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ABSTRACT:

Single photon lidars (in solid state form) offer several benefits over pulsed lidars, such as independence of micro-mechanical moving
parts or rotating joints, lower power consumption, faster acquisition rate, and reduced size. When mass produced, they will be
cheaper and smaller and thus very attractive for mobile laser scanning applications. However, as these lidars operate by receiving
single photons, they are very susceptible to background illumination such as sunlight. In other words, the observations contain a
significant amount of noise, or to be specific, outliers. This causes trouble for measurements done in motion, as the sampling rate (i.e.
the measurement frequency) should be low and high at the same time. It should be low enough so that target detection is robust,
meaning that the targets can be distinguished from the single-photon avalanche diode (SPAD) triggings caused by the background
photons. On the other hand, the sampling rate should be high enough to allow for measurements to be done from motion. Quick
sampling reduces the probability that a sample gathered during motion would contain data from more than a single target at a specific
range. Here, we study the exploitation of spatial correlations that exist between the observations as a mean to overcome this sampling
rate paradox. We propose computational methods for short and long range. Our results indicate that the spatial correlations do indeed
allow for faster and more robust sampling of measurements, which makes single photon lidars more attractive in (daylight) mobile

laser scanning.

1. INTRODUCTION

Mobile laser scanning (MLS) is a less time-consuming and
cheaper measurement method than terrestrial laser scanning
(TLS) (Puente et al., 2013, Lehtola et al., 2017). The whole
idea is based on doing the measurements in motion. Therefore,
there is a continuous interest in employing smaller and cheaper
measuring equipment that would also consume less and less
power. One such device is lidar, and its recent form, single-
photon solid-state lidar (Kostamovaara et al., 2015).

Single-photon solid-state lidars, if mass produced, have the
potential to become a new standard for autonomous cars, un-
manned aerial vehicles, and robotics. In contrast to the tradi-
tional pulsed lidars for example, these lidars do not contain any
micro-mechanical moving parts (e.g. a rotating mirror) which
makes them physically more robust. In addition, the advances
in single photon techniques have allowed for a signification
reduction in the size of components and power consumption.

However, the nemesis of any single photon lidar is background
illumination. Especially, sunlight. Targets illuminated by sun-
light pose difficulties for single photon receivers, because the
photons from the laser emitter and the photons from the sun are
indistinguishable. While mobile mapping may of course be con-
ducted during the night (Vaaja et al., 2018), it would be highly
advantageous to be able to operate MLS systems in daylight.

One technique to overcome the problem of indistinguishable
photons is to sample multiple of these measurements with re-
spect to time and then try to estimate the range to the target
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from the obtained distribution. However, methods that require
sampling a distribution over time are less useful for MLS, be-
cause the sampling becomes difficult, if not impossible, when the
sensor is on the move during data acquisition. Hence, it would
be imperative to obtain measurements on a high frequency so
that they can be relied upon.

Outlier-free ranging data is especially needed for simultaneous
localization and mapping (SLAM), which is behind all the above
mentioned applications. SLAM technique uses the ranging data
to construct a map of the environment, and then utilizes overlaps
in the data to update the position of the moving platform on that
map (Bailey, Durrant-Whyte, 2006, Niichter et al., 2007, Kohl-
brecher et al., 2011, Cadena et al., 2016, Karam et al., 2019).
The map building and position updating are conducted simultan-
eously and as processes are very susceptible to outliers in the
ranging data. For these reasons, the filtering of abundant outliers
before SLAM (i.e. registration) has been studied in (Lehtola et
al., 2016b, Lehtola et al., 2016a), and in more general form ad-
dressing spatial correlations in (Lehtola et al., 2019). However,
these works do not utilize a single photon lidar. And from a study
conducted for airborne lidars, it is known that single photon and
full-wave form lidars have different measurement properties
(Mandlburger et al., 2019). Hence, the question whether these
lidars would be useful in MLS boils down to whether the outliers
from background illumination be filtered out of the single photon
data.

