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Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from
adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have
been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use
and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies
and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered,
including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review
explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate
potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding
marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and
the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for
clinical cell therapies and discusses their potential.

1. Introduction

Cell-based therapies are a novel approach to treat medical
conditions that have limited or no effective therapeutic
options. Adipose tissue-derived multipotent cells known as
adipose stromal/stem cells (ASCs) are particularly promising
candidates for diverse clinical applications, owing to their
excellent proliferation and differentiation capacity [1, 2],
low immunogenicity [3, 4], and ability for immunomo-
dulation [3, 5–9]. Great interest has been directed to
allogeneic use, immunomodulatory therapies, and therapies
taking advantage of the paracrine effects of ASCs. ASCs are
already being used in clinical applications, e.g., for the treat-
ment of autoimmune diseases such as Crohn’s disease [10],
and as a regenerative therapy for craniomaxillofacial bone
defects [11].

Stem cells are defined by two basic properties: the ability
to self-renew and the ability to differentiate into one or more
specialised cell types [12, 13]. Stromal cells are multipotent
progenitor cells that are found in the connective tissue of
any organ with the limited ability to proliferate and differen-
tiate into one or several specific cell types [14]. Careful
characterisation of an ASC population is the first step
towards determining its viability for clinical applications.
Heterogeneity is a characteristic of ASCs, necessitating their
careful in vitro and preclinical characterisation. If cells are
expanded prior to clinical use, the appropriate cell expansion
protocol(s) must be determined, as they can have an effect on
ASC characteristics [15]. Foetal bovine serum (FBS) has
traditionally been utilised for ASC culture [2, 16–18], despite
the safety concerns associated with its clinical use. Alterna-
tives to FBS use include autologous or allogeneic human
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serum (HS) [19–21] or platelet lysate- (PL-) based cultures
[22, 23], as well as completely xeno-free/serum-free (XF/SF)
cultures [21, 24–27]. The search for optimal conditions for
in vitro cell expansion remains ongoing, which is evident
from the variation of culture conditions used in current
clinical trials.

The use of autologous versus allogeneic ASCs is a rele-
vant question when developing clinical therapies. Currently,
many clinical studies are carried out using autologous ASCs,
which causes high variation in clinical outcome. Several fac-
tors affect ASC characteristics, including donor age, gender
and weight, and the anatomic harvest location and depth
[28, 29]. Therefore, the use of allogenic cells would be more
straightforward from a practical point of view, since they
could be isolated and fully characterised prior to clinical use.

Potency assays are useful tools for the characterisation of
ASCs for clinical use. We present some of the analytic
methods that can be utilised as potency assays. The develop-
ment of appropriate mechanism of action- (MOA-) based
potency assays is important for confirming a cell product’s
efficacy. This is often required by regulatory authorities but
is also essential as a quality control method for ensuring
reproducibility of the production protocol. Moreover,
preclinical in vivo studies are mandatory for progressing to
clinical trials, although investigating human cells in animal
models is always challenging. Further, we discuss safety
aspects related to clinical translations, such as genomic
stability of ASCs and the effects of paracrine signals in facil-
itating the formation of a tumour microenvironment.

In this review, we also shed light on the current status
of clinical trials, investigating ASCs, included in the con-
text of the patenting landscape in the field of ASC
research. A total of 244 clinical trials were registered on the
http://www.clinicaltrials.gov database in September 2018 to
evaluate the potential of ASCs for treating various diseases.
The number of clinical trials on ASCs has been steadily

increasing during the past decade, from nine registered trials
in 2009 to 244 in 2018 (25-fold increase). However, most
registered clinical trials are still in phase I, and only five
cell-based medicinal products currently hold marketing
authorisation in the European Union (EU). Moreover, an
increased number of patents have been filed by universities
as they become more involved in clinical trials and commer-
cialisation. We conducted a patent search with keywords
“adipose stem cell” in the Espacenet Worldwide database
(http://www.epo.org) and found 863 hits. ASCs hold a great
potential for treating several diseases, and thus, capacity for
translation from the research phase to routine cell-based
treatments should be strengthened. The present review
encourages this translation and defines critical aspects when
aiming at the clinical use of ASCs.

2. Adipose Stromal/Stem Cells

Human ASCs are multipotent progenitor cells found in adult
adipose tissue [2]. After digestion by collagenase, adipose
tissue is divided into an adipocyte fraction and a stromal vas-
cular fraction (SVF) (Figure 1), from which ASCs are selected
based on their plastic adherence property. For over 15 years,
adipose tissue has been extensively studied as a cell source for
tissue engineering and regenerative medicine [2, 17, 30–32].
ASCs are primarily mesodermal, but some are of neural crest
(ectodermal) origin [33], and have the potential to differenti-
ate into at least adipogenic, chondrogenic, and osteogenic
cells [1, 2]. Additionally, ASCs have the ability to reduce
inflammation, mediated primarily via paracrine effects
[6, 7, 9, 34, 35]. Both SVF and ASCs are currently utilised
in clinics, but selecting between these two should be based
on the particular disease application. The SVF is especially
used for soft tissue reconstruction [36], whereas expanded
ASCs might be selected for applications where a larger cell
dose is required [37]. Additionally, SVF is reported to be
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Figure 1: Cell populations in stromal vascular fraction (SVF) [14]. The SVF contains a heterogeneous mesenchymal cell population, e.g., cells
of endothelial, hematopoietic, and pericytic origin, among others. Cells of hematopoietic origin include granulocytes (15%), monocytes
(15%), lymphocytes (15%), and stem and progenitor cells (<0.1%). Additionally, endothelial cells (20%), pericytes (50%), and stromal cells
(30%) are found in SVF.
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more heterogeneous compared with culture-expanded ASCs
that are more homogeneous [38].

A critical discussion has been ongoing lately within the
scientific community on the origin, developmental potential,
and biological functions of these cells [33, 39]. The terms
“mesenchymal stem cell (MSC)” and “adipose stem cell
(ASC)” are under scrutiny over how accurately they describe
the origin and stemness of the cells. It has therefore been
suggested that the terms “tissue-specific progenitor cells” or
“medicinal signalling cells” may be more appropriate for
these heterogeneous groups of fibroblastic-like stromal cells
[33, 39]. The discussion is welcome and relevant in order to
clarify the terminology and to avoid overstatements on the
cells’ potential. Nevertheless, the terms ASCs and MSCs are
still widely used in the scientific community, and also in this
review, we use the term ASC for adipose tissue-derived
stromal/stem cells and the term MSC for all types of mesen-
chymal stromal/stem cells derived from bone marrow,
adipose tissue, and other tissue sources.

2.1. ASC Characteristics Are Dependent on Cell Donor and
Tissue Source. Cell characteristics vary significantly between
donors, which makes selection of the donor an important
concern and justifies the use of allogeneic ASCs in clinical
applications. For example, the proliferation and differentia-
tion capacity of ASCs may be affected by various factors, such
as the age, sex, or body mass index of the adipose tissue
donor [40–42]. For example, a negative correlation between
high donor age and proliferation and differentiation effi-
ciency has been observed [43], and high body mass index also
seems to reduce the proliferation capacity and compromise
the osteogenic potential of ASCs [42].

Adipose tissue is widely dispersed in humans. It has been
suggested that each fat depot has distinct developmental ori-
gins [33, 39], which will potentially affect cell characteristics
that are critical in the context of expansion, differentiation,
and therapeutics [44]. For instance, it has been shown that
ASCs derived from distinct visceral fat depots are remarkably
heterogeneous, and gene expression profiles and differentia-
tion capabilities differ significantly between ASCs derived
from different fat depots [44]. Furthermore, the depth of
adipose tissue harvest appears to be critical on ASC prolifer-
ation and adipogenic potential, as ASCs from subcutaneous
adipose tissue have increased proliferation and adipogenic
capacities compared to ASCs of visceral origin [28].

