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Delayed puberty (DP) affects approximately 2% of adolescents. In
the vast majority of patients in both sexes, it is due to constitu-
tional delay of growth and puberty (CDGP), a self-limited condition
in which puberty starts later than usual but progresses normally.
However, some CDGP patients may benefit from medical inter-
vention with low-dose sex steroids or peroral aromatase inhibitor
letrozole (only for boys). Other causes of DP include permanent
hypogonadotropic hypogonadism, functional hypogonadotropic
hypogonadism (due to chronic diseases and conditions), and
gonadal failure. In this review we discuss these themes along with
the latest achievements in the field of puberty research, and
include a brief synopsis on the differential diagnosis and man-
agement of patients with CDGP and congenital hypogonadotropic
hypogonadism.

© 2019 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
Physiology of puberty: a brief overview

Puberty is one of the most astonishing periods of human life, when significant physical alterations
occur along with psychosocial maturation. The mechanisms governing the timing of puberty are not
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completely understood, although factors such as general health, nutrition, genetic factors, endocrine-
disrupting environmental chemicals and environmental cues including societal changes all play a role
[1]. The apparent plasticity of puberty timing and the importance of environmental factors in this
process is exemplified by the shift of the age at menarche in Europe during the last two centuries from
approximately 17.5 years to 12.5e13 years [2]. A shift towards an earlier age of breast development in
Copenhagen area during the last few decades has been reported, which is a phenomenon speculated to
reflect the impact of endocrine-disrupting chemicals [3]. In Copenhagen area, boys entered puberty 3
months earlier in 2006 compared to the findings 15 years earlier, a finding which, unlike in girls,
disappeared after adjustment for BMI [4].

The most important physiological changes of puberty include the attainment of adult height, the
initiation of spermatogenesis and menstrual cycles, and the development of secondary sex charac-
teristics. These changes are accompanied by peak bone mass accrual, and are all brought about by the
reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, a functional unit that is comprised of
gonadotropin-releasing hormone (GnRH) pulse generator, gonadotrope cells in the pituitary and the
gonads. The current view is that KNDy neurons (which co-express kisspeptin, neurokinin Bm and
dynorphin) in the arcuate nucleus form the GnRH pulse generator in males and females [5]. The HPG
axis is active already in utero, and it re-activates during the minipuberty of infancy (see below), and,
thereafter, remains largely quiescent due to central inhibitory signals until gradual loosening of the
inhibitory signals on GnRH secretion and reawakening of the HPG axis in puberty [6].

Delayed puberty

The delay in the onset of puberty has been traditionally defined as the absence of testis enlargement
or breast development at an age that is 2e2.5 SDS later than the population mean. In practice, Tanner
stage G2 in boys should be achieved by the age of 14 years and B2 stage in girls by the age of 13 years
[7]. It is important to note that these definitions, while useful and highly recommended for clinical
practice, do not take into account the rate of puberty progression. Puberty nomograms (Fig.1), available
for girls and boys, have attempted to overcome this, and may be of additional help in defining normal
and abnormal puberty timing [8,9]. It is also of particular note that the nomograms presented in Fig. 1
are based on Danish adolescents, and do not account for ethnicity and the family background in pu-
berty timing. According to two large patient series, the most frequent cause for delayed puberty (DP) in
both sexes is self-limited constitutional delay of growth and puberty (CDGP), which accounts for the
vast majority of cases (Table 1) [10,11]. The remaining three main etiological categories are functional
hypogonadotropic hypogonadism (FHH; largely attributed to chronic diseases and conditions),
hypergonadotropic hypogonadism (Hyper H) (i.e. gonadal failure) and permanent hypogonadotropic
hypogonadism (PHH). The comparison of the distribution of these entities in the two above-mentioned
large studies is shown in Table 1.
Constitutional delay of growth and puberty (CDGP)

As already mentioned, self-limited CDGP is by far the most frequent cause of DP in both sexes, and
for an unknown reason, is more commonly encountered in boys than in girls (Table 1). By definition,
CDGP is a diagnosis of exclusion, and once puberty in these patients has started, it will progress
normally and should be completed by the age of 18 years. However, DP in an otherwise healthy child
may cause significant psychosocial burden, and some patients may benefit from medical intervention
that will promote sexual maturation (see below).
Functional hypogonadotropic hypogonadism (FHH)

