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Abstract Induced mutations have been used effectively
for plant improvement. Physical and chemical mutagens
induce a high frequency of genome variation. Recently,
developed screening methods have allowed the detec-
tion of single nucleotide polymorphisms (SNPs) and the
identification of traits that are difficult to identify at the
molecular level by conventional breeding. With the
assistance of reverse genetic techniques, sequence vari-
ation information can be linked to traits to investigate
gene function. Targeting induced local lesions in ge-
nomes (TILLING) is a high-throughput technique to

identify single nucleotide mutations in a specific region
of a gene of interest with a powerful detection method
resulted from chemical-induced mutagenesis. The main
advantage of TILLING as a reverse genetics strategy is
that it can be applied to any species, regardless of
genome size and ploidy level. However, TILLING re-
quires laborious and time-consuming steps, and a lack
of complete genome sequence information for many
crop species has slowed the development of suitable
TILLING targets. Another method, high-resolution
melting (HRM), which has assisted TILLING in muta-
tion detection, is faster, simpler and less expensive with
non-enzymatic screening system. Currently, the se-
quencing of crop genomes has completely changed our
vision and interpretation of genome organization and
evolution. Impressive progress in next-generation se-
quencing (NGS) technologies has paved the way for
the detection and exploitation of genetic variation in a
given DNA or RNA molecule. This review discusses
the applications of TILLING in combination with HRM
and NGS technologies for screening of induced muta-
tions and discovering SNPs in mutation breeding
programs.

Keywords Mutation breeding .Mutagenesis . EMS .

TILLING . High resolutionmelting . Next-generation
sequencing . SNPs
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CODDLE Codons optimized to detect deleterious
lesions

ComSeq Compressed sequencing approach
dCARE Deep candidate resequencing
DGGE Denaturing gradient gel electrophoresis
dHPLC Denaturing high performance liquid

chromatography
EMS Denaturing methanesulphonate
HDA Heteroduplex analysis
HRM High-resolution melting
IAEA International Atomic Energy Agency;

indels: insertion/deletion
MAB Mutation-assisted breeding
MAF Mutant allele frequency
MAS Marker-assisted selection
mRNA Messenger RNA
miRNA microRNA
NGM Next-generation mapping
NGS Next-generation sequencing
PCR Polymerase chain reaction
SNP Single nucleotide polymorphism
SSCP Single-strand conformational

polymorphism
SSR Simple sequence repeat
T-DNA Transfer DNA
TGGE Temperature gradient gel electrophoresis
TGS Target genome sequencing
TILLING Targeting induced local lesions in genomes
TPSeq Targeted parallel sequencing
WGS Whole genome sequencing

Introduction

One of the keys to sustainable agriculture is the creation
of genetic variation in plant crops (Griggs et al. 2013).
Over the past 70 years, mutation breeding has generated
thousands of novel crop varieties in hundreds of crop
species and billions of dollars in additional revenue,
delivering higher yields, increased nutritional value and
resilience to the effects of climate change, such as resis-
tance to diseases and tolerance to drought. Mutation
refers to sudden and heritable changes to the genetic
material in any organism not caused by normal genetic
segregation or recombination including spontaneous mu-
tations and induced mutations (Suprasanna et al. 2015;
Mba 2013; Austin et al. 2011; Oladosu et al. 2016).
Spontaneous mutations occur in nature at a very low rate;

therefore, physical and chemical mutagens are important
for mutation induction in crop breeding programs. Muta-
tions theoretically encompass all changes that occur in the
DNA sequence and result in changes in the genetic code
(van Harten 1998). An induced mutation is an alternative
and complementary technique in plant breeding for the
introduction of genetic changes and the establishment of
new genetic resources. In the 1920s, Lewis Stadler at the
University of Missouri discovered the mutagenic effects
of X-rays in barley by exposing barley seeds. Since the
1950s, it has been widely used, specifically in crops with
low genetic variability and those that are not amenable to
improvement through conventional breeding methods.
The number of physical and chemical mutagens used in
mutation breeding is large and continues to increase (Mba
et al. 2010; Mba 2013). According to the International
Atomic Energy Agency (IAEA) Mutant Varieties Data-
base (http://mvgs.iaea.org), 3233 mutant varieties of 214
different plant species have been officially released
worldwide (Joint 2015). Of these, 49.5, 21.9, and 15%
belongs to cereals, ornamental and decorative plants and
legumes, respectively (Fig. 1). Gamma rays have been
most used successfully to develop new mutant varieties
of ornamentals with novel leaf and flower colour/shape
(Taheri et al. 2014).

In any plant breeding program, genetic variation is
necessary for crop improvement. Using mutagenesis to
create novel genetic variation is extremely effective to
promote natural genetic resources with the induction of
random changes throughout the genome, resulting in a
single plant with a large number of different mutations.

Chemical and physical mutagenesis has successfully
assisted the development of improved and new cultivars
among both seed and vegetatively propagated crops
(Parry et al. 2009). Seeds of seed-propagated crops are
treated with the mutagens while in vegetatively propa-
gated plants stem cuttings, twigs, bulbs, buds, rhizomes
and tubers are exposed to the mutagens. Chemical
mutagens most often produce point mutations (Kodym
and Afza 2003) and chromosome breaks that result in
various chromosomal rearrangements that affect plant
fertility and cause lethality. Among the different chem-
ical mutagens, ethyl methane sulphonate (EMS) is the
most powerful, effective, reliable and frequently used
chemical mutagens in plants. Treatment with the
mutagen breaks the nuclear DNA, and during the
process of DNA repair, new mutations are induced
randomly and are heritable. The changes can also occur
in cytoplasmic organelles, again resulting in
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chromosomal or genomic mutations that enable plant
breeders to select useful mutants such as those with
modified flower colour, flower shape, disease resistance
and early flowering phenotypes (Jain 2010). Breeders
are most interested in point mutations because large-
scale changes can have negative effects on chromosome
structures. However, large-scale changes in chromo-
some structure increase the number of recombination
events, and the breaking of undesirable linkages is also
highly valuable (Parry et al. 2009). EMS mainly pro-
duces C/G to T/A transitions with the induction of C to
T substitutions, and EMS also generates G/C to C/G or
G/C to T/A transversions or A/T to G/C transitions
through 7-ethylguanine hydrolysis and through 3-
ethyladenine pairing errors at a low frequency (Serrat
et al. 2014). More recently, with biotechnology ap-
proaches such as in vitro cell and tissue culture and
totipotency advantages, i.e. regeneration of the complete
plant from individual plant cells, mutation breeding in
vegetatively propagated plants has become more effec-
tive (Mba 2013). Various important factors affect the
results of chemical mutagenesis, including the mutagen
concentration, mutagen volume with respect to the sam-
ple size, treatment duration, temperature, pre-soaking of
seeds, pH, use of catalytic agents and post-treatment
handling of the mutants (Mba et al. 2010). Using in-
duced mutations and enhancing mutation frequency rate

and recombination of available desired genes from gene
pools and the related plant species by sexual hybridiza-
tion, plant breeders could successfully develop new
cultivars with high yield and resistance to abiotic and
biotic stresses. One of the advantages of mutation in-
duction is the chance of obtaining unselected genetic
variation when one or few characters of a prominent
cultivar are to be modified to improve plants (Jain
2010). However, classical induced mutagenesis has
some disadvantage, such as (1) the requirement of a
large mutant population generation, (2) occurrence of
chimeras, and (3) heterozygosity of the mutated loci.
Mutation-assisted breeding (MAB) along with biotech-
nology approaches can improve these limitations with-
out affecting the requirement of generating large mutant
populations. Novel biotechnology approaches have
made it feasible to survey specific regions of the genome
that control a trait of interest for the introduction of
alterations in large mutant populations with desirable
genetic backgrounds (Mba 2013). This review briefly
discusses the progress in the use of modern technologies
such as targeting induced local lesions in genomes
(TILLING) in combination with high-resolutionmelting
(HRM) and next-generation sequencing (NGS) tech-
niques for detection of mutations in mutation breeding
programs to enhance the efficiency of induced plant
mutagenesis in plant breeding era.

