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Abstract: SEAndroid enforcement is now mandatory for Android devices. In order to provide the desired level of
security for their products, Android OEMs need to be able to minimize their mistakes in writing SEAndroid
policies. However, existing SEAndroid and SELinux tools are not very useful for this purpose. It has been
shown that SEAndroid policies found in commercially available devices by multiple manufacturers contain
mistakes and redundancies. In this paper we present a new tool, SELint, which aims to help OEMs to produce
better SEAndroid policies. SELint is extensible and configurable to suit the needs of different OEMs. It is
provided with a default configuration based on the AOSP SEAndroid policy, but can be customized by OEMs.

1 INTRODUCTION

During the past decade Android OS has become one
of the most common mobile operating systems. How-
ever, at the same time we have seen a big increase
in the number of malware and exploits available for
it (Zhou and Jiang, 2012; Smalley and Craig, 2013).
Many classical Android exploits, such as Ginger-
Break and Exploid, attempted to target system dae-
mons that ran with elevated - often unlimited - priv-
ileges. A successful compromise of such daemons
results in the compromise of the whole Android OS,
and the attacker would be able to obtain permanent
root privileges on the device. Initially Android re-
lied only on its permission system, based on Linux
Discretionary Access Control (DAC), to provide se-
curity boundaries. However, after it became evident
that DAC cannot protect from such exploits, a new
Mandatory Access Control (MAC) mechanism has
been introduced. SEAndroid (Smalley and Craig,
2013) is an Android port of the well-established
SELinux MAC mechanism (Smalley et al., 2001)
with some Android-specific additions. Similarly to
SELinux, SEAndroid enforces a system-wide pol-
icy. The default SEAndroid policy was created from
scratch and is maintained as part of the Android Open
Source Project (AOSP)1. Starting from the 5.0 Lol-
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lipop release, Android requires every process to run
inside a confined SEAndroid domain with a proper set
of access control rules defined. This has forced many
Android Original Equipment Manufacturers (OEMs)
to hastily define the set of access control domains
and associated rules needed for their devices. Our
recent study (Reshetova et al., 2016) showed that all
OEMs modify the default SEAndroid policy provided
by AOSP due to many customizations implemented in
their Android devices. The difficulty of writing well-
designed SELinux policies together with high time-
to-market pressure can possibly lead to the introduc-
tion of mistakes and major vulnerabilities. The study
classified common mistake patterns present in most
OEM policies and concluded that new practical tools
are needed in order to help OEMs avoid these mis-
takes. In this paper we make the following contribu-
tions:

• Design of a new, extensible tool, SELint, that
aims to help Android OEMs to overcome com-
mon challenges when writing SEAndroid policies
(Section 4). In contrast to existing SELinux and
SEAndroid tools (described in Section 3), it can
be used by a person without a deep understanding
of SEAndroid, given the initial configuration by
an expert. The community can write new analysis
modules for SELint in the form of SELint plugins.
This is especially important given that the SEAn-
droid policy format changes with every release,
and new notions and mechanisms are introduced
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by Google.

• An initial configuration for SELint, based on the
AOSP SEAndroid policy, which was found to be
useful by the SEAndroid community in our eval-
uation of SELint (Section 5.1).

• A full implementation of SELint that that fits
OEM policy development workflows, providing
reasonable performance and allowing easy cus-
tomization by OEMs (Section 5).

2 BACKGROUND

2.1 SELinux and SEAndroid

SELinux (Smalley et al., 2001) was the first mainline
MAC mechanism available for Linux-based distribu-
tions. Compared to other mainline MAC mechanisms
present today in the Linux kernel, it is considered to
be the most fine-grained and the most difficult to un-
derstand and manage due to the lack of a minimal
policy (like in Smack (Schaufler, 2008)) or a learn-
ing mode (like in AppArmor (Bauer, 2006)). Despite
this, it is enabled by default in Red Hat Enterprise
Linux (RHEL) and Fedora with pre-defined security
policies.

The core part of SELinux is its Domain/Type En-
forcement (Badger et al., 1995) mechanism, which
assigns a domain to each subject, and a type to each
object in the system. A subject running in domain can
only access an object belonging to type if there is an
allow rule in the policy of the following form:

allow domain type : class permissions

where class represents the nature of an object
such as file, socket or property, and permissions
represent the kinds of operations being permitted on
this object, like read, write, bind etc.

The SEAndroid (Smalley and Craig, 2013) MAC
mechanism is mostly based on SELinux code with
some additions to support Android-specific mecha-
nisms, such as the Binder Inter Process Communica-
tion (IPC) framework. However, SEAndroid’s pol-
icy is fully written from scratch and is very differ-
ent from SELinux’s reference policy. AOSP prede-
fines a set of application domains, like system app,
platform app and untrusted app; applications are
assigned to these domains based on the signature of
the Android application package file (.apk). Other
services and processes are assigned to their respec-
tive domains based on filesystem labeling or direct
domain declaration in the service definition in the
init.rc file. One notable feature of the SEAndroid

policy is active usage of predefined M4 macros that
make the policy more readable and compact. For ex-
ample, the global macros file defines a number of
M4 macros that denote sets of typical permissions
needed for common classes, such as r file perms or
w dir perms. Another example is the te macros file,
that provides a number of M4 macros used to combine
sets of rules commonly used together.

2.2 SEAndroid OEM Challenges

The SEAndroid reference policy only covers default
AOSP services and applications. Therefore, highly
customized OEM Android devices require extensive
policy additions.