Moreover, ASCs from males seem to have greater osteo-
genic capacity [29]. Interestingly, ASCs derived from obese
and diabetic subjects have shown reduced capacity for immu-
nomodulation, suggesting that the local microenvironment
of donor tissue impacts their anti-inflammatory functions
[45]. ASCs derived from obese and diabetic subjects have
been shown to exhibit a reduction in typical immunosup-
pressive activities and be less effective in suppressing
lymphocyte proliferation that activates the M2 macrophage
phenotype than lean-derived ASCs [45].

In addition to biological factors, the isolation method
used, such as abdominoplasty, liposuctions, or specific
devices, may have an effect on a selected cell population
[38]. It has been reported that liposuction provides fewer

ASCs compared to excised fat tissue but that cell proliferation
is higher from liposuction, and significantly more cells
display MSC markers [46, 47]. Nevertheless, ASCs obtained
using both isolation methods have equivalent viability and
differentiation capacity.

3. Culture of ASCs

When ASCs are used in clinical applications, cell expansion is
often needed to obtain a clinically relevant cell number, in the
range of millions to hundreds of millions. The required cell
number is estimated via dose escalation studies and is always
dependent on the disease application and especially the
defect size. Moreover, cell dose may depend on the adminis-
tration method, i.e., whether cells are locally carried to the
defect site on a scaffold or infused into the bloodstream, in
which case the cell dose is often estimated in relation to
patient weight.

According to good manufacturing practices (GMP),
ex vivo cell expansion should be reproducible, robust, and
efficient. To meet these criteria, fully defined culture con-
ditions would be needed in order to enable efficient cell
proliferation and maintenance of basic stem cell character-
istics [48]. This section introduces traditional serum-based
culture conditions (FBS versus HS) for ASCs and discusses
the alternative options of XF and/or SF cultures, such as PL-
based cultures or fully defined XF/SF culture conditions.

3.1. Standard ASC Cultures. In vitro culture of ASCs requires
optimal conditions that support both proliferation and
differentiation when induced. Traditionally, cell culture
media consisted of a basal medium, such as alpha-modified
Eagle’s medium (α-MEM) or Dulbecco’s modified Eagle’s
medium/Ham’s F12 (DMEM/F-12) supplemented with
10% serum, 1% antibiotics (usually penicillin and/or strep-
tomycin), and 1% L-glutamine [2, 49]. Moreover, FBS has
routinely been used in ASC cultures [2, 16, 17] because it
provides a cocktail of growth factors, cytokines, adhesion
proteins, and other nutrients to the cells [50].

3.2. Xeno-Free Cultures. For clinical cell therapies, all animal-
derived components should be replaced with XF alternatives.
If ASCs are cultured in the presence of FBS, there is a
potential for zoonoses to be transferred to the patient, which
could cause severe sequelae related to xenogeneic infections
[51, 52]. In successive administration of cells, antibodies
towards bovine antigens may also be produced, which can
affect the efficacy of cell-based treatments. Due to these
concerns, there is growing interest in developing novel
cultivation media for ASCs, although validated batches of
FBS have been accepted for ongoing clinical trials by the
regulatory authorities. However, various XF and/or SF alter-
natives have been developed and studied for ASC cultures,
but relatively few formulations are commercially available
for clinical use.

Allogeneic HS is an XF alternative for FBS with similar
properties. Our group and others have shown that supple-
mentation with HS enhances or promotes an equivalent
effect on ASC doubling time compared to FBS [19–21, 53],

3Stem Cells International



with no substantial differences in cell morphology or
immunophenotype observed between HS and FBS condi-
tions [19, 54]. Moreover, greater proliferation rates and
more efficient osteogenic differentiation capacity have been
demonstrated in HS medium compared to FBS medium
[19, 21, 53, 55]. However, batch-to-batch variation between
serum-supplemented media affects the proliferation rate and
differentiation capacity of the cells [56]. Therefore, the safety
and quality of transplanted ASCs can be enhanced by replac-
ing undefined and/or animal-derived components with fully
defined GMP-compliant XF/SF reagents [15, 21, 24, 57].
Validated batches of autologous and allogeneic HS have been
used also in clinical studies [11].

One approach to replace FBS from cell culture is to use
human platelet-derived supplements [23]. Schallmoser and
Strunk [58] introduced a standard protocol for the prepara-
tion of pooled human PL. A reservoir of growth factors and
cytokines stored in platelet granules can be released by
freeze/thaw cycles, sonication, or chemical treatment [23].
The physiological role of platelets in wound healing and
tissue repair is a basis for using human platelet derivatives
in regenerative medicine. Several studies on ASC culture in
PL-based medium have been published. In most of these
studies, ASCs exhibited high proliferation rates, maintained
multipotency and differentiation capacity, and showed sta-
ble chromosomes when cultured in PL-based medium,
supporting the use of PL for cell expansion in clinical
studies [22, 23, 59–63]. Although some contradictory results
showing decreased population doubling times in PL cultures
exist [64], the majority of reports support the use of PL in
ASC culture. PL-based cultures are also currently being used
in clinical trials [65].

3.3. Serum-Free Cultures. Completely serum component-free
culture conditions for ASCs have been investigated, but only
a few studies exist in which cell isolation, expansion, and dif-
ferentiation were performed using only XF/SF reagents. Our
group was the first to publish a successful and comprehensive
set of XF/SF isolation, expansion, and multilineage differenti-
ation protocols for ASCs [15]. Moreover, encouraging results
on ASC culture in chemically defined SF media have been
published by several other researchers [21, 24–26, 66]. In
the majority of XF/SF studies, a shorter population doubling
time with stable morphology and immunophenotype was
reported, compared to traditional FBS cultures. In addition,
floating sphere culture [25], a microcarrier-based bioreac-
tor culture system [67], and successful cryopreservation
[15, 68] of ASCs in XF/SF conditions have all been
reported, supporting the potential applicability of XF/SF
culturing conditions.

In conclusion, ASCs in XF/SF culture media show higher
proliferation rates compared to those in traditional serum-
containing medium, which is essential for clinical cell expan-
sion protocols. However, the proliferation capacity of ASCs
may diminish more rapidly in XF/SF conditions compared
to serum-containing medium [15]. Thus, population dou-
bling studies at high passages would be justified to investigate
the potential early senescence of ASCs in XF/SF media.
Although XF/SF media contain patent-protected cocktails

of growth factors, additional coating of cell culture plastic is
typically used in XF/SF culture [66, 69]. Consequently, cell
attachment and differentiation under XF/SF cultures may
be insufficient without additional growth factors or coatings.
Moreover, the chosen culture condition may direct cell
differentiation down a desired lineage [20], and thus,
the choice of a culture condition may also depend on
the downstream application of the cells [70]. Serum-free
alternatives are attractive both scientifically and clinically,
but the bulk of experimental data relates to studies per-
formed in serum-based cultures, which—without further
investigation—hinders the safety assessment of XF/SF media
for regulatory authorities. Thus, XF/SF cultures are currently
mainly used for research purposes.