Cerals Flowers/Ornamentals Legumes

Fruits/Nuts Vegetable crops Fiber crops

Oil crops Others Forrage crops

Root & Tuber crops Herbs Medicinal plants

21.9 %

15 %
49.5 %

Fig. 1 Percentage (%) of mutant
varieties by crop type reported on
the Joint FAO/IAEA Mutant
Varieties Database (Joint FAO/
IAEA 2015)
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Forward and reverse genetic approaches for gene
identification

Forward and reverse genetics are two main approaches
that connect genotype to phenotype with the aim of
determining the function of a gene/genes by screening
the phenotype or genotype of individual mutants. In the
classical genetics approach, known as forward genetics,
mutant phenotypes (spontaneous or induced mutants)
are compared with wild type to identify and characterize
the causal genes.

In reverse genetics, the function of a gene identifies
based on analysing the phenotype resulting from known
gene sequence changes, in contrast to the reliance of
forward genetics on identification of responsible genes
for a specific phenotype (caused by induced mutagene-
sis or natural variation) (Jankowicz-Cieslak and Till
2015). A mapping population that segregates at the
phenotype of interest is then produced, and candidate
genes are mapped in a small region of the chromosome.
Finally, the gene responsible for the desired phenotype
will be identified by applying genetic engineering or
reverse genetics methods (Esfeld et al. 2013; Ji 2013).

Despite the many identified responsible genes for the
desired phenotype through the use of forward genetics,
in most cases, genes of known sequence are not linked
to a phenotype. This will happen more in non-model
species that forward genetics can be more challenging
due to genetic redundancy. In generated large mutant
populations, single nucleotide polymorphism (SNP) dis-
covery technologies are very useful for functional geno-
mics, forensic medicine, clinical diagnostics, population
genetics, molecular epidemiology and plant and animal
breeding (Rigola et al. 2009). Advances in the genetic
era, such as the discovery of DNA, the polymerase chain
reaction (PCR) and genome sequencing, have led to
techniques such as reverse genetic approaches (from
genotype to phenotype), in which the phenotypic effect
of the manipulation of a particular gene or gene product
is assessed.

Classical reverse genetic approaches to identify induced
mutations

Conventional and pre-screening mutation scanning
methods in large mutant populations for the presence
of sequence polymorphisms that require a separation
step are discussed in this section. (1) The single-strand
conformational polymorphism (SSCP) technique

(Orita et al. 1989) performed under non-denaturing
conditions results in the formation of single-stranded
DNA sequence conformers with specific characteristic
mobilities during polyacrylamide gel electrophoresis.
Any changes in sequence results in conformer mobility
change. (2) Denaturing gradient gel electrophoresis
(DGGE) (Muyzer and Smalla 1998) allows rapid
screening for single-base changes in enzymatically
amplified DNA. This technique is based on the migra-
tion of double-stranded DNA molecules through poly-
acrylamide gels containing linearly increasing concen-
trations of a denaturing agent. (3) Heteroduplex
analysis (HDA) (Highsmith et al. 1999) is based on
the detection of a mutation that results in conforma-
tional differences in the duplex DNA produced during
polymerase chain reaction (PCR) amplification. The
goal of heteroduplex analysis is to differentiate
homoduplex DNA from heteroduplex DNA fragments
based on their conformations under native conditions.
(4) Denaturing high-performance liquid chromatogra-
phy (dHPLC) (Underhill et al. 1997; Xiao and Oefner
2001) consists of the automatic detection of small
insertions and deletions as well as single-base substi-
tutions. In brief, produced heteroduplexes resulting
from mixing, denaturing, and re-annealing two or
more chromosomes that differ in sequence are retained
less than their corresponding homoduplexes are in a
unique DNA separation matrix. (5) In Temperature
gradient gel electrophoresis (TGGE) (Li et al. 2002)
a single chemical denaturant concentration is used to
lower the melting temperature of all double-stranded
molecules followed by the differential melting of the
fragments with a temperature gradient. The sensitivity
of a temperature gradient for DNA denaturation can be
increased by establishing the gradient perpendicular to
the direction of electrophoresis. These methods require
a time-consuming step for the separation of PCR
products in a gel or other matrix, which increases the
risk of contamination in future reactions due to
exposure of the PCR products to the environment.
BSSCP, as a reverse genetic method, provides a high-
throughput strategy for the detection of polymor-
phisms; however, it has low efficiency for the
detection of novel mutations with a size limit of 200
to 300 bp in the target DNA sequence. Moreover, the
high cost of performing a microarray and its low
detection frequency of less than 50% (Borevitz et al.
2003; Tillib and Mirzabekov 2001) have limited its
application.
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TILLING: a reverse genetic technique for induced
mutation detection

Sixteen years ago, the reverse genetic technique,
targeting induced local lesions in genomes (TILLING)
was first developed in Arabidopsis by McCallum and
collaborators (McCallum et al. 2000a, b). TILLING is a
high-throughput technique to identify single nucleotide
mutations in a specific region of a gene of interest with a
powerful detection method that resulted from chemical-
induced mutagenesis. In the late 1990s, TILLING was
first used by Claire McCallum, a graduate student (in
cooperation with the Fred Hutchinson Cancer Research
Centre and Howard Hughes Medical Institute), who
worked on characterizing the function of two
chromomethylase genes in Arabidopsis and applied re-
verse genetic approaches, such as T-DNA (incorpora-
tion of a foreign DNA into the genome of interest) lines
and antisense RNA, but was unable to successfully
apply these approaches to identify mutants for a DNA
methyltransferase (chromotransferase) (Barkley and
Wang 2008). The successful approach was what is
now known as TILLING. Based on previous studies,
TILLING can be applied in any species, regardless of its
genome size and ploidy level and has been successfully
applied in a range of crop plants such as hexaploid and
durum wheat, barley, rice, tomato, maize, sorghum,
soybean and potato, sunflower, melon, pea, and peanut
to identify single base pair changes or small deletions in
specific target genes (Uauy et al. 2009; Slade et al. 2005;
Wang et al. 2012; Tsai et al. 2013; Singh et al. 2014;
Sharp and Dong 2014) (see Table 1 for a list of those).
Recently, Gauffier et al. (2016) used a TILLING ap-
proach in tomato to develop broad-spectrum resistance
to potyviruses is prevented by eIF4E gene redundancy
(Gauffier et al. 2016). For TILLING and for polymor-
phism analysis, the effect of missense mutations on the
encoded protein must be evaluated. In this case, codons
optimized to detect deleterious lesions (CODDLE)
(http://www.proweb.org/coddle/) can be used to
evaluate whether a missense mutation is likely to have
an effect on the encoded protein in a selected specific
DNA sequence with a length of 1 kb. CODDLE was
developed as a general tool for polymorphism analysis,
designing primers for any organism and detecting any
mutagen based on the DNA sequence information input
provided by users (De-Kai et al. 2006).

