
ar
X

iv
:1

70
9.

06
95

5v
2

 [
cs

.D
B

]
 2

9
O

ct
 2

01
8

ProbeSim: Scalable SingleSource and Topk SimRank
Computations on Dynamic Graphs

Yu Liu1, Bolong Zheng2, Xiaodong He1, Zhewei Wei1
∗

, Xiaokui Xiao3, Kai Zheng4, Jiaheng Lu5

1School of Information, Renmin University of China, China
2School of Data and Computer Science, Sun Yatsen University

3School of Computer Science and Engineering, Nanyang Technological University, Singapore
4School of Computer Science and Engineering and Big Data Research Center, University of Electronic

Science and Technology of China
5 Department of Computer Science, University of Helsinki

1{yu.liu, hexiaodong 1993, zhewei}@ruc.edu.cn 2zblchris@gmail.com
3xkxiao@ntu.edu.sg 4zhengkai@uestc.edu.cn 5jiahenglu@gmail.com

ABSTRACT

Single-source and top-k SimRank queries are two important types
of similarity search in graphs with numerous applications in web
mining, social network analysis, spam detection, etc. A plethora
of techniques have been proposed for these two types of queries,
but very few can efficiently support similarity search over large dy-
namic graphs, due to either significant preprocessing time or large
space overheads.

This paper presents ProbeSim, an index-free algorithm for
single-source and top-k SimRank queries that provides a non-
trivial theoretical guarantee in the absolute error of query results.
ProbeSim estimates SimRank similarities without precomputing
any indexing structures, and thus can naturally support real-time

SimRank queries on dynamic graphs. Besides the theoretical guar-
antee, ProbeSim also offers satisfying practical efficiency and ef-
fectiveness due to non-trivial optimizations. We conduct extensive
experiments on a number of benchmark datasets, which demon-
strate that our solutions outperform the existing methods in terms
of efficiency and effectiveness. Notably, our experiments include
the first empirical study that evaluates the effectiveness of SimRank
algorithms on graphs with billion edges, using the idea of pooling.

PVLDB Reference Format:

Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xiaokui Xiao, Kai
Zheng, Jiaheng Lu. ProbeSim: Scalable Single-Source and Top- k SimRank
Computations on Dynamic Graphs. PVLDB, 11(1): xxxx-yyyy, 2017.
DOI: https://doi.org/10.14778/3136610.3136612

1. INTRODUCTION
SimRank [11] is a classic measure of the similarities of graph

nodes, and it has been adopted in numerous applications such as

∗Corresponding author
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 1
Copyright 2017 VLDB Endowment 21508097/17/09... $ 10.00.
DOI: https://doi.org/10.14778/3136610.3136612

web mining [12], social network analysis [17], and spam detec-
tion [25]. The formulation of SimRank is based on two intuitive
statements: (i) a node is most similar to itself, and (ii) two nodes
are similar if their neighbors are similar. Specifically, given two
nodes u and v in a graph G, the SimRank similarity of u and v,
denoted as s(u, v), is defined as:

s(u, v) =

1, if u = v
c

|I(u)| · |I(v)|
∑

x∈I(u),y∈I(v)

s(x, y), otherwise. (1)

where I(u) denotes the set of in-neighbors of u, and c ∈ (0, 1) is
a decay factor typically set to 0.6 or 0.8 [11, 19].

Computing SimRank efficiently is a non-trivial problem that has
been studied extensively in the past decade. The early effort [11]
focuses on computing the SimRank similarities of all pairs of nodes
in G, but the proposed Power Method algorithm incurs prohibitive
overheads when the number n of nodes in G is large, as there exists
O(n2) node pairs in G. To avoid the inherent O(n2) costs in all-
pair SimRank computation, the majority of the subsequent work
considers two types of SimRank queries instead

• Single-source SimRank query: given a query node u, return
s(u, v) for every node v in G;

• Top-k SimRank query: given a query node u and a parameter
k ≥ 1, return the k nodes v with the largest s(u, v).

Existing techniques [7, 13, 14, 16, 20, 24, 27, 31] for these two
types of queries, however, suffer from two major deficiencies. First,
most methods [14, 16, 20, 24, 31] fail to provide any worst-case
guarantee in terms of the accuracy of query results, as they either
rely on heuristics or adopt an incorrect formulation of SimRank.
Second, the existing solutions [7, 16, 27] with theoretical accuracy
guarantees, all require constructing index structures on the input
graphs with a preprocessing phase, which incurs significant space
and pre-computation overheads. The only exception is the Monte
Carlo method in [7] which provides an index-free solution with the-
oretical accuracy guarantees. While pioneering, unfortunately, this
method entails considerable query overheads, as shown in [24].

Motivations. In this paper, we aim to develop an index-free so-
lution for single-source and top-k SimRank queries with provable
accuracy guarantees. Our motivation for devising algorithms with-
out preprocessing is two-fold. First, index-based SimRank meth-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/245132255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1709.06955v2

ods often have difficulties handling dynamic graphs. For example,
SLING [27], which is the state-of-art indexing-based SimRank al-
gorithm for static graphs, requires its index structure to be rebuilt
from scratch whenever the input graph is updated, and its index
construction requires several hours even on medium-size graphs
with 1 million nodes. This renders it infeasible for real-time queries
on dynamic graphs. In contrast, index-free techniques can natu-
rally support real-time SimRank queries on graphs with frequent
updates. To the best of our knowledge, the TSF method [24] is
the only indexing approach that allows efficient update. However,
TSF is unable to provide any worst-case guarantees in terms of the
accuracy of the SimRank estimations, which leads to unsatisfying
empirical effectiveness, as shown in [34] and in our experiments.

Our second motivation is that index-based SimRank methods of-
ten fail to scale to large graphs due to their space overheads. For
example, TSF requires an index space that is two to three orders of
magnitude larger than the input graph size, and our empirical study
shows that it runs out of 64GB memory for graphs over 1GB in our
experiments. This renders it only applicable on small- to medium-
size datasets. Further, if one considers to move the large index to
the external memory, this idea would incur expensive preprocess-
ing and query costs, as shown in our empirical study. In contrast,
an index-free solution proposed in this paper does not increase the
size of an original graph.

Our contributions. This paper presents an in-depth study on
single-source and top-k SimRank queries, and makes the following
contributions. First, for single-source and top-k SimRank queries,
we propose an algorithm with provable approximation guarantees.
In particular, given two constants εa and δ, our algorithm en-
sures that, with at least 1 − δ probability, each SimRank simi-
larity returned has at most εa absolute error. The algorithm runs
in O(n

εa2 log n
δ
) expected time, and it does not require any index

structure to be pre-computed on the input graph. Our algorithm
matches the state-of-the-art index-free solution in terms of time
complexity, but it offers much higher practical efficiency due to an
improved algorithm design and several non-trivial optimizations.

Our second contribution is a large set of experiments that eval-
uate the proposed solutions with the state of the art on benchmark
datasets. Most notably, we present the first empirical study that
evaluates the effectiveness of SimRank algorithms on graphs with
billion edges, using the idea of pooling borrowed from the infor-
mation retrieval community. The results demonstrate that our so-
lutions significantly outperform the existing methods in terms of
both efficiency and effectiveness. In addition, our solutions are
more scalable than the state-of-the-art index-based techniques, in
that they can handle large graphs on which the existing solutions
require excessive space and time costs in preprocessing.

2. PRELIMINARIES

2.1 Problem Definition
Table 1 shows the notations that are frequently used in the re-

mainder of the paper. Let G = (V, E) be a directed simple graph
with |V | = n and |E| = m. We aim to answer approximate single-
source and top-k SimRank queries, defined as follows:

DEFINITION 1 (APPROXIMATE SINGLE-SOURCE QUERIES).
Given a node u in G, an absolute error threshold εa, and a failure

probability δ, an approximate single-source SimRank query returns

an estimated value s̃(u, v) for each node v in G, such that

|s̃(u, v)− s(u, v)| ≤ εa

holds for any v with at least 1− δ probability. �

DEFINITION 2 (APPROXIMATE TOP-k QUERIES). Given a

node u in G, a positive integer k < n, an error threshold εa, and

a failure probability δ, an approximate top-k SimRank query re-

turns a sequence of k nodes v1, v2, . . . , vk and an estimated value

s̃(u, vi) for each vi, such that the following equations hold with at

least 1− δ probability for any i ∈ [1, k]:

s(u, vi) ≥ s(u, v′i)− εa

where v′i is the node in G whose SimRank similarity to u is the i-th
largest. �

Essentially, the approximate top-k query for node u returns k nodes
v1, . . . , vk such that their actual SimRank similarities with respect
to u are ε-close to those of the actual top-k nodes. It is easy to
see that an approximate single-source algorithm can be extended to
answer the approximate top-k queries, by sorting the SimRank esti-
mations {s̃(u, v) | v ∈ V } and output the top-k results. Therefore,
our main focus is on designing efficient and scalable algorithms
that answer approximate single-source queries with εa guarantee.

2.2 SimRank with Random Walks
In the seminal paper [11] that proposes SimRank, Jeh and

Widom show that there is an interesting connection between Sim-
Rank similarities and random walks. In particular, let u and v be
two nodes in G, and W (u) (resp. W (v)) be a random walk from u
that follows a randomly selected incoming edge at each step. Let
t be the smallest positive integer i such that the i-th nodes of Wu

and Wv are identical. Then, we have

s(u, v) = E[ct−1], (2)

where c is the decay factor in the definition of SimRank (see Equa-
tion 1).

Subsequently, it is shown in [27] that Equation 2 can be simpli-
fied based on the concept of

√
c-walks, defined as follows.

DEFINITION 3 (
√
c-WALKS). Given a node u in G, an

√
c-

walk from u is a random walk that follows the incoming edges of

each node and stops at each step with 1−√
c probability. �

A
√
c-walk from u can be generated as follows. Starting from v =

u, when visiting node v, we generate a random number r in [0, 1]
and check whether r ≤ 1 − √

c. If so, we terminate the walk at
v; otherwise, we select one of the in-neighbors of v uniformly at
random and proceed to that node.

Let W ′(u) and W ′(v) be two
√
c-walks from two nodes u and

v, respectively. We say that two
√
c-walks meet, if there exists a

positive integer i such that the i-th nodes of W ′(u) and W ′(v) are
the same. Then, according to [27],

s(u, v) = Pr
[

W ′(u) and W ′(v) meet
]

. (3)

Based on Equation 3, one may estimate s(u, v) using a Monte
Carlo approach [7,27] as follows. First, we generate r pairs of

√
c-

walks, such that the first and second walks in each pair are from u
and v, respectively. Let rmeet be the number of

√
c-walk pairs that

meet. Then, we use rmeet/r as an estimation of s(u, v). By the
Chernoff bound, it can be shown that when r ≥ 1

2εa2 log
1
δ
, with

at least 1 − δ probability we have
∣

∣

rmeet

r
− s(u, v)

∣

∣ ≤ εa. In ad-
dition, the expected time required to generate r

√
c-walks is O(r),

since each
√
c-walk has 1

1−√
c

nodes in expectation.