This is a broad category of diseases and (often chronic) conditions, and explains 16e20% of cases in
boys and girls (Table 1); Table 1 also summarizes the most common causes of FHH in both sexes [10,11].
It is remarkable that conditions related to negative energy balance (i.e. poor nutrition and anorexia
nervosa) constituted approximately one third of the FHH patients in girls, whereas CNS disorders were



Fig. 1. Puberty nomograms for girls and boys. Age-specific SD scores for Tanner breast and pubic hair stages, and menarche (left
panel) in girls, and puberty nomogram for Tanner stages and testicular volume in boys (right panel). Re-drawn from references [8,9].
The shaded area represents the mean ± 2 SD.
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the most common cause in boys (Table 1). Examples of other causes of DP in boys include growth
hormone deficiency and Crohn's disease (both 11%), and intense exercise in girls (6%) [10,11].
Hypergonadotropic hypogonadism (Hyper H)

Gonadal failure as a cause of DP is a relatively frequent cause of DP in girls (21%), but clearly more
seldom encountered in boys (4%) (Table 1). In girls, approximately one quarter of patients in this
category is attributable to Turner syndrome (Table 1).
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Permanent hypogonadotropic hypogonadism (PHH)

This entity contains organic causes, syndromic causes, hypopituitarism of any cause, iatrogenic
forms, hypophysitis and isolated forms of hypogonadotropic hypogonadism [10,11]. For the interested
readers, the terminology related to isolated congenital hypogonadotropic hypogonadism is reviewed
elsewhere in detail [6]. In this review, the term congenital hypogonadotropic hypogonadism (CHH)
refers to gonadotropin deficiency which can be of hypothalamic or pituitary origin, but for the sake of
brevity, gonadotropin deficiency as a part of combined pituitary hormone deficiency is not covered.
PHH explained 8% of DP patients in boys and 15% in girls (Table 1), CHH being the most frequent cause
in both sexes (Table 1). When CHH is accompanied by anosmia (absence of the sense of smell) or
hyposmia, it is called Kallmann syndrome (KS) (see below). In the presence of intact sense of smell and
CHH, the condition is referred to as normosmic CHH (nCHH). The frequency of CHH (nCHH and KS)
among patients with PHH, ranged from 24% to 85% [10,11]. The estimates for CHH frequency at pop-
ulation level are relatively scarce, and, in males, range for KS is from 1:10,000 to 1:86,000 [12e14]; the
prevalence of KS in females in Finland was shown to be 1:125,000 [14]. The prevalence estimates of
nCHH are scarce.

It is noteworthy that the clinical spectrum of CHH is highly variable ranging from complete
gonadotropin deficiency (cryptorchidism and microphallus as surrogate markers of profound gonad-
otropin deficiency) to partial puberty variants, fertile eunuch variants, and reversal of CHH [6,15e17], a
phenomenon attributed to kisspeptin responsiveness [18]. Similarly tomales, the phenotypic spectrum
of CHH in females is wide, as 10% have menarche, half exhibit thelarche, and 88% pubarche [19].
Differentiating CHH, especially its partial form, from CDGP is very challenging and sometimes even
impossible [6,20].
Genetics of normal and delayed puberty

The timing of puberty is a highly polygenic trait. Based on a relatively large epidemiological study,
57% of the variation in the age at menarche was attributed to additive genetic factors [21]. By using
twin modeling and the timing of pubertal growth spurt as a marker of puberty timing, Wehkalampi
et al. reported that >80% of pubertal timingwas attributed to additive genetic factors in both sexes [22].
In the largest genome-wide association study (GWAS) (~370,000 women) to date, Day et al. reported
389 independent genome-wide signals that were associated with the timing of menarche, and which
explained ~7.4% of the variation in the age at menarche in an independent replication study of 39,543
females [23]. The proportion of the genome-wide heritability (estimated by dividing the variance
explained by the index SNPs by the total variance explained by all genotyped SNPs across the genome)
for the age at menarche was ~25% [23]. Imprinted genes were enriched among the age at menarche-
associated variants [23], and as such, paternally-inherited mutations in two such genes (MKRN3 and
DLK1) have been described in patients with precocious puberty giving further credence on the
importance of this theme in the regulation of puberty timing [24e26]. Interestingly, circulating levels
of MKRN3 may also have some implications in the assessment of the HPG axis activity, since the levels
decrease in girls and boys prior to the onset of puberty [27e29]. However, the clinical usefulness of this
marker is questionable, since the circulating levels are highly variable and some children have
undetectably low levels, and, besides, the source of circulating MKRN3 is unknown [28]. Moreover,
serum MKRN3 levels in adult men with HH did not differ from those of healthy controls [30].