High-throughput TILLING comprised of a two-step
procedure in which chemical mutagenesis (Koornneeff

et al. 1982) is followed by a sensitive mutation detection
instrument. For mutation induction, either biological
agents such as transposons and T-DNA (Azpiroz-Leehan
and Feldmann 1997; Balcells et al. 1991), or physical
agents such as fast neutron, UV, x-ray and gamma-ray
radiation (Stadler 1928; Sparrow and Woodwell 1962;
Kovacs and Keresztes 2002) or chemical mutagens such
as N-methyl-N-nitrosourea (MNU), 1,2:3,4-
diepoxybutane (DEB) or ethyl methanesulfonate (EMS)
can be used. Among these, T-DNA and transposon mu-
tagenesis generate only destroyer mutants, whereas EMS
mutagenesis is the most effective, reliable and powerful
which produces different types of mutants within each
gene, including nonsense, missense, splicing and cis-
regulatory mutants (Krieg 1963; Kim et al. 2006;
Kodym and Afza 2003; Greene et al. 2003; Brockman
et al. 1984).

In TILLING, a variety of mutation scanning
methods have been used for screening the mutants
including CEL I endonuclease mutation detection to-
gether with electrophoresis conditions (Stemple 2004;
Sato et al. 2006), high-resolution melting (HRM)
(Botticella et al. 2011; Bovina et al. 2014; Sestili
et al. 2015; Acevedo-Garcia et al. 2016) and next-
generation sequencing (Tsai et al. 2011). The most
favoured mutation detection method for TILLING in
plants is the use of mismatch-specific celery nuclease,
CEL I, together with the LI-COR gel analyser system
(LI-COR Biosciences) (Gottwald et al. 2009). This
technique was very popular in early 2000 to detect
induced mutations caused by chemical mutagens.
With the development of more sensitive and high-
throughput techniques, it has been largely superseded.

With HRM, mutations are detected in target genes by
using PCR, followed by denaturing and re-annealing of
the double-stranded DNA (dsDNA) product which is
monitored via a DNA-binding fluorescent dye. On re-
annealing of the double-stranded DNA, fluorescence
increases and results in high-resolution melt curve (tem-
perature vs fluorescence) (Reed et al. 2007).

Recently, next-generation sequencing technique tre-
mendously facilitated the discovery of mutations in
TILLING populations that results in phenotypes, both
for focused and for genome-wide discovery. The advent
of next-generation sequencing as an important tool for
whole-genome sequencing, re-sequencing and de novo
sequencing has revolutionized genetic research (Quail
et al. 2012). Next-generation sequencing in a single
reaction can be used to sequence a large number of
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Table 1 Applied mutation detection techniques and affected traits in model and crop plants

Species/ploidy level Mutagen Mutation detection
technology

M2 size Mutation
frequency
(1 mutation/kb)

Traits References

Arabidopsis (2×) EMS dHPLC, LI-COR 6912
3072
3712

1/170
1/300
1/89

–
–
–

Till et al. (2003a, b);
Greene et al. (2003);
Martín et al. (2009)

Maize (2×) EMS LI-COR 750 1/485 Chromomethylase Till et al. (2004a, b)

Rice (2×) EMS LI-COR
LI-COR
CEL-I, Agarose gel

–
768
6912

1/1000
1/294
1/451

–
–
–

Wu et al. (2005); Till
et al. (2007); Serrat
et al. (2014)

Rice (2×) EMS TILLING 1860 – – Casella et al. (2013)

Rice (2×) EMS TILLING by
Sequencing

2048 1/293 Phytic acid
metabolism

Kim and Tai (2014)

Barley (2×) EMS dHPLC 9216 1/1000 Floral organ
regulation

Caldwell et al. (2004)

Barley (2×) EMS LI-COR 10,279 1/500 Row type
morphology and
immunity to
fungus

Gottwald et al. (2009)

Barley (2×) NaN3 TILLMore
CEL-I. Agarose gel

5600 1/374 Starch metabolism Talamè et al. (2008);
Bovina et al. (2011);
Sparla et al. (2014)

Wheat (6×) EMS TILLING-HRM 2020 1/26 Powdery mildew
disease

Resistance (TaMlo
gene)

Acevedo-Garcia et al.
(2016)

Wheat (6×) EMS TILLING by
sequencing

4500 1/35000 – King et al. (2015)

Wheat (6×) EMS LI-COR
PAGE, LI-COR
CEL-I, Agarose gel

10,000
1536
2348

1/24
1/38
1/37, 1/23

Starch quality
Starch quality
Starch quality and
grain Hardness

Slade et al. (2005,
2012); Uauy et al.
(2009); Dong et al.
(2009a, b)

Wheat (6×) EMS LI-COR, HRM
LI-COR

4500
4244

1/84
–

Starch quality
Starch biosynthesis

Botticella et al. (2011);
Sestili et al. (2010)

Wheat (6×) EMS Agarose gel,
PAGE

2610 1/34; 1/47 Spike development Chen et al. (2012)

Wheat (6×) EMS Direct sequencing 630 1/3 Grain hardness Feiz et al. (2009)

Wheat (4×) EMS PAGE-LI-COR 8000
1386

1/40
1/51

Starch quality
Starch quality

Slade et al. (2005,
2012); Uauy et al.
(2009)

Wheat (4×) EMS TILLING-HRM 3992 – Starch metabolism Bovina et al. (2014);
Sestili et al. (2015)

Wheat (4×) EMS CEL I, agarose gel,
dHPLC

1140 1/77 Carotenoid
metabolism

Colasuonno et al. (2016)

Wheat (2×) EMS CEL-I 1400 1/1300 Grain quality and
lignin

Biosynthesis

Rothe (2010)

Wheat (2×) EMS CEL-I 1532 1/92 Waxy and lignin Rawat et al. (2012)

Sorghum (2×) EMS LI-COR 1600 1/526 Forage digestibility Xin et al. (2008)

Sorghum (2×) EMS TILLING by
sequencing
(ComSeq)

1024 <0.1% – Nida et al. (2016)
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DNA sequences. The high-quality DNA is sheared into
fragments of a specific size and specific adapters are
ligated to the 3′ and 5′ ends (Buermans and Den Dunnen
2014). These DNA templates are immobilized on a flow

cell surface and amplified by sequential addition of
nucleotides. Some of these techniques are applicable to
many species, and each technique has advantages and
limitations (Tables 1 and 2).