The above Monte Carlo approach can also be straightforwardly
adopted to answer any approximate single-source SimRank query
from a node u. In particular, we can generate r

√
c-walks from

each node, and then use them to estimate s(u, v) for every node

v in G. This approach is simple and does not require any pre-
computation, but it incurs considerable query overheads, since it
requires generating a large number of

√
c-walks from each node.

2.3 Competitors

The TopSim based algorithms. To address the drawbacks of the
Monte Carlo approach, Lee et al. [14] propose TopSim-SM, an
index-free algorithm that answers top-k SimRank queries by enu-
merating all short random walks from the query node. More pre-
cisely, given a query node u and a number T , TopSim-SM enumer-
ates all the vertices that reach u by at most T hops, and treat them
as potential meeting points. Then, TopSim-SM enumerates, for each
meeting point w, the vertices that are reachable from w within T
hops. Lee et al. [14] also propose two variants of TopSim-SM,
named Trun-TopSim-SM and Prio-TopSim-SM, which trade accu-
racy for efficiency. In particular, Trun-TopSim-SM omits the meet-
ing points with large degrees, while Prio-TopSim-SM prioritizes the
meeting points in a more sophisticated manner and explore only the
high-priority ones.

For each node v returned, TopSim-SM provides an estimated
SimRank sT (u, v) that equals the SimRank value approximated
using the Power Method [11] with T iterations. When T is suffi-
ciently large, sT (u, v) can be an accurate approximation of s(u, v).
However, Lee et al. [14] show that the query complexity of TopSim-

SM is O(d2T) time, where d is the average in-degree of the graph.
As a consequence, Lee et al. [14] suggests setting T = 3 to achieve
reasonable efficiency, in which case the absolute error in each Sim-
Rank score can be as large as c3, where c is the decay factor in the
definition of SimRank 1. Meanwhile, Trun-TopSim-SM and Prio-

TopSim-SM does not provide any approximation guarantees even
if T is set to a large value, due to the heuristics that they apply to
reduce the number of meeting points explored.

The TSF algorithm. Very recently, Shao et al. [24] propose a two-
stage random-walk sampling framework (TSF) for top-k SimRank
queries on dynamic graphs. Given a parameter Rg , TSF starts by
building Rg one-way graphs as an index structure. Each one-way
graph is constructed by uniformly sampling one in-neighbor from
each vertex’s in-coming edges. The one-way graphs are then used
to simulate random walks during query processing.

To achieve high efficiency, TSF approximates the SimRank score
of two nodes u and v as

∑

i

Pr[two
√
c-walks from u and v meet at the i-th step],

which is an over estimation of the actual SimRank. (See Section
3.3 in [24].) Furthermore, TSF assumes that every random walk in a
one-way graph would not contain any cycle, which does not always
hold in practice, especially for undirected graphs. (See Section 3.2
in [24].) As a consequence, the SimRank value returned by TSF

does not provide any theoretical error assurance.

3. PROBESIM ALGORITHM
In this section, we present ProbeSim, an index-free algorithm

for approximate single-source and top-k SimRank queries on large
graphs. Recall that an approximate single-source algorithm can
be extended to answer the approximate top-k queries, by sorting
the SimRank estimations {s̃(u, v) | v ∈ V } and output the top-k
results. Therefore, the ProbeSim algorithm described in this section
focuses on approximate single-source queries with εa guarantee.
Before diving into the details of the algorithm, we first give some
high-level ideas of the algorithm.

Table 1: Table of notations.

Notation Description

G the input graph

n,m the numbers of nodes and edges in G

I(v) the set of in-neighbors of a node v in G

s(u, v) the SimRank similarity of two nodes u and v in G

s̃(u, v) an estimation of s(u, v)

W (u) a
√
c-walk from a node u

c the decay factor in the definition of SimRank

εa the maximum absolute error allowed in SimRank com-
putation

δ the failure probability of a Monte Carlo algorithm

3.1 Rationale
Let W (u) and W (v) be two

√
c-walks from two nodes u and v,

respectively. Let ui be the i-th node in W (u). (Note that u1 = u.)
By Equation 3,

s(u, v) = Pr [W (u) and W (v) meet]

=
∑

i

Pr [W (u) and W (v) first meet at ui] . (4)

In other words, for a given W (u) = (u1, u2, . . .), if we can esti-
mate the probability that an

√
c-walk from v first meets W (u) at

ui, then we can take the sum of the estimated probabilities over
all ui as an estimation of s(u, v). Towards this end, a naive ap-
proach is to generate a large number of

√
c-walks from v, and then

check the fraction of walks that first meet W (u) at ui. However, if
s(u, v) is small, then most of the

√
c-walks is “wasted” since they

would not meet W (u). To address this issue, our idea is as follows:
instead of sampling

√
c-walks from each v to see if they can “hit”

any ui, we start a graph traversal from each ui to identify any node
v that has a non-negligible probability to “walk” to ui. Intuitively,
this significantly reduces the computation cost since it may enable
us to omit the nodes whose SimRank similarities to u are smaller
than a given threshold εa.

In what follows, we first explain the details of the traversal-based
algorithm mentioned above, and then analyze its approximation
guarantee and time complexity. For convenience, we formalize the
concept of first-meeting probability as follows.

DEFINITION 4 (FIRST-MEETING PROBABILITY). Given a

reverse path P = (u1, . . . , ui) and a node v ∈ V , v 6= u1, the

first-meeting probability of v with respect to P is defined to be

P (v,P) = Pr
W (v)

[vi = ui, vi−1 6= ui−1, . . . , v1 6= u1],

where W (v) = (v1, . . . , vi, . . .) is a random
√
c-walk that starts

at v1 = v.

Here, the subscript in PrW (v) indicates that the randomness
arises from the choices of

√
c-walk W (v). In the remainder of

the paper, we will omit this subscript when the context is clear.

3.2 Basic algorithm
We describe our basic algorithm for the ProbeSim algorithm.

Given a node u ∈ V , a sampling error parameter ε and a fail-
ure probability δ, the algorithm returns R, an hash set of n − 1
nodes in V \ {u} and their SimRank estimations. For EV-

ERY node v ∈ V , v 6= u, algorithm 1 returns an estimated
SimRank s̃(u, v) to the actual SimRank s(u, v) with guarantee
Pr[|s̃(u, v)− s(u, v)| ≤ ε] ≥ 1− δ. Note that the basic algorithm

Algorithm 1: Basic ProbeSim algorithm

Input: Directed graph G = (V, E); u ∈ V ; Error ε and failure
probability δ

Output: R = {(v, s̃(u, v)) | v ∈ V }, a hash set of size n that
maintains the SimRank estimations for each node v ∈ V

1 nr ← 3c
ε2

logn
δ

;

2 for k = 1 to nr do

3 Generate
√
c-walk Wk(u) = (u = u1, . . . , uℓ);

4 Initialize hash setH;
5 for i = 2, . . . , ℓ do

6 Set hash set S ← PROBE((u1, . . . , ui));
7 for each (v, Score(v)) ∈ S do

8 if (v, s̃k(u, v)) ∈ H then

9 s̃k(u, v)← s̃k(u, v) + Score(v);

10 else
11 Insert (v, Score(v)) toH;

12 for each (v, s̃(u, v)) ∈ R do

13 if ∃(v, s̃k(u, v)) ∈ H then

14 s̃(u, v)← s̃(u, v) · k−1
k

+ s̃k(u, v) · 1k ;

15 else

16 s̃(u, v)← s̃(u, v) · k−1
k

;

17 return R;

uses unbiased sampling to produce the estimators, thus we can set
εa = ε.

The pseudo-code for the basic ProbeSim algorithm is illustrated
in Algorithm 1. The algorithm runs nr = 3c

ε2
log n

δ
independent

trials (Line 1). For the k-th trial, the algorithm generates a
√
c-

walk Wk(u) = (u = u1, . . . , uℓ) (Lines 2-3), and invokes the
PROBE algorithm on partial

√
c-walk Wk(u, i) = (u1, . . . , ui)

for i = 2, . . . , ℓ (Lines 5-6). The PROBE algorithm computes a
Score(v) for each node v ∈ V . As we shall see later, Score(v)
is equal to P (v,Wk(u, i)), the first-meeting probability of v with
respect to partial walk Wk(u, i). Let Scorei(v) denote the score
computed by the PROBE algorithm on partial

√
c-walk Wk(u, i),

for i = 2, . . . , ℓ. The algorithm sums up all scores to form the
estimator s̃k(u, v) =

∑ℓ
i=2 Scorei(v) (Lines 7-11).

Algorithm 2: Deterministic PROBE algorithm

Input: A partial
√
c-walk (u = u1, . . . , ui)

Output: S = {(v, Score(v)) | v ∈ V }, a hash set of nodes and
their scores w.r.t. partial walk W (u, i)

1 Initialize hash setHj for j = 0, . . . , i− 1;
2 Insert (ui, 1) toH0;
3 for j = 0 to i− 2 do

4 for each (x, Score(x)) ∈ Hj do
5 for each v ∈ O(x) and v 6= ui−j−1 do

6 if (v, Score(v)) ∈ Hj+1 then

7 Score(v)← Score(v) +
√

c
|I(v)| · Score(x);

8 else

9 Insert (v,
√
c

|I(v)| · Score(x)) toHj+1;

10 return S = Hi−1;

Finally, for each node v, we take the average over the nr

independent estimators to form the final estimator s̃(u, v) =
1
nr

∑nr

k=1 s̃k(u, v). Note that if we take the average after all nr

trials finish, it would require Ω(nr · n) space to store all the
s̃k(u, v) values. Thus, we dynamically update the average esti-
mator s̃(u, v) ∈ R for each trial (Lines 12-16). After all nr tri-

Table 2: SimRank similarities with respect to node a.
a b c d e f g h

s(a, ∗) 1.0 0.0096 0.049 0.131 0.070 0.041 0.051 0.051

als finishes, we return R as the SimRank estimators for each node
v ∈ V (Line 17).

Deterministic PROBE Algorithm. We now give a simple de-
terministic PROBE algorithm for computing the scores in Al-
gorithm 1. Given a partial

√
c-walk W (u, i) = (u1, . . . , ui)

that starts at u = u1, the PROBE algorithm outputs S =
{(v, Score(v)) | v 6= u ∈ V }, a hash set of nodes and their
first-meeting probability with respect to reverse path W (u, i).

The pseudo-code for the algorithm is shown in Algorithm 2. The
algorithm initializes i − 1 hash tables H0, . . . ,Hi−1 (Line 1) and
adds (ui, 1) to H0 (Line 2). In the j-th iteration, for each node
x in Hj , the algorithm finds each out-neighbour v ∈ O(x), and
checks if (v, Score(v)) ∈ Hj+1 (Lines 3-5). If so, the algorithm

adds
√

c
|I(v)| ·Score(x) to Score(v) (Lines 6-7). Otherwise, it adds

(v,
√

c
|I(v)| · Score(x)) to Hj+1 (Lines 8-9). We note that in this

iteration, no score is added to ui−j−1, which ensures that the walk
W (v) avoids ui−j−1 at vi−j−1 (Line 5).