The development of defined XF and/or SF culture
protocols is still important for clinical translation of ASCs.
Commercially available SF media have been introduced for
MSC expansion, of which perhaps the most used media are
the STEMPRO® MSC SFM [15, 57, 71], from Life Technolo-
gies, and MesenCult™-XF medium [24, 72], from Stem Cell™
Technologies. XF and/or SF culture media are typically
offered together with a coating supplement to support XF/SF
cell attachment. However, it is important to point out that
companies often protect the XF/SF media composition by
intellectual property rights, and thus, the detailed composi-
tion remains unknown to researchers. Therefore, if manufac-
ture of a certain medium ceases, researchers may have to
repeat several steps of product development in order to
ensure that the product still has the same properties. This
can be a time-consuming and costly process, bringing
additional challenges for clinical translation of ASCs.

4. Preclinical Characterisation and Allogeneic
Use of ASCs

This chapter discusses the strengths and weaknesses of using
allogenic ASCs in clinical therapies and will demonstrate the
potential of ASCs for immunomodulatory therapies. More-
over, the importance of using appropriate in vivo models
and bridging the gap from cell culture to clinic is discussed.

4.1. Allogeneic Use of ASCs. For practical purposes, cells
should be available as an off-the-shelf product immediately
upon demand at the point of care [73]. For example, for the
treatment of acute ischemic stroke, ASC administration
should be performed within the first two weeks of stroke
[74]. Generating a therapeutically effective cell dose requires
an extended cell expansion phase that is not suitable for the
treatment of acute conditions [75]. Moreover, different cell
donors have significant variations in the composition of their
secretomes and the immunomodulatory capacity of their
cells, which may lead to highly variable clinical outcomes.

By using allogeneic ASCs, several or even hundreds of
patients could be treated using only one or several cell
donors, and optimal cell characteristics could be selected
for specific applications. Thus, the use of allogeneic ASCs
may be more suitable for clinical demands and represents a
step towards commercialisation. Furthermore, the possibility
of pooling several donors is an advantage with allogeneic
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cells. In order to avoid donor-to-donor heterogeneity, pooled
MSCs of eight allogeneic donors were used to treat acute
graft-versus-host disease, with excellent clinical outcomes
[76]. It was demonstrated that a significantly stronger sup-
pressive capacity can be exerted using pooled bone marrow
MSCs (BM-MSCs) than using MSCs from the same donors
individually [76].

Adipose stem cells are suitable candidates for allogeneic
cell therapies due to their low immunogenic profile, which
is demonstrated by low expression of major histocompatibil-
ity complex (MHC) class II molecules, and T and B cell
costimulatory molecules CD80, CD86, and CD40 in vitro
[3, 4]. When ASCs are used as stimulator cells in a one-way
mixed lymphocyte reaction (MLR) assay, ASCs do not
stimulate a proliferative response in allogeneic T cells
in vitro [3, 4, 8, 77]. McIntosh and coworkers demonstrated
that the immunogenicity of ASCs decreases with cell pas-
saging, and SVF may remain more immunogenic compared
to cells at higher passages [3]. This is probably owing to a
more homogenous cell population after immune cells are
removed through passaging.

4.2. Critical Aspects Related to Allogeneic Use of ASCs.
Although ASCs have low immunogenicity in vitro, it has
been reported that they do elicit a humoral and cellular
immune response in vivo and thus should not be considered
to be fully immune privileged [75]. It is critical to understand
that expanded MSCs may not express MHC II in vitro, but
the expression is likely activated in vivo at sites of inflamma-
tion [78–80]. Moreover, MSCs express Toll-like receptors
(TLR) 1-6 [79], of which TLRs 2-4 are upregulated under
inflammatory conditions. TLR activation in MSCs may affect
their function and modify their efficacy and survival in vivo.
Thus, the severity of rejection of allogeneic ASCs is strongly
dependent on context and dictated by a balance between
cells’ expressions of immunogenic and immunosuppressive
factors [75]. If ASCs express more immunogenic factors, they
may function much like antigen-presenting cells and be
able to promote inflammation in vivo [75, 81]. In in vitro
assays, such as MLR, the immunosuppressive properties of
ASCs dominate, because the concentration of ASCs is high
enough to strongly influence the microenvironment within
the cell culture.

Furthermore, ASC differentiation may change the immu-
nogenic profile of the cells, and expression of HLA I and HLA
II may significantly increase upon differentiation [82, 83].
Niemeyer and coworkers have reported that undifferentiated
ASCs in vivo may be excellent candidates for allogeneic
cell therapies but that osteogenic-induced cells might be
eliminated by the host’s immune system [84]. However,
contradictory results have also been published, showing
that osteogenic induction or osteoinductive biomaterials
do not modify the low HLA expression of ASCs [4, 85].
Additionally, we have demonstrated, using an MLR assay,
that the culturing condition applied may have an effect on
the immunogenic properties of ASCs [86]. In this study,
ASCs cultured in FBS medium had the lowest immunoge-
nicity compared with ASCs expanded in HS and XF/SF
conditions, but differences were minor. It could be speculated

that cells cultured in FBS medium are unable to trigger full
immune responses because of the origin of bovine serum,
which is harvested from the blood of bovine foetuses with
immature immune systems [87].

When autologous and allogenic MSCs derived from
BM-MSCs were compared in a clinical trial for their efficacy
to treat ischemic cardiomyopathy, an improved efficacy was
observed using autologous cells, although no significant
donor-specific immune reactions were observed [83]. By
contrast, a clinical trial on osteoarthritis and degenerative
disc disease has shown that donor-recipient HLA matching
of MSCs does not enhance the efficacy of the treatment
[82]. Thus, it could be speculated that allogenic MSCs seem
to stimulate innate immune responses to some extent, and
a certain degree of HLA II matching could be appropriate
when using allogeneic ASCs.

The possibility for anti-HLA immunisation is especially
critical if subsequent organ transplantation is required. The
strengths and weaknesses of allogeneic ASC-based treat-
ments should be critically evaluated, case by case. It could
be speculated that allogeneic ASC-based therapy should
primarily be used for complicated, time-sensitive and life-
threatening conditions such as stroke, whereas non-critical
conditions may be treated using autologous cells.

In addition to risks related to HLA immunisation, all
stromal cells—including ASCs—are known to express tissue
factors on their surface, which may activate the coagulation
cascade in vivo, and elicit an instant blood-mediated inflam-
matory reaction (IBMIR) and thromboembolic events after
systemic infusion [88]. This may compromise the survival
and function of systemically infused ASCs. Ex vivo expanded
MSCs trigger the IBMIR, both in vitro and in vivo, and the
reaction is dose-dependent and increases with prolonged
expansion [88, 89]. It was noticed that a higher cell number
also significantly increased clot formation, partially depen-
dent on coagulation factor VII [88]. Nevertheless, the low
doses of low-passage MSCs that are typically used in cell
therapies elicit only minor systemic effects, but higher cell
doses and higher passage cells should be handled with care
[89]. The hemocompatibility of ASCs should be carefully
examined for patient safety.

In conclusion, allogeneic ASC-based therapy faces signif-
icant challenges, but autologous ASC-based therapy is not
without problems [75]. The choice between allogeneic
versus autologous cells should always be made case by
case, considering all potential risks and benefits for each
individual patient.

4.3. Potential of ASCs for Immunomodulatory Therapies. The
immunosuppressive capacities of ASCs are now well recog-
nised within the scientific community [3, 5–9, 86]. In order
to achieve effective cell therapies with focused therapeutic
effects, it is important to understand the immunosuppressive
mechanisms of ASCs at molecular and intercellular levels.
Suppression is primarily mediated through a paracrine effect,
by modulating the cytokine milieu and lymphocyte func-
tions, e.g., activating regulatory T cells [5, 9, 90]. Immuno-
modulatory effects may be mediated through macrophage
polarisation from proinflammatory M1 phenotype into
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anti-inflammatory M2 phenotype [91–93]. MSC-mediated
immunosuppression includes both soluble factors and direct
cell-cell contacts, and additionally, the local cellular environ-
ment influences the immune plasticity of MSCs [94–97]. In
response to changes in a local cellular environment, immu-
nomodulatory cells, such as regulatory T cells, are activated
by anti-inflammatory molecules produced by ASCs [98, 99].