Our already mentioned study of different
OEM SEAndroid policies for Android 5.0 Lol-
lipop (Reshetova et al., 2016) showed that most
OEMs made a significant number of additions to the
default AOSP reference policy. The biggest changes
are the additions of new types and domains, as well as
new allow rules. The study also identified a number
of common patterns that most OEM policies seem to
follow:

• Overuse of Default Types. SEAndroid declares
a set of default types that are assigned to different
objects unless a dedicated type is defined in the
policy. Most OEMs leave many such types in their
policies, which indicates a use of automatic policy
creation tools such as audit2allow (SELinux,
2014).

• Overuse of Predefined Domains. OEMs do not
typically define dedicated domains for their sys-
tem applications, but tend to assign these applica-
tions to predefined platform app or system app
domains. This creates over-permissive applica-
tion domains and violates the principle of least
privilege.

• Forgotten or Seemingly Useless Rules. OEM
policies have many rules that seem to have no ef-
fect. This might be due to an automatic rule gen-
eration or a failure to clean up unnecessary rules
that were no longer required.

• Potentially Dangerous Rules. A number of po-
tentially dangerous rules can be seem in some
OEM policies, including granting additional per-
missions to untrusted app domain. This might
be due to lack of time to adjust their service or
application implementation to minimize security
risks or due to inability to identify some rules as
being dangerous.
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3 RELATED WORK

Since SELinux existed on its own long before SEAn-
droid, most of the available tools are designed to han-
dle and analyze SELinux policies. They can be used
for SEAndroid but they don’t take specific aspects of
SEAndroid policies into account. This makes it chal-
lenging for OEMs to use existing tools to detect the
problems outlined in Section 2.2. For example, in or-
der to determine if the policy contains potentially dan-
gerous rules, it is very important to understand the se-
mantics of SEAndroid types and policy structure - an
ability which all existing SELinux tools lack. More-
over, even the small group of SEAndroid tools de-
scribed in Section 3.2 does not address the challenges
described in Section 2.2.

3.1 SELinux Tools

SETools (Tresys, 2016) is the official collection of
tools for handling SELinux policies in text and binary
format. Some of its tools, like apol, are suitable for
formal policy analysis, for example for flow-control
analysis. Others allow policy queries and policy pars-
ing and as such it can be used on both SELinux and
SEAndroid. An important part of SETools is a pol-
icy representation library which is used in both SEAL
and SELint.

Formal methods have been applied to SELinux
policy analysis. Gokyo (Jaeger et al., 2003) is a tool
designed to find and resolve conflicting policy spec-
ifications. Guttman et al. (Guttman et al., 2005) ap-
plies information flow analysis to SELinux policies.
The HRU security model (Harrison et al., 1976) has
been used to analyze SELinux policies (Amthor et al.,
2011). Hurd et al. (Hurd et al., 2009) applied Domain
Specific Languages (DSL) (Fowler, 2010) in order to
develop and verify the SELinux policy. The resulting
tool, shrimp, can be used to analyze and find errors in
the SELinux Reference Policy. Information visualiza-
tion techniques have been applied to SELinux policy
analysis in (Clemente et al., 2012), also in combina-
tion with clustering of policy elements (Marouf and
Shehab, 2011). These analysis methods are largely
academic, and no practical tools based on them are
used by the SELinux community.

Polgen (Sniffen et al., 2006) is a tool for semi-
automated SELinux policy generation based on sys-
tem call tracing. Unfortunately it appears to be no
longer in active development. SELinux also provides
a set of userspace tools (SELinux, 2014) that can
be used on both SELinux and SEAndroid. One of
these tools, audit2allow, is widely used by Android
OEMs to automatically generate and expand SEAn-

droid policies. The tool works by converting denial
audit messages into rules based on a given binary pol-
icy. These rules, however, are not necessarily cor-
rect, complete or secure, since they entirely depend on
code paths taken during execution and require a good
understanding of the software components involved,
as well as on the correct labeling of subjects and
objects in the system. Furthermore, automatically-
generated rules fail to use high-level SEAndroid pol-
icy features such as attributes and M4 macros: this
results in comparatively less readable policies.

3.2 SEAndroid Tools

Our aforementioned study (Reshetova et al., 2016)
presented SEAL, an SEAndroid live device analysis
tool. SEAL works with a real or emulated Android
device over the Android Debug Bridge (ADB); it can
perform different queries that take into account not
only the binary SEAndroid policy loaded on the de-
vice, but also the actual device state, i.e. running
processes and filesystem objects. The EASEAndroid
policy refinement method is based on audit log anal-
ysis with machine learning (Wang et al., 2015). This
approach is completely different from what we pro-
pose, since it relies on significant volumes of data to
classify rules. Unfortunately, it is very hard to obtain
this volume of data, since it would require collecting
log files from millions of Android devices with possi-
ble privacy implications. The most recent SEAndroid
policy analysis and refinement tool is SEAndroid Pol-
icy Knowledge Engine (SPOKE) (Wang, 2016). It
automatically extracts domain knowledge about the
Android system from application functional tests, and
applies this knowledge to analyze and highlight po-
tentially over-permissive policy rules. SPOKE can
be used to identify new heuristics that can be im-
plemented as new SELint plugins. The downside
of SPOKE is reliance on application functional tests,
which are often incomplete, and the fact that it can-
not be easily integrated into the standard development
workflow.