The intuition of the PROBE algorithm is as follows. For the ease
of presentation, we let Score(v, j) denote the score computed on
the j-th iteration for node v ∈ V . One can show that Score(v, j) is
in fact equal to P (v, (ui−j−1, . . . , ui)), the first-meeting probabil-
ity of each node v with respect to reverse path (ui−j−1, . . . , ui) .
Consequently, after the (i−1)-th iteration, the algorithm computes
Score(v, i− 1) = P (v, (u1, . . . , ui)), the first-meeting probabil-
ity of each node v with respect to reverse path W (u, i). We will
make this argument rigorous in the analysis.
Running Example for Algorithm 1 and 2. Throughout the paper,
we will use a toy graph in Figure 1 to illustrate our algorithms and
pruning rules. For ease of presentation, we set the decay factor
c′ = 0.25 so that

√
c′ = 0.5. The SimRank values of each node

to a is listed in Table 2, which are computed by the Power Method
within 10−5 error.

Suppose at the k-th trial, a random
√
c-walk W (a) =

(a1, a2, a3, a4) = (a, b, a, b) is generated. Figure 2 illustrates the
traverse process of the deterministic PROBE algorithm. For sim-
plicity, we only demonstrate the traverse process for partial walk
W (a, 4) = (a1, a2, a3, a4) = (a, b, a, b), which is represented by
the right-most tree in Figure 2. The algorithm first inserts (b, 1)
to H0. Following the out-edges of a4 = b, the algorithm finds
a and omits it as a3 = a. Next, the algorithm finds c, computes

Score(c, 1) = Score(b, 0) ·
√

c′

|I(c)| = 1 · 0.5
3

= 0.167, and insert

(c, 0.167) to H1. Similarly, the algorithm finds d and e, and in-
serts Score(d, 1) = 0.5

1
= 0.5 and Score(e, 1) = 0.5

2
= 0.25

to H1. For the next iteration, we find a, f , g and h from the
out-neighbours of c, d and e. Note that b is omitted due to the
fact that a2 = b. The score of f at this iteration is computed
by Score(f, 2) = (Score(c, 1) + Score(d, 1) + Score(e, 1)) ·√

c′

|I(f)| = (0.167 + 0.5 + 0.25) · 0.5
4

= 0.115.

Similarly, the algorithm computes Score(a, 2) = 0.042,
Score(g, 2) = 0.153 and Score(h, 2) = 0.153, and
insert (a, 0.042), (f, 0.115), (g, 0.153) and (h, 0.153) to
H2. Finally, for the last iteration, the algorithm computes
Score(b, 3) = 0.011, Score(c, 3) = 0.033, Score(e, 3) =
0.038 and Score(f, 3) = 0.019, and returns H3 =
{(b, 0.011), (c, 0.033), (e, 0.038), (f, 0.019)} as the results.

To get an estimation from
√
c-walk W (a) = (a1, a2, a3, a4) =

(a, b, a, b), Algorithm 1 will invoke PROBE for W (u, 2) = (a, b),

a

c

b

ed

f hg

Figure 1: Toy graph.

c

b

ed

a f hg b

cb e f

a

c

a f hgc

b

eda

Figure 2: The probing tree.

W (u, 3) = (a, b, a) and W (u, 4) = (a, b, a, b). Each probe
gives score set: S2 = {(c, 0.167), (d, 0.5), (e, 0.25))},
S3 = {(f, 0.021), (g, 0.028), (h, 0.028)} and S4 =
{(b, 0.011), (c, 0.033), (e, 0.038), (f, 0.019)}. As an exam-
ple, the estimator s̃(a, c) is computed by summing up all scores
for c, which equals to 0.167 + 0.033 = 0.2. By summing all
scores up from different nodes in W (a), the returned estimation
of SimRank scores are s̃(a, b) = 0.011, s̃(a, c) = 0.2, s̃(a, d) =
0.5, s̃(a, e) = 0.2877, s̃(a, f) = 0.04, s̃(a, g) = 0.028 and
s̃(a, h) = 0.028.

3.3 Analysis

Time Complexity. We notice that in each iteration of the PROBE
algorithm, each edge in the graph is traversed at most once. Thus
the time complexity of the PROBE algorithm is O(m · i), where
i is the length of the partial

√
c-walk W (u, i). Consequently, the

expected time complexity of probing a single
√
c-walk in Algo-

rithm 1 is bounded by O(
∑ℓ

i=1 i · m) = O(ℓ2m), where ℓ is the
length of the

√
c-walk W (u). We notice that each step in the

√
c-

walk terminates with probability at least 1−√
c, so ℓ is bounded by

a geometric distributed random variable X with successful proba-
bility p = 1 − √

c (here “success” means the termination of the√
c-walk). It follows that

E[ℓ2] ≤ E[X2] = Var(X) + E[X]2 =
1− p

p2
+

1

p2

=
2− p

p2
=

1 +
√
c

(1−√
c)2

= O(1).

Therefore, the expected running time of Algorithm 1 on a single√
c-walk is O(m). Summing up for nr walks follows that the ex-

pected running time of Algorithm 1 is bounded by O(mnr) =
O(m

ε2
log n

δ
).

Correctness. We now show that Algorithm 1 indeed gives an good
estimation to the SimRank values s(u, v) for each v ∈ V , v 6= u.
The following Lemma states that each trial in Algorithm 1 gives
an unbiased estimator for the SimRank value s(u, v).

LEMMA 1. For any v ∈ V and v 6= u, Algorithm 1 gives an

estimator s̃(u, v) such that E[s̃(u, v)] = s(u, v).

We need the following Lemma, which states that if we start a√
c-walk W (v) = (v1, v2, . . .), then the score computed by the

PROBE algorithm on partial walk W (u, i) = (u1, . . . , ui) is ex-
actly the probability that W (u) and W (v) first meet at vi = ui.

LEMMA 2. For any node v ∈ V , v 6= u, after the (i − 1)-
iteration, Score(v, i) is equal to Pr[v,W (u, i)], the first-meeting

probability of v with respect to partial
√
c-walk W (u, i).

PROOF. We prove the following claim: Let Score(v, j) denote
the score of v after the j-th iteration. Fix a node v ∈ V , v 6= u.
After the j-th iteration in Algorithm 2, we have Score(v, j) =

P (v, (ui−j , . . . , ui)), the first-meeting probability of v with re-
spect to reverse path (ui−j , . . . , ui). Recall that

P (v, (ui−j , . . . , ui))= Pr
W (v)

[vj+1 = ui,vj 6= ui−1, . . . , v1 6= ui−j],

where W (v) = (v1, . . . , vj+1, . . .) is a random
√
c-walk that starts

at v1 = v.
Note that if above claim is true, then after the (i−1)-th iteration,

we have Score(v) = Score(v, i − 1) = P (v, (u1, . . . , ui)) =
P (v,W (u, i)), and the Lemma will follow. We prove the claim by
induction. After the 0-th iteration, we have Score(ui, 0) = 1 and
Score(v, 0) = 0 for v 6= ui, so the claim holds. Assume the claim
holds for the (j − 1)-th iteration. After the j-th iteration, for each
v ∈ V , v 6= ui−j−1, the algorithm set Score(v, j+1) by equation

Score(v, j + 1) =
∑

x∈I(v)

√
c

|I | · Score(x, j). (5)

By the induction hypothesis we have Score(x, j) =
P (x, (ui−j , . . . , ui)), and thus

Score(v, j + 1) =
∑

x∈I(v)
x 6=ui−j+1

√
c

|I | · P (x, (ui−j+1, . . . , ui))

=
∑

x∈I(v)
x 6=ui−j+1

Pr[v2 = x] · P (x, (ui−j+1, . . . , ui)). (6)

Here Pr[v2 = x] denotes the probability that W (v) selects x at
the first step. On the other hand, P (v, (ui−j , . . . , ui)) can be ex-
pressed the summation of probabilities that W (v) first select a node
x ∈ I(v) that is not ui−j+1, and then select a reverse

√
c-walk

from x to ui of length j − 2 and avoid ui−j+k at k-th step. It
follows that

P (v, (ui−j , . . . , ui))

=
∑

x∈I(v)
x 6=ui−j+1

Pr[v2 = x] · Pr[vj+1 = ui, . . . , v2 6= ui−j+1]

=
∑

x∈I(v)
x 6=ui−j+1

Pr[v2 = x] · P (x, (ui−j+1, . . . , ui)). (7)

Combining equations (6) and (7) proves the claim, and the
Lemma follows.

With the help of Lemma 2, we can prove Lemma 1:

PROOF OF LEMMA 1. Let W(u) denote the set of all pos-
sible

√
c-walks that starts at u. Fix a

√
c-walk W (u) =

(u1, . . . , uℓ). By Lemma 2, the estimated SimRank can be ex-

pressed as s̃(u, v) =
∑ℓ

i=2 P (v,W (u, i)). Thus we can compute
the expectation of this estimation by

E[s̃(u, v)] =
∑

W (u)∈W(u)

Pr[W (u)] ·
ℓ

∑

i=2

P (v,W (u, i))

=
∑

W (u)∈W(u)

ℓ
∑

i=2

Pr[W (u)] · P (v,W (u, i)), (8)

where Pr[W (u)] is the probability of walk W (u). Recall
that P (v,W (u, i)) is the probability that a random

√
c-walk

W (v) = (v1, . . . , vi, . . .) first meet W (u) at ui = vi. For
the ease of presentation, let I(W (u),W (v), i) denote that indi-
cator variable that two

√
c-walk W (v) = (v1, . . . , vi, . . .) and

W (u) = (u1, . . . , ui, . . .) first meet at ui = vi. In other word,

I(W (u),W (v), i) = 1 if W (u) and W (v) first meet at ui = vi,
and I(W (u),W (v), i) = 0 if otherwise. We have

P (v,W (u, i)) =
∑

W (v)∈W(v)

Pr[W (v)] ·I(W (u),W (v), i). (9)

Combining equation (8) and (9), it follows that

E[s̃(u, v)] =
∑

W (u)∈W(u)
W (v)∈W(v)

ℓ
∑

i=2

Pr[W (u)] · Pr[W (v)] · I(W (u),W (v), i)

=
∑

i=2

Pr[W (u) and W (v) first meet at i]

= Pr[W (u) and W (v) meet]

Note that s(u, v) is the probability that W (u) and W (v) meet, and
the Lemma follows.

By Lemma 1 and Chernoff bound, we have the following The-
orem that states by performing nr = 3c

ε
log n

δ
independent trials,

the error of the estimator s̃(u, v) provided by Algorithm 1 can be
bounded with high probability.

THEOREM 1. For every node v ∈ V , v 6= u, Algorithm

1 returns an estimation s̃(u, v) for s(u, v) such that Pr[∀v ∈
V, |s̃(u, v)− s(u, v)| ≤ ε] ≥ 1− δ.

We need the following form of Chernoff bound:

LEMMA 3 (CHERNOFF BOUND [5]). For any set {xi} (i ∈
[1, nx]) of i.i.d. random variables with mean µ and xi ∈ [0, 1],

Pr

{∣

∣

∣

∣

∣

nx
∑

i=1

xi − nxµ

∣

∣

∣

∣

∣

≥ nxε

}

≤ exp

(

− nx · ε2
2
3
ε+ 2µ

)

.