A potential limitation of ASC therapy is that ASCs do not
persist following infusion, as the majority of cells have been
reported to die within 48 h of systemic infusion [75]. It is still
hypothesised that ASCs produce factors that modify the
tissue microenvironment, eventually leading to intrinsic
recovery, although cells may disappear [99]. Thus, the
observed therapeutic effect of ASCs may be due to a hit-
and-run mechanism mediated by the production of exo-
somes or trophic and immunomodulatory factors during
the initial days following ASC injection [75, 100]. The thera-
peutic benefit of ASCs may be reached partly through repro-
gramming of the immune system using apoptotic cells [75].
Extending the persistence of ASCs after injection, by using
immunosuppressive drugs or directly modifying their immu-
nogenicity, is a potential approach to improving their thera-
peutic effect [75].

In conclusion, ASCs cannot be considered truly immune
privileged; rather, there is a balance between expressions of
immunogenic and immunosuppressive factors [75]. It has
been suggested that—similar to macrophages—MSCs can

be polarised into more pro- (MSC1) or anti-inflammatory
(MSC2) directions [101, 102]. The final determination of
immunomodulatory responses is likely elicited through a
combined action of direct cell-cell contacts and secretion of
soluble factors, following modulation of the local inflamma-
tory environment. Signalling proteins may play distinct roles,
depending on the specific cellular microenvironment. Some
of the key functions during MSC-mediated immunomodula-
tion of important signalling proteins is listed in Table 1. The
immunosuppressive capacity of ASCs has been discussed in
more detail in previous publications [103–105].

4.4. Not Lost in Translation: In Vivo Studies for Allogeneic
ASC-Based Therapies. ASC characteristics observed on cell
culture plastic may not fully correlate with those observed
in the patient. Clinical phase study attrition rates have
remained high, the majority of failures being due to lack of
efficacy (56%) or due to safety issues (28%) [143]. Thus,
optimisation of in vivo models is critical for the successful
development of cellular therapies [144]. However, it is
challenging to evaluate the functionality of allogenic human
ASCs using in vivo models, due to differences between
human and animal species [145]. For example, human ASCs
have a great potential for treating inflammatory diseases, but
it has been shown that genomic responses in mouse models
poorly mimic human inflammatory diseases [145]. Human
ASCs that are transplanted into an animal are not only

Table 1: Signalling proteins and some of their functions in MSC-mediated immunomodulation.

Signalling protein Abbreviation Function

Interferon γ IFN-γ
Stimulates MSCs to elicit immunosuppressive factors [106]; immunomodulatory functions [85, 107];
immunosuppression [90, 96]; induces adhesion molecule expression [95, 96]; regulates chemokine

expression [108]

Tumour necrosis
factor α

TNF-α
Immunomodulatory functions [85, 107]; immunosuppression [90, 96]; regulates chemokine

expression [108]

Indoleamine
2,3-deoxygenase

IDO
Immunosuppression [90, 109–111]; inhibits T cell proliferation [112]; promotes type II macrophage

differentiation [113]; impairs NK cell activity [114]

Prostaglandin E2 PGE2
Immunosuppression [5, 110, 115, 116]; induces Foxp3+ Tregs [117]; inhibits NK cell function

[116, 118]; induces type M2 macrophages [92]; inhibits dendritic cell maturation [119]

Galectin-1 Gal-1
Immunosuppression [120–122]; inhibits T cell proliferation [123]; modulates release of cytokines,

such as TNF-α, IFN-γ, IL-2, and IL-10 [120]

Galectin-3 Gal-3 Immunosuppression [121, 122, 124]; induces T cell proliferation [124]

Transforming
growth factor β1

TGF-β1
Multiple actions in innate and adaptive immunity, important factor in maintaining immune

tolerance [125]; immunosuppression, suppresses T cells and several cytokines, such as TNF-α and
IFN-γ [110, 126–128]; induces T regs [129]; inhibits NK cell activation and function [116]

Interleukin 6 IL-6
Supports or suppresses inflammation, depending on context [130]; prevents monocyte differentiation

toward antigen-presenting cells [131]; inhibits T cell proliferation [132]; inhibits dendritic cell
differentiation [133]; anti-inflammatory effects mediated through inhibition of TNF-α [134]

Interleukin 10 IL-10 Inhibits T cell responses, decreases Th17 cell differentiation [135, 136]

Interleukin 8 CXCL8/IL-8
Induces extracellular matrix degradation [137]; promotes angiogenesis [138]; regulates neutrophil

and mast cell functions [139]

C-C chemokine
ligands 2 and 5

CCL2/MCP-1
CCL5/RANTES

Promote T cell chemotaxis, attract immune cell or MSC migration to sites of injury or inflammation
[137]; induce extracellular matrix degradation [137]; regulate monocyte and effector and memory
T cell functions [139]; CCL2 regulates monocyte mobilisation and macrophage infiltration [140];

CCL5 has T cell co-stimulatory functions [141]

CXC chemokine
ligand 10

CXCL10/IP-10
Induces MSC migration to inflammation sites [108, 142]; regulates dendritic cells and effector,

memory, and regulatory T cell functions [139]
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allogenic but also of xenogeneic origin. To overcome this
problem, allogeneic cells isolated from the same species could
be utilised but may not give a reliable result of human alloge-
neic cell function. This is an inherent issue faced in all in vivo
studies utilising human cells. Nowadays, there are various
tissue models available for ex vivo testing, as well as body-
on-chip approaches to overcome this problem [146].
Although these models are welcome alternatives, they still
are at an early developmental stage and cannot replace ani-
mal studies completely, because systemic effects must be
studied in vivo. In conclusion, the definite functionality of
human allogeneic ASCs could only be tested in controlled
clinical trials.

Several published animal studies have shown evidence of
the safety and efficacy of human ASCs, as recently reviewed
[32]. Human ASCs have been successfully tested in vivo for
the treatment of acute myocardial infarction [147–149],
pulmonary diseases [150, 151], and enhanced recovery after
stroke [152–154]. Human ASCs are known to secrete several
angiogenic [155] and neurogenic factors [156] and to pro-
mote vascular maturation [157]. Promising results have also
been achieved in various in vivo stroke models using different
delivery routes [158, 159]. Moreover, the safety and efficacy
of human ASCs have been demonstrated in animal models
for the treatment of multiple sclerosis [160, 161], glioblas-
toma [162, 163], spinal fusion [164], chronic liver failure
[165, 166], and acute kidney injuries [167, 168]. Further-
more, human ASCs have been successfully used in bone
regeneration [73, 169, 170] and for the treatment of acute
anal sphincter injuries [171]. The capacity of ASCs to cure
inflammatory bowel diseases has been proven, both in vivo
[10] and in phase III clinical trials. However, safety and
efficacy studies should still be performed in controlled
clinical trials, in order to ensure the clinical potential of
ASCs for the above-mentioned conditions.

Optimisation of in vivo models is critical in order to
bridge the gap between in vitro research and clinical applica-
tions [144], but limitations are associated with many of the
models used and the challenges of finding an appropriate
in vivo model that could be reliably translated to human
subjects. Moreover, different disease applications require
different in vivo models. Interpretation of the results may
be challenging due to differences between human and animal
species [145, 172, 173]. For instance, transcriptional response
in mouse models poorly reflects human diseases, due to
evolutionary differences between the species, the complexity
of the human disease, and the inbred nature of mouse
models [145]. In addition, differences in cellular composition
between mouse and human tissues may contribute to varia-
tion between molecular responses. Furthermore, a different
temporal recovery from diseases between patients and mouse
models complicates the interpretation of data.