Therefore, in this paper, we focus on examining the data obtained
from a 256 channel single-photon solid-state lidar (Kerénen,
Kostamovaara, 2018). Our purpose is to adapt and utilize the
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Figure 1. (a) Outdoor measurement setup. The laser stripe (approx. 0.3°x 37°) covers bright and darker areas of the wall. Its
approximate shapes for two separate measurements are drawn with a red line (measurement A during sunlight) and with green line
(measurement B during overcast). (b) Detection of sunlight illuminated targets is impossible (measurement A), because SPADs are
flooded with background illumination photons, which trigger early detection immediately when the SPADs are ready for reception

(shown with red color, e.g. near channel 50). Shaded surfaces are also almost undetectable (e.g. see the cyan patterns near channels 30
and 90, at 8 to 12 m range).

techniques for outlier filtering before data registration from (Le-
htola et al., 2019). We shall study data captured during daylight
and from targets illuminated by direct sunlight. The algorithm
we propose is computationally simple, so that it could be em-
bedded on chip and run online. This is necessary because, for
example, the single photon lidar studied here outputs some 36
million observations per second.

For lidar measurements, the time of flight is linearly proportional
to the ranging distance. Therefore, spatial correlations can have
an ambiguous meaning. By spatial correlations, here, we mean
that if we correlate observations, all non-noise correlations are
caused by the spatial environment of the lidar. This helps us
to distinguish ’signal’ from the noise, because the background
photons are not correlated and the back-scattered photons are.
Importantly, our method is self-sufficient, i.e., it does not require
any additional sensors or external data.

The paper is organized as follows. The related work is reviewed
in Section 2, including those works on the hardware of the single
photon lidar. In Section 3, we propose two algorithms, one for
the short range and one for the long range. Section 4 introduces
data capturing conditions. Results are in Section 5 and Section
6 concludes the paper.

2. RELATED WORK

A single-photon solid-state lidar consist of a laser emitter, from
which the beam is sprayed or split using static optics, and a
receiver grid, which can observe the back-scattered photons from
a wide angle (Kostamovaara et al., 2015). The receiver grid is
a single-photon avalance diode (SPAD) array. Recent advances
in SPAD technology have yielded high pixel count imagers
which enable fast acquisition rates and sensitivity to individual
photons (Gyongy et al., 2018). Since there are multiple small-
size receivers close to one another, measures have been taken to
reduce the crosstalk between the neighboring receivers (Jahromi,
Kostamovaara, 2018).

The experimental single-photon solid-state lidar that we use
here is presented in and has been assembled by the authors
of (Kerdnen, Kostamovaara, 2019), see Figure 1 (a). It is an

advanced design of the one in (Kerinen, Kostamovaara, 2018).
The lidar has a range of up to 96 m (640 ns) and an opening angle
of about 37 degrees. It has a set of optics to eliminate background
illumination in front of the receiver array, including a 810 nm
single-band bandpass filter. Also, the angle of incidence must be
close to be one meant for the photons coming from the emitter.
The scanner is essentially a line scanner. However, in contrast to
(Keranen, Kostamovaara, 2018), each channel has 8 receivers,
i.e. single photon avalanche diodes (SPADs), stacked on top
of one another (Kerdnen, Kostamovaara, 2019). The digital to
time converter (TDC) outputs the signal from the SPAD that
triggers first. The laser has a 140 kHz emission frequency, and
the observations from the same pulse are time-synchronized
with respect to this. Additionally, a pulse-per-second (PPS) time
synchronization option is provided for multi-sensor integration
purposes.

Every single photon detection, i.e. SPAD trigging, is followed by
a dead time, during which the SPAD is recharging and photons
that pile up on the detector are not detected. Therefore, the
observed photon distribution differs from the original photon
arrival distribution. This original photon arrival distribution is
typically Poissonian, and can be estimated from the observations
as a post-processing step (Pediredla et al., 2018). Here, however,
we seek to shortcut the (histogram) sampling phase by relying in
spatial correlations (Lehtola et al., 2019). This hopefully leads
onto a more computationally efficient methodology that could
be used to pre-process the data on-chip (e.g. the 36M range
observations per second that we obtain).