PROOF OF THEOREM 1. We first note that in each trial k,
the estimator s̃k(u, v) is a value in [0, 1]. It is obvious that
s̃k(u, v) ≥ 0. To see that s̃k(u, v) ≤ 1, notice that s̃k(u, v) =
∑ℓ

i=2 P (v,W (u, i)) is a probability. More precisely, it is the prob-
ability that a

√
c-walk W (v) meets with

√
c-walk W (u) using the

same steps.
Thus, the final estimator s̃(u, v) = 1

nr

∑nr

k=1 s̃k(u, v) is the
average of nr i.i.d. random variables whos values lie in the range
[0, 1]. Thus, we can apply Chernoff bound:

Pr[|s̃(u, v)− s(u, v)| ≥ ε] ≤ exp(−ε2nr/(3s(u, v))).

Recall that nr = 3c
ε2
log n

δ
, and notice that s(u, v) ≤ c, it follows

that

Pr[|s̃(u, v)− s(u, v)| ≥ ε] ≤ exp
(

− log
n

δ

)

=
δ

n
.

Taking union bound over all nodes v ∈ V follows that

Pr[∀v ∈ V, |s̃(u, v)− s(u, v)| ≥ ε] ≤ δ,

and the Theorem follows.

4. OPTIMIZATIONS
We present three different optimization techniques to speed up

our basic ProbeSim algorithm. The pruning rules eliminates un-
necessary traversals in the PROBE algorithm, so that a single trial
can be performed more efficiently. The batch algorithm builds a
reachability tree to maintain all nr c-walks, such that we do not
have to perform duplicated PROBE operations in multiple trials.
The randomized PROBE algorithm reduces the worst-case time
complexity of our algorithm to O(n

ε2
log n

δ
) in expectation.

4.1 Pruning
Although the expected steps of a

√
c-walks is O(1), we may still

find some long walks during a large number of trials. To avoid this
overhead, we add the following pruning rule:

PRUNING RULE 1. Let εt be the termination parameter to be

determined later. In Algorithm 1, truncate all
√
c-walks at step

ℓt = log εt/ log
√
c.

We explain the intuition of this pruning rule as follows. Let
W (u) = (u1, . . . , uℓ) denote the

√
c walk, and ui denote a node

on the walk with i > ℓt. For each node v ∈ V , v 6= u, the
probability that a

√
c walk W (v) meets W (u) at ui = vi is at

most (
√
c)i = (

√
c)i−ℓt−1 · (√c)ℓt+1 ≤ (

√
c)i−ℓt−1εt, which

means that ui will contribute at most (
√
c)i−ℓt−1εt to the Sim-

Rank s(u, v). Summing up over i = ℓt + 1, . . . , ℓ results in an
error of 1

1−√
c
· εt. As we shall see in Theorem 2, more elaborated

analysis would show that the error contributed by this pruning rule
is in fact bounded by εt. We further notice that it is one-sided error,
we can add εt/2 to each estimator, which will reduce the pruning
error by a factor of 2.

The next pruning rule is inspired by the fact that the PROBE
algorithm may traverse many vertice with small scores, which can
be ignored for the estimation:

PRUNING RULE 2. Let εp denote the pruning parameter to

be determined later. In Algorithm 2, after computing all

(v, Score(v)) in Hj and before descending to Hj+1, we remove

(x, Score(x)) from Hj if Score(x) · (√c)i−j−1 ≤ εp.

The intuition of pruning rule 2 is that after i − j − 1 more it-
erations in Algorithm 2, the scores computed from Score(x, j)

will drop down to Score(x) · √c
i−j−1 ≤ εp. One might think

that a node v may get multiple error contributions from different
pruned nodes; However, the key insight is that the probabilities of
the walks from v to these nodes sum up to at most 1, which implies
that the error introduced by a single probe is at most εp. We will
make this argument rigorous in Theorem 2.

Running Example for the Pruning Rules. Consider
√
c-walk

W (a) = (a, b, a, b, e), and set the termination and pruning param-
eters to be εt = εp = 0.05. We first note that the length of W (a)
is ℓ = 5, and (

√
c)ℓt < 0.05, so we truncate W (a) to (a, b, a, b).

Now consider the PROBE algorithm on W (a, 4) = (a, b, a, b).
In the second iteration in Figure 2, recall that we have
Score(c, 1) = 0.167. There are still two more iterations to go,
and yet we have Score(c, 1) · (√c)2 = 0.042 < εp. Thus pruning
rule 2 takes place, and the algorithm does not have to descend to
the subtree of c.

Correctness. For ease of presentation, we refer to the sampling
error parameter in algorithm 1 as ε and the maximum allowed er-
ror as εa. Recall that εt and εp denote the termination parame-
ter and pruning parameter, respectively. The following Theorem
shows how these parameters affect the final error. Essentially, the
error introduced by the two pruning rules is roughly the same as the
sampling error. The proof of the Theorem can be found in the full
version [1] of the paper.

THEOREM 2. Assume ε, εt and εp satisfies the following in-

equality ε + 1+ε
1−√

c
· εp + 1

2
· εt ≤ εa, then Algorithm 1 achieves

Pr[∀v ∈ V, |s̃(u, v)− s(u, v)| ≤ εa] ≥ 1− δ.

Algorithm 3: Batch algorithm

Input: Directed graph G = (V, E); u ∈ V ; Error εa and failure
probability δ;

Output: R = {(v, s̃(u, v)) | v ∈ V }, a hash set of size n that
maintains the SimRank estimations for each node v ∈ V

1 nr ← 3c
ε2

logn
δ

;

2 Initialize reverse reachability tree T rooted by r, with r.node = u and
r.weight = 0;

3 for k = 1 to nr do

4 Generate
√
c-walk Wk(u) = (u1, u2, ..., ul);

5 r1 ← r;
6 for i = 2 to ℓ do

7 if ∃ri ∈ ri−1.children and ri.node = ui then

8 ri.weight← ri.weight+ 1;

9 else
10 Add ri as a child to ri−1, with ri.node = ui and

ri.weight = 1;

11 for each root-to-node path (r = r1, r2, . . . , rq) in T do

12 S ← PROBE((r1.node, . . . , rq.node));
13 for each (v, Score(v)) ∈ S do

14 s̃(u, v)← s̃(u, v) +
rq .weight

nr
· Score(v);

15 return R;

4.2 Batching Up
√
cwalks

A simple observation is that if two
√
c-walks W1(u) and W2(u)

share the same partial walk W (u, i) = (u1, u2, . . . , ui), then we
can perform a single probe on W (u, i) to return the scores for both√
c-walks. Meanwhile, we expect many

√
c-walks to share a com-

mon partial walk when the number of trial nr is large. Based on this
observation, we propose to batch up

√
c-walks before we perform

the PROBE algorithm.
More precisely, we use a reverse reachability tree T to com-

pactly store all nr
√
c-walks. Each tree node rq in T main-

tains a graph node rq.node and a weight integer rq.weight. Let
(r = r1, . . . , rq) denote the tree path from root r to rq , then
(r = r1.node, . . . , rq.node) corresponds to a partial

√
c-walk that

starts at u, and rq.weight is set to be the number of
√
c-walks

that shares this partial walk. In particular, the root r maintains
r.node = u and r.weight = nr .

Algorithm 3 illustrates the pseudo-code of the batch method.
The algorithm generates nr = 3c

ε2
log n

δ
random

√
c-walks, where

ε is a constant that satisfies Theorem 2. To insert a
√
c-walk

Wi(u) = (u1, u2, ..., uℓ) to T , the algorithm starts from the root
r1 = r, and recursively move down to the lower level. After
ri−1 is processed, it checks if there is a child of ri−1, denoted
ri, such that ri.node = ui (Lines 5-7). If so, we know that par-
tial

√
c-walk (u1, u2, ..., ui) is already recorded by r1, . . . , ri, so

the algorithm increases the weight of ri by 1 (Lines 8-9). Oth-
erwise, it adds a new child ri to ri−1, with ri.node = ui and
ri.weight = 1 (Lines 10-11). After all nr walks are inserted to
T , the algorithm starts the probe processes. For each root-to-node
path (r = r1, r2, . . . , rq) in T , the algorithm invokes the PROBE
algorithm on (r1.node, . . . , rq.node) to get the score set S (Lines
11-12). Note that we can apply BFS traversal to T to enumerate
all root-to-node paths. Since the number of

√
c-walks that share

(r1.node, . . . , rq.node) as their partial
√
c-walk is rq.weight, the

algorithm adds
rq .weight

nr
· Score(v) to the estimation of SimRank

s̃(u, v), for each (v, Score(v)) ∈ S (Lines 13-14). Finally, the
algorithm returns R as the SimRank estimators (Line 15).

A running example for the batch algorithm. Suppose we have a
reverse reachability tree T shown in 3(a), which records two

√
c-

a

b

c

c

a

r
1
w
1
=2

r
2
w
2
=1

r
3
w
3
=1

r
4
w
4
=1

r
5
w
5
=1

(a)

a

b

c

c

aa

r
6
w
6
=1

r
1
w
1
=3

r
2
w
2
=2

r
3
w
3
=1

r
4
w
4
=1

r
5
w
5
=1

(b)

Figure 3: An example of reverse reachability tree

walks (a, b, c) and (a, c, a). To insert W = (a, b, a) to T , the
algorithm starts with the root r1 and increase r1.weight by 1. Then
it finds the child r2 such that r2.node = b, and increase r2.weight
by 1. Finally, since there is no child node of r2 with node equal to
a, the algorithm inserts a new node r6 as a child node of r6, with
r6.node = a, and r6.weight = 1.

To estimate the SimRank values using the reverse reachability
tree T , we probe partial walk represented by each tree node and
sum up the scores according to the weights of nodes. For exam-
ple, let Score(b, rj) denote the score computed by the PROBE
algorithm for node b on the partial walk represented by rj , for j =
2, 3, 4, 5, 6. Since the weights of r2, r3, r4, r5, r6 are 2, 1, 1, 1, 1,
the final estimator s̃(a, b) will be set to 1

3
· Score(b, r2) + 1

6
·

Score(b, r3)+
1
6
·Score(b, r4)+ 1

6
·Score(b, r5)+ 1

6
·Score(b, r6).

4.3 Randomized PROBE Algorithm
Recall that the running time of Algorithm 1 is O(m

ε2a
log n

δ
). The

m factor comes from the PROBE algorithm, which runs in O(m)
time. To overcome this worst-case complexity, we present a ran-
domized version of the PROBE algorithm. This algorithm runs
in O(n) time in expectation. The intuition is that for each itera-
tion, instead of deterministically probing each out-neighbours of
the nodes and computing corresponding scores, we simply sample
the in-neighbours of EVERY nodes in the graph to determine if it
should be put into the next iteration. We delicate the sampling pro-
cess such that the probability that v gets selected by j-th iteration
is exactly the score of v computed by the deterministic PROBE
algorithm at j-th iteration. Since an iteration touches each node
v ∈ V exactly once, and there are constant number of iterations in
expectation, the expected running time is bounded by O(n).

