15 364 for the 
cataract cohort
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mortality in bevacizumab‐treated wet AMD patients as compared 
to a control cohort without AMD.8 Recent meta‐analyses on mor-
tality of wet AMD patients treated with bevacizumab intravitreal 
injections have pointed to a less than 2% mortality ratio in the first 
year of therapy.61 A study of over 20 000 participants from the 
Melbourne Collaborative Cohort Study led to the conclusion that 
late AMD was linked with an increased mortality.62 We detected a 
relatively high mortality ratio in the wet AMD group, and this did 
not correlate with alterations in the expression of the investigated 
miRNAs. We are unaware of any previous studies which have inves-
tigated whether anti‐VEGFA therapy is linked with either mortality 
or miRNAs. Nonetheless, our results should not be interpreted that 
the anti‐VEGFA therapy is a cause of increased mortality. As AMD is 
a complex disease associated with both genetic and cardiovascular 
risk factors, it can be viewed as an expression of the serious poor 
general health state of these patients that may contribute to their 
premature death, especially in individuals who require more than 
the average number of anti‐VEGFA injections. However, we cannot 
exclude the possibility that anti‐VEGFA therapy has detrimental ef-
fects in certain patients.

The correlation between the serum miRNAs profile and wet AMD 
points to their involvement in the molecular mechanisms underlying 
AMD pathogenesis, such as inflammation, protein clearance, lipid 
metabolism or reaction to oxidative stress. In the era of targeted 
treatment, some circulating miRNAs may become reliable diagnos-
tic, prognostic and predictive factors in AMD. Our study included 
AMD‐free controls, which raises the question of whether the ex-
perimental design was appropriate. Although it could be argued that 
the best controls would be wet AMD patients with no anti‐VEGFA 
injections, in the present era no such subpopulation exists. Using 
data from a subpopulation from the past would introduce a time bias, 
which could not be reliably controlled. Dry AMD does not seem to 
be a good control for wet AMD, as most of dry AMD patients never 
develop wet AMD.63

The positive association between mortality and the number of 
anti‐VEGFA injections in wet AMD patients should be understood as 
an association between mortality and the severity of the disease and 
by no means as a direct link between mortality and the dose of an 
anti‐VEGFA drug. To emphasize this point, please note that our rea-
soning is based on the following argument. With the use of both sim-
ple, bivariate (eg correlation) and multivariate (eg logistic regression) 
statistical analyses, we have shown that the mortality of the patients 
and the number of anti‐VEGFA injections were significantly associ-
ated. Correlation between the number of anti‐VEGFA injections and 
patient survival is susceptible to many biases that are beyond these 
data analysis. Patients with high number of anti‐VEGFA injections 
tend to represent more aggressive and chronic form of wet AMD 
when compared to those with low number of anti‐VEGFA injections. 
On the other hand, anti‐VEGFA treatment is recommended to be 
discontinued in those patients with recent cardiovascular event or 
otherwise poor physical condition, when no expectations for ability 
to function and quality of life effect exist, and in cases of anti‐VEGFA 
non‐responders or other adverse effects related to the treatment. 

Furthermore, we have demonstrated the not unexpected signifi-
cant association between mortality and the patient's age. However, 
when age was included as a confounding variable and used to stan-
dardize (adjust) the association between mortality and number of 
anti‐VEGFA injections, this association became greatly reduced (al-
though it yet remained statistically significant). In our opinion, this 
is the most elegant statistical proof of what we have stated in our 
paper. Specifically, as our analysis was adjusted for the age of the 
patients with AMD, we may hypothesize that it is unlikely that the 
observed effect was not purely coincidental but instead related to 
an advanced age of the patients. It is noteworthy however that al-
though advanced age is the main factor in the pathogenesis of AMD, 
it is not the only significant factor and not all AMD‐related phenom-
ena can be attributed simply to ageing.

Although our samples are unique as they represent an observa-
tion period of up to 12 years, their number is not impressive from the 
statistical point of view. That is why we applied a bootstrapped es-
timate with 10 000 iterations to minimize the chance of introducing 
bias into our analyses. We emphasize that this is a common way to 
validate conclusions drawn from clinical studies evaluating not very 
large groups. With such an approach, we attempted to minimize the 
risk that we would be too eager to reject the null hypothesis when 
identifying a significant outcome in our inference or association 
tests. Our study has several limitations, which should be addressed 
in future investigations. For example, the expression levels of the 
miRNAs and VEGFA should be evaluated on a year‐by‐year basis in 
each patient and control individual. The number of patients enrolled 
in the study as well as the repertoire of miRNAs could be extended, 
but overall our results support the need for clarifying the role of 
miRNA regulation in the pathogenesis of AMD.
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