In men, reliable retrospective timing of puberty is challenging due to the lack of a single memorable
milestone which could be recalled with an acceptable accuracy, although voice break has been such a
marker [31]. Therefore, longitudinal studies based on serial assessment of male puberty (Tanner stages
and testicular volume) are of particular interest. Busch et al. reported that the SNP rs10835638 up-
stream of the FSHB gene was associated with the onset of puberty (testis volume 4 ml) in boys
following statistical adjustment of BMI; in the GWAS study by Day et al. this SNP just slightly exceeded
the adjusted significance limit for genome-wide signals implicated in puberty-timing (age at
menarche) [23,32]. A genetic model of reduced FSH action, resulting from variation in the SNP



Table 1
Combined distributions of patients referred to two centers [10,11] for evaluation of delayed puberty (DP). Therewere data on 156
boys and 70 girls from the study by Sedlmeyer et al. [10] after exclusion of two boys and four girls due to unclassified etiology of
DP, and 174 boys and 70 girls from the Finnish study by Varimo et al. [11]. Number of patients (%) in each group is shown along
with the most common causes for functional hypogonadotropic hypogonadism (FHH), permanent hypogonadotropic hypo-
gonadism (PHH), and hypergonadotropic hypogonadism (Hyper H). CDGP, constitutional delay of growth and puberty.

Boys Girls

CDGP 242/330 (73%) 61/140 (43%)
FHH 47/330 (16%) 28/140 (20%)

- CNS disorder: 6/47 (13%) - poor nutrition: 6/28 (21%)
- growth hormone deficiency: 5/47 (11%) - anorexia nervosa: 4/28 (14%)

Hyper H 14/330 (4%) 30/140 (21%)
- syndromes: 10/14 (71%) - Turner syndrome: 8/30 (27%)

- idiopathic ovarian failure: 7/30 (23%)
PHH 27/330 (8%) 21/140 (15%)

- CHH: 14/27 (56%) - CHH: 8/21 (38%)
- syndromes: 6/27 (22%) - CNS tumors: 6/21 (29%)
- CNS tumors: 5/27 (19%)

CDGP, constitutional delay of growth and puberty.
FHH, functional hypogonadotropic hypogonadism.
PHH, permanent hypogonadotropic hypogonadism.
HyperH, hypergonadotropic hypogonadism.
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genotypes in the FSHB and FSHR promoter regions, has been suggested to explain 1.5e1.7% of the
variance in the age at puberty onset in boys [32].

Clinical entities such as CDGP, CHH (with or without a defect in the sense of smell), patients with
hypothalamic amenorrhea, adult-onset of HH and reversal of CHH are often considered to belong to the
same entity of patients with variable manifestation of gonadotropin deficiency. For example, rare
sequence variants implicated in CHH are present in women with hypothalamic amenorrhea, and in
adolescents and young adults with signs of partial gonadotropin deficiency, and biallelic partial loss-of-
function GNRHRmutations have been found in patients with delayed or stalled puberty [33e35]. There
is a clear genetic component in CDGP, however, as up to 80% of patients with CDGP have a first degree
relative with DP [36]. On the other hand, although one of the strongest GWAS signals for the timing of
puberty arises fromnear andwithin LIN28B, mutations in this gene have not been encountered in CDGP
patients [37]. Howard et al. identified recently with exome sequencing in Finnish CDGP index patients
likely pathogenic variants underlying CDGP phenotype in (i) fat mass and obesity-associated (FTO)
gene (in three of 67 families) [38]; (ii) Heparan Sulfate 6-O-Sulfotransferase 1 (HS6ST1) gene (in one in
67 families) [39]; and (iii) enhanced at puberty 1 (EAP1) gene (in two in 67 families) [40]. The fourth
relevant genetic finding related to CDGPwas published in 2016, when Howard et al. described that rare
sequence variants in IGSF10, a gene which encodes a protein that belongs to the immunoglobulin
superfamily, underlay CDGP in six Finnish families [41]. In rats, Igsf10 (a.k.a. calvaria mechanical force
protein 608, encoded by Cmf608) is a marker of early osteochondroprogenitor cells, and has been
proposed to regulate the differentiation of these cells into more mature cell types [42]. The role of
IGFS10 in DP remains open, as in a follow-up study, IGSF10mutations were not reported to be enriched
in CHH or CDGP patients when compared to controls [43].