Algorithm 4 shows the pseudo-code of the randomized PROBE
algorithm. Given a partial

√
c-walk W (u, i) = (u1, . . . , ui) that

starts at u = u1, the randomized PROBE algorithm outputs
S = {(v, Score(v)) | v 6= u ∈ V }, a hash set of nodes and
their first-meeting probability with respect to reverse path W (u, i).
Similar to its deterministic sibling, the algorithm initializes i − 1
hash tables H0, . . . ,Hi−1 (Line 1), and adds ui to H0 (Line 2).
In the j-th iteration, the algorithm first checks if the sum of out-
degrees of the nodes in Hj is below n (Lines 3-4). If so, the al-
gorithm sets the candidate set U to the union of the out-neighbours
(Line 5); otherwise, it simply sets U as V (Lines 6-7). After that,
the algorithm samples each node v ∈ U with the following proce-
dure. First, it uniformly selects an incoming edge (x, v) from the
in-neighbour set I(v) of v (Line 9). If x ∈ Hj (i.e., x is selected in
iteration j − 1), the algorithm selects v into Hj+1 with probability√
c (Lines 10-11). After i iterations, the algorithm returns all nodes

in Hi−1 with their scores set to be 1 (Line 12).

Time complexity. Each iteration in Algorithm 4 runs O(n)
time, so the randomized PROBE algorithm for a partial

√
c-walk

W (u, i) of length i − 1 runs in O(i · n) time. If we use ran-
domized PROBE in Algorithm 1, the running time for a sin-
gle walk is bounded by O(

∑ℓ
i=1 i · n) = O(ℓ2n). As proved

in Section 3.3 the expectation of ℓ2 is a constant, thus the ex-

Algorithm 4: Randomized PROBE algorithm

Input: A partial
√
c-walk (u = u1, . . . , ui)

Output: S = {(v, Score(v)) | v ∈ V }, a hash set of nodes and
their scores w.r.t. partial walk W (u, i)

1 Initialize hash setHj for j = 0, . . . , i− 1;
2 Insert (ui, 1) toH0;
3 for j = 0 to i− 2 do

4 if
∑

v∈Hj
|O(v)| ≤ n then

5 U ←
⋃

v∈Hj
O(v);

6 else

7 U ← V ;

8 for each x ∈ U , x 6= ui−j−1 do

9 Uniformly sample an edge (v, x) from I(x);
10 if v ∈ Hj then

11 Insert x toHj+1 with probability
√
c;

12 return S = {(v, 1) | v ∈ Hi−1};

pected running for a single walk with randomized PROBE is
bounded by O(n). By setting the number of

√
c-walks to be

nr = O(1
ε2

log n
δ
) = O(1

εa2 log n
δ
), the time complexity of our

single source SimRank algorithm with randomized PROBE is at
bounded by O(n

εa2 log n
δ
). We also note that in practice, the ran-

domized PROBE algorithm tends to only visit the nodes that can
be reached by ui with non-negligible probabilities, which is few in
number for real-world graphs that follow the power-law distribu-
tion.

Correctness. The following Theorem shows that the randomized
PROBE algorithm gives an unbiased Bernoulli estimators for the
scores computed by the deterministic PROBE algorithm. The
proof of the Theorem can be found in the full version [1] of the
paper.

THEOREM 3. For EVERY node v ∈ V , v 6= u, Algorithm 1

with randomized PROBE returns an estimation s̃(u, v) for s(u, v)
such that Pr[∀v ∈ V, |s̃(u, v)− s(u, v)| ≤ εa] ≥ 1− δ.

4.4 Best of both worlds
Although the randomized PROBE algorithm achieves better

worst-case time complexity, it still suffers from one drawback: the
sampling processes cannot be batched up. Recall that in the batch
algorithm, each partial

√
c-walk W (u, i) with weight w is probed

with the deterministic PROBE algorithm exactly once, regardless
of what w is. If we switch to the randomized PROBE algorithm,
however, we have to perform w independent probes and take the
average to get an unbiased estimator for each node. This means
that batching up the

√
c-walks does not reduce the running time

of our single source SimRank algorithm, if we use the randomized
PROBE algorithm.

Now we have a deterministic PROBE algorithm that can be
batched up, and a randomized PROBE algorithm that achieves
O(n) time complexity. To get the best of both world, we can com-
bine the two algorithms to cope with the batch algorithm. The idea
is very simple: Let rq be a tree node with weight w, and consider
a probe for the partial

√
c-walk for r1.node, . . . , rq.node. After

each iteration (say j-th) in the deterministic PROBE algorithm,
we check if the summation of the out-degrees exceeds c0wn for
some constant c0. If so, we know that the deterministic PROBE
algorithm is going to incur a time complexity of at least c0wn, and
is no longer suitable for this partial path. Thus, we will switch to
the randomized PROBE algorithm, which runs in O(wn) time for
a single probe.

The intuition of this combination can be explained as follow. If
the partial

√
c-walk W (u) = (u1, . . . , ui) is short, then it is likely

that the weight w of this partial walk is large. In the mean time,
the number of nodes that are can reversely reach ui using ≤ i− 1
steps is likely to be small, so we can afford to use the deterministic
PROBE algorithm to calculate the scores exactly and save a factor
of w. On the other hand, if the partial

√
c-walk is very long, then

it is likely that the weight w is small, and thus performing the ran-
domized PROBE algorithm independently w times is affordable.

5. RELATED WORK
The first method for SimRank computation [11], referred to as

the Power Method, is designed for deriving the SimRank similari-
ties of all node pairs in the input graph G. It utilizes the following
matrix formulation of SimRank [13]:

S = (cP⊤SP) ∨ I, (10)

where S is an n × n matrix such that S(i, j) equals the SimRank
similarities between the i-th and j-th nodes, I is an n× n identity
matrix, c is the decay factor in the definition of SimRank, P is a
transition matrix defined by the edges in G, and ∨ is the element-
wise maximum operator. The power method starts by setting
S = I , and then it iteratively updates all elements in S based on
Equation 10, until the values of all elements converge. This method
is subsequently improved in [19,30,33] in terms of either efficiency
or accuracy. However, all methods proposed in [11,19,30,33] incur
O(n2) space overheads, which is prohibitively expensive for large
graphs.

To mitigate the inefficiency of the power method, a line of re-
search [8, 9, 13, 15, 28, 29, 31] has proposed to utilize an alternative
formulation of SimRank that makes it easier to compute:

S = cP⊤SP + (1− c) · I. (11)

This formulation is claimed to be equivalent to that in Equation 10
[8, 9, 15, 28, 29, 31]. As pointed out in [13], however, the two
formulations are rather different, due to which the techniques in
[8,9,15,28,29,31] do not always return the correct SimRank simi-
larities of node pairs.

Among the existing solutions that adopt the correct formula-
tion of SimRank (in Equations 1 and 10), the ones most related
to ours are proposed in [7, 14, 27], since they can answer approxi-
mate single-source and top-k SimRank queries with non-trivial ab-
solute error guarantees. In particular, Fogaras and Rácz [7] propose
a Monte Carlo approach that is similar to the method discussed in
Section 2.2, except that it uses conventional random walks instead
of

√
c-walks. They also present an index structure that stores pre-

computed random walks to accelerate query processing. As shown
in [13, 27], however, the index structure incurs tremendous space
and preprocessing overheads, which makes it inapplicable on siz-
able graphs. Lee et al. [14] propose an index-free algorithm for
top-k SimRank queries that is claimed to provide absolute error
guarantees. Nevertheless, Lee et al.’s algorithm may return erro-
neous query results due to limited steps of random walks, as we
discuss in Section 1 and 6. Tian and Xiao [27] present SLING, an
index structure that answers any single-source SimRank query in
O(m log 1

εa
) time and requires O(n/εa) space. SLING is shown

to outperform the state of the art in terms of both query efficiency
and accuracy, but its space consumption is more than an order of
magnitude larger the size of G. Furthermore, it cannot handle up-
dates to the input graph, and its absolute error guarantee cannot be
changed after the preprocessing procedure.

In addition, there exist two other index structures [20, 24] for
top-k SimRank queries, but neither of them is able to provide any

Table 3: Datasets.

Dataset Type n m

Wiki-Vote directed 7,155 103,689
HepTh undirected 9,877 25,998
AS directed 26,475 106,762
HepPh directed 34,546 421,578
LiveJournal directed 4,847,571 68,993,773
It-2004 directed 41,291,594 1,150,725,436
Twitter directed 41,652,230 1,468,365,182
Friendster directed 68,349,466 2,586,147,869

worst-case error guarantee, since they reply on heuristic assump-
tions about G that do not always hold. We discuss the technique
in [24] in Section 1, and we refer interested readers to [27] for ex-
planations of the limitation of [20]. Furthermore, Li et al. [16] pro-
pose an distributed version of the Monte Carlo approach in [7] and
show that it can scale to a billion-node graph, albeit requiring 110
hours of preprocessing time and using 10 machines with 3.77TB
total memory. Last but not least, there is existing work on SimRank

similarity join [21,26,36] and variants of SimRank [4,6,18,32,35],
but the solutions therein cannot be applied to address top-k and
single-source SimRank queries.

6. EXPERIMENTS
This section experimentally evaluates the proposed solutions

against the state of the art. All experiments are conducted on a
machine with a Xeon(R) CPU E5-2620@2.10GHz CPU and 96GB
memory. All algorithms are implemented in C++ and compiled by
g++ 4.8.4 with the -O3 option.

Methods. We evaluate six algorithms: ProbeSim, MC [6], TSF

[24], TopSim [14], Trun-TopSim [14] and Prio-TopSim [14]. As
mentioned in Section 5, the three TopSim based algorithms are the
state-of-the-art index-free approaches for single-source and top-k
SimRank queries, and TSF is the state-of-the-art index structure for
SimRank computations on dynamic graphs.

Datasets. We use 4 small graphs and 4 large graphs, as shown in
Table 3. All datasets are obtained from public sources [2, 3].

6.1 Experiments on Small Graphs
We first evaluate the algorithms on the four small graphs, where

the ground truth of the SimRank similarities can be obtained by the
Power Method. On each dataset, we select 100 nodes uniformly at
random from those with nonzero in-degrees. We generate single-
source and top-k SimRank queries from each node to evaluate the
algorithms.

Parameters. Following previous work [19, 20, 29, 31, 32], we set
the decay factor c of SimRank to 0.6. TSF has two internal pa-
rameters, Rg and Rq , where Rg is the number of one-way graphs
stored in the index of TSF, and Rq is number of times each one-way
graph is reused in the query stage. In accordance with the settings
in [34] and [24], we set Rg = 300 and Rq = 40. The TopSim
based algorithms (i.e., TopSim, Trunc-TopSim and Prio-TomSim)
has a common internal parameter T , which is the depth of the ran-
dom walks. Trun-TopSim has two additional parameters h and η,
where 1/h is the minimal degree threshold used to identify a high
degree node and η is similarity threshold for trimming a random
walk. Prio-TopSim has an extra parameter H , which is the num-
ber of random walks to be expanded at each level. We set T = 3,
1/h = 100, η = 0.001, and H = 100, according to [34] and [14].
For ProbeSim, we apply all optimizations presented in Sections 4.1
and 4.3. We vary the parameter εa so that the overall absolute er-
ror guarantee varies from 0.0125 to 0.025, 0.05, and 0.1, so as to

examine the tradeoff between the query efficiency and accuracy of
ProbeSim in comparison to the other algorithms.