Single photon lidars have been used in airborne laser scanning
(ALS) to see whether they can replace traditional (full-waveform
or pulsed) lidars (Mandlburger et al., 2019, Degnan, 2016). The
measurement geometry for a single photon lidar from an aero-
plane is more favourable than in MLS, as a priori about the
range to the target can be formed. In MLS, the targets can lie
anywhere within the detection range!, starting from one meter
to the maximum range, while in ALS, if the fly altitude is 1000
meters and the targets are 100 meters high, they are detected
within 10% of the detectable range. This is important because

1In MLS, the orientation of the platform can change rapidly, causing
the viewed scene to change.
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Figure 2. Traditional signal processing for range detection. (a) Exponential noise distribution fx is visible from a channel detecting a

target not illuminated by direct sunlight. The target can be detected only after sampling (and processing) the signal (here: the sample size

is 100 000). The line is from an exponential function and it is drawn to guide the eye. (b) Processing of the raw signal by normalizing

with respect to the exponential noise distribution fx and by convolution (here: 3.81 cm wide uniform kernel). The estimated (red) signal
peak area to the total (black) area is 0.18%.

the background illumination declines exponentially as a function
of the range, when only one photon detection per emitted pulse
per channel (or pixel) is recorded, as in (Kerdnen, Kostamovaara,
2019). Hence, such single photon detection benefits from a
priori knowledge about the detection range in normalizing this
exponential distribution away.

3. METHOD

All photons of equal wavelength (here 810 nm) are indistinguish-
able from each other. Hence, the photons back-scattered from
a detectable object are indistinguishable from the ones from
background illumination. In other words, we cannot say whether
any single SPAD trigging was caused by signal or noise, and
therefore any single trigging is meaningless per se. Therefore,
observations must be either correlated or sampled. For short
range (~ 2 m), we propose a straightforward correlation ap-
proach. For long range (~ 10 m and above), observations are
dominated by background illumination that forms an exponen-
tially decaying shape with respect to the detected range. See
Figure 2 on traditional signal processing with respect to this
exponential distribution. Hence, we shall adapt the spatial cor-
relation scheme with the traditional signal processing approach.

3.1 Short range detection

We study whether the use of spatial correlations can help to dis-
tinguish background illumination from the true signal. For this,
we adapt the methodology presented in (Lehtola et al., 2019)
and previously in (Lehtola et al., 2016b) as follows. The single-
photon solid-state lidar observations consist of range measure-
ments from single photons

Tin = 7(in), 6]

where r;,, is the measured range, iy, is the (chronological) index
number of the scan point recorded in channel n € [1, M]. Here,
the length of each scan line is M = 256 channels (Kerénen,
Kostamovaara, 2019).

We define that a measurement r;, of Eq. (1) is supported by
spatial correlations, r;,, € Sy, if the cover of supporting meas-
urements C' in its neighborhood N (i) satisfies C' > p. | N (in)],

where we choose p. = 1/2 to define a minimum support cover
density. Formally,

Tin €Sy if  Ci, > pe|N(in)l, )
where
1, if|ri, —7inl <
Cin = ]_E%(:in)(sij’ bij = { 0, f|0therw]z‘s|e ‘ > 9
with the support threshold® ¢ = 8.8 cm (3 ns) and
N(in) = {rip—1,7i, 41} @

In words, the neighborhood N (i,,) of Eq. (4) includes the chro-
nologically previous and the next measurement observed in the
same channel n. While doing computations, only three consec-
utive measurements in each channel is required to be kept in
memory. That is, a total of 3 x M observations. Eq. (4) is the
simplest form of the spatial correlation neighborhoods and can
yield output with a very high frequency, which is advantageous
for MLS applications.

3.2 Long range detection

All the SPAD gates are opened simultaneously for measurement
(Kerédnen, Kostamovaara, 2019) and for a constant light flux of
background illumination, for each SPAD, there is a constant
probability per time unit that a background photon triggers that
SPAD. Specifically, background photon arrivals are Poisson dis-
tributed. In long range detection, the gate is open for a longer
time and thus the probability of observing noise is higher than
at short range. Moreover, at long range, the probability of a
back-scattered ’signal’ photon trigging a SPAD is lower than at
short range, since the back-scattered photon flux weakens with
respect to range. This leads into an unwanted side effect that
the observed arrival distribution contains an exponential noise
tail also beyond the detected target. In other words, if the pulse
photons are back-scattered elsewhere than on the SPAD, the
SPAD remains open for detection and can trigger on a back-
ground photon.