The past, current and future strategies to identify genes implicated in CHH have been recently
reviewed in depth [44]. The latest estimate of the number of main genes implicated in CHH is 35e40
[45e47]; it is noteworthy, however, that the degree of evidence of these genes being causative for CHH
is variable (Stamou et al., 2016) [44]. Recently, Francou et al. reported a comprehensive molecular
genetic analysis of a large cohort (n ¼ 603) of homogenous nCHH patients in a French center [48]. The
analyzed patients harbored biallelic mutations (the combined prevalence of mono- and biallelic mu-
tations is given in parentheses) in the following order: GNRHR, 3% (4.7%); TACR3 1.5% (3.6%), KISS1R,
1.3% (2.0%), TAC3, 0.5% (1.0%), GNRH1, 0.2% (1.5%), and KISS10% [48]. Interestingly, four of the five males
with biallelic loss-of-function mutations in KISS1R had a high frequency of micropenis, which suggests
that kisspeptin signaling is important for gonadotropin secretion early in development [48]. These
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relatively low numbers of “known” genetic etiology for nCHH suggests a significant role of other genes
underlying this entity.

The connection between the sense of smell and the reproductive function is related to the complex
ontogeny of GnRH neurons. These cells are originally formed outside the CNS, in paired structures
called olfactory placodes, which provide the putative neurogenic niche and appropriate signals for the
development of these cells (young et al., 2019 endo rev) [6]. Taking advantage of this information, Lund
et al. were the first to model GnRH decapeptide-secreting neurons from human pluripotent stem cells
[49]. In vivo, GnRH neurons migrate from the olfactory placode (OP) area to the hypothalamus by using
the vomeronasal nerve and olfactory nerve as guides [50]. In Kallmann syndrome, a clinically and
genetically heterogeneous disease, this process is disrupted, which explains the unexpected rela-
tionship between olfaction and reproduction [6]. The first gene implicated in the etiology of KS was X-
chromosomal KAL1 (now ANOS1) [51], a gene that encodes FN3 domain-containing protein, anosmin-1,
a branching factor and chemoattractant for lateral olfactory tract axons in the rat [52]. Subsequently,
loss-of-function mutations in FGFR1 were demonstrated to underlie autosomal dominant KS [53]. The
evolving story of the identification of other KS-causing genes has been recently reviewed [44,45].
Although animal studies suggest that lack of certain miRNAs lead to HH, the first study on this topic did
not report mutations in MIR7-3, MIR141, MIR429 and MIR200A in 24 CHH patients [54].

Recently, Cassatella et al. reported the genetic landscapes of CHH and CDGP patients by reporting
exome sequencing results [43]. Overall, they demonstrated that 51% of the CHH patients carried a
mutation in at least one CHH gene, whichwas clearly a higher proportion thanwas observed in patients
with CDGP (7%) [43]. Indeed, the next generation sequencing methods have not only revolutionized
novel disease gene identification, but also posed clinical geneticists into a challenging position since
even up to 15% of CHH cases may be explained by oligogenic inheritance [43], and thus the traditional
forms of Mendelian inheritance are not always easy to apply [45].
Diagnostic pathway

The diagnostic pathway of a patient with DP starts from thorough medical history. A useful concept
of using “red flags”, i.e. cues pointing towards a certain diagnosis or diagnostic subgroup (CDGP, FHH,
PHH or HyperH) has been recently introduced (Tables 2A and 2B) [55]. It should be noted that this
approach is based on extensive clinical experience and has not yet been prospectively validated. Recent
advancements in this field include the finding that history of cryptorchidism was associated with an
increased risk for permanent hypogonadism (i.e.Hyper H or PHH), andwas thusmore frequent in these
Table 2A
Red flags on history and associated etiologies in patients presenting with delayed puberty. Adapted from Abitbol et al. [55], and
Varimo et al. [11].

History Possible underlying aetiology

Abdominal pain, constipation,
diarrhoea, haematochezia

Inflammatory bowel disease, diarrhoea, coeliac disease

Weight gain, cold intolerance, fatigue Hypothyroidism
Weight loss, heat intolerance, insomnia Hyperthyroidism
Excessive exercise, food restriction Anorexia nervosa
History of chemotherapy,
radiation or testicular trauma

Acquired hypergonadotropic hypogonadism

Cryptorchidism, micropenis Permanent hypogonadism
Visual disturbance, intellectual
disability, seizures, congenital midline defects

Congenital syndrome (e.g. septo-optic dysplasia)

Headaches, visual changes, seizures Acquired central nervous system disease such as a brain tumor
Abnormal sense of smell Kallmann syndrome
Dysmorphic features Syndromic form of congenital hypogonadotropic

hypogonadism (CHARGE)
Family history of delayed puberty Constitutional delay of growth and puberty,

congenital hypogonadotropic hypogonadism
Family history of chronic diseases Evaluate individually



Table 2B
Examples of the findings in physical examination and associated etiologies in patients presenting with DP. Adapted from Young
et al. [6], Varimo et al. [11], and Abitbol et al. [20].