Metrics. On each of the four small graphs, we use the power
method [11] with 55 iterations to compute the ground-truth Sim-
Rank similarity of each node pair. This ensures that each ground-
truth value has at most 10−12 absolute error. Then, for each Sim-
Rank similarity returned by a method, we compute its absolute er-

ror (AbsError) with respect to the ground truth.
For each single-source SimRank query from a node u,

we define the absolute error of the query as AbsError =
maxv∈V,v 6=u |s(u, v) − s̃(u, v)|, which is the maximum absolute
error incurred by the method in computing the SimRank between
u and any other node. After that, we take the average of the ab-
solute error over 100 single-source SimRank queries and over 10
runs. Figure 4 shows the average absolute error of each method as
a function of its average query costs.

For Top-k queries, we invoke the six algorithms to answer 100
top-k SimRank queries, with k = 50. We use Precision@k, the
Normalized Discounted Cumulative Gain (NDCG@k) [10], and
the Kendall Tau difference τk [23] to evaluate the accuracy of
each algorithm. More precisely, given a query node u, let Vk =
{v1, . . . , vk} denote the top-k node list returned by the algorithm
to be evaluated, and V ′

k = {v′1, . . . , v′k} to be the ground truth of
the top-k results. Precision@k measures the fraction of answers
that are among the ground-truth top-k results, which is formally

defined as Precision@k =
|Vk∩V ′

k|
k

. NDCG@k measures the use-
fulness of a node based on its position in the result list, which is

formally defined as NDCG@k = 1
Zk

∑k
i=1

2s(u,vi)−1
log(i+1)

, where

Zk =
∑k

i=1
2
s(u,v′

i
)−1

log(i+1)
is the discounted cumulative gain obtained

by the ground truth of the top-k results. Recall that s(u, vi) is
the actual SimRank similarity between u and vi. Kendall Tau
difference τk measures the accuracy of the ranking of the top-k

list, which is defined as τk = #(concordant pairs)−#(discordant pairs)
k(k−1)/2

. Fig-

ures 5, 6, and 7 show the average Precision@k, NDCG@k, and τk
of each method, respectively, as functions of its average query cost.

Comparisons with TopSim based algorithms. Our first observa-
tion from Figure 4 is that ProbSim can achieve lower AbsError than
the TopSim based algorithms, even when its query cost is much
lower than those of the latter. For example, ProbeSim yields an Ab-

sError of 0.008 using 0.8 seconds on AS, while Trun-TopSim and
TopSim achieve the same level of accuracy using 6.2 seconds and
13.5 seconds. This is mainly due to the fact that ProbeSim is able
to estimate the SimRank value up to any given precision, while the
TopSim based algorithms have a level of accuracy that is equiva-
lent to the Power Method with only T = 3 iterations. Among the
TopSim family, the AbsError of Prio-TopSim and Trun-TopSim are
higher than that of TopSim, which concurs with the fact that the for-
mal two algorithms use heuristics that trade accuracy for efficiency.

For top-k queries, Figures 5 show that the query time for
ProbeSim is 2 to 4 times smaller than those of the TopSim based
algorithms, when providing a similar level of precision. Take the
Wiki-Vote dataset for example. ProbeSim takes less than 2 sec-
onds to achieve a precision of 99.99%, while TopSim requires 8.76
seconds. In addition, ProbeSim achieves a precision of 99% in
less than 0.08 seconds, while Prio-TopSim only yields a precision
of 95.5% in 0.8 seconds. Meanwhile, Figure 6 and 7 show that
ProbeSim also achieves better NDCG@k and Kendall Tau differ-
ence than the TopSim based algorithms do, which suggests that the
ranking of the top-k results returns by ProbeSim is superior to those
of the TopSim based algorithms.

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

0.01

0.1

 0.01 0.1 1 10

absolute error

query time (sec)

1e-5

0.001

0.005

 0.1 1 10

absolute error

query time (sec)

0.001

0.01

0.02

0.03

0.04

 0.001 0.01 0.1

absolute error

query time (sec)

0.0001

0.01

0.05

 0.01 0.1

absolute error

query time (sec)

(a) AS (b) Wiki-Vote (c) HepTh (d) HepPh

Figure 4: Absolute error in answering single-source SimRank queries on small graphs

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

0.7

0.8

0.9

1.00

 0.01 0.1 1 10

precision

query time (sec)

0.80

0.84

0.88

0.92

0.96

1.00

 0.1 1 10

precision

query time (sec)

0.92

0.94

0.96

0.98

1.00

 0.001 0.01 0.1

precision

query time (sec)

0.88

0.92

0.96

1.00

 0.01 0.1

precision

query time (sec)
(a) AS (b) Wiki-Vote (c) HepTh (d) HepPh

Figure 5: Precision@k vs. query time for top-k SimRank queries on small graphs

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

0.88

0.92

0.96

1.00

 0.01 0.1 1 10

NDCG

query time (sec)

0.90

0.92

0.94

0.96

0.98

1.00

 0.1 1 10

NDCG

query time (sec)

0.99

0.992

0.994

0.996

0.998

1.00

 0.001 0.01 0.1

NDCG

query time (sec)

0.96

0.97

0.98

0.99

1.00

 0.01 0.1

NDCG

query time (sec)
(a) AS (b) Wiki-Vote (c) HepTh (d) HepPh

Figure 6: NDCG@k vs. query time for top-k SimRank queries on small graphs

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

0.8

0.85

0.9

0.95

1.00

 0.01 0.1 1 10

tau

query time (sec)

0.6

0.7

0.8

0.9

1.00

 0.1 1 10

tau

query time (sec)

0.84

0.88

0.92

0.96

1.00

 0.001 0.01 0.1

tau

query time (sec)

0.7

0.8

0.9

1.00

 0.01 0.1

tau

query time (sec)
(a) AS (b) Wiki-Vote (c) HepTh (d) HepPh

Figure 7: τk vs. query time for top-k SimRank queries on small graphs

Comparisons with TSF. To compare ProbeSim with TSF, we first
observe from Figure 4 that the absolute error of ProbeSim is sig-
nificantly lower than that of TSF. There are two possible reasons
for TSF’s relatively inferior performance. First, the number of one-
way graphs Rg used by TSF is only 300, which means that the
number of random walks used in the query stage is limited, leading
to inaccurate SimRank estimations. In contrast, ProbeSim gener-
ates much more random walks, which enables it to achieve a much
better precision. Second, as we discuss in Section 2.3, TSF adopts
two heuristics that make it unable to provide worst-case accuracy

guarantee, which could contribute to its relatively large query error.
From Figures 5, we observe that ProbeSim dominates TSF

for top-k queries, as it is able to achieve higher Precision@k,
NDCG@k and τk while incurring the same or a smaller compu-
tation overhead than TSF does. The only exception is on Wiki-
Vote, where ProbeSim achieves a much higher precision (99% vs.
83%) than TSF but incurs a slightly higher query cost (0.08 sec-
onds vs. 0.06 seconds). Similar phenomenons can be observed for
NDCG@k and τk on Wiki-Vote from Figure 6 and 7. This is due to
the fact that the AbsError of ProbeSim is smaller than that of TSF.

Table 4: Space overheads and preprocessing costs comparison on large graphs.

Dataset
Query Time (Seconds) Space Overhead (GBs)

Graph Size
ProbeSim TopSim Trun-TopSim Prio-TopSim TSF ProbeSim TopSim Trun-TopSim Prio-TopSim TSF

LiveJournal 0.4 554.73 13.31 1.26 0.52 0.05 17.2 10.1 0.09 10.8 0.88 GB

IT-2004 0.006 4.91 2.34 0.21 0.93 0.4 1.7 0.9 1.0 83.7 10.9 GB

Twitter 13.2 N/A N/A 6220 175.34 0.6 N/A N/A 1.2 79.1 14.3 GB

Friendster 3.2 N/A N/A 58.4 1036 0.9 N/A N/A 1.9 99.2 23.4 GB

An interesting observation for Wiki-Vote is that the AbsError

of TSF is lower than that of Prio-TopSim, while the Precision@k,
NCDG@k and τk of Prio-TopSim are higher than those of TSF.
One possible explanation is that Wiki-Vote is “locally dense” graph,
in that more than 60% of its nodes have zero in-degree, while
the remaining ones form a dense subgraph. Therefore, by setting
H = 100, Prio-TopSim may omit some nodes with small SimRank
values, which leads to large AbsError. However, Prio-TopSim may
still examine most of the nodes with large SimRank values, thus
achieving a relatively high precision.

6.2 Experiments on Large Graphs
Next, we evaluate the algorithms on the four large graphs with

up to 2.59 billions of edges. Previous work ignores the accuracy
comparisons on such graphs, as the ground truth of top-k results on
these graphs are unavailable due to the high computational cost of
the Power Method. To the best of our knowledge, we are the first
to empirically evaluate both accuracy and efficiency of SimRank
algorithms on billion-edge graphs.

Pooling. As Power Method only works for small graphs, we need
an alternative approach to evaluate the accuracy of SimRank al-
gorithms on large graphs. Towards this end, we use pooling [22],
which is a standard approach for evaluating top-k documents rank-
ing quality in Information Retrieval (IR) systems when the ground-
truth ranking scores of all documents are difficult to obtain. The
basic idea of pooling is as follows. Suppose that we are to eval-
uate ℓ IR systems, A1, . . . , Aℓ, each of which aims to return the
top-k documents that are most relevant to a certain query. We first
take the top-k documents returned by each system, and we merge
them into a pool, with duplicates removed. Then, we present the
results in the pool to experts for evaluation. Based on the relevance
scores provided by the experts, we pick the best k documents from
the pool, and use them as the ground truth for evaluating the top-k
results returned by A1, . . . , Aℓ.

In the scenario of evaluating SimRank algorithms, we use single-
pair Monte Carlo algorithm as the “expert” for gauging the results
in the pool. More precisely, for each query node u, we retrieve the
top-k nodes returned by each algorithm, remove the duplicates, and
merge them into a pool. For each node v in the pool, we estimate
s(u, v) using the Monte Carlo algorithm. We set the parameters
of the Monte Carlo algorithms such that it incurs an error less than
0.0001 with a confidence over 99.999%. Then we take the k nodes
with the highest estimated SimRank scores from the pool as the
ground truth. Essentially, these k results are the best possible k
nodes that can be obtained by any of the algorithms considered.

Parameters and setups. We compare ProbeSim, TopSim, Trun-

TopSim, Prio-TopSim and TSF using the pooling approach. On each
dataset, we select 20 nodes uniformly at random from the nodes
with nonzero in-degrees, and we generate top-k SimRank queries
from each node. We generate top-k SimRank queries from each
node to evaluate the algorithms. For TSF and the TopSim based
algorithms, we use the same parameters as in the experiments on
small graphs. For ProbeSim , however, we can no longer vary the

error parameter εa, since changing its parameters may result in a
different “ground truth” top-k nodes in the pool, rendering it diffi-
cult to compare different algorithms. Therefore, we fix εa = 0.1
for ProbeSim in this set of experiments.