2See (Lehtola et al., 2019) for an elaborate discussion on the support
threshold parameter and what it manifests.
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The support technique can deal with noise but it has its limits. In
(Lehtola et al., 2019), limited target detection (tree trunk points)
is plausible even when these measurements consist of 5% of the
total data. Here, as shown in Figure 2, the observations from
the target get drowned in the noise as they consist only of about
0.18 % of the data (ratio between the area of red exp-normalized
peak and the area of the black curve). Hence, the signal needs
de-noising of over one degree of magnitude. Another reason
to de-noise the signal is that the exponential distribution of the
noise otherwise introduces a correlation pattern in the noise and
that this numerical correlation is indistinguishable from spatial
correlations within the support scheme. Therefore, in order to
utilize spatial correlations in long range detection, observations
must be normalized against the exponential noise distribution.

For normalization, the observations need to be sampled. The
experimental noise distribution is ideally sampled from the ob-
served data itself, and not from external sources, since SPAD
instrumentation noise is present in addition to the triggings made
by background photons. Furthermore, because the amount of
background illumination may change during a measurement
done in motion as scene lighting changes, the noise distribution
should be adaptive in that it is sampled simultaneously as range
detection is performed. Hence, we model the noise distribu-
tion directly from the sample, such as the one in Figure 2 (a),
and pre-process the signal as in Figure 2 (b) but with a smal-
ler sample size as explained in the following. These steps are
done as in the baseline method used in (Kerdnen, Kostamovaara,
2019, Keridnen, Kostamovaara, 2018).

When measuring from motion, the trade-off in histogramming
(i.e. sampling) the distribution is one between the range res-
olution and the sampling time. For example, keeping a range
resolution of 3 mm in the 96 m range results in 32000 bins which
in turn set a numerical lower limit for the sampling time (i.e.
sample size). A following adequate rate of around 20 Hz is
less than what in authors’ expertise would be preferred for MLS
measurements (> 100 Hz). Therefore, we attempt to perform
fast sampling in conjunction with the support scheme in order to
obtain an output with high frequency and adequate reliability.

The sample size is set to 1400, so that the operational measuring
frequency is the sought after 100 Hz. Each sample is then
normalized and convoluted, as in Figure 2 (b). The proposed
support scheme is then utilized to filter out unsupported peak
positions. To this end, a suitable support mask is chosen. Here,
we use a cross-channel neighborhood, namely

Nlongrange,cross (iTL) = {7”1'%,2 yTip—19 Tiny1s Tin+2} (5)

and select the range-wise first supported observation for each
channel, C' > 1. As the observations are not points but intensity
distributions, the range condition in Eq. (3) is modified into the
form

[0(in, T1) p(Gms k)] > &ps (6)

where i,, and j,,, are the two trial observations (i.e. distributions),
r, marks the midpoint of the histogram bin and is looped over,
and &, is a constant intensity threshold that follows from the
normalization. In other words, the adjacent channel observations
are used for support so that the probability to detect the back-
scattering peaks increases. Finally, the position of the range-wise
first supported peak is obtained for each channel, resulting in
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Figure 3. Short range detection results. Distribution of range
observations 7;,, from one channel, n = 127, when sampling
over time in nominal conditions. Raw data from the single photon
lidar (black) is filtered from outliers using the proposed technique
(cyan). Target, i.e. an indoor wall, is detected near 2.1577 meters.
The inset figure shows that the peak location is unchanged by the
proposed technique.

a single range observation for each channel and for each pulse
emission time, i.e. ;,, of Eq. (1).

In order to get rid of the numerical correlations that follow from
low data population at the distribution tails (see the Results
section), another support check is made for each channel using
consecutive observations

Nlongrange,line(in) = {Tinfh Ti”+1}7 (7)

similar to the short range case, with £ = 0.05 m. Then the
supported ranges, 7;,, € Sp, are converted into zy-coordinates
in the sensor frame.

The physical size of the support kernel in Eq. (5) for spatial
correlations is comparable to the size of the convolution kernel,
w = 3.81 cm, used in the baseline method for signal processing,
see Figure 2 (b). At a 14 m range, beams into two adjacent
channels of our lidar are 3.8 cm apart. Hence, using observations
from adjacent channels and observations within +w/2 length
for support can be seen as reasonable.