Physical examination Possible underlying aetiology

Low height growth velocity Growth hormone deficiency, multiple pituitary hormone deficiency
Low weight for height, dental changes Anorexia, ortorexia, excessive exercise
Low weight for height with exophthalmos,
sweaty skin, tremor, hypertension, goitre

Hyperthyroidism

Increased weight for height with dry skin, dry
hair, bradycardia, goitre

Hypothyroidism

Low weight for height, pallor, abdominal
distention or tenderness

Coeliac disease, inflammatory bowel disease

Visual field abnormalities, abnormal
neurological exam

Congenital or acquired central nervous system disease

Midline defects (e.g. cleft lip and/or palate,
congenital heart disease), dysmorphic
features (e.g. hypertelorism, webbed neck)

Congenital syndrome (e.g. septo-optic dysplasia, Turner's syndrome)

Small testis size Hypogonadotropic hypogonadism
Abnormal sense of smell Congenital hypogonadotropic hypogonadism
Missing teeth
Pigmentation defects
Hearing loss
Split hand/foot malformation
Cleft lip/palate
Findings suggesting CHARGE syndrome
(Coloboma, Heart defect, Atresia Choanae,
Retardation of growth and development,
Genital anomalies, Ear anomalies)

Bimanual synkinesis (involuntary movement of
upper limbs)
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patient groups than in those with FHH or CDGP [11]. Similarly, a history of cryptorchidism was more
frequent in CHH patients than in those with CDGP (36% vs 2%, respectively). In contrast, a boy with
normally descended testes and a positive family history of DP had very low probability of HyperH of
PHH [11]. Additional set of red flags comes from the clinical features of patients with CHH (Table 2B)
[6,20,56]. It has been suggested that growth velocity would be helpful in the differential diagnosis of DP
[7]. Indeed, annual growth velocity (GV) in boys with FHH (3.2 ± 1.3 cm/yr) was smaller than in boys
with CHH or CDGP (4.1 ± 1.7 cm/yr) (P < 0.05); the best cut-off growth velocity was 3.6 cm/yr with a
sensitivity of 71% and specificity of 64% in differentiating boys with CHH or CDGP from thosewith FHH;
in girls, the value of GV was inferior to boys [11].

The initial diagnostic approach towards a patient with DP has been described recently in detail
[6,55], and presented in Fig. 2. The process starts with verifying the presence or absence of DP (lack of
testicular enlargement by the age of 14 yrs, absent breast development by the age of 13 yrs in girls),
preferably by using the puberty nomogram (Fig. 1). Thorough clinical history should cover the red flag
questions presented in Table 2A, and similar red flag physical findings should be sought after in the
clinical examination Table 2B. Full clinical examination should include also assessment of the sense of
smell, preferably with a validated method, and a verification of the presence or absence of split hand-
foot deformity (suggestive of an FGFR1 mutation) [57], and assessment of bone age [6,55]. In the
absence of red flag findings, and especially in the presence of a positive family history for DP, the
diagnosis of CDGP is probable and broad untargeted biochemical testing is usually unnecessary [55]. In
the presence of early stigmata of complete CHH (such as bilateral cryptorchidism and/or micropenis),
especially if the patient has anosmia or a syndromic form of CHH (such as CHARGE syndrome etc.) or
phenotypic cues listed in Table 2B, the differentiation of CDGP from CHH can be relatively straight-
forward. It is of particular note that the minipuberty of infancy, i.e. transient activation of the HPG axis
during the first months of life [58], offers awindowof opportunity for establishing an early diagnosis of
CHH [59,60]. This holds true especially in boys, whereas for infant girls such early markers of
gonadotropin deficiency have not been identified.



Verification of the presence of 
DP

Medical history and physical
examination with special
emphasis on the presence of red
flags (see Table 2 and 3)

Plasma LH and FSH levels

prepubertal elevated

Presence of ”red flag” signs (see
Table 2 and 3)

Hypergonadotropic
hypogonadism -> 
determine the etiology

Yes No

Target 
diagnostics
accordingly

Probably CDGP

CDGP / FHH / PHH ?