Table 4 shows the average query time of each algorithm, while
Figure 8, 9, and 10 show the Precision@k, NDCG@k, and τk, re-
spectively, of each algorithm. We exclude TopSim and Trun-TopSim

from the experiments on Twitter and Friendster, because for some
queries they either run out of memory or require more than 24
hours. In addition, on Friendster, the index size of TSF exceeds
the size of the main memory (i.e., 96GB), due to which we move
100 one-way graphs in TSF to the disk, as suggested in [24].

Comparisons with TopSim based algorithms. Our first observa-
tion from Table 4 is that the query cost of ProbeSim is significantly
lower than those of the TopSim based algorithms on all four graphs.
In particular, on the Twitter dataset, TopSim and Trun-TopSim could
not finish query processing in 24 hours, while Prio-TopSim takes 2
hours on average to answer a query. On the other hand, ProbeSim

is able to answer a query within 13 seconds on average.
It has been observed in [34] that the running time of TopSim

based algorithms is sensitive to the subgraph structure and density
around the query node. For example, the running time of Prio-

TopSim on “locally dense” graphs, such as Twitter and Friendster,
are higher than those on “locally sparse” graphs, such as IT-2004.
Table 4 suggests that ProbeSim shares the same property, as its
query cost on Twitter is significantly higher than those on other
graphs. In contrast, the query cost of ProbeSim is less sensitive to
the local subgraph structure and density.

Figure 8, 9, and 10 show that in terms of accuracy, ProbeSim

outperforms the TopSim based algorithms on Twitter and Friend-
ster. For example, ProbeSim achieves an average precision of 84%
on Twitter, while Prio-TopSim only achieves an average precision
of 67%. On LiveJournal and IT-2004, TopSim and Trun-TopSim

offer a slightly better accuracy than ProbeSim does, at the cost of
significantly higher cost. For example, TopSim yields a precision of
91.7% on IT-2004, while ProbeSim achieves a precision of 89.5%;
however, the running times of TopSim is 600 times higher than that
of ProbeSim on IT-2004. Figures 9 shows that NDCG@k of TopSim

and ProbeSim are essentially the same on IT-2004, which indicates
that the accuracy of the two methods are highly comparable.

Comparisons with TSF. From Table 4, we first observe that
ProbeSim achieves better query time comparing to TSF. For ex-
ample, it takes 180 seconds for TSF to answer a query on Twitter,
while ProbeSim only requires 12 seconds. Furthermore, TSF runs
out of 96 GB memory on Friendster, even though the dataset itself
is only 23 GB in size. Consequently, TSF has to store some of the
one-way graphs on the disk, which leads to severe degradation of
query efficiency. On the other hand, ProbeSim is able to handle a
query on Friendster within 3.2 seconds on average.

LiveJournal is the only dataset on which ProbeSim and TSF use
the same amount of time to answer a query. The main reason is
that (i) LiveJournal (with only 4 million nodes) is a relatively small
graph comparing to the other three large graphs, and (ii) the query

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

(a) LiveJournal (b) IT-2004 (c) Twitter (d) Friendster

Figure 8: Precision@k for top-k SimRank queries on large graphs

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

0.9

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5

0.9

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5

0.9

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5

0.9

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5

(a) LiveJournal (b) IT-2004 (c) Twitter (d) Friendster

Figure 9: NDCG@k for top-k SimRank queries on large graphs

ProbeSim TSF TopSim-SM Trun-TopSim-SM Prio-TopSim-SM

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

(a) LiveJournal (b) IT-2004 (c) Twitter (d) Friendster

Figure 10: τk for top-k SimRank queries on large graphs

cost of TSF tends to decrease when the graph size reduces. In con-
trast, ProbeSim is less sensitive to the graph size.

In terms of query accuracy, Figure 8, 9, and 10 show that
ProbeSim is able to provide more accurate results than TSF does
on LiveJournal,IT-2004, and Friendster. For example, on Friend-
ster, ProbeSim achieves a Precision@k of 98% and an NDCG@k of
0.9998, while TSF yields a Precision@k of 87% and an NDCG@k

of 0.9914. On Twitter, ProbeSim and TSF offer almost the same
Precision@k and NDCG@k, but ProbeSim outperforms TSF on the
Kendall Tau difference. This suggests that the ranking accuracy of
ProbeSim is better than that of TSF. We also observe that the pre-
cision of all three algorithms are relatively low on Twitter, which
implies that SimRank on Twitter is still a difficult problem to solve.

An interesting observation is that TSF outperforms Prio-TopSim

in terms of accuracy on Twitter, which contrasts the case on small
graphs. As mentioned in [24], Prio-TopSim only expands H ran-
dom walks at each level, and hence, its performance heavily rely
on the random walks chosen. Because Twitter has very denser lo-
cal structures, H = 100 may not be not sufficient for Prio-TopSim

to explore all possible candidates. In contrast, the random sam-
ple framework of TSF treats each node equally, and thus, it gives
relatively stable performance across social graphs and web graphs.

Finally, Table 4 shows that TSF incurs significant overheads in
terms of space. In particular, the index size of TSF is one to two
orders of magnitude larger than the size of the input graph G. For
example, the index of TSF for IT-2004 is 85 GB, while the graph
size is only 8 GB. Furthermore, TSF runs out of memory when
preprocessing Friendster, which leads to performance degradation.

In contrast, ProbeSim is able to efficiently handle queries on all
large graphs without any preprocessing.

7. CONCLUSIONS
This paper presents ProbeSim, an algorithm for single-source

and top-k SimRank computation without preprocessing. ProbeSim

answers any single-source SimRank query in O(n
εa2 log n

δ
) ex-

pected time, and it ensures that, with 1−δ probability, all SimRank
similarities returned have at most εa absolute error. Our exper-
iments show that the algorithm significantly outperforms the ex-
isting approaches in terms of query efficiency, and they are more
scalable than the existing index-based methods, as they are able to
handle graphs that are too large for the latter to preprocess. For
future work, we plan to study lightweight indexing approaches for
SimRank that provide higher effectiveness than our current algo-
rithms on large graphs (such as Twitter) without incurring signifi-
cant space and time in computation.

8. ACKNOWLEDGMENTS
This work was partly supported by the National Natural Sci-

ence Foundation of China (No. 61502503, No. 61532018, No.
61502324 and No. 61472427), by the National Key Basic Re-
search Program (973 Program) of China (No. 2014CB340403,
No. 2012CB316205), by Academy of Finland (310321), by the
DSAIR center at the Nanyang Technological University, by a gift
grant from Microsoft Research Asia, and by Grant MOE2015-T2-
2-069 from MOE, Singapore.

9. REFERENCES
[1] https://arxiv.org/abs/1709.06955.

[2] http://snap.stanford.edu/data/index.html.

[3] http://law.di.unimi.it/datasets.php.

[4] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++:
query rewriting through link analysis of the click graph.
PVLDB, 1(1):408–421, 2008.

[5] F. R. K. Chung and L. Lu. Concentration inequalities and
martingale inequalities: A survey. Internet Mathematics,
3(1):79–127, 2006.

[6] D. Fogaras and B. Rácz. Scaling link-based similarity search.
In WWW, pages 641–650, 2005.

[7] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós. Towards
scaling fully personalized pagerank: Algorithms, lower
bounds, and experiments. Internet Mathematics,
2(3):333–358, 2005.

[8] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.
Efficient search algorithm for simrank. In ICDE, pages
589–600, 2013.

[9] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank
computation on large graphs with iterative aggregation. In
KDD, pages 543–552, 2010.

[10] K. Järvelin and J. Kekäläinen. Ir evaluation methods for
retrieving highly relevant documents. In Proceedings of the

23rd annual international ACM SIGIR conference on

Research and development in information retrieval, pages
41–48. ACM, 2000.

[11] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In SIGKDD, pages 538–543,
2002.

[12] R. Jin, V. E. Lee, and H. Hong. Axiomatic ranking of
network role similarity. In KDD, pages 922–930, 2011.

[13] M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scalable
similarity search for simrank. In SIGMOD, pages 325–336,
2014.

[14] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k
structural similarity search. In ICDE, pages 774–785, 2012.

[15] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast
computation of simrank for static and dynamic information
networks. In EDBT, pages 465–476, 2010.

[16] Z. Li, Y. Fang, Q. Liu, J. Cheng, R. Cheng, and J. Lui.
Walking in the cloud: Parallel simrank at scale. PVLDB,
9(1):24–35, 2015.

[17] D. Liben-Nowell and J. M. Kleinberg. The link-prediction
problem for social networks. JASIST, 58(7):1019–1031,
2007.

[18] Z. Lin, M. R. Lyu, and I. King. Matchsim: a novel similarity
measure based on maximum neighborhood matching. KAIS,
32(1):141–166, 2012.

[19] D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for simrank
computation. VLDB J., 19(1):45–66, 2010.

[20] T. Maehara, M. Kusumoto, and K. Kawarabayashi. Efficient
simrank computation via linearization. CoRR,
abs/1411.7228, 2014.

[21] T. Maehara, M. Kusumoto, and K. Kawarabayashi. Scalable
simrank join algorithm. In ICDE, pages 603–614, 2015.

[22] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction

to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[23] R. Nelsen. Kendall tau metric. Encyclopaedia of

Mathematics, 3:226–227, 2001.

[24] Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An efficient
similarity search framework for simrank over large dynamic
graphs. PVLDB, 8(8):838–849, 2015.

[25] N. Spirin and J. Han. Survey on web spam detection:
principles and algorithms. SIGKDD Explorations,
13(2):50–64, 2011.

[26] W. Tao, M. Yu, and G. Li. Efficient top-k simrank-based
similarity join. PVLDB, 8(3):317–328, 2014.

[27] B. Tian and X. Xiao. SLING: A near-optimal index structure
for simrank. In SIGMOD, pages 1859–1874, 2016.

[28] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank on
link-evolving graphs. In ICDE, pages 304–315, 2014.

[29] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is
simpler: Effectively and efficiently assessing node-pair
similarities based on hyperlinks. PVLDB, 7(1):13–24, 2013.

[30] W. Yu and J. McCann. Gauging correct relative rankings for
similarity search. In CIKM, pages 1791–1794, 2015.

[31] W. Yu and J. A. McCann. Efficient partial-pairs simrank
search for large networks. PVLDB, 8(5):569–580, 2015.

[32] W. Yu and J. A. McCann. High quality graph-based
similarity search. In SIGIR, pages 83–92, 2015.

[33] W. Yu, W. Zhang, X. Lin, Q. Zhang, and J. Le. A space and
time efficient algorithm for simrank computation. World

Wide Web, 15(3):327–353, 2012.

[34] Z. Zhang, Y. Shao, B. Cui, and C. Zhang. An experimental
evaluation of simrank-based similarity search algorithms.
PVLDB, 10(5):601–612, 2017.

[35] P. Zhao, J. Han, and Y. Sun. P-rank: a comprehensive
structural similarity measure over information networks. In
CIKM, pages 553–562, 2009.

[36] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient
simrank-based similarity join over large graphs. PVLDB,
6(7):493–504, 2013.