4 SELint

4.1 Requirements

We identify the following generic requirements that a
tool like SELint must fulfill.
R 1. Source Policy-based. The existing tool land-
scape presented in Section 3 does not feature any tool
able to perform semantic analysis on source SEAn-
droid policies. Since Android OEMs work on source
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SEAndroid policies as part of their Android trees, the
tool needs to work with source SEAndroid policies.
R 2. Configurable by Experts, Usable by All. Ex-
isting tools require extensive domain knowledge to be
used. Since building such a knowledge takes con-
siderable time, it might be challenging for OEMs to
have all of their development team trained appropri-
ately. We intended for our tool to fit into an Android
OEM policy development workflow, where many de-
velopers, overseen by one or a few experienced SE-
Android analysts, contribute small changes to the pol-
icy. Therefore, it must be possible for an experienced
analyst to configure the tool ahead of time, and pro-
vide a ready-to-run tool to regular developers, who
can simply run the tool on their policy modifications
and verify that no issues are highlighted.
R 3. Reasonable Performance. Since we are tar-
geting inclusion into an Android OEM workflow, the
tool must have reasonable time and memory perfor-
mance; this is necessary for the tool to be used as
part of the build toolchain, or even more appropriately
when committing changes using the OEM’s version
control software (VCS).
R 4. Easy to Configure and Extend. Finally, target-
ing the wide community of Android OEMs makes it
impossible to know in advance all possible use cases
and requirements, present and future. It is our objec-
tive to allow analysts to implement their own analysis
functionality and embed their domain knowledge into
the tool. For this reason, the tool must be easily con-
figurable and extensible by the community.

4.2 General Architecture and
Implementation

To meet Requirement 4 stated in section 4.1, we de-
signed SELint following a plugin architecture. The
goal of such an architecture is to support custom third-
party analysis plugins that any community member
can create. The core part of SELint is responsible for
processing the source SEAndroid policy. The SELint
core takes care of handling user input, such as com-
mand line options and configuration files. After the
source policy has been parsed, its representation is
given to the SELint plugins which perform the actual
analysis. We have developed an initial set of plug-
ins, which provide generally useful functionality; in-
terested Android OEMs can develop more plugins to
implement their own analysis requirements.

The overall architecture is shown in Figure 1; the
existing plugins are individually described in the fol-
lowing sections. The implementation of SELint and
the existing plugins are released under the Apache Li-
cense 2.0, which allows the community to freely use

and modify the software. The policysource library
is released under the GNU Lesser General Public Li-
cense v2.1.

SELint
core

policysource

  Policy files

Plugin 1
global_macros

Plugin 2
te_macros

Plugin 3
risky rules

Plugin n
...

Plugin 4
unnecessary rules

Analyst
Configure and run

Policy improvement suggestions

Plugin 5
user_neverallows

Figure 1: The architecture of SELint.

The SELint executable and all plugins have an as-
sociated configuration file. This allows policy experts
to adapt each plugin to the semantics of their own
policies, for example to define OEM-specific policy
types. This way, SELint can be run with different
preset “profiles” specifying different options, policy
configurations and requested analysis functionalities.
The following sections describe each existing SELint
plugin in detail.

4.3 Plugin 1: Simple Macros

Goal As mentioned in Section 2.1, using M4 macros

r file perms → { getattr open read ioctl lock }
Figure 2: A global macros definition and expansion.

where applicable is a non-functional requirement of
SEAndroid policy development: while not affecting
policy behavior, their use makes for a more compact
and readable policy. The first type of M4 macros ex-
tensively used in SEAndroid policies is a simple text
replacement macro, without arguments, that is used
to represent sets of related permissions. Such macros
are defined in the global macros file in the SEAn-
droid policy source files. An example of such macro
is shown in Figure 2. The Simple macro plugin scans
the policy for rules granting sets of individual per-
missions which could be represented in a more com-
pact way by using an existing global macros macro;
it then suggests replacing the individual permissions
with an usage of said macro.
Implementation. The plugin looks for rules which
specify individual permissions whose combination
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is equivalent to the expansion of a global macros
macro. It then suggests rewriting said rules, replac-
ing the individual permissions with the unexpanded
macro. An example is shown in Figure 3. For
this particular case, the plugin suggest replacing a
set of permissions {gettattr open read search
ioctl} with a macro r dir perms. Permissions not
contained in the macro (in this case create) are still
specified individually in the final rule. The plugin can
suggest both full matches (for rules that grant 100%
of the permissions contained in a macro) and par-
tial matches above a threshold (for rules that grant at
least X% of the permissions contained in a macro).
This threshold is a user-defined parameter, specified
in the plugin configuration file; we assigned it a de-
fault value of 0.8 (80%).

Rule:
allow logd rootfs:dir
{getattr create open read search ioctl};

Macro:
r dir perms→ {open getattr read search ioctl}

Suggestion:
allow logd rootfs:dir {r dir perms create};
Figure 3: An example usage of the Simple macro plugin.

Limitations. The plugin only deals with simple,
static macros without arguments. Dynamic macros
such as those defined in the te macros file are han-
dled by the dedicated plugin described in the next sec-
tion.

4.4 Plugin 2: Parametrized Macros

Goal.
‘file type trans($1, $2, $3)’

↓
‘allow $1 $2:dir ra dir perms;
allow $1 $3:dir create dir perms;
allow $1 $3:notdevfile class set

create file perms;’

Figure 4: A te macros macro definition and expansion
with arguments.

Another commonly used set of M4 macros in-
cludes more complex, dynamic M4 macros with mul-
tiple arguments. Such macros are mainly used to
group rules which are commonly used together; their
expansion can in turn contain other macros. In SE-
Android policies, such macros are defined in the
te macros file. An example is shown in Figure 4.
Similarly to the previous, this plugin detects existing
macro definitions, and suggests new usages.
Implementation. The plugin looks for sets of indi-
vidually specified rules whose combination is equiv-

alent to the expansion of a te macros macro with
some set of arguments. It then suggests substitut-
ing said rules with a usage of the unexpanded macro
with the proper arguments. An example is shown in
Figure 5: the plugin finds the existing macro which
expands into the given set of rules - in this case,
unix socket connect. It then extracts the argu-
ments from the rules: $1 is “a”, $2 is “b” and $3 is
“c”. The result is a suggestion for substituting the
two rules with the macro usage. The plugin can sug-
gest both full matches (for sets of rules that match
100% of the rules contained in a macro expansion)
and partial matches above a user-defined threshold.
Its default value is 0.8 (80%).