Thus, multiple factors must be considered when design-
ing in vivo studies and interpreting data, including the
following: (1) the species and strain used (such as mouse,
rat, dog, or pig); (2) the status of the immune system
(immunocompetent versus immunocompromised); (3) the
immunological characteristics of the donor cells (autologous/
syngeneic, allogeneic, and xenogeneic); (4) the method, site

(intramuscular injection, subcutaneous transplantation),
and timing of cell delivery; and (5) the imaging and quantita-
tive methods applied (MRI, nuclear imaging, and histology)
[174]. The aim is to provide safe, effective, and reproducible
treatments to the patient. Well-designed and standardised
clinical trials are necessary to verify the safety and efficacy
of ASCs for allogeneic stem cell treatments and immune
modulating therapies. Clinical trials for ASCs are described
below in more detail.

5. Characterisation and Validation of ASCs for
Clinical Translation

Adipose stem cell research takes place in a dynamic, rapidly
evolving field that requires further standardisation. Thus,
guidance in support of safety and biologic clarifications for
clinical practices is provided by the International Federation
of Adipose Therapeutics (IFATS) and International Society
for Cellular Therapy (ISCT) [14]. This chapter introduces
the guidelines for immunophenotypic characterisation using
cell surface markers, discusses the safety aspects of ASC ther-
apies, and describes the relevance of robust potency assays.

5.1. Surface Marker Expression of ASCs. Due to the heteroge-
neous nature of ASCs, cells should be characterised each time
they are used in clinical applications. Phenotypic validation is
part of the safety evaluation that ensures that the cell popula-
tion gained through isolation and expansion steps still
expresses the characteristic MSC phenotype. The immuno-
phenotypic analysis should be performed after cell isolation
and then be repeated after the expansion phase. The results
are used as a criterion for releasing cells for clinical use.

No single markers are available for the recognition of
ASCs, but instead, the use of a multicolour identification
panel of several cell surface markers is recommended.
Additionally, a viability marker is also suggested to eliminate
dead or apoptotic cells induced by the isolation procedures.
According to recommendations by the IFATS and ISCT,
ASCs should be negative (<2%) for hematopoietic markers
such as CD14 or CD11b, CD45, CD86, and HLA-DR and
positive (>90%) for stromal markers such as CD13, CD73,
CD90, and CD105. To distinguish ASCs from BM-MSCs,
the use of two additional markers has been proposed, i.e.,
CD36 (fatty acid translocase) and CD106 (VCAM-1). In
contrast to BM-MSCs, ASCs do not express CD106 but are
moderately positive for CD36 [78, 175, 176]. Moreover, ASCs
have moderate expression of CD34, but the level is greatly
dependent on the in vitro culture period [177]. It is generally
expressed during the early phase of culture, but its expression
decreases with continued cell division [176, 177]. Multiple
classes of CD34 antibodies exist that recognise unique immu-
nogens, and the choice of CD34 antibody can substantially
influence the signal intensity detected on a given cell popula-
tion. Moreover, the histological analysis of adipose tissue
has revealed that CD34-positive cells are primarily associated
with vascular structures [178]. Although small numbers of
these cells are probably CD31-positive capillary endothelial
cells, a CD34+/CD31- cell population of pericytic origin
may be derived from adipose tissue [144].
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Furthermore, additional markers can further strengthen
the characterisation. Bourin and coworkers have sug-
gested that CD10, CD26 (DPPIV), CD49d (VLA4), CD49e
(VLA5), and CD146 (MCAM) can be included as additional
positive markers, but with variable expression, depending
on donor or culture passage. In contrast, low expression
(<2%) levels of additional negative markers—CD3, CD11b
(Mac-1), CD49f (VLA6), and podocalyxin-like protein—can
be observed. Nevertheless, when ASCs are identified using
basic surface antigens, it is likely that ASC populations will
display heterogeneity for additional surface antigens [78].
Guidelines for immunophenotypic characterisation of ASCs
and SVF are summarised in Table 2.

Of note, these characterisation criteria were originally
determined for ASCs cultured in traditional FBS culture
medium, but the IFATS and ISCT do not take a stand on
the effect of serum conditions on cell surface marker expres-
sion. Overall, ASC phenotypes seem to be highly similar
between cells cultured in standard FBS- or HS-based media
versus XF/SF conditions [15, 24]. Mesenchymal stromal
markers (CD13, CD73, CD90, and CD105) are strongly
expressed in both XF/SF and serum-based conditions,
but some minor variations—either increases or decreases,
depending on the reference—have been reported with
regard to the expression of CD34, CD45, and CD54 in
XF/SF conditions [15, 24].

Because ASCs are heterogeneous, it could be speculated
that selecting a cell population based on cell surface marker
expression may be a useful approach for a specific clinical
application, e.g., selecting cells based on CXCR4 or VEGF,
to enhance homing or angiogenesis, respectively. It has been
demonstrated that homing into an ischemic area was
significantly improved among CXCR4-overexpressing ASCs
[179] and that VEGF-expressing ASCs had enhanced
capacity for blood vessel formation [180]. Thus, phenotypic
validation could be used as a method to select a suitable cell
population for a specific clinical application. Although this
is an attractive approach for achieving an improved clinical
outcome, the regulatory authorities will consider this kind
of phenotypic validation as an extra manipulation of a cell
product, which will hinder safety assessment.

5.2. Safety Aspects of ASC Therapies. ASC-based therapies
have shown potential for the repair, replacement, or

regeneration of damaged cells and tissues. However, a major
challenge in cell therapies is ensuring efficacy and safety.
During clinical therapies, cells are often expanded in vitro
outside their natural environment, which may increase the
risk for genomic instability or altered differentiation poten-
tial. Moreover, there may be an increased risk of significant
adverse effects, e.g., tumours and cell growth in ectopic
tissues, or severe immune reactions. Genomic characterisa-
tion is part of the safety evaluation for ensuring that a cell
population that is obtained through isolation and expansion
is not contaminated with other cell types and still has a stable
genome. Chromosomal tests, including DNA fingerprinting
and genomic integrity tests, should be performed after cell
isolation, then repeated after the in vitro expansion phase,
and the results should be used as a release criterion for
clinical use.

Cancer treatments generally rely on tumour destruction
techniques that may lead to major functional defects in
surrounding tissues [181]. This posttherapy damage requires
the development of safe regenerative therapies. For breast
cancer patients, an autologous fat graft comprising SVF cells
is often used as a filler for breast reconstruction to correct
possible irregularities after mastectomy [182]. In addition
to formal breast reconstruction, ASCs and BM-MSCs favour
tissue-healing processes and promote local tissue repair by
modulation of the tissue microenvironment [183]. However,
interactions between MSCs and cancer cells in modulation of
the tumour microenvironment are critical for safety matters.
Many components that are required for successful regenera-
tive therapy, such as revascularisation, immunosuppression,
and cellular homing, are also critical for tumour progression
and metastasis [184, 185]. MSCs are known to secrete
cytokines, chemokines, and growth factors that are essen-
tial for the development and maintenance of an inflamma-
tory state, thus inducing tissue regeneration after injury
[182, 183, 186]. However, these inflammatory responses
and paracrine signals stimulated by MSCs may create an
optimal microenvironment for cancer cells, which may be
induced for continuous proliferation and tumour neoangio-
genesis [185, 187–189]. However, it should be highlighted
that ASCs do not trigger malignant transformation or initi-
ate cancer. Consequently, ASCs are not inherently tumouri-
genic, but they may provoke a tumourigenic potential in
the presence of certain c-Met-expressing breast cancer cells

Table 2: Guidelines for immunophenotypic characterisation of adipose tissue-derived cells, modified from Bourin et al.’s study [14].