APPENDIX

A. CHERNOFF BOUND

LEMMA 4 (CHERNOFF BOUND [5]). For any set {xi} (i ∈
[1, nx]) of i.i.d. random variables with mean µ and xi ∈ [0, 1],

Pr

{∣

∣

∣

∣

∣

nx
∑

i=1

xi − nxµ

∣

∣

∣

∣

∣

≥ nxε

}

≤ exp

(

− nx · ε2
2
3
ε+ 2µ

)

.

B. PROOFS

B.1 Proof of Theorem 2
To prove Theorem 2, we independently bound the error intro-

duced by pruning rule 1 and pruning rule 2.

LEMMA 5. Let s̃k(u, v, εt) and s̃k(u, v) denote estimator with

and without applying pruning rule 1, respectively. We have

0 ≤ s̃k(u, v)− s̃k(u, v, εt) ≤ εt.

PROOF. Let W (u) = (u1, . . . , uℓ) denote the original
√
c-

walk, and W (u, ℓt) = (u1, . . . , uℓt) denote the
√
c-walk after

truncation. For each vertex x ∈ V , i = 2, . . . , ℓ and j =
0, . . . , i−1, let Scorei(x, j, εt) and Scorei(x, j) denote the score
computed by PROBE(W (u, i)) after the j-th iteration, with and

https://arxiv.org/abs/1709.06955
http://snap.stanford.edu/data/index.html
http://law.di.unimi.it/datasets.php

without truncation, respectively. We inductively prove that 1) For
each d = 0, . . . , ℓ− ℓt, and for any x ∈ V

0 ≤
d

∑

j=0

Scoreℓ−d+j(x, j)−
d

∑

j=0

Scoreℓ−d+j(x, j, εt) ≤ 1.

2) For each d = ℓ− ℓt, . . . , ℓ, and for any x ∈ V

0 ≤
d

∑

j=0

Scoreℓ−d+j(x, j)−
d

∑

j=0

Scoreℓ−d+j(x, j, εt) ≤ (
√
c)d−ℓ+ℓt .

For the base case, notice that there is only one vertex vℓ, and

0 ≤ Scoreℓ(vℓ, 0)− Scoreℓ(vℓ, 0, εt) ≤ 1.

Suppose 1) is true for d. For d + 1 ≤ ℓ − ℓt, each x ∈ V , x 6=
uℓ−d−1 satisfies that

∑d
j=0 Scoreℓ−d+j(x, j, εt) = 0 and each

d+1
∑

j=0

Scoreℓ−d+1+j(x, j) =
∑

y∈I(x)

d
∑

j

Scoreℓ−d+j(y, j) ·
√
c

|I(x)| .

By the induction hypothesis, we have
∑d

j Scoreℓ−d+j(y, j) ≤ 1,
and thus

d+1
∑

j=0

Scoreℓ−d+1+j(x, j) ≤
√
c|I(x)|/|I(x)| =

√
c ≤ 1.

We also note
∑d

j=0 Scoreℓ−d+j(uℓ−d−1, j, εt) = 0 since uℓ−d−1

is truncated, and
∑d

j=0 Scoreℓ−d+j(uℓ−d−1, j) = 1 since we do
not add scores to uℓ−d−1 at this step. Thus claim 1 follows.

Similarly, for claim 2, we use induction proof. The base case
d = ℓ − ℓt follows from claim 1. Assume the claim holds for d,
and consider d + 1. For each x ∈ V , x 6= uℓ−d−1 satisfies that
∑d

j=0 Scoreℓ−d+j(x, j, εt) = 0 and each

d+1
∑

j=0

Scoreℓ−d+1+j(x, j) =
∑

y∈I(x)

d
∑

j

Scoreℓ−d+j(y, j) ·
√
c

|I(x)| .

By the induction hypothesis, we have
∑d

j Scoreℓ−d+j(y, j) ≤
(
√
c)d−ℓ+ℓt , and thus

d+1
∑

j=0

Scoreℓ−d+1+j(x, j) ≤
√
c·(

√
c)d−ℓ+ℓt |I(x)|

|I(x)| = (
√
c)d+1−ℓ+ℓt .

By setting d = ℓt in claim 2, we have

0 ≤
ℓ

∑

j=1

Scorej(x, j)−
ℓ

∑

j=1

Scorej(x, j, εt) ≤ (
√
c)ℓt ≤ εt,

and the Lemma follows.

B.2 Proof of Theorem 3

LEMMA 6. Fix a reverse path W (u, i) = (u1, . . . , ui) and

an node v ∈ V, v 6= u. The randomized PROBE algorithm on

(u1, . . . , ui) set Score(v) = 1 with probability P (v,W (u, i)), the

first-meeting probability of v with respect to reverse path W (u, i).

PROOF. Recall that P (v,W (u, i)) is the probability that a ran-
dom

√
c-walk W (v) = (v1, . . . , vi, . . .) and the reverse path

W (u, i) = (u1, . . . , ui) first meet at ui = vi.
Similar to the proof of Lemma 2 We prove the following claims:

for j = 0, . . . , i − 1, after the j − 1-th iteration in Algo-
rithm 4, a vertex v ∈ V is selected into Hj with probability

P (v, (ui−j , . . . , ui)). Note the this claim implies that after i it-
erations, a vertex v ∈ V is selected into Hi−1 with probability
P (v, (u1, . . . , ui)) = P (v,W (u, i)), and the Lemma will follow.

The proof is done by induction. Level 0 contains a single vertex
ui, and we have ui ∈ H0 with probability 1. Since P (v, (ui)) =
Pr[vi = ui] = 1, the claim holds. Assume that the claim holds
for all vertices after the (j−1)-th iteration. After the j-th iteration,
consider a vertex v ∈ V . By Algorithm 4, v is selected into Hj+1 if
and only if there exists an x ∈ V , such that 1) x ∈ Hj ; 2) (x, v) ∈
I(v) is selected in I(v); 3) v is chosen with probability

√
c. By the

induction hypothesis, we know each x ∈ I(v) is selected into Hj

with probability P (x, (ui−j , . . . , ui)). It follows that v is selected
into Hj+1 with probability

∑

x∈I(v)

√
c

|I | · P (x, (ui−j , . . . , ui)) = P (x, (ui−j−1, . . . , ui)).

(12)

where equation (12) follows from the proof of Lemma 2. There-
fore, the claim is true, and after i iterations, a vertex v ∈
V is selected into Hi−1 with probability P (v, (u1, . . . , ui)) =
P (v,W (u, i)).

By Lemma 6, we can use the randomized PROBE algorithm
in Algorithm 1, which would give us an algorithm that runs in
O(n

εa2 log n
δ
) time while retaining the error guarantee in Theo-

rem 1. However, as we shall see, we can combine the randomized
and deterministic PROBE algorithms to achieve both worst-case
and real-world efficiency. Next we show that the error introduced
by pruning rule 2 is bounded by εpℓt.

LEMMA 7. For each vertex x ∈ V , i = 2, . . . , ℓ, let

Scorei(x, εp) and Scorei(x) denote the score computed by

PROBE(W (u, i)), with and without pruning, respectively. We

have

0 ≤ Scorei(x)− Scorei(x, εp) ≤ εp.

PROOF. For each vertex x ∈ V , i = 2, . . . , ℓ and j =
0, . . . , i−1, let Scorei(x, j, εp) and Scorei(x, j) denote the score
computed by PROBE(W (u, i)) after the j-th iteration, with and
without pruning, respectively. We inductively prove that for each
j = 0, . . . , i− 1,

0 ≤ Scorei(x, j) − Scorei(x, j, εp) ≤ εp/(
√
c)i−j−1.

More precisely, for the base case j = 0, H0 contains a single vertex
ui, and Scorei(ui, 0) = Scorei(ui, 0, εp) = 1. Assuming the
claim holds for j. For j + 1, notice that for each vertex x ∈ V ,

Scorei(x, j + 1) =
∑

y∈I(x)

Scorei(y, j) ·
√
c

|I | ,

and by the induction hypothesis, we have

0 ≤ Scorei(y, j) − Scorei(y, j, εp) ≤ εp/(
√
c)i−j−1.

It follows that

Scorei(x, j + 1)− Scorei(x, j + 1, εp) ≤ εp
(
√
c)i−j−1

·
√
c

=
εp

(
√
c)i−j−2

.

By setting j = i− 1, we have

0 ≤ Scorei(y, i− 1)− Scorei(y, i− 1, εp) ≤ εp.

Since Scorei(y) = Scorei(y, i − 1) and Scorei(y) =
Scorei(y, i− 1, εp), the Lemma follows.

PROOF OF THEOREM2. We only need to show that with prob-
ability 1 − δ/n, the error contributed by pruning rule 2 is at most
1+ε

1−√
c
· εp. Consider the k-th

√
c-walk Wk(u) = (u1, . . . , uℓk) of

length ℓk − 1, summing up all i = 2, . . . , ℓ follows that

0 ≤
ℓk
∑

i=1

Scorei(y, i− 1) −
ℓk
∑

i=1

Scorei(y, i− 1, εp) ≤ εpℓ,

which indicates that 0 ≤ s̃k(u, v) − s̃k(u, v, εp) ≤ εpℓk. Re-
call that let s̃k(u, v, εp) and s̃(u, v) denote the final estimators
with and without pruning, respectively. We have s̃(u, v, εp) =
1
nr

∑nr

k=1 s̃k(u, v, εp), and s̃(u, v) = 1
nr

∑nr

k=1 s̃k(u, v). It fol-
lows that

s̃(u, v)− s̃(u, v, εp) =
1

nr

nr
∑

k=1

s̃k(u, v)−
1

nr

nr
∑

k=1

s̃k(u, v, εp)

=
εp
nr

nr
∑

k=1

ℓk.

We note that the ℓk’s are i.i.d. random variable with expectation at
most µ = 1

1−√
c

. By Chernoff bound, we have

Pr[|
nr
∑

k=1

ℓk − µnr| ≥ εsµnr] ≤ exp

(

−ε2sµnr

3

)

≤ exp
(

−cµ log
n

δ

)

.

Note that µ = 1
1−√

c
≥ 1

c
for c ≥ 0.5, we have

Pr

[

1

nr

nr
∑

k1

ℓk ≤ µ+ εsµ =
1 + ε

1−√
c

]

≥ 1− δ

n
,

and thus

Pr

[

∀v ∈ V, s̃(u, v)− s̃(u, v, εp) ≤ 1 + ε

1−√
c
· εp

]

≥ 1− δ

n
,

and the Theorem follows.

	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 SimRank with Random Walks
	2.3 Competitors

	3 ProbeSim Algorithm
	3.1 Rationale
	3.2 Basic algorithm
	3.3 Analysis

	4 Optimizations
	4.1 Pruning
	4.2 Batching Up c-walks
	4.3 Randomized PROBE Algorithm
	4.4 Best of both worlds

	5 Related Work
	6 Experiments
	6.1 Experiments on Small Graphs
	6.2 Experiments on Large Graphs

	7 Conclusions
	8 Acknowledgments
	9 References
	A Chernoff Bound
	B Proofs
	B.1 Proof of Theorem ??
	B.2 Proof of Theorem ??