Table 1 (continued)

Species/ploidy level Mutagen Mutation detection
technology

M2 size Mutation
frequency
(1 mutation/kb)

Traits References

Soybean (4×) EMS LI-COR 768; 529
40,000

1/550; 1/140
1/1000 to
1/1300

– Cooper et al. (2008);
Anai (2012)

Brassica rapa (2×) EMS LI-COR 1344 1/130.8, 1/41.5 – Wang et al. (2008)

Brassica rapa (2×) EMS LI-COR 9216 1/60 DNA methylation Stephenson et al. (2010)

Brassica oleracea (2×) EMS LI-COR 8750 1/447 Wax biosynthesis
and dwarf stature

Himelblau et al. (2009)

Brassica napus (canola)
(4×)

EMS LI-COR - NGS 3158 1/109 Mutation
identification in
genes of interest

Gilchrist et al. (2013)

Lotus japonicus (2×) EMS LI-COR, CE 4904 1/502 Nodule development Perry et al. (2003);
Wang and Robson
(2014)

Medicago truncatula EMS LI-COR 4500,
4350

1/485, 1/242.5 – (Le Signor et al. 2009)

Sunflower (2×) EMS LI-COR 3651 1/475 Fatty acid
biosynthetic
pathway and
downy mildew
resistance

Sabetta et al. (2011)

Tomato (2×) EMS CE, HRM 8225 1/737 Proline biosynthesis Gady et al. (2009)

Tomato (2×) EMS LI-COR 4741,
1926

4759
3052

1/322, 1/574
1/574
1/1237

Shelf life
Virus resistance
Shelf life

Minoia et al. (2010);
Piron et al. (2010);
Gauffier et al. (2016);
Okabe et al. (2011,
2012)

Tomato (2×) EMS TILLING 3052 – Ascorbate
biosynthesis

Baldet et al. (2013)

Tomato (2×) EMS TILLING – – Fruit set mechanisms Mazzucato et al. (2015)

Tomato (2×) EMS LI-COR – – Lycopene synthesis Silletti et al. (2013)

Peanut (4×) EMS LI-COR 3420 1/967 Seed quality Knoll et al. (2011)

Peanut (4×) EMS TILLING by
sequencing

768 1/1066 Stress resistance Guo et al. (2015)

Pea (2×) EMS LI-COR 8000 1/669 Gibberellin
metabolism

Triques et al. (2007)

Flax EMS LI-COR 4894 – – Chantreau et al. (2013)

Cucurbita pepo EMS LI-COR 1464 – – Vicente-Dólera et al.
(2014)

Brachypodium
distachyon (2×)

NaN3 LI-COR 5530 1/396 Lignin biosynthesis Dalmais et al. (2013)

Tobacco (2×) EMS TILLING by
sequencing

3072 1/1423 Leaf yield Reddy et al. (2012)

EMS ethyl methanesulfonate, TILLING targeting induced local lesions in genomes, dHPLC denaturing high performance liquid chroma-
tography, HRM high-resolution melting, NGS next generation sequencing
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An overview of TILLING methodology

In the basic procedure of TILLING, seeds are
mutagenized by treatment with ethyl methanesulphonate
(EMS). The alkylating agent (EMS), which has great
mutagenic potential, is the mutagen most commonly ap-
plied for almost all TILLING populations (Kurowska et al.
2011). Using the EMS mutagen, a high rate of mutation
can be achieved that spreads out over the genome random-
ly without excessive DNA damage (Gilchrist and Haughn
2005). The developedM1 plants are self-fertilized, andM2

individuals are used to prepare DNA samples for muta-
tional screening. TheDNA samples are pooled and arrayed
on microtiter plates followed by PCR amplification of the
targeted DNA segment. Amplification products are incu-
bated with a celery endonuclease (CEL I) that cleaves
mismatches in heteroduplexes between mutants and wild
type by preference. CEL I endonuclease is amember of the
S1 nuclease family of single-strand-specific nucleases
(Oleykowski et al. 1998) that cleaves on the 3′ side of

mismatches and loop outs in heteroduplexes betweenwild-
type and mutant DNA while leaving duplexes intact.
Cleavage products generated by endonuclease are separat-
ed and electrophoresed using the LI-COR gel analyser
system, and gel images are analysed with the aid of a
standard commercial image-processing program (Adobe
Photoshop; Adobe Systems, Mountain View, CA). Be-
cause mutations are detected on complementary strands,
amplification products with different amounts of double
end-labelling allow rapid visual confirmation and therefore
can be easily distinguished from amplification artefacts.
Upon mutation detection in a pool, the plant carrying the
mutation is identified by screening individual DNA sam-
ples. The mutation is discovered by sequencing the target
gene segment and identifying the type of nucleotide
change (Lee et al. 2014). Figure 2 shows the general
TILLING procedure.

Whereas the establishment of the initial screening
population and the corresponding ordered DNA sam-
ples requires an investment of time and money, a

Table 2 Comparison of different methods involved in mutation detection in TILLING populations

Method Advantages Disadvantages Reference

TILLING-
CEL I

1. High sensitivity
2. High throughput
3. The populations generated for
TILLING in any species provide
valuable resources for teaching
and research

4. Suitable for polyploids with
higher mutation frequency

1. Rely on time and cost consuming
enzymatic screening system

2. Needs multi-dimensional pooling
3. Only 5% of the total mutations in the
EMS-mutagenized populations are
truncations

Wang et al. (2012); Greene et al. (2003);
Bleecker and Kende (2000); Byrne
(2006); Eckardt (2007); Gilchrist et al.
(2013); Parry et al. (2009); Perry et al.
(2003)

TILLING-
HRM

1. Non-enzymatic screening system
2. High sensitivity
3. Time and cost saving

1. Depends strongly on good PCR
instruments and dyes.

2. Needs multi-dimensional pooling
3. Small insertions and deletions may be
somewhat more difficult to detect than
substitutions.

(4) Detection sensitivity is limited to
amplicons of <450 bp.

Reed and Wittwer (2004); Lochlainn et al.
(2011); Wittwer (2009); Gady et al.
(2009); van der Stoep et al. (2009);
Simko 2016); Tindall et al. (2009); Chen
et al. (2014a)

TILLING-
NGS

1. Non-enzymatic screening system
2. High throughput
3. Time saving
4. Identification of mutations
through targeted sequencing

5. More efficient in polyploids
6. Mutation detection in pools
deeper

than eight individuals

1. Cost is still high
2. Needs multi-dimensional pooling
3. High rate of incorrectly identified DNA
bases in the sequence data produced,
where billions of base calls translate to
millions of errors which are not easily
diagnosed or corrected.

4. The processing and storage of massive
amounts of sequence data. Data analysis
can be time-consuming and may require
special knowledge of bioinformatics to
garner accurate information from
sequence data.

Zargar et al. (2015); Jünemann et al. (2013);
Egan et al. (2012); Meacham et al.
(2011); Ganal et al. (2009)
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complementary approach to traditional TILLING, indi-
vidualized TILLING (iTILLING), has been developed
for Arabidopsis and is more cost and time effective
(Bush and Krysan 2010). Furthermore, HRM as muta-
tion detection method in TILLING populations
(Botticella et al. 2011) with no reliance on enzymatic
screening system or ‘TILLING by sequencing’ (Tsai
et al. 2011) technologies have improved great potential
of TILLING strategy for mutation detection which have
been explained in the following sections.