Rules:
allow a b socket:sock file write;
allow a c:unix stream socket connectto;

Macro:
unix socket connect($1, $2, $3)

↓
allow $1 $2 socket:sock file write;
allow $1 $3:unix stream socket connectto;

Suggestion:
unix socket connect(a, b, c)

Figure 5: An example usage of the Parametrized macro plu-
gin.

Limitations. The problem of detecting sets of
rules that match possible macro expansions can be
transformed into a variant of the knapsack prob-
lem (Kellerer et al., 2004), namely a multidimen-
sional knapsack problem. In our case, the knapsack
capacity is the number of arguments a macro can
have, and the knapsack items are the possible val-
ues of these arguments; the knapsack is multidimen-
sional because filling an argument does not affect the
available capacity for the others. Instead of finding
the single most profitable combination of argument-
values, our objective is to find all the combinations of
argument-values which, used as arguments in as many
macro expansions, produce sets of rules entirely or
partially (above a threshold) contained in the policy.
The problem can be formalized as:
For each macro m, find all combinations of values
for arguments $1, $2 and $3 such that y is above
an user-given threshold t. y is computed as: y =
score(m(i, j,k)), subject to i ∈ Ni, j ∈ N j|i,k ∈ Nk|i j,
where Ni is the set of possible values of $1, N j|i is the
set of possible values of $2 given i as $1, and Nk|i j
is the set of possible values of $3 given i as $1 and
j as $2. score(m(i, j,k)) is the score of the macro
expanded with the arguments i, j and k: the score
of a macro expansion is given by the number of its
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rules actually found in the policy divided by its over-
all number of rules.

The multidimensional knapsack optimization
problem is known to be NP-hard (Magazine and
Chern, 1984), and it has various approximate solu-
tions (Chu and Beasley, 1998; Hanafi and Freville,
1998). In our case, the problem quantities are the
number of arguments a macro can have (existing
macros have 1-3), the number of rules a macro ex-
pansion can produce (existing macros have 1-7), and
the number of values a macro argument can have (in
principle infinite, in practice dependent on the policy,
usually in the thousands). In practice, the number of
rules (#2) tends to increase linearly with the number
of arguments (#1). This is due to the fact that macros
with more arguments can define more complex behav-
ior, which tends to be described in more rules.

As a first implementation, we realized a simple so-
lution based on exploration of the solution space: we
try to aggregate all the policy rules into sets corre-
sponding to macro expansions. The problem quanti-
ties described above result in a significant time expen-
diture required to explore the whole solution space:
therefore, as we discuss in Section 5.2, this plugin
takes considerably more time than all others.

4.5 Plugin 3: Risky Rules

Experts analyzing OEM modifications to SEAndroid
policies often use certain heuristics. The analysis usu-
ally starts from the list of AOSP SEAndroid domains
and types that are more likely to cause potential vul-
nerabilities in OEM policies. The most common are:

• Untrusted Domains. Some domains are in-
tended to run potentially malicious code, such as
untrusted app, and therefore their privileges are
designed to be minimal. Any additional allow
rules created by OEMs for such domains are sus-
picious and need to be analyzed.

• Trusted Computing Base (TCB) Domains and
Types. The AOSP policy has several core do-
mains and types, which form its TCB. The pro-
cesses that run in these domains are provided by
AOSP, and so are the minimal required policy
rules. Sometimes, OEMs have to create additional
rules for some of these domains: however, since
doing so increases the chance of compromising
the TCB, such rules need thoughtful inspection.

• Security-related Domains and Types. Special
attention must be paid to AOSP domains and
types directly related to system security, such as
the tee domain or the proc security type. Mis-
takes in additional allow rules for these domains

and types can lead to a direct loss of system secu-
rity.

An analyst usually checks an OEM policy for
additional rules where the above domains or types
are present, and then manually inspects each rule
analysing its domain, type and permissions to de-
termine if the rule is actually risky. This process
is tedious, and most of the time is spent just find-
ing the rules which need special attention. To help
analysts find these rules quickly, we developed the
risky rules plugin, which processes each rule and
assigns it a score based on one of two criteria.

The first scoring criterion is based on risk. We
define the risk level for rule components as the level
of potential damage to the system caused by misuse
of the component: security-sensitive components will
have high risk scores, while generic components will
have lower risk scores. Untrusted domains will have
a high risk score as well, because we want to select
any additional rules over such domains for manual in-
spection. Component risk level in turn determines the
risk level of a rule, which is obtained by combining
the risk levels of its components. The risk level of a
rule is then defined as the level of potential damage to
the system allowed by the rule. The risk score helps
analysts to quickly obtain a prioritized list of policy
rules which need manual inspection; this is especially
useful when analysts have strict time constraints, and
only have time to examine a limited number of rules.
The risk scoring system is described in Section 4.5.1.

The second scoring criterion is based on trust. We
define the trust level for rule components as a mea-
sure of closeness to the core of the system: key system
components will have a high trust level, while user
applications will have a low trust level. This in turn
allows us to detect rules which cross trust boundaries,
e.g. comprising a high component and a low compo-
nent or vice versa. This scoring system is useful for
an analyst as well, because it can quickly identify ad-
ditional OEM rules which breach trust boundaries and
select them for manual inspection. The trust scoring
system is described in Section 4.5.2.