Feature Assay Cells of SVF ASCs

Immuno-phenotype Flow cytometry

Primary stable positive markers for
stromal cells: CD13, CD29, CD44, CD73, CD90

(>40%), CD34 (<20%)
Primary negative markers for stromal cells:

CD31 (<20%), CD45 (<50%)

Primary stable positive markers: CD13, CD29,
CD44, CD73, CD90, CD105 (>80% in ASC)

Primary unstable positive marker:
CD34 (present at variable levels)

Primary negative markers: CD31,
CD45, CD235a (<2%)

Secondary other positive markers:
CD10, CD26, CD36, CD49d, CD49e

Secondary other low or negative markers:
CD3, CD11b, CD49f, CD106, PODXL

8 Stem Cells International



[182]. This model was presented by Eterno and coworkers,
suggesting that c-Met could be used as a marker to pre-
dict the risk of cancer recurrence when applying ASCs
in cancer patients for regenerative and reconstructive
purposes.

In conclusion, the effects of MSCs on tumour cells are
multiple and may depend on the state of the tumour cell,
the properties of the MSC populations used, and interactions
with other cell types, such as tumour-infiltrating immune
cells [185]. Several published clinical studies have shown that
ASCs do not increase the risk of cancer initiation or pro-
gression compared with the control group [190–192], but
additional studies are still needed to clarify the crosstalk
between aggressive cancer cells and MSCs. A registry of
patients receiving ASC treatments would be helpful to
monitor long-term outcomes in the context of cancer.

Another important safety concern in the clinical transla-
tion of ASCs is the possibility for genomic instability of
ex vivo expanded ASCs, i.e., whether they may undergo
spontaneous transformation in vitro. However, cultured
ASCs are reported to be genomically stable in long-term
cultures after multiple cell doublings, thus supporting their
suitability for regenerative applications [193–196]. More-
over, it has been reported that G-banding analysis may
be unsuitable for the detection of low frequency chromo-
some number alterations, and to increase the rigor of the
analysis, fluorescence in situ hybridisation (FISH) analysis
should be performed for effective detection. The influence
of clinical grade human PL on the genomic stability of
ASCs has also been investigated [193], showing that ASCs
preserve their normal genotype when cultured under XF
condition. In long-term (6 months) genomic stability tests,
some minor deletions in gene-rich telomeric regions have
been observed in the early passage in the ASC subpopula-
tion, but they were spontaneously eliminated and cells
remained genomically stable [197].

Around ten years ago, it was reported that human MSCs
undergo spontaneous transformation into cancerous cells
[198, 199]. These studies were later withdrawn, as it was
shown that the cells used in the transformation studies were
cross-contaminated by cancerous cells that initially grew
slowly in the presence of human MSCs [200]. It was proved
by DNA fingerprinting and short tandem repeat analysis that
the transformed MSCs had been cross-contaminated by
human fibrosarcoma, osteosarcoma, or glioma cell lines
[200, 201]. These observations highlighted the need for
extremely rigorous cell culture procedures when utilising
primary cell cultures for therapeutic purposes. Moreover,
clinical safety and efficacy studies should be performed
before further clinical use, in order to avoid any adverse
effects connected with cell-based therapies.

5.3. Potency Assays for Evaluating ASC Functionality. A final
cell product—particularly its active substances—must be
characterised to a sufficient level that ensures that only a safe
and efficient product will be administered to a patient [202].
In addition to measuring safety and efficacy, a potency assay
is used as a tool to test the cell product’s stability and
variation between batches. These functional tests should be

performed during in vitro expansion before a cell product is
released for clinical use.

Identification of relevant and robust potency assays is not
only a regulatory requirement, but they provide a solid basis
for producing and delivering a product that is consistent,
safe, and ultimately therapeutically effective [203]. Potency
can be defined as the ability of a treatment to elicit a particular
response at a certain dose, and thus, it is a quantitative mea-
sure of a relevant biologic function based on attributes linked
to relevant biologic properties. Although ASCs derived from
different donors would have similar morphologic, immuno-
phenotypic, and differentiation characteristics, they may still
have major differences in their biologic and functional
attributes. The ISCT has recently identified three preferred
analytic methods that could be utilised as a matrix assay
approach: (1) quantitative RNA analysis of selected gene
products, (2) flow cytometry of functionally relevant surface
markers, and (3) protein-based assay of secretome [204].

According to the ISCT, there is no single test that can
adequately measure product attributes that predict clinical
efficacy. Considering this limitation, the potency assay
should measure the product’s mechanism of action, i.e.,
relevant therapeutic activity or intended biological effect.
However, there are challenges connected with this approach.
The MOA of a cell product may be complex and incom-
pletely characterised, or it may have multiple active ingredi-
ents and biological activities that are difficult to specify at
an early phase of a clinical study. For example, an MOA
may partly rely on differentiation capacity, but simulta-
neously, paracrine factors may have a role. A cell product
may also have plasticity or limited stability that will compli-
cate the development of a robust potency assay. For these
reasons, the above-mentioned analytic methods, referred to
as the matrix assay approach, would be recommended and
more straightforward to perform.

In order to evaluate the MOA of ASCs for immunomod-
ulatory therapies, the use of functional in vitro assays with
responder immune cells would be one option. The MOA
could be evaluated using allogeneic human peripheral blood
mononuclear cells. However, this approach also has limita-
tions. Although activated T cells provide an opportunity to
measure proliferation inhibition and cytokine production
in vitro, it is not known whether this assay accurately reflects
the MOA of ASCs in vivo [204]. ASCs affect the cell phys-
iology of monocytes, B cells, natural killer cells, and gran-
ulocytes, which are not studied in a classic MLR assay
performed with solely T cells as responders. Moreover, rela-
tive to their homeostatic resting state, ASCs undergo polari-
sation toward immunosuppressive phenotype on exposure
to various proinflammatory cytokines, such as interferon-
(IFN-) γ, tumour necrosis factor α, IL-1α, or IL-1β [204].
This immune plasticity is visible using in vitro licensing
that better recapitulates what likely happens in vivo when
ASCs are transfused into patients. Thus, comparing results
with both resting and licensed ASCs would be the most
informative when aiming for clinical use [204]. For exam-
ple, licensing with IFN-γ for 12–48 h is adequate to obtain
cell activation that allows for their analysis as part of an
assay matrix.
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Overall, appropriate potency assays for MSCs are essen-
tial tools for verifying the comparability of MSC products,
but their development remains challenging. Quantitative
data on a cellular product and how it exerts specific effects
at a certain dosage are important information in the progress
of developing it into a cell-based therapy [203].

6. Clinical Studies for Evaluation of
ASC Potential

In September 2018, a total of 282 clinical trials evaluating
the potential of ASCs for treating different types of medi-
cal disorders were found at http://www.clinicaltrials.gov
(Figure 2). However, all of them did not use expanded ASCs;
SVF was used in at least 22 trials (8%). Some of these 22 trials
also used the term ASCs, and thus, the terminology used may
be misleading in some cases. Only 13 trials (5%) progressed
to phase III or IV (Figure 2). A commercial sponsor was
involved in 116 trials (41%), whereas the remainder of trials
were conducted in academic or hospital settings. The two
most common cell therapy applications of ASCs were the
treatment of joint disorders, such as osteoarthritis, as well
as treatments of gastrointestinal diseases, especially complex
fistulas that are often associated with Crohn’s disease. Con-
sidering the chronic inflammatory status that is connected
with the above-mentioned diseases, the MOA of ASC thera-
pies seems to be immunomodulatory and paracrine effects.
Furthermore, ASCs have been widely applied in clinical trials
concerning skin and connective tissue diseases, heart and
blood diseases, nervous system diseases, and nutritional and
metabolic diseases. Many of the trials focussed on multiple
disease applications.