Advantages and disadvantages of TILLING

The generated mutant population for any species using
TILLING provides valuable resources for teaching and
research. TILLING is an easy technique that does not
require complicated manipulations or expensive equip-
ment. It is used to easily screen point mutations to iden-
tify the functions of specific genes without the tedious
tissue culture procedures that are involved in anti-sense
RNA and RNAi. In addition, TILLING provides a high
efficiency of mutation detection and high sensitivity at-
tributed to the combination of CEL I, double-end fluo-
rescent dye labelling and the LI-COR system as an
alternative to dHPLC, as well as high frequencies of
mutagenesis and a high-throughput screening capacity
(De-Kai et al. 2006). Among reverse genetic techniques,
TILLING can be used to identify genetic variability in
either mutagenized or natural populations. In addition,
unlike transgenic plants, for which there are some barriers
to their creation or marketing, TILLING can be applied in
plant research and breeding programs in various species
because the variation does not involve the transformation
of exogenous genetic material (Gilchrist et al. 2013).
Using TILLING in a small and a large number of original
research studies for a wide range of plants species
(Table 1) supports the power of the TILLING technique
for the investigation of genetic alterations in organisms
with different genome sizes and ploidy levels. In contrast
to the advantages of TILLING, it also has some limita-
tions, such as the high cost and time commitment asso-
ciated with the development of a mutagenized population
for most species. Furthermore, the technique itself is
labour-intensive, and the poor cleavage efficiency of the
endonuclease CEL I and 59-39 exonuclease activity re-
sults in a reduction of signal/noise levels and prevents the
performance of pooled sample analyses with more than
eight samples per pool (Till et al. 2006). In addition,
TILLING cannot provide information about the nature

of the sequence changes and their possible effect on gene
function; therefore, once mismatches have been detected,
the results must be verified by sequencing, which incurs
additional time and cost (Gilchrist and Haughn 2010)
(Table 2). There are some bioinformatics tools such as
the project aligned related sequences and evaluate SNPs
(PARSESNP) program (ht tp: / /www.proweb.
org/parsesnp/) (Taylor and Greene 2003) to aid the re-
searcher in deciding which mutations to characterize.
Once TILLING process is completed, mutations are au-
tomatically analysed by the PARSESNP which provides
graphical and tabular information on the location (PSSM
difference) and severity (SIFT score) of mutations and
provides information on the creation or loss of restriction
sites caused by the induced polymorphisms. PSSM score
≥10 indicates a mutation that is more likely to have a
damage effect on protein function. SIFTscores <0.05 have
been empirically determined to be deleterious (Till et al.
2003a; Xin et al. 2008).

Some critical weak points of TILLING with CEL I
endonuclease mutation detection method, as mentioned
above, have resulted in the introduction of a diverse set
of new screening platforms that do not rely on endonu-
clease mismatch cleavage, such as high-resolution DNA
melting analysis (HRM), in which only simple PCR is
performed before melting curve analysis, and next-
generation sequencing which has recently been success-
fully applied in TILLING.

HRM: an alternative screening technique

HRM is a post-polymerase chain reaction (PCR) meth-
od that was established as an alternative screening
technique for the detection of genetic variations (SNPs,
mutations, methylation) in PCR amplicons (Zhou et al.
2005, 2004). Although dsDNA is very stable at room
temperature, its two strands begin to separate with
increasing temperature. The melting temperature (Tm)
is the temperature at which 50% of the DNA is single-
stranded. The length and guanine-cytosine (Ling et al.
2013) content of the DNA fragment affect Tm. The
three hydrogen bonds of GC base pairs increase their
stability compared with adenine–thymine (AT) base
pairs linked by only two hydrogen bonds. Therefore,
DNA sequences with a high GC content have a higher
Tm than do DNA sequences containing a low number
of GC base pairs (Druml and Cichna-Markl 2014).
Melting of a short double-stranded region occurs at a
faster rate if the regions melts in one transition without
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intermediate states; in contrast, longer PCR products
may melt in multiple stages or ‘domains’ (50–500 bps)
(Erali and Wittwer 2010). HRM is a new screening

method for DNA polymorphisms that was introduced
in 2002 by a collaboration between academics (Univer-
sity of Utah, UT, USA) and industry (Idaho

1. Mutagenesis (EMS) of M1 seeds

2. Self-pollination

Mutant individuals

(M2 progeny)

4. DNA extraction

5. Eightfold DNA 

array and pooling

3. Seeds collection 

(M3 progeny)

6. Polymerase chain reaction

(PCR)

Amplifying target sequence

Heat denature

Annealing

Wild type DNA

Mutant DNA

7.Heteroduplex 

DNA formation

8. Incubation of amplified DNA 

from each pool with CELI for 

heteroduplex mismatch 

cleavage using endonuclease 

enzyme

9. Cut strands are separated by 

denaturing polyacrylamide/Agarose 

gel electrophoresis and visualized by  

fluorescence detection using a Li -Cor 

DNA analyzer

Fig. 2 Diagram of the TILLING strategy. TILLING procedure
will be started by seed mutagenesis with a chemical mutagen and
germinated to produce M1 plants. M1 plants are allowed to self-
pollinate to generate M2 plants. M2 seeds will be collected for
banking, and the DNA will be extracted from part of interest of
plant for mutation discovery. Eightfold DNA pooling and DNA
array in a two-dimensional format on 96-well plates. After PCR
amplification of target genes with designed primers, upon heating

and cooling steps, the heteroduplexes are formed and then incu-
bated to digest with a mismatch endonuclease (CELI) for hetero-
duplex mismatch cleavage. Cut strands are separated by denatur-
ing polyacrylamide/agarose gel electrophoresis and visualized by
fluorescence detection using a Li-Cor DNA analyser. After iden-
tification of mutations, the polymorphic individuals are sent to
sequencing to verify the induced mutation
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Technology, UT, USA). Some benefits, such as sim-
plicity, low cost, no need for enzymatic screening sys-
tem and high sensitivity/specificity, make HRM an
important new tool for genotyping, SNP polymor-
phisms, insertions or deletions (indels) and DNA meth-
ylations detection in PCR amplicons (Herrmann et al.
2007; White et al. 2007).

HRMworking plan The HRMworking plan is based on
the changes in fluorescence along with the melting of
double-stranded DNA that is measured using a saturated
DNA-binding dye and a highly accurate optical detec-
tion system without the need for costly labelled probes.
Three factors are involved in the HRM process: dye
chemistry, instrument resolution and data analysis.
HRM involves several main steps: (1) mutagenesis of
plant material by EMS (seeds, pollen, leaf, flower, rhi-
zome, root, among others), (2) DNA extraction, (3) PCR
amplification with gene-specific primers labelled with a
florescent dye, (4) high-resolution melting and (5) data
analysis. First, PCR is performed in the presence of a
dye that binds to double-stranded DNA (dsDNA). This
dye emits low levels of fluorescence when unbound but
is highly florescent in the bound state. Popular dyes for
this application include CGreen/LCGreen Plus and
SYBR Green I, which have a high sensitivity, stability,
reliability and compatibility with many popular HRM
instruments (Carén et al. 2006; Herrmann et al. 2006).
However, the high cost of these dyes and the difficulties
associated with the detection of heteroduplexes have
limited their use (Pornprasert et al. 2008; Price et al.
2007; Worm et al. 2001). Recently, EvaGreen and
ResoLight HRM dye (He et al. 2014) were found to be
a less expensive saturated DNA binding dye with equal
binding activity for GC-rich and AT-rich regions, with-
out inhibiting amplification and no sequence preference
(Wittwer 2009; Li et al. 2010). Following PCR, as the
temperature is gradually increased, the changes in fluo-
rescence in each sample during DNA melting are
displayed by the temperature-normalized melting
curves. The differences among curves demonstrate the
relative difference in fluorescence (Δ Fluorescence,
ΔF) of a respective sample in comparison to the non-
mutant sample. A ΔF value of 0.05 is considered sig-
nificant, according to the manufacturer’s instruction (Li
et al. 2010; Simko 2016; Hofinger et al. 2009). During
HRM, even a subtle and small DNA variation that
results in allelic differences among PCR amplicons can
be detected based on melting curve differences. The