The desired scoring system can be specified in
the plugin configuration file. We have provided an
initial risky rules plugin configuration based on
our knowledge and experience with the AOSP policy.
While our classification might be considered subjec-
tive, feedback discussed in Section 5.1 indicates that
SEAndroid policy writers agree with our approach.

4.5.1 Measuring Risk

Goal. As mentioned above, rules in a policy can have
different risk levels, depending on the types they deal
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with and the permissions they grant. The risk scoring
system of the risky rules plugin assigns a score to
every rule in the policy, prioritizing potentially riskier
rules by assigning them higher scores.
Implementation. The risk scoring system computes
the overall score for a rule by evaluating its domain,
type, and permissions or capabilities. The plugin con-
figuration file defines partial risk scores for various
rule elements. Relevant AOSP domains and types are
grouped by risk level into “bins”, which are assigned a
partial risk score with a maximum of 30. When com-
puting the score for a rule, the partial scores of its do-
main and type are added. We treat domains and types
equally, because both the running process and data
of a program might be equally important in evaluat-
ing how risky a rule is. For example, a process run-
ning in a security sensitive domain (e.g. keystore)
should not accept any command from other processes
running in unauthorized domains, because they might
induce malicious changes in its execution flow. Simi-
larly, other unauthorized processes should not be able
to modify the configuration data of a security sensi-
tive process (e.g. data labeled as keystore data),
for similar reasons. The initial set of bins and their
default scores are depicted in Table 1.

Table 1: risky rules plugin default bins and partial risk
scores.

Bin name Example types Risk
user app untrusted app 30

security sensitive tee, keystore, 30
security file

core domains vold, netd, rild 15
default types device, unlabeled, 30

system file
sensitive graphic device 20

The user app, core domains and
security sensitive bins match groups de-
fined earlier in this section. user app and
security sensitive have the maximum score
of 30, while the score for core domains is 15 due to
less overall risk to the system. The default types
bin has a maximum score of 30, because it contains
types that should not normally be used by OEMs and
therefore likely indicate a mistake in a rule.

When computing the overall risk score for a rule,
in addition to evaluating a rule’s domain and type ele-
ments, the risk scoring system must also take its per-
missions and capabilities into account. In SEAndroid,
permissions are meaningless in isolation, and only
meaningful to determine risk when combined with the
domain to which they are granted and the type over
which they are granted: for this reason, we combine
these when computing the risk score for a rule. We do

this by assigning permissions a multiplicative coeffi-
cient instead of an additive partial score; the sum of
domain and type score for a rule is multiplied by this
coefficient. Commonly used permissions are catego-
rized by level of risk into three groups, perms high,
perms med and perms low: each group is assigned a
coefficient based on the sensitivity of its permissions,
with a maximum of 1. The sum of domain and type
score is multiplied by the coefficient of the highest set
which contains permissions granted by the rule; this is
done because we are interested in determining the up-
per bound of risk for a rule. Table 2 shows the groups,
permissions and default values of coefficients.

Table 2: risky rules plugin default permission sets and
coefficients.

Set name Example permissions Coefficient
perms high ioctl, write, execute 1
perms med read, use, fork 0.9
perms low search, getattr, lock 0.5

Capabilities are treated differently from permis-
sions. In SEAndroid, capabilities are granted by a do-
main to itself, and - unlike permissions - are meaning-
ful on their own: they have the same effect on the sys-
tem regardless of the domain they are granted to. For
example, the following rule grants the vold daemon
the CAP CHROOT capability, which allows it to perform
the chroot system call:

allow vold self:capability sys chroot;

We do not divide capabilities into separate groups:
this is due to the fact that, in Linux, capabilities are
commonly believed to be very hard to categorize as
more or less dangerous, because of the consequences
they can have on the system2. Since in SEAndroid
capabilities are granted by a domain to itself, the tar-
get type in such a rule does not convey any additional
information: therefore, we use a special scoring for-
mula for rules granting capabilities. Capabilities are
handled as types, and any capability is assigned the
maximum score for a type (30): this score is added to
the domain score to obtain the rule score.

The risk scoring system scores rules by their po-
tential level of risk between 0 and 1, with maximum
risk given a score of 1. As discussed above, risk
scores are assigned to rules depending on the type of
rule: the precise formulas are presented in Figure 6.

An example is shown in Figure 7. The first
rule contains untrusted app and security file,
which are both high-risk types (user app and
security sensitive respectively); however, the
rule only grants the getattr and search permis-
sions, which are two low-risk permissions. Thus, the

2forums.grsecurity.net/viewtopic.php?f=7&t=2522
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Allow rules granting permissions :

scorerisk(rule) = scorerisk(domain)+scorerisk(type)
M ·C

C = max0≤i<nperms (coefficientrisk(permi))

Allow rules granting capabilities:

scorerisk(rule) = scorerisk(domain)+scorerisk(capabilities)
M

Type transition rules:

scorerisk(rule) = scorerisk(domain)+scorerisk(type)
M

M is the maximum value of the numerator (60),
used to normalize the score between 0 and 1.

Figure 6: The risk scoring formulas for the risky rules
plugin.

rule has a medium risk score that in this case equals
to 0.5. The second rule contains untrusted app
and system file, which are both high-risk types
(user app and default types respectively); fur-
thermore, the rule grants the execute permission,
which is a high-risk permission. Thus, the rule has
a high risk score that in this case equals to 1.

0.50: .../domain.te:154: allow untrusted_app
security_file:dir { getattr search };

1.00: .../domain.te:104:
allow untrusted_app system_file:file execute;

Figure 7: An example of the risky rules plugin with the
risk scoring system.