Fig. 2. Approach to a patient with delayed puberty (DP). Adapted from Young et al. [6], and Abitbol et al. [55].
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Review of the endocrine tests and their performance has been described in detail by Harrington &
Palmert in 2012 [61]. In brief, suggested endocrine tests include measurement of circulating Sertoli cell
markers inhibin B and AMH, hCG stimulation test (with different doses and administration and
sampling times), GnRH stimulation test (with GnRH ormore powerful GnRH analogs), LH sampling and
urine gonadotropin excretion [61]. Many of these tests are costly and none of them allows differen-
tiation of CHH from CDGP with 100% sensitivity and specificity, especially in the case of partial CHH
[6,20,61]. Since the evaluation of each test separately is beyond the scope of this review, we only
discuss the latest development in the field of differential diagnostics between CHH and CDGP. Coutant
et al. proposed that a single measurement of inhibin B less than 35 ng/l would differentiate prepubertal
CDGP boys from those with CHH with 100% sensitivity and specificity [62]. In the Finnish series of
prepubertal boyswith DP, the odds ratio of this cut off value to detect CHH in the prepubertal boyswith
DP was 10.0 (95% CI: 2.16e46.3, P < 0.01), but 40% of CHH boys had higher inhibin B levels and 7% of
CDGP boys had inhibin B below this value [11]. Another concern of single point measurements is the
variable performance of the inhibin B assay at low analyte concentrations. One approach to circumvent
this was introduced by Varimo et al. [11], who modelled the risk of CHH by taking into account the
testis size (a surrogate of prepubertal Sertoli cell number) [63], and the performance of the inhibin B
assay. The results showed that very small testis size (<1ml) in combinationwith inhibin B of 10e49 ng/
l conveyed the highest mean risk for CHH (90%; range 50e100%), whereas the risk appeared
tremendously smaller in those with larger testes (1.1e2 ml) accompanied by inhibin B levels between
111 and 212 ng (risk estimate for CHH, 0e10%) [11]. Very recently Chan et al. reported that single
intravenous bolus of kisspeptin to 14.1e17.8 yr-old patients (11 boys and four girls) with delayed/
stalled puberty elicited heterogenous LH responses (surrogate of GnRH secretion) [64]. Given that
kisspeptin does not induce LH secretion in adult patients with CHH, it will be of high interest to learn
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whether kisspeptin administration to pediatric patients will help in differentiating CDGP patients from
those with partial forms of CHH [64]. In conclusion, even in 2019 the differential diagnosis of CHH from
CDGP is not always possible, and thus, in some patients, only the completion of puberty by the age of 18
years will solve this important differential diagnostic question.
Management of delayed puberty

Treatment of constitutional delay of growth and puberty

For many subjects with CDGP, reassurance and watchful waiting are the only required un-
dertakings. However, when the adolescent feels psychosocial stress, negative interactions with peers,
anxiety or depression, medical intervention and psychological counseling should be considered.
Interestingly, only few well-designed trials have been published on the topic on boys and even less
on girls. Recently, Varimo et al. published a controlled prospective multicenter trial comparing
aromatase inhibitor letrozole (Lz) and low-dose intramuscular testosterone (T) in the treatment of
boys with CDGP and the very first signs of puberty [65]. The results showed that 2.5 mg of Lz
perorally for six months induced HPG axis and faster testicular growth than low-dose T; both
treatments accelerated height growth (testosterone slightly more than Lz), and were well-tolerated
[65]. These results suggest that peroral aromatase inhibitor Lz activates the HPG axis, and can be
used as a novel treatment modality for boys with CDGP. Treatment options for boys with CDGP are
shown in Table 3. Gonadotropins or GnRH are not recommended for the treatment of CDGP (Dunkel
& Palmert NEJM 2012) [7]. For girls presenting with CDGP, there are four options for the induction of
puberty i.e. oral ethinylestradiol, and oral and transdermal/gel form of 17b-oestradiol (Table 3). Only
sparse clinical studies exist on the topic and the drug of choice varies between pediatric units. Ac-
cording to Matthews et al. (ADC 2017), however, “transdermal 17b-oestradiol has the most favourable
efficacy, safety and cost profile.” [66].