demonstrated advantages of HRM analysis have result-
ed in the use of this approach to detect DNA polymor-
phisms in plant species such as apple, barley, grapevine,
olive, almond, pepper, sweet cherry and Solanum
lycopersicum L. (Liew et al. 2004; Wu et al. 2008;
Chagné et al. 2008; Lehmensiek et al. 2008; Mackay
et al. 2008; Donini et al. 2009; Gady et al. 2009;
Ganopoulos et al. 2011; Golding et al. 2010). An ex-
change between G/C and T/A base pairs results in
relatively large changes in Tm of approximately 0.8–
1.4 °C (Liew et al. 2004). Duplex melting is generally
monitored using intercalating dyes, although fluores-
cently labelled primers have also been used. HRM de-
tection is based on the principle of melting curve chang-
es during the process of DNA denaturation based on the
primary sequence. The operation can be performed im-
mediately after PCR without electrophoresis and in the
same reaction tube. In comparison to electrophoresis,
the detection time is reduced and the resolution is in-
creased (Yu et al. 2013). Furthermore, HRM in combi-
nation with TILLING was used to screen an EMS-
mutagenized wheat population to identify SNPs in hexa-
ploid and durum wheat SbeIIa genes (Botticella et al.
2011; Bovina et al. 2014).

Advantages and disadvantages of HRM Among all the
available scanning techniques, HRM is simple, rapid
and inexpensive, and it is the only method that is per-
formed in a closed tube and can be carried out in the
same container used for PCR amplification in almost
15 min without need for any enzymatic screening sys-
tem. The closed tube makes it possible to send the
samples immediately after scanning for genotyping or
sequencing (if necessary), without any need for process-
ing or automation. In addition, contamination concerns
are decreased when PCR products are not exposed to the
environment (Reed and Wittwer 2004). However, the
efficiency of HRM depends critically on the DNA con-
centration and quality, effective PCR, instrument decon-
tamination and resolution and dyes (Herrmann et al.
2007). Some limitations, such as the GC content and
length of the amplicon, affect the HRM efficiency,
resulting in much shorter typical reads (only covering
150–500 bp) than those obtained with Li-Cor and CE.
The usefulness of using HRM in the TILLING approach
is highlighted when the target is a specific region with a
known impact on protein structure or when the gene of
interest contains many short exons and thus a short read
length is acceptable. In addition, specialized software is
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needed to analyse the different melt curves. In addition,
sequencing of the amplicons is required to determine the
number and position of mutations within the amplicon
(Chateigner-Boutin and Small 2007). Other limitations
of HRM are the difficulty associated with the detection
of SNPs when the polymorphism occurs too close to
either of the primer binding sites, the complex sequence,
or the existence of a large number of alleles in the
analysed population (Mader et al. 2008), the presence
of multi-locus markers, the non-specific PCR amplicons
(Distefano et al. 2012) and the presence of stutter bands
(Dossett et al. 2010), which prevent reliable interpreta-
tion of the melting curve profiles. Nevertheless, HRM
can be performed on standard qPCR machines with a
simple software upgrade and thus is a suitable platform
for initial TILLING screening (Sikora et al. 2012;
Simko 2016) (Table 2). Future research should focus
on improvements in hardware, software and DNA-
binding dyes to increase the accuracy of the melting
curves. Additionally, more research should be conduct-
ed to improve the HRM capacity to analyse longer
amplicons, the reproducibility of the results and the
possibility of results that can be transitioned across
experiments and laboratories (Simko 2016).

Next-generation sequencing applications for causative
EMS-generated mutation identification

Next-generation DNA sequencing technologies provide
new opportunities for plant breeding programs. The
detection and exploitation of genetic variation have
always been an essential part of plant breeding. Next-
generation sequencing techniques became commercial-
ly available in approximately 2005, providing great
opportunities for the life sciences (Egan et al. 2012).
Below, we will briefly describe a range of NGS appli-
cations in plant mutation breeding. Important applica-
tions are as follows.

Mapping by sequencing For many years, to identify
genes and mutations in phenotype of interest, forward
genetic screens (Page and Grossniklaus 2002; Candela
and Hake 2008) has been applied as a powerful method
for researchers. However, in classical forward genetic
screens, mapping the casual mutation using genetic
crosses is a complex andmultistep procedure. Tradition-
al mapping or positional cloning of mutations has been
replaced by NGS using whole-genome sequencing
(Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel

et al. 2009; Irvine et al. 2009; Lister et al. 2009;
Schneeberger et al. 2009; Zuryn et al. 2010;
Pawełkowicz et al. 2016). Ideally, the sequencing of
mutant genomes is a simple way to identify mutations
that cause phenotypes of interest. However, due to the
numerous unrelated polymorphisms that segregate with
the causative mutation in a mutagenized population, a
very low signal is obtained. Therefore, some genetic
analyses to purify the chromosomal location carrying
the causative mutation are needed, even for NGS map-
ping approaches. Mapping by sequencing approach
through NGS accelerated identification of casual muta-
tions at SNP level even in complex genetic backgrounds
(Schneeberger 2014; Schneeberger and Weigel 2011).
After mutagenesis, mutation screening strategies depend
on species, its breeding system, dominant or recessive
nature of casual mutation. Nevertheless, mapping by
sequencing is not dependent on reference genome se-
quences, genetic crosses and any kind of linkage infor-
mation. In NGS mapping approaches, the background
noise has been improved first by genetic analysis to
refine the genomic region of interest or through bulk
analysis of a very large number of mutant lines. In these
years, several mapping by sequencing analysis pipelines
have been introduced and have been applied in model
plants (James et al. 2013), non-model plants (Nordström
et al. 2013) and crop species like rice (Abe et al. 2012).

An approach called simultaneous mapping and mu-
tation identification by deep sequencing (SHOREmap)
by the principal of mutant allele frequency (MAF) esti-
mation, including in isogenic backcross populations
through whole-genome sequencing (WGS), was able
to successfully map a causative mutation using Illumina
Genome Analyser (GA) sequencing of a population of
500 pooled F2 lines of Arabidopsis (Schneeberger et al.
2009). However, in that study, the strength of
SHOREmap was not specified in fewer F2 lines for
mapping mutations with difficult-to-score phenotypes
or working with organisms for which it is difficult to
propagate large numbers. This straightforward method
was applied in non-reference A. thaliana accession
(Uchida et al. 2011, 2014) and in non-EMS mutations
in non-model plants (Guo et al. 2012) to identify muta-
tions that resulted in phenotypes of interest. The
employed methodology was bulked segregant analysis
(BSA), in which, after crossing a mutant to a different
polymorphic accession, whole-genome sequencing data
are extracted from pooled F2 segregants and analysed
for single nucleotide polymorphisms (SNPs). The
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candidate SNPs are then detected and extracted
using linkage analysis of the SNPs in the accessions
used to produce the F1 generation and filtering the
linked SNPs with multiple appropriate criteria
(Uchida et al. 2014). By contrast, in pools of mutant
recombinants, dominant or semi-dominant mutations
do not fix commonly.