4. DATA AND EQUIPMENT

Data is captured in two setups that we call short range (indoor, no
image) and long range (outdoor, see Figure 1 (a) ). The lidar data
is obtained through an USB-C connection. Short range measure-
ments are up to 3 meters and contain less background noise as
they are performed in indoor conditions during the day. Long
range measurements are up to 14 meters and contain more noise
in form of background illumination due to sunlight. Surfaces
illuminated by sunlight (measurement A) are not detectable in
time frames intended for mobile scanning, as can be seen from
Figure 1 (b). For long range detection, we therefore capture data
also during overcast when the wall surface is not illuminated by
direct sunlight (measurement B).

In the Results section, we analyze (i) the short range data and (ii)
the long range data captured during overcast (measurement B).
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Figure 4. Long range detection, visualization of one measurement
sample from each channel with (a) baseline and (b) the proposed
method. (c) Supported ranges, r;,, € S, versus the baseline
ranges. The target is a straight brick wall shown in a green box in
Figure 1, measurement B data.

Measurement B is taken from the approximate location marked
with green lines in Figure 1 (a).

5. RESULTS

The proposed short range algorithm (Section 3.1) reduces out-
liers but also results in a loss of measurements in total, see the
sharpened and lowered distribution in Figure 3. The highest peak
location of the distribution is retained as can be seen from the
figure inset. Hence, single measurements filtered with the pro-
posed method do very probably indicate the range to the target.
This may form a major step forward in on-the-fly processing of
the gargantuan amount of data that the lidar outputs (500 Mb/s).
Bypassing the sampling scheme that the proposed method does
may come at an expense in range precision. Judging from the
width of the second peak this would lead into a ranging error
with a standard deviation of ¢ = 3 cm and a maximum error
of £20 cm for supported individual measurements at a range of
2.15 m.

Figure 4 visualizes the long range detection for the baseline
(Kerinen, Kostamovaara, 2019, Keridnen, Kostamovaara, 2018)
and the spatial correlation methodology for one sample recor-
ded with the fast sampling rate of 100 Hz. The problem when
using the baseline method, see (a), is that range determination
is hard and uncertain because of the small sample size and the
abundance of background noise. On the other hand, when cor-
relating observations from adjacent channels, see (b), most of
the background noise is eliminated. In this mid-term result, the
sample tails appear to be strongly correlated between the SPAD
channels. These correlations at the distribution tails are caused
by numerical effects, i.e. by that that the amount of data is small,
and vanish when we self-correlate these observations with re-
spect to time. The channel self-correlation is done similarly as
in the short range case, see Eqs. (3) and (4). Afterwards, the
zy-coordinates for the points are calculated in the sensor frame
using the sensor design properties.

Finally, we test the repeatability of detection. As in all tests of
this paper, the test setup is static, and the same detection should
be acquired from each laser pulse. However, as the sample size

®  Proposed
® Baseline

Y-distance [m]
o

X-distance [m]

Figure 5. Long range detection, xy-plot with the baseline (blue)
and the proposed method (green). The target is a straight brick
wall shown in a green box in Figure 1. Only the observations that
have at least 50% repeatability are shown. This is the follow-up
result from Figure 4 for range determination.

is limited to 1400 laser pulses, all detection is uncertain be-
cause of the background illumination. We compare the baseline
method against the proposed method. Results are shown in zy-
coordinates that are in the sensor frame, see Figure 5. Only
the observations that have at least 50% repeatability are shown.
We conclude that the use of spatial correlations increases the
robustness of detection and ranging.

6. DISCUSSION

The strengths and weaknesses of single photon lidar technology
for MLS are evaluated in Table 1. Currently, the limiting factor
is the vulnerability to background illumination which leads to
elongated sampling times. We address this issue by proposing a
method that extends the range of operational conditions where
the single photon techniques can be used by allowing for the
shortening of sampling times in daylight conditions. This does
right to the hardware, which works well in low ambient light
conditions. For example with a static measurement geometry and
the baseline method, the used experimental single photon lidar
can measure distances up to 30 meters at 28fps with an accuracy
and precision of £2mm and < lcm, respectively (Kerinen,
Kostamovaara, 2019). In theory, the background illumination
problem might also be remedied from the hardware side if very
large pulse energies could be created in the in the short pulse
mode, < 1 ns, which would allow for accurate timing with large
waves of photons (Kostamovaara et al., 2015).