6.1. Good Manufacturing Practice Regulations. GMP facilities
that perform advanced cell manipulation must be well
controlled, in order to ensure safe and efficient cell therapies
for patients. In Europe, the Committee for Advanced

Therapies (CAT) at the EMA regulates the use of ASC-
based tissue engineering products that are defined as
advanced therapy medicinal products (ATMPs) [205].
ATMPs are medicines for human use based on gene therapy,
somatic-cell therapy, or tissue engineering [206] and are
often at the forefront of innovation, offering potential treat-
ment opportunities for diseases that currently have limited
or no effective therapeutic options [205]. Regulations on
ATMPs provide a consistent legal system covering the
collection, testing, processing, storage, and distribution of
human tissues, cells, and blood, as well as the manufactur-
ing of ATMPs made from human materials. EMA regula-
tions are similar to the regulatory framework set up by
the Food and Drug Administration (FDA) in the United
States [207].

Both FDA and EMA implement a risk-based approach to
regulation and classify procedures according to the degree of
manipulation involved and the risk of adverse processing-
related events [205, 207]. A risk-based approach focuses on
three general issues: limiting the risk of transmission of
disease from donors to recipients, establishing manufactur-
ing practices that minimise the risk of contamination, and
requiring an appropriate demonstration of safety and effec-
tiveness. Minimal manipulation can be performed using
good tissue practices (GTPs), which is a less-defined standard
used mostly in industry. Processes classified as substantial
manipulation require a higher degree of process control,
designated as GMPs [205, 208, 209]. The term “substantial
manipulation” denotes that the biological characteristics,
functions, or properties relevant for the therapeutic effect
have been altered [208]. This includes, for example, ex vivo
expansion, activation or combination with nontissue compo-
nents, or use in an application other than that of the tissue’s
normal function. The current regulatory landscape considers
ASC isolation from adipose tissue alone to be substantial
manipulation, hindering the use of freshly isolated SVFs
without GMP.

Clinical trials studying in ASCs in September 2018
Digestive system diseases

Muscle, bone, and cartilage
Skin and connective tissue

Heart and blood diseases
Nervous system diseases

Metabolic diseases
Symptoms and general pathology

Gland and hormone related
Wounds and injuries

Behaviors and mental disorders
Urinary tract, sexual organs

Immune system diseases
Respiratory tract

Cancers and other neoplasms
Diseases and abnormalities

Blood and lymph conditions
Mouth and tooth diseases

Bacterial and fungal diseases
Eye diseases

Viral diseases
Substance related disorders

Ear, nose, and throat diseases
0 100 200

Number of clinical trials for specific medical disorder

200

100

0
Phase 1-2 Phase 3 Phase 4

Figure 2: A total number of 282 clinical trials using ASC were ongoing on the 11th of September 2018, based on http://www.clinicaltrials.gov.
Clinical studies were categorized based on the disease or target tissue of the treatment. Only 13 out of 282 trials had progressed into phase III
or IV. A commercial sponsor was involved in 116 trials.
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7. ASC-Based Products with
Marketing Authorisation

Although clinical trials are a required step forward in clinical
translation, licensed products and those approaching mar-
keting authorisation are still few in number. Only seven
ATMPs—classified as cell therapy medicinal products or
tissue-engineered products—have received marketing autho-
risation in Europe (Table 3). Only four of these products
currently hold marketing authorisation, since developers of
three products have withdrawn their authorisation due to
commercial reasons. ATMPs often target orphan diseases,
because the development of orphan products is financially
well supported by EMA, but consequently, these products
have relatively small markets. Therefore, it may be difficult
to make a profit on ATMPs, making the incentive to continue
producing them limited. Before receiving marketing authori-
sation, a major challenge in commercialisation is the
manufacturing and quality assurance of cell-based products
[202]. Demonstration of quality, safety, and efficacy of cell-
based products is extremely costly and demanding, because
it is difficult to ensure comparability between production
processes and batches [202]. In addition to safety and efficacy
demonstration, cell-based products should be cost-effective,
in order for them to be accessible to patients and for their
provision by public healthcare services to be feasible [210].

After a decade-long development, the first ASC-based
product received a marketing authorisation in the EU in
March 2018 (http://www.ema.europa.eu). Alofisel®, pro-
duced by cell therapy company TiGenix, is a medicine that
is used to treat complex anal fistulas in adults with Crohn’s
disease. This cell therapy product contains 120 million
expanded allogeneic ASCs that are applied locally as a single
injection in perianal fistula tracts [34, 211]. In a phase III
clinical trial, after one-year follow-up, the product was
found to be efficacious at inducing and maintaining fistula
closure, compared to placebo (http://www.clinicaltrials.gov,
NCT01541579). Alofisel®’s MOA has not been elucidated

in human studies, but in preclinical studies, it was shown
to have immunomodulatory and anti-inflammatory effects
at inflammation sites. These effects are mediated through
induction of indoleamine 2,3-dioxygenase, resulting in
impaired proliferation of activated lymphocytes, and reduc-
tion of inflammatory cytokines [212].

In addition to Alofisel®, TiGenix is focusing on develop-
ing and commercialising other ASC-based therapeutics
(http://www.tigenix.com). The company has a clinical stage
pipeline consisting of two ASC programmes in which the
applicability of allogeneic ASCs is being investigated in clin-
ical trials for the treatment of severe sepsis (NCT02328612;
http://www.clinicaltrials.gov) and autoimmune diseases via
intralymphatic administration (NCT01743222; http://www.
clinicaltrials.gov). ASCs offer promise for future medical
applications, but only time and further research will tell
the final outcome of these complex medicinal products.
Figure 3 summarises the different stages required for clinical
translation of ASCs.

8. The Costs of Clinical Cell Therapies

The demonstration of safety and efficacy of ASC-based ther-
apy is a costly process for the investigator; however, the costs
of cell-based therapies are high also for public health systems
worldwide. The future of cell-based therapies, including
financial issues, was recently discussed at the Lancet Com-
mission [213]. Many potential cell-based therapies will have
substantial costs when delivered to patients. These costs will
include not only hospital costs (surgeries, postoperative
treatment, and follow-up) but also the costs of cell expansion
in clean room facilities and sterility and safety testing. Com-
pared with conventional treatments, the costs of cell-based
therapies may be substantially higher. However, they may
be offset by potential savings over the longer term, by reduc-
ing the need for expensive health and social care, especially
for chronic and life-limiting illnesses such as Crohn’s disease
[213]. Cell-based therapies could improve the quality of life

Table 3: Marketing authorisation approved advanced therapy medicinal products, classified as cell therapy medicinal products or tissue-
engineered products, in Europe in October 2018.