4.5.2 Measuring Trust

Goal Rules in a policy can contain domains and types
with different trust levels. Analysts usually inspect a
policy by manually looking for rules which cross trust
boundaries and making sure they are justified: this
process is time-consuming and can be error prone.
The trust scoring system of the risky rules plu-
gin automates this search: it assigns a score to every
rule in the policy, prioritizing rules which cross trust
boundaries by assigning them higher scores.
Implementation. The trust scoring system combines
the partial scores of domain and type in a rule to as-
sign it an overall score. The plugin configuration file
defines partial trust scores for various rule elements.
AOSP domains and types are grouped into “bins”,
which are assigned a trust score with a maximum of
30. When computing the score for a rule, the partial
scores of its domain and type are added. The initial
bins with their default scores are depicted in Table 3.

For example, the user app bin contains types
assigned to generic user applications, such as

Table 3: risky rules plugin default bins and partial trust
scores.

Bin name Example types Trust
user app untrusted app 0

security sensitive tee, keystore, 30
security file

core domains vold, netd, rild 20
default types device, unlabeled, 5

system file
sensitive graphic device 10

untrusted app; since user applications are not
trusted, the trust score for this bin is minimum (0).
The security sensitive bin contains types as-
signed to data or components that have direct secu-
rity impact, such as tee, keystore, proc security
etc. These components and their data are also highly
trusted, since they form the TCB of the system, and
therefore their trust score is maximum (30). The trust
scoring system scores rules by the level of trust of
their domain and type, regardless of the type of rule.
Permissions and capabilities are ignored when com-
puting the trust score for a rule. The level of trust can
be high or low, giving place to 4 different scoring cri-
teria: trust hl, where the rule features a high domain
and a low type, trust lh, where the domain is low and
the type is high, trust hh, where both are high, and
trust ll, where both are low. The various trust criteria
score rules between 0 and 1, where a score of 1 indi-
cates that a rule is closest to the specified criterion. A
high rule score is obtained naturally when looking for
high components: to obtain a high rule score when
looking for low components, the component partial
score is subtracted from the maximum partial score
before normalizing. Trust scores are assigned to rules
using the formulas presented in Figure 8.

Trust ll:
scoretrust(rule)= ( M

2 −scoretrust (domain))+( M
2 −scoretrust (type))

M

Trust lh:
scoretrust(rule) = ( M

2 −scoretrust (domain))+(scoretrust (type))
M

Trust hl:
scoretrust(rule) = (scoretrust (domain))+( M

2 −scoretrust (type))
M

Trust hh:
scoretrust(rule) = scoretrust (domain)+scoretrust (type)

M

M is the maximum value of the numerator (60),
used to normalize the score between 0 and 1.

Figure 8: The trust scoring formulas for the risky rules
plugin.

An example of one of the trust scoring systems
(trust lh) is shown in Figure 9. The first rule contains
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untrusted app, which is a low-trust domain, and
system file, which is a low-trust domain. The scor-
ing criterion assigns the maximum score to rules with
a low domain and a high type: therefore, the rule has
a medium trust lh score, which in this case is 0.58.
The second rule contains untrusted app, which is
a low-trust domain, and security file, which is a
high-trust type. According to the selected scoring cri-
terion, the rule has the maximum trust lh score of 1.

0.58: .../domain.te:104:
allow untrusted_app system_file:file execute;

1.00: .../domain.te:154: allow untrusted_app
security_file:dir { getattr search };

Figure 9: An example of the risky rules plugin with the
trust lh scoring system.

4.5.3 Limitations

Both scoring systems, risk and trust, assign a score to
a rule by computing a formula over the partial scores
of various rule elements. These partial scores must be
defined by an analyst in the plugin configuration file,
and simply reflect what an analyst is most interested
in. Only the analyst who defined an element in the
policy has the relevant knowledge to assign it a risk
or trust score. A high rule score does not mean that a
rule is dangerous, and a low score does not mean that
a rule is safe: a high score represents a rule which the
analyst deems more interesting, and vice versa.

4.6 Plugin 4: Unnecessary Rules

Goal. Some rules are effective only when used in
combination. For example, a type transition rule
is useless without the related allow rules actually en-
abling the requested access. Similarly, some permis-
sions are meaningful only when granted in combina-
tion. For example, an allow rule which grants read
on a file type, without granting open on the same type
or use on the related file descriptor type, will not ac-
tually allow the file to be read. Another example is
debug rules, which are effective only when used for
an OEM internal engineering build, and should not
be present in the derived user build which is actually
shipped. An analyst may want to check that all such
rules are correctly wrapped inside debug M4 macros,
which prevent them from appearing in the final user
build. The unnecessary rules plugin searches the
policy for rules which are ineffective or unnecessary,
as in the examples above. It also looks for debug rules
mistakenly visible in the user policy.
Implementation. The plugin provides 3 features: de-
tection of ineffective rule combinations, detection of
debug rules, and detection of ineffective permissions.

Tuple:
type transition $ARG0 $ARG1:file $ARG2;
allow $ARG0 $ARG1:dir { search write };
allow $ARG0 $ARG2:file { create write };
If found:

type transition a b:file c;
Look for:

allow a b:dir { search write };
allow a c:file { create write };

Figure 10: An example of the “ineffective rule combina-
tions” functionality of the unnecessary rules plugin.