In boys and girls with CDGP, a follow-up appointment is recommended after 6 months of therapy or
watchful waiting to ensure that puberty has progressed (testicular growth in boys, breast development
in girls). In equivocal situations, it is possible to monitor biochemical progression of puberty by
measuring serum gonadotropin, inhibin B and sex steroid levels from amorning blood sample. In those
who fail to show any activation of the HPG axis and progression of the puberty, second-line in-
vestigations for the etiology of delayed puberty should be started [7]. Cessation of sex steroid treatment
is often needed for a reliable evaluation of the HPG axis.

Treatment of hypogonadotropic hypogonadism

Management of CHH in males and females has been recently thoroughly reviewed [6]. In principle,
the initial goals of treatment in patients with CHH are the same as in CDGP, but, in addition, concerns of
future fertility and sexual function need to be addressed. Therefore gonadotropins and GnRH treat-
ments are additional realistic options for patients with CHH. In boys, prepubertally administered re-
combinant FSH Rx, which aims at increasing the number of Sertoli cells and thereby improve future
sperm-producing capacity, has been discussed in detail [6,63,67,68]. Also other gonadotropin pro-
tocols for the induction of puberty have been employed [69e71], and in specialized centers puberty in
CHH boys may even be induced with pulsatile GnRH [72]. There is also great interest towards the
treatment of CHH in boys during infancy [73]. The expected long-term benefits of this treatment
require further studies, and very recently Kohva et al. reported the long-term data on five
gonadotropin-deficient boys treated with recombinant FSH and testosterone in infancy [74]. The re-
sults showed that recFSH treatment given in infancy was not associated with a permanent increase in
inhibin B.

When puberty is induced with sex steroids, gradual increase in sex steroid replacement dosing
and addition of progestin in girls are required during the course of puberty [66]. Adult doses are



Table 3
Treatment of constitutional delay of growth and puberty and congenital hypogonadotropic hypogonadism. Adapted from Young
et al. [6], Dunkel & Palmert [7], Varimo et al. [65], and Matthews et al. [66].

Treatment Dosing & administration Comments

Short-term treatment of CDGP in boys
Testosterone enanthate
(TE)

1 mg/kg, usually 50 mg i.m. monthly for
6 months (different protocols exist)

Promotes androgenic signs of puberty.
Misdosing may lead to premature
epiphyseal closure. Not to be used
before bone age 10 years.

Letrozole (LZ) 2.5 mg p.o., daily for 6 months Activates HPG axis and testis growth.
No risk for premature epiphyseal
closure. Effective in boys with first signs
of puberty. Limited long-term
experience.

Short-term treatment of CDGP in girls
17-b-oestradiol (oestradiol
hemihydrate) gel
(0.6 mg/g)

(0.5-) 1 cm gel on skin daily (equivalent
to 10 ug 17-b-oestradiol patch/24hr; or
0.2 mg 17-b-oestradiol p.o; or 2 ug
ethinyl estradiol p.o)

Promotes estrogenic pubertal signs (e.g.
breast development, and growth
acceleration) and may induce bone
maturation. No large studies.Bypasses
first-pass hepatic metabolism

17-b-oestradiol (oestradiol
valerate) patch (25 ug)

¼ patch once/twice weekly Promotes estrogenic pubertal signs (e.g.
breast development, and growth
acceleration) and may induce bone
maturation. Bypasses first-pass hepatic
metabolism

17-b-oestradiol (oestradiol
valerate) p.o

0.25e0.5 mg daily Promotes estrogenic pubertal signs (e.g.
breast development, and growth
acceleration) and may induce bone
maturation.
Submitted to first-pass hepatic
metabolism
May increase lipid levels and blood
pressure

Ethinyl estradiol (EE2) p.o 1-2 ug once daily for 6 months See above
Induction of puberty in CHH boys
Testosterone enanthate Initial dose: 1 mg/kg; often 50 mg i.m.

monthly
Standard care with long clinical
experience

Increase (25)-50 mg every 6e12
months, up to 250 mg per 3e4 weeks
(or testosterone undecanoate 1000 mg
i.m. every 10e14 weeks in adult males)

Possible premature epiphyseal closure
(with high doses)

Gonadotropins hCG: initial dose 250e500 IU once/
twice weekly, s.c.

Stimulates testis growth &
spermatogenesis

Increase 250e500 IU every 6 months Pre-rFSH treatment can be beneficial in
patients with TV < 4 ml or history
cryptorchidism

Up to 1500 IU 3 times weekly Needs good compliance in adolescent
patients and studies in larger cohortsrFSH: initial dose 50 IU three times

weekly
then 75e150 IU three times weekly, s.c.