Later, a DNA-based mapping-by-sequencing ap-
proach called next-generation EMS mutation map-
ping (NGM) by the principle of homozygosity map-
ping was developed by Austin et al. (2011) in A.
thaliana using Illumina GA data to reliably and
easily map candidate causative mutations even in
small F2 populations. Additionally, no prior map-
ping information is needed to perform this protocol
(Austin et al. 2011). This tool is a Web-based ser-
vice (http://bar.utoronto.ca/ngm) which (1) supports
mutation mapping and identification and filtering for
their effects and (2) visualizes chromosome-wide
SNP densities and mapping scores, including manu-
al refinement of mapping intervals. However, there
is an uncertainty in the exact feature(s) of the NGM
pipeline for mutant identification in fewer F2
populations.

Although described approaches are fast and facile,
their application is affected by some obstacles including
inter-accession crosses necessity that diminishes the
success rate of genetic modifier screens and
recognition of subtle phenotypic variation of mutants
in F2 populations. Ashelford et al. (2011) applied re-
sequencing of a novel Arabidopsis clock mutant early
bird (ebi-1) genome that had been backcrossed four
times to the parental line to create many candidate
mutants. To reduce the cost of whole-genome sequenc-
ing of SHOREmap or NGM for large amounts of im-
practical and uninformative non-target regions, Liu et al.
(2012) developed a time and cost-effective and facile
targeted parallel sequencing (TPSeq) method without
necessity of advanced computational devises and skills
and identified three novel nitrate-signalling mutants in
Arabidopsis, concurrently.

Furthermore, rice researchers developed another
DNA-based mapping-by-sequencing method called
MutMap by the principle of MAF estimation in back-
cross populations to use genome sequencing to identify
the genomic position of EMS-induced mutants that are
most probably harbouring agronomically important
traits such as pale green leaves and semi-dwarfism
(Abe et al. 2012). MutMap is based on the crossing of

a M3-M5 mutant of interest directly to the original wild
type and followed by selfing of F1 individuals, allowing
clear segregation in second generation (F2) of subtle
phenotypic differences. Then, DNA from 20 F2 indi-
viduals with mutant phenotype will send for Illumina
whole-genome sequencing to detect casual SNPs differ-
ent from the reference genome. Although this approach
minimized the number of crosses in crop species and
required mutant F2 progeny, it is not suitable for plants
without reference genome sequence and mutants with
early development lethality or sterility.

To reduce the number of causal candidate mutations,
Hartwig et al. (2012), combined deep candidate
resequencing (dCARE) using the new Ion Torrent Per-
sonal Genome Machine sequencing platform to identify
causative mutations for the suppression of like hetero-
chromatin protein1 (lhp1), a gene involved in
chromatin-mediated gene repression. Notwithstanding
that this method exploits backcross principle and
SHORE pipeline for mapping analysis and necessity
of targeted deep sequencing of candidates to isolate
exact causative SNPs, it is a capable method for map-
ping-by-sequencing. Thereafter, Allen et al. (2013)
screened leaf hyponasty EMS-induced mutants via sin-
gle backcrossing of the mutant to its parent followed by
whole-genome deep sequencing of F2 population and
analysis with NGM approach to clearly identify causal
mutation in HASTY gene involved in microRNA bio-
genesis. Avoiding MutMap obstacle, MutMap+ was
developed for the identification of causal SNPs in rice
mutants and gene isolation in crops that are recalcitrant
to artificial crosses (Fekih et al. 2013).

Further studies on using next-generation sequencing
for mutant identification have been done by Mateo-
Bonmatí et al. (2014). They combined conventional
linkage mapping and Illumina whole-genome re-
sequencing to identify the causal mutations in four
loss-of-function angulata (anu) mutants which affect
deficits in leaf shape and pigmentation (Mateo-
Bonmatí et al. 2014). Similarly, in Arabidopsis,
next-generation sequencing of backcrossed bulk seg-
regants was applied to identify abscisic acid (ABA)-
resistant root elongation (AR) mutants (Thole and
Strader 2015; Thole et al. 2014). Recently, Cheng
et al. (2015) successfully applied next-generation
sequencing in targeted mutation detection in hexa-
ploid crop, Crambe abyssinica, to detect causative
mutations in CaFAD2 gene leading to changes in
crambe oil composition (Cheng et al. 2015).
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SNP discovery through NGS SNP discovery is the most
common application of NGS. SNPs have many appli-
cations in the construction of linkage mapping, genetic
diversity analyses, association mapping and marker-
assisted selection in several species (Cortés et al. 2011;
Ray and Satya 2014; Thomson 2014; Huq et al. 2016).
The discovery of SNPs using NGS has been reported in
grapevine (Vitis) (Yang et al. 2016), cucumber (Cucumis
sativus L.) (Pawełkowicz et al. 2016), pepper (Capsi-
cum) (Devran et al. 2015), cabbage (Brassica oleracea)
(Lee et al. 2015), olive tree (Olea europaea L.) (Kaya
et al. 2013), sunflower (Helianthus annuus L.)
(Pegadaraju et al. 2013), soybean (Glycine max) (Vidal
et al. 2012), pepper (Capsicum spp.) (Ashrafi et al.
2012), wheat (Allen et al. 2011; Trebbi et al. 2011;
Shavrukov et al. 2014), lupine (Lupinus angustifolius
L.) (Yang et al. 2012), eggplant (Barchi et al. 2011), rice
(Feltus et al. 2004;McNally et al. 2009; Yamamoto et al.
2010; Chen et al. 2014b; Zheng et al. 2016),
Arabidopsis (Zhang and Borevitz 2009; Jander et al.
2002), barley (Close et al. 2009; Waugh et al. 2009),
sorghum (Nelson et al. 2011), cotton (Byers et al. 2012),
common beans (Cortés et al. 2011), soybean (Hyten
et al. 2010), potato (Hamilton et al. 2011), flax (FU
and Peterson 2012), Aegilops tauschii (You et al.
2011), alfalfa (Han et al. 2011), oat (Oliver et al.
2011), maize (Jones et al. 2009) and chickpea (Cicer
arietienum L.) (Azam et al. 2012; Gaur et al. 2012) to
name a few. Small plant genomes with a good reference
genome, such as rice and Arabidopsis, are available in
which SNP-derived NGS has been performed complete-
ly (Yamamoto et al. 2010; Ossowski et al. 2008). The
quality of the SNP calling depends on factors such as the
presence of repeat elements and incomplete or inaccu-
rate reference genome sequences (Treangen and
Salzberg 2012; Kumar et al. 2012).