Ineffective rule combinations: The plugin detects
missing rules from an ordered tuple of rules. Tuples
can be specified by an analyst in the plugin configura-
tion file, and can contain placeholder arguments. This
functionality looks for rules matching the first rule in
a tuple, and verifies that all other rules in the tuple
are present in the policy. An example is shown in
Figure 10. The tuple contains three rules with place-
holder arguments. If a rule is found matching the
first rule in the tuple, the arguments are extracted and
substituted in the remaining rules; each of these rules
must then be found in the policy.
Debug Rules: The plugin detects rules containing de-
bug types as either the domain or the type. Debug
types can be specified by an analyst in the plugin con-
figuration file.
Ineffective Permissions: The plugin detects rules
which grant some particular permission on a type, but
do not grant some other particular permission on that
type or some additional permissions on some other
(related) type. All three sets of permissions can be
specified by an analyst in the configuration file. An
example is shown in Figure 11. If any permissions
from the first set are granted on a file, then either all
the permissions in the second set must be granted on
the file, or the permissions in the third set must be
granted on the file descriptor. The first rule grants
read and write from the first set, and does not grant
open from the second set; however, the second rule
grants use on the file descriptor. The constraint is
therefore satisfied.
Limitations. The plugin allows an analyst to express
very fine-grained information: this results in a some-

If found:
file { write read append ioctl}

Look for either:
file { open }

or:
fd {use}

Rules:
allow a b:file { read write };
allow a b:fd use;

Figure 11: An example of the “ineffective permissions”
functionality of the unnecessary rules plugin.
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what complex configuration file.

4.7 Plugin 5: User neverallows

Goal. neverallow rules can be used to specify per-
missions never to be granted in the policy. For ex-
ample, Google uses neverallow rules extensively
to prevent OEMs from circumventing core secu-
rity structures of the policy. However, neverallow
rules are only enforced at compile time in the nor-
mal SEAndroid policy development workflow: this
means that a policy change may be committed into
an OEM’s VCS, only to later find out that it in-
fringes one or more neverallow rules and there-
fore breaks the compilation. The user neverallows
plugin allows an analyst to define an additional set
of neverallow rules, and be able to check at any time
if they are respected by the policy. This can be very
useful for OEM policy maintainers who would like
to immediately make sure that developers contribut-
ing small policy changes do not introduce any unde-
sired rules. The plugin enforces a list of custom user-
defined neverallow rules on a policy, reporting any
infringing rule.
Implementation. The plugin checks each rule
in the policy which matches any user-specified
neverallow, and verifies that it does not grant any
permission explictly forbidden in the neverallow.
Custom neverallow rules can be defined by the ana-
lyst in the plugin configuration file, in the same syntax
as they would be written in the policy.
Limitations. The user neverallows plugin pro-
cesses each user-provided neverallow rule individ-
ually: therefore, it works best with small numbers of
rules (tens of thousands).

5 EVALUATION

In order to show that SELint fulfills the requirements
stated in Section 4.1, we solicited feedback from SE-
Android experts about their experience with SELint,
as well as measured the tool’s performance.

5.1 Expert Survey

Following Requirement 2, SELint is designed to be
configured by an SEAndroid expert before regular de-
velopers can use it in their work flow. SEAndroid
experts are, therefore, the main target audience of
SELint. Developers are just expected to run SELint
and verify that it doesn’t produce new warnings on
their policy modifications. Thus, in order to evalu-

ate the usability and usefulness of SELint, we need to
collect feedback from SEAndroid experts.
Materials. In order to collect expert feedback about
SELint, we prepared an evaluation questionnaire3.
SELint itself was available for download via our pub-
lic Github repository4.
Procedure. When collecting feedback on SELint, we
wanted to focus on people that already have strong
prior experience with SEAndroid policies. This
choice is based on the fact that these experts are able
to evaluate not just the tool itself, but also the default
configuration we provide for its plugins. In order to
obtain such feedback, we announced the SELint tool
on the SEAndroid public mailing list5. This mailing
list is a common forum where discussions among SE-
Android experts take place. We asked people to fill in
the questionnaire after trying to use the tool on their
Android tree.
Participants. Three experts from three different com-
panies evaluated SELint. Each had more than 2 years
of experience with SEAndroid policies.
Results. All respondents ranked SELint as easy to
use, and its results as easy to interpret. They also
agreed that functionality offered by SELint is not cur-
rently provided by any existing tools; they ranked
SELint as being “valuable” for them for their current
work on SEAndroid. Our free-form questions on the
overall SELint experience gathered answers such as:

“I was able to use the tool to find things I wanted
to fix with respect to over-privileged domains and
useless rules.”
“I think this just adds to the list of useful tools
in policy development. The output is more user
friendly than sepolicy-analyze and hopefully would
appeal to those who only write policy infrequently
- such as most OEMs.”

Out of all the default plugins we provided with
SELint, the risky rules plugin caught the most at-
tention and received the most positive feedback. This
is as expected, given that this is the plugin that helps
the most to directly evaluate the security of a SEAn-
droid policy. Plugins dealing with M4 macros were
also found to be useful, with respondents reporting
that they actually adopted most or all suggestions
for global macros or te macros in their SEAndroid
policy. The neverallow rules plugin got an ex-
pected answer to the question “Do you plan to use
the neverallow rules plugin?”:

“Yes, to add rules I don’t want in the policy, but
where I don’t want to add an actual neverallow.
Neverallows end up in CTS, so you don’t want to

3goo.gl/forms/j9oUBL2wnEjOvpLs2
4github.com/seandroid-analytics/selint
5seandroid-list@tycho.nsa.gov

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

56



use them too much. As for OEM policy additions,
sometimes neverallows are too strict and we just
want to see what the linter picks up.”