Induction of puberty in CHH girls
17-b-oestradiol (oestradiol
hemihydrate) gel
(0.6 mg/g)

Initiation as in CDGP. Increase gel up to
5 cm (equivalent to 50 ug patch or 10 ug
EE2 p.o) during 24 months, then adult
combined oral contraceptive pill or
hormone replacement therapy

See above

17-b-oestradiol (oestradiol
valerate) patch (25 ug) or
tablet p.o.

Initiation as in CDGP. Increase up to 25
e50 ug transdermal patch twice weekly
or 0.25 mg tablet up to 1 mg p.o. daily
during 24 months, then adult combined
oral contraceptive pill or hormone
replacement therapy

See above
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Table 3 (continued )

Treatment Dosing & administration Comments

Ethinyl estradiol (EE2) p.o. Increase from 1 to 2 ug to 10 ug during
24 months, then adult combined oral
contraceptive pill or hormone
replacement therapy

See above

Progesterone p.o. Various forms; usually added after 2e3
of estrogen treatment years or when
breakthrough bleeding occurs

Used in 10e14 day blocks in 1e3
months intervals.Can be replaced by
adult combined oral contraceptive pill
or hormone replacement therapy.
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usually reached within 3 years of treatment, depending on the age at initiation and desired tempo
of pubertal progression [6]. Those with permanent HH and hormone replacement therapy should
be followed up at least 6 month intervals. During these visits, their sex steroid treatment doses
should be adjusted based on clinical and biochemical signs of pubertal progression. Uterine ul-
trasound scan is useful for optimizing the timing of progesterone to girls. Transition from pediatric
to adult services requires communication between providers and preferably is done in a structured
manner, otherwise there may be a risk of discontinuation of treatment. Finally, it should be noted
that the reversal of CHH (i.e. recovery of gonadotropin secretion often following exposure to sex
steroids) occurs in 10e15% of CHH men [17], and the estimated lifetime-incide may be as high as
22% [15]. A useful clinical sign suggesting reversal of CHH is an increase in testicular size while on
testosterone Rx.
Delayed puberty: what do we know about long-term consequences?

Timing of puberty and long-term associations have intrigued researchers for decades. In 2015, Day
and coauthors published a large UK biobank study that reported associations of puberty timing with
health outcomes in 197,714 males and in 250,037 women (age range 40e69 years) [75]. In linear
models, age at menarche was associated with 26 adverse health outcomes such as type 2 DM, obesity,
and breast cancer. In categorical late menarche models, following adjustment for potential con-
founding by available ‘SEP’-related variables (alcohol intake; education e eight dummy variables for
different levels of qualification, maternal smoking, reported income level, smoking, Townsend index of
deprivation) and adiposity/body composition, eight associations remained significant: increased risk
for early natural menopause, malabsorption/coeliac disease, low intelligence, asthma, poor overall
health, poor sleep, and reduced risk for obesity and short stature [75]. In males, the corresponding
associations with delayed puberty were anxiety/panic attacks, depression, asthma, eczema, poor
Practise points

� Constitutional delay of growth and puberty (CDGP) is the most common cause of delayed
puberty in both sexes. Other causes (FHH, PHH, and HyperH) each explain ~4e20% of cases
each.

� Timing of puberty is a highly inherited trait. The significant signals identified in the largest
GWAS study to date were able to explain <10% of the variance in the age at menarche.

� Differential diagnosis between CDGP and CHH can be notoriously difficult, and there is not a
single test that could differentiate between all forms of CHH from CDGP.

� Peroral letrozole offers a new modality for the treatment of CDGP in boys with the first signs
of puberty.



Research agenda

� High-quality research is required to address long-term consequences of treatments used for
the induction of puberty in CDGP patients.

� The efficacy of the recombinant FSH pre-treatment in the induction of puberty and sper-
matogenesis in boys with CHH should be assessed in a large prospective randomized,
controlled study.
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overall health and a reduced risk for obesity [75]. Finally, in a recent review on self-limited delayed
puberty, Zhu and Chan summarize that (i) in some patients, adult height may be reduced; (ii) late
menarche is associated to decreased BMD in early adulthood and in both sexes late puberty is asso-
ciated with increased fracture risk; (iii) late puberty was protective for breast cancer and possible also
for testicular cancer; and (iv) both early and late puberty timing are associated with an increased
cardiovascular risk [76].
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