Product name Developer Active substance Indication Approval Status

Alofisel TiGenix Ex vivo expanded human allogeneic ASCs
Perianal fistulas in
Crohn’s disease

2018 Approved

Spherox CO.DON
Spheroids of human autologous
matrix-associated chondrocytes

Cartilage defects in the knee 2017 Approved

Zalmoxis MolMed Genetically modified human allogeneic T cells
Stem cell transplantation in

high-risk blood cancer
2016 Approved

Holoclar Chiesi
Ex vivo expanded autologous corneal epithelial cells

containing stem cells
Severe limbal stem cell
deficiency in the eye

2015 Approved

Provenge Dendreon
Autologous peripheral blood mononuclear cells

activated with prostatic acid phosphatase
granulocyte-macrophage colony-stimulating factor

Metastatic prostate cancer 2013
Withdrawn
in 2015

MACI Vericel Matrix-applied autologous cultured chondrocytes Cartilage defects in the knee 2013
Withdrawn
in 2014

Chondrocelect TiGenix
Ex vivo expanded autologous cartilage cells expressing

specific marker proteins
Cartilage defects 2009

Withdrawn
in 2016
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of many patients with chronic diseases and, additionally,
could have the major impact of reducing the demand
for healthcare.

The progress of cell-based interventions is based on
decisions made by patients, healthcare professionals, and
payers. Key factors that influence such decisions include the
known risks and benefits of a cell-based treatment option,
individual preferences of patients, and treatment providers,
as well as availability and cost. It should be recognised
that—along with safety, efficacy, and accessibility—the
economic value is an important measure of the overall utility
of any therapeutic and is often a deciding factor. The cost
of treatment should not prevent patients from accessing
stem cell-based interventions for life-threatening or seri-
ously debilitating medical conditions. Safe and efficacious
therapeutics should be accessible to any patient in need,
irrespective of financial status.

9. The ASC Patent Landscape

Until recently, stem cell research conducted within academic
settings has paid no or little attention to patent questions.
However, academic researchers are increasingly focussing
on patenting matters as universities become more involved
in commercially sponsored research projects and projects
heading for clinical applications [214]. In the field of stem cell
research, patents may cover, for example, instruments for
cell isolation or preparation, optimised culture conditions
with defined growth factors, proteins or small molecules,
or methods for expansion and differentiation or dedifferenti-
ation of cells. Many of these methods are separately patented
technologies that have few alternatives and therefore may be
protected by intellectual property rights. Celution® system is
an example of a patented technology that has been developed
for clinical use to facilitate automated processing of ASCs in a
functionally closed system [215].

To provide an overview of the latest inventions in the
field, investigation of patent applications is a fast and useful
method for gaining access to the latest data. In this review,
a patent search was performed using the Espacenet World-
wide database (http://www.epo.org) that covers patents and
patent applications from over 90 countries (conducted on
the 20th of September 2018). When a patent search was
conducted using the keywords “adipose stem cell” in the
patent title or abstract, 863 hits were found, whereas the
keywords “adipose stromal cell” produced 193 hits. With a
more detailed combination of keywords, “adipose stem cell
clinical” and “adipose stromal cell clinical” returned 46 and
10 hits, respectively. These patents included protocols for
isolation, expansion, cryopreservation, and differentiation
of ASCs for clinical use. Patents for reprogramming ASCs
into iPSCs were also found, as well as clinical application
methods for treating fistulas, skin wounds, myocardial
infarction, bone defects, or dental injuries using ASCs. The
search results are summarised in Table 4.

The technical content of the patent landscape is highly
complex. As the number of patent applications increases in
the field, access to scientific knowledge is potentially limited.
Open access publishing is highly recommended nowadays,
and access to data and materials is critical for the progress
of stem cell science and cell therapies. A number of factors
currently limit the sharing of data, including ethical regula-
tions concerning the use of human cell lines, the complexity
of the landscape of intellectual property rights, and the
potential competitive spirit of individual scientists [216].
Although these potential obstacles should be kept in mind
when patenting, at the same time, it is justifiable to offer
protection to researchers who invest in the development of
products and processes that have significant medical benefits.

The original patent that covers ASCs was published in
2004 by Katz and coworkers [217]. This particular patent
was broad and covered the cells both alone and within
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Figure 3: Required steps during clinical translation of ASCs.
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biologically compatible materials, as well as the methods used
to generate differentiated tissues and structures, both in vivo
and in vitro. Additionally, Katz et al.’s patent included the
secreted hormones and conditioned media of ASC cultures,
as well as the production of an extracellular matrix lattice
from adipose tissue. However, due to prior art in the aca-
demic literature, Katz et al.’s patent claims were challenged
and overturned in the US patent court. Because this particu-
lar overturned patent is a prior art for all subsequent patents
on the use of ASCs, the current patent holders may not be
able to withhold licensing of ASC-derived methods or
restrain freedom to operate in the future. The above-
mentioned detail may change the patent landscape for SVF
and ASCs in the coming years.

10. Future Perspectives

In conclusion, ASCs represent an alternative treatment for
a wide range of human diseases that have limited or no
effective therapeutic options. These cells are especially effec-
tive for treating inflammatory or autoimmune diseases.
ASCs have been shown to home in on the injured tissues,
and the therapeutic efficacy is primarily mediated through
paracrine effects.

The clinical translation of ASCs is a time-consuming
process, and the cells are still not in routine clinical use,
although the first ASC-based product has received marketing
authorisation in the EU. An increasing number of in vitro
and in vivo reports, as well as clinical trials, study the
applicability of ASCs, but some critical issues remain and
should be resolved prior to clinical development. As
highlighted previously in this review, the use of allogeneic

cells would be recommended for two reasons. ASC character-
istics are strongly donor-dependent, requiring precharacteri-
sation of the cell population. In addition, acute conditions
such as stroke require immediate cell therapy, where time-
consuming cell isolation, characterisation, and expansion
steps are not an option. Moreover, there is still a need for
better methods to characterise and validate the cells, as a
CD marker profile may not sufficiently identify these com-
plex entities. The development of adequate potency assays
will help in the process, although it may be difficult to iden-
tify these MOA-based assays for heterogeneous populations
of ASCs.

Both SVF and ASCs show functionality in cell-based
therapies, but selecting between these two cell populations
should be based on the particular disease application. Atten-
tion should be paid also to terminology and distinguishing
ASCs, which are relatively homogeneous, from SVF, which
contain several cell populations. Moreover, the clinical out-
come of different disease applications depends on the appro-
priate administration methods, dose, and timing. In addition
to safety and efficacy demonstration, it is relevant to highlight
that cell-based products should be made cost-effective, in
order for them to be accessible to patients. The future
currently looks bright for ASC-based therapies and patients
potentially receiving these novel treatments. Ultimately,
however, ongoing and upcoming controlled clinical trials will
determine the outcome of ASC-based therapies.
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Table 4: Patents relating to adipose stromal/stem cells.

Keywords in title/abstract Number of hits Patent

Adipose stem cell; clinical

15 Isolation and expansion or cryopreservation of ASCs

5 Differentiation induction media for ASCs

1 Media for reprogramming ASCs into iPSCs

11
Clinical application methods for treating: (1) fistulas; (2) skin wounds; (3) atopic dermatitis;
(4) soft tissue injuries; (5) erectile dysfunction; (6) dental injuries; (7) hair loss, using ASCs

3 Conditioned medium for reducing inflammation

1 Method for propagating serum-derived hepatitis C virus using ASCs

2
Scaffolds for ASCs: (1) myocyte-mixed sheet scaffold for clinical applications;

(2) porous scaffold for bone tissue engineering applications

1 Culture system for bone tissue engineering

2 Method for promoting ASC adhesion, migration, homing, and angiogenesis

3 Extracellular matrix or acellular matrix for clinical applications

1 Method for constructing tissue-engineered blood vessel

2 Ex vivo model for (1) vascular malformation and (2) myocardium infarction

Adipose stromal cell; clinical

4 Isolation, expansion, or cryopreservation of ASCs for clinical use

2 Differentiation induction media for ASCs

4
Clinical application methods for treating: (1) fistulas; (2) skin wounds; (3) dental injuries,

using ASCs

Adipose stem cell 871

Adipose stromal cell 195
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