This is exactly the usage we envisioned for it: an abil-
ity for OEMs to enforce custom neverallow rules
without them being checked by Android Compatibil-
ity Test Suite (CTS). Respondents also had some good
points for future enhancements, such as implementing
an easier setup wizard and automatically prompting to
input the scores for types or permissions which do not
have one in the risky rules plugin.
Limitations. In order to perform a better evaluation
of SELint, we need a more extensive study with many
more OEM developers who need to modify SEAn-
droid policies. However, this is difficult to achieve be-
cause of the following reasons. In order to try SELint,
participants need to have their own custom Android
tree and their own custom SEAndroid policies, since
the tool targets OEM SEAndroid policy writers; this
naturally limits the number of participants. In addi-
tion, people that actually have their own custom pol-
icy are usually engineers working for OEMs. They
might not want to take part in our study because of
corporate confidentiality concerns. Another difficulty
is in setting up SELint, as one of our respondents
noted. This is due to the fact that SELint relies on the
policy representation library from SETools (Tresys,
2016) to perform policy parsing, and older versions
of this library do not support some new SEAndroid
policy elements, such as xperms. This, together with
some compatibility issues between SEAndroid policy
versions and SETools, made it harder for some users
to setup the tool initially.

Despite these limitations, we believe the user
feedback we received confirms that our goals and as-
sumptions for SELint and the default configurations
of its plugins are correct. In addition, this feedback
gives us directions for future work discussed in Sec-
tion 6. We also hope that we will receive more user
feedback on our tool with time.

5.2 Performance Evaluation

Table 4: Performance measurements for SELint on Intel
Android tree with 99532 expanded rules.

Component Avg time (s) Avg mem (MB)
SELint core 0.40 ± 0.01 99.53 ± 0.06
user neverallows 0.43 ± 0.01 99.51 ± 0.05
simple macros 0.59 ± 0.02 99.94 ± 0.04
unnecessary rules 0.65 ± 0.01 99.52 ± 0.08
risky rules 1.06 ± 0.01 99.51 ± 0.05
parametrized macros 168.42 ± 2.17 446.52 ± 0.07

In order to evaluate the performance of SELint we
conducted a set of measurements, collecting execu-

Table 5: Performance measurements for SELint on AOSP
tree with 3081233 expanded rules.

Component Avg time (s) Avg mem (MB)
SELint core 1.88 ± 0.02 212.11 ± 0.07
user neverallows 1.89 ± 0.02 212.09 ± 0.07
simple macros 2.18 ± 0.03 219.03 ± 0.09
unnecessary rules 20.25 ± 0.17 212.07 ± 0.06
risky rules 3.23 ± 0.03 212.07 ± 0.07
parametrized macros 3210.03 ± 48.13 6031.84 ± 0.59

tion time and memory usage. We consider these num-
bers to be the most important indicators for SELint,
since it can be used either manually by a single per-
son or automatically as part of a Continuous Inte-
gration (CI) process. The measurements were con-
ducted on an off-the-shelf laptop with an Intel Core
i7-4770HQ 2.20GHz CPU and 16GB of 1600MHz
DDR3 RAM. Each measurement was repeated 10
times, and the average and standard deviation are
presented in Table 4 and Table 5. The first table
presents data for a public Intel tree, Android 5.16,
and the second one for the public AOSP tree, mas-
ter branch7. For all measurements we have measured
the SELint core and each of its plugins separately.
The big difference in performance between these two
trees comes from the number of expanded rules in the
source policies: for the Intel tree it is 99532, while
for the AOSP tree it is 3081233. The execution time
of the unnecessary rules plugin scales differently
than others, requiring almost the same time as the
SELint core on the Intel tree and 10 times more than
the SELint core on the AOSP tree. This is due not
only to the different total number of rules in the two
trees, but also to the number of rules that each domain
has, since the plugin needs to check for ineffective
rule combinations or permissions (see Section 4.6).
The parametrized macro plugin is the only plugin
that takes a considerable amount of time to run, espe-
cially on the AOSP tree. As explained in Section 4.4,
this is due to the fact that we are currently not im-
plementing any heuristics in our solution to the prob-
lem, and are just relying on exploration of the solution
space. As a result, the current plugin should not be
included into the default set of plugins executing au-
tomatically as part of a CI process, but should be used
manually by an expert. The execution time and mem-
ory usage of the other plugins fit the desired use cases:
given that normally an AOSP build takes at least half
an hour to complete in a powerful CI infrastructure,
an overhead of minutes and hundreds of MB of mem-
ory is considered acceptable.

6github.com/android-ia
7android.googlesource.com
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6 DISCUSSION

While our evaluation showed that SELint is consid-
ered a valuable tool for analyzing SEAndroid poli-
cies, there are many areas for future work and im-
provements. The initial setup of SELint would benefit
from an interactive procedure, allowing users to au-
tomatically detect and solve the possible mismatches
between the installed libraries and policy versions.
The parametrized macro plugin could provide an
implementation based on a heuristic solution for the
knapsack problem allowing users to obtain a partial
solution, in order to save time and enable this plugin
to be run as part of a CI infrastructure. More work
is needed in order to polish the default configuration
offered by the risky rules plugin, and to provide
a way for OEMs to easily, and maybe interactively,
add scores for their own domains and types. We also
need to conduct a study on how easy it is for SEAn-
droid experts to write new SELint plugins. Another
future research direction is to investigate the possibil-
ity of using SELint together with a policy decompiler,
in order to analyze OEM policies from available An-
droid devices. This would provide additional input for
SELint evaluation.

We continue to gather feedback from SELint users
and SEAndroid experts to adjust SELint to their needs
and requirements. Since SELint is open source soft-
ware, and builds on existing official SEAndroid tools,
we are planning to work with Google to include
SELint in the set of SEAndroid tools provided with
the AOSP tree.
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