In order to counter the effects of background illumination, the

objectives for developing computational single photon methodo-
logy for mobile laser scanning are to

e increase the sampling rate so that measurements can be
done from motion,

e assess and increase the reliability of measurements,

o perform these tasks in a self-calibration manner (i.e. without
external radiometric sensors), and

e perform these tasks automatically and online, i.e. while
measuring from motion.
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Property Preferable for MLS | Traditional lidar Single photon Tidar
Line measurement rate >100 Hz 10-100 Hz {%(8)65]({)}?; 1‘((?;3:(131(;1?1 ethod)
Daylight operations Yes Yes Limited
Nighttime operations Yes Yes Yes
Mechanical robustness High Low High
Equipment size Small Large Small
Power consumption Small Large Small

Table 1. Strengths and weaknesses of single photon lidar in mobile laser scanning. Preferences follow from authors’ expertise.

As a nice example external to our work, (Pediredla et al., 2018)
show how to compensate for the photon pile-up effect in post-
processing computation without external data. Note that, ideally,
as the data stream can consist of dozens of observations per
second, the algorithms working on the stream of data are simple
and fast and run with a limited cache size.

The lidar used here captures photons in a vertical 0.3 degree
angle using 8 SPADs stacked on top of one another in one chan-
nel. This design is ideal for a dual-purpose: short and long range.
In a few meters distance, the probability that a back-scattered
photon triggers one of these 8 SPADs is high, which results into
a measurement from that channel. However, as distance to the
target increases, the return angle of the back-scattered photons
decreases, leading to that some SPAD orientations become un-
reachable. As a consequence, these unreachable SPADs con-
tribute only triggings from background illumination, i.e. noise.
Therefore, in order to retain a sufficient signal to noise ratio in
long range, the SPADs at the side of the array can be turned off.
At the moment, this must be done manually. Therefore, there
is a need for an autonomous control loop to adjust the opening
and closing of the SPADs, if benefits from long range (up to
96 m) and close range detection of the SPAD array design are
simultaneously to be reaped. This is a subject for future work.

Another subject for future work would be adaptive gating. If
there would be means to have a rough a-priori estimate for the
range before the measurement, then the measurement could
be obtained with a tighter gating. That is, the gate could be
opened just before the back-scattering is expected and then
closed afterwards. In principle, an adaptive gating scheme for
SPADs would allow for more robust detection at short and at
long range — and also when measuring from motion.

7. CONCLUSION

Spatial correlations are demonstrated to be usable at different
ranges and noise levels, although significant pre- and post-
processing are necessary if a signal is really noisy. With the
term spatial correlations, we refer to all correlations that are not
noise, because these are caused by the spatial environment of
the lidar. Most part of the noise in the data is due to background
illumination caused by sunlight.

At short range and in indoor conditions, it is plausible to directly
exploit the correlations between individual observations. These
correlations are spatial because the back-scattered photons are
from the same physical target. This allows for short-cutting
algorithm-wise, as signal sampling is not necessary in this case.

At our long range setup, the relative amount of (Poissonian)
noise consists more than 99% of observations even though the
target surface is not illuminated by direct sunlight. Due to the
abundant noise, using the traditional steps of signal sampling,
normalization of the exponential noise distribution, and signal

convolution are necessary as pre-processing operations. After
this pre-processing, we propose the use of spatial correlations by
adapting the support scheme from (Lehtola et al., 2019). The sup-
port scheme is modified to evaluate pairs of sample distributions,
i.e. cross-channel correlations. These correlations eliminate
random noise but cannot deal with numerically correlated noisy
tails, which in turn can be dealt by using self-correlations over
single channels.

We conclude that the proposed self-sufficient computational
method for long range extends the range of operational condi-
tions where single photon techniques can be used, especially,
in daylight. Furthermore, we expect that the signal processing
steps proposed here would allow for an adequate increase in the
sampling rate (up to e.g. 100 Hz) so that single photon lidars
could be employed more widely in mobile laser scanning (MLS).
Finally, we note that the development of single photon lidars
is heading toward 3D scanners, meaning lidars that have a 2D
SPAD grid. These lidars will also very likely benefit from the
proposed methodology.
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