TILLING by sequencing Although in TILLING a num-
ber of platforms has been applied for mutation detection
of target genes within genomic DNA samples, most of
these techniques rely on PCR amplification of target
mutant region and wild type together to detect mis-
matches by heteroduplex amplicons using CEL I
followed by gel electrophoresis or by HRM analysis.
Such approaches are labour intensive and challenged by
pools exceeding eight individuals, and screening a sin-
gle target at a time is limited. Moreover, sequencing is
required to characterize the mutations. ‘TILLING by
sequencing’ technology demonstrates great potential

by applying NGS in the TILLING strategy for mutation
detection. An example of the use of Illumina sequencing
in TILLING (Tsai et al. 2011; Rigola et al. 2009; Tsai
et al. 2015; Granier et al. 2015) is the implementation of
a flexible and effective combination of TILLING-NGS
methods to detect mutations in targeted loci in rice and
wheat. Likely, TILLING by sequencing technology was
applied to identify mutations in genes to enhance leaf
yield in tobacco (Nicotiana tabacum) (Reddy et al.
2012) and to detect mutations in genes related to biotic
and abiotic stress resistance in peanut (Arachis
hypogaea) (Guo et al. 2015). The method is character-
ized as follows: (1) TILLING-NGS is a high-throughput
and reliable mutant identification method that is per-
formed by the application of multidimensional pooling
and a probability threshold, (2) it enables the identifica-
tion of a mutation with an associated base change and
effect, (3) it does not rely on labelled fluorescent primers
or potentially variable endonuclease digestion, (4) it
allows a flexible choice of pooling methods and species
and (5) it is scalable in scope and experimental
combinations.

In another study, Krothapalli et al. (2013) used next-
generation sequencing in EMS-induced mutant of Sor-
ghum bicolor defective in hydrogen cyanide release.
They identified point mutation that resulted in a prema-
ture stop codon in the coding sequence of dhurrinase2,
which encode a protein involved in the dhurrin catabolic
pathway that is the cause of an acyanogenic sorghum
mutant phenotype (Krothapalli et al. 2013).

Recently, Nida et al. (2016) applied a novel method
to identify carriers of rare SNPs with frequency of less
than 0.1% in TILLING population with compressed
sequencing approach (ComSeq) in S. bicolor. ComSeq
is a combination of NGSwith newmathematical field of
compressed sensing (CS) (Shental et al. 2010; Erlich
et al. 2010). Compared to other TILLING population
detection methods (Tsai et al. 2011; Missirian et al.
2011) which are based on ‘multidimensional pooling’
and detect only a single carrier, ComSeq detects many
carriers without requiring sophisticated SNP calling
methods (Missirian et al. 2011). Furthermore, this ap-
proach is a very cost-effective tool for breeders to iden-
tify novel alleles.

Mutation scanning by exon capture and next-generation
sequencing Although TILLING by sequencing tech-
nique has improved traditional TILLING, because of
the limit in the number of genes targeted in each run
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and normalization of DNA samples at several stages,
this method is still labour-intensive. In addition, despite
declining costs of next-generation sequencing
(Shendure and Ji 2008), it is still costly enough for
researchers in eukaryotic species with large genomes.
Fortunately, an alternative method was developed to
focus on isolating of high-value coding gene sequences
(exons) (comprising 2% of eukaryotic genome) and
resequencing coding portions genome-wide of large
genomes for SNP discovery (Hodges et al. 2007;
Cosart et al. 2011). This exon capture method has been
applied in durum wheat to identify variations in func-
tionally important regions of the genome (Saintenac
et al. 2011) and to identify SNPs within parents of
mapping populations of bread wheat to allow the devel-
opment of high-density maps (Winfield et al. 2012).
Furthermore, Mascher et al. (2013) implied and evalu-
ated a whole exome capture platform for cultivated
barley and demonstrated its applicability to genome-
wide variation discovery in related Hordeum species
and hexaploid wheat (Triticum aestivum) (Mascher
et al. 2013). Similarly, Henry et al. (2014) used exome
capture and next-generation sequencing of rice
TILLING mutants for large-scale mutation discovery.
They also extended their study to EMS-induced muta-
tions in tetraploid wheat showing the method is appli-
cable for polyploidy species.

Lately, another study was performed for wheat
TILLING evaluation using next-generation sequencing
exon capture for mutation scanning (King et al. 2015).
The above studies show that mutation detection by
TILLING can be a less laborious, more efficient and
less expensive method by using exon capture for ge-
nome re-sequencing in polyploid wheat, barley and
other plant species. However, an improved genomic
reference with more complete coverage of homologues
is required for accurate mutation calling.

Like other technologies, NGS has some limitations,
such as the requirement for costly equipment and re-
agents and the limited number of identified tags for
sample barcoding, despite the large number of nucleo-
tides that can be sequenced in one run. Analysis of the
results of NGS sequencing is also challenging because it
is necessary to distinguish between false-positive and
real SNPs (Kurowska et al. 2011) (Table 2). In the near
future, the number of NGS applications will certainly
grow, and the available ones will improve. NGS tech-
nologies are paving the way toward a new era of scien-
tific discovery and have great potential applications in

plant-breeding programs for the development of superi-
or cultivars of crops and ornamentals. As genome se-
quencing becomes easier, the additive demand of food
will decrease in the coming decades for the next-
generation plant breeders (Egan et al. 2012).

Conclusion and prospects

Mutagenesis has played a significant role in plant breed-
ing. However, its effectiveness can be enhanced by
using molecular technology and bioinformatics and as-
sist plant breeders with useful induced mutations and
develop mutation screening methods to identify novel
alleles of target genes for crop improvement. Over the
past 16 years, a variety of different techniques have been
applied for detecting induced mutations in plant popu-
lations such as classical and recent reverse genetic
techniques.

The TILLING-CEL I platform is widely applicable,
but it involves steps such as endonuclease digestion
reactions, cloning and gel electrophoresis runs, which
are critical and also time-consuming. In addition, a lack
of complete genome sequence information for many
crop spices has slowed the development of suitable
TILLING targets. In contrast, TILLING-HRM is accu-
rate, sensitive, fast and cost-effective, and the only step
required is a simple PCR performed prior to the DNA
melting curve analysis. However, the number and posi-
tion of mutations within the amplicon cannot be identi-
fied using this method alone. Therefore, amplicon se-
quencing is needed to identify sequence variants.

With the tremendous improvement of the cost and
accuracy of NGS technologies in the past decade, the
potential of TILLING-NGS approach for mutation de-
tection has increased.

A comparison of mutation discovery by Illumina
sequencing and traditional TILLING was conducted
by Gilchrist et al. (2013). The sensitivity level of two
approaches was found to be the same in oilseed rape, but
sequencing was more expensive. They suggested sever-
al ways to decrease the cost of sequencing for mutation
detection by barcoding samples during PCR amplifica-
tions (instead of post-amplification), using automated
platforms for high complexity of PCR amplification and
target many regions in multiple lines and applying plat-
forms that provide more sequencing data per lane.

Improvements in target genome sequencing (TGS),
TILLING by sequencing, mapping by sequencing and
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targeted modification of specific genes will facilitate the
discovery of SNPs and indels using NGS technologies
to further assist our understanding of plant genetics and
genomics.

In the future, NGS-enabled discoveries will continue
in the next decade. Bioinformatics and sequence data
will simplify the detection of target genes with allelic
diversity resulting in the development of agriculture
traits to meet the demands of global food insecurity.
However, analysing large amounts of generated data
after the application of NGS technologies, together with
the extraction of bio-information, remains a challenge
that needs to be addressed in future research.
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