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ABSTRACT 

Development of novel DNA gyrase B inhibitors is an important field of antibacterial drug 

discovery whose aim is to introduce a more effective representative of this mechanistic class 

into the clinic. In the present study, two new series of Escherichia coli DNA gyrase inhibitors 

bearing the 4,5-dibromopyrrolamide moiety have been designed and synthesized. 4,5,6,7-

Tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives inhibited E. coli DNA gyrase in the 

submicromolar to low micromolar range (IC50 values between 0.891 and 10.4 µM). Their 

“ring-opened” analogues, based on the 2-(2-aminothiazol-4-yl)acetic acid scaffold, displayed 

weaker DNA gyrase inhibition with IC50 values between 15.9 and 169 µM. Molecular 

docking experiments were conducted to study the binding modes of inhibitors.  
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1. Introduction 

 Antibacterial drug resistance, especially that of ‘ESKAPE’ organisms (Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and 

Enterobacter spp.), is a growing threat to human health, not only in hospitals but in the 

community in general [1]. Therefore, continuous discovery and development of new 

antibacterial agents that avoid the existing resistance mechanisms is of great importance to 

increase the number of drug candidates in the pipeline for treating these serious, life-

threatening infections. 

DNA gyrase is a well-established and validated target for antibacterial drug discovery. 

It offers opportunities for the development of drugs that could avoid some of the existing 

resistance mechanisms. It catalyzes changes in DNA topology during replication by 

introducing negative supercoils. It is a heterotetrameric enzyme consisting of two GyrA 

subunits, which are involved in cleavage and reunion of the DNA substrate, and two GyrB 

subunits that, by hydrolysis of ATP, provide energy for the supercoiling reaction of GyrA. 

Topoisomerase IV, which is involved in decatenation of daughter DNA following DNA 

replication, is structurally similar to DNA gyrase, being composed of two ParC and two ParE 

subunits that are homologous to GyrA and GyrB, respectively [2].  

The structural similarity of DNA gyrase and topoisomerase IV provides the 

opportunity for dual targeting in most bacteria, which prolongs the onset of resistance, making 

these two enzymes attractive targets for antibacterial drug discovery [3, 4]. The GyrA 

subunits are targets of the clinically important class of antibacterial drugs, the 

fluoroquinolones, which stabilize the complex between DNA gyrase and DNA [5]. The 

increasing level of resistance to fluoroquinolones limits their therapeutic use [6] and 

stimulates the search either for novel structural classes of inhibitors targeting GyrA or for 

development of inhibitors of the GyrB ATPase activity [4, 7, 8]. Novobiocin, an 
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aminocoumarin antibiotic, remains the first and still the only, example of GyrB inhibitor that 

has been used in therapy, primarily for infections caused by Gram positive bacterial strains. 

Its use declined during the 1960s and early 1970s following the introduction of penicillinase-

stable penicillins and the first generation of cephalosporins, and was eventually withdrawn 

from the market [4]. Despite extensive efforts to develop a new representative of this 

mechanistic class, no GyrB inhibitor has progressed beyond phase 1 clinical trials [4]. Several 

structural classes of GyrB and/or ParE inhibitors, such as cyclothialidines [9], ethylureas [10-

14], azaindoles [15], and pyrrolamides [16-18], were investigated in the past decades by the 

pharmaceutical industry. The majority of these GyrB and/or ParE inhibitors possess potent 

enzyme inhibitory activity and antibacterial activity, but mainly against Gram positive strains 

[4]. In contrast, there are few examples of GyrB/ParE inhibitors displaying anti-Gram 

negative activity, such as pyrrolopyrimidines [19] and pyrimidinoindoles [20]. DNA gyrase 

inhibitors have been discovered by academic research groups, for example by virtual 

screening [21-23] and by structure-based design of marine alkaloid analogues [24, 25]. 

Although many antibacterial drug discovery projects in the pharmaceutical industry were 

recently terminated, the knowledge gathered over more than 50 years of research directed 

towards ATPase inhibitors of DNA gyrase and topoisomerase IV provides an excellent 

foundation for further research to finally introduce a new and effective representative of this 

mechanistic class in antibacterial therapy [4].  

We have recently designed several structural classes of analogues of marine alkaloids 

based on clathrodin, hymenidin and oroidin, isolated from sponges of the genus Agelas, and 

evaluated their voltage-gated sodium channel modulatory activity [26-29], inhibition of 

biofilm formation [30], antimicrobial activity [31], and pro-apoptotic activity in HepG2 and 

THP-1 cell lines [32]. The similarity of oroidin and its analogues to the known pyrrolamide-

based inhibitors [17, 18] stimulated us to evaluate selected oroidin analogues from our library 
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for E. coli DNA gyrase inhibition. Optimization of the hit compounds [24] and design of 

novel 4,5-dibromopyrrolamide derivatives [25] resulted in potent DNA gyrase inhibitors 

exhibiting IC50 values in the low nanomolar range, but possessing weak antibacterial activity. 

The X-ray crystal structure of 4,5-dibromopyrrolamide-based inhibitor in complex with E. 

coli DNA gyrase subunit B was solved, which confirmed the assumed binding mode of 

inhibitor to the ATP-binding site of DNA gyrase [25]. The pyrrolamide moiety was found to 

occupy the same binding pocket of the E. coli GyrB ATP-binding site as that observed for 

other pyrrolamide-based DNA gyrase inhibitors, such as natural antibiotics clorobiocin [33] 

and kibdelomycin [34], and some described synthetic inhibitors [17, 18] (Figure 1). We 

describe here the design and synthesis of a novel series of 4,5-dibromopyrrolamides and the 

evaluation of their E. coli DNA gyrase inhibition as well as their antibacterial activity against 

selected Gram positive and Gram negative bacterial strains. 

	  

Figure 1. Pyrrolamide-based inhibitors of DNA gyrase. 

2. Results and discussion 

2.1. Design  

X-Ray crystal structure of the 4,5-dibromopyrrolamide-based inhibitor I in the ATP-

binding site of E. coli DNA gyrase revealed three hydrogen bonds formed between the 
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enzyme and the pyrrolamide moiety of inhibitor [25]. A hydrogen bond is seen between a 

pyrrole NH group and the Asp73 side chain, while a second hydrogen bond is formed 

between an adjacent carbonyl group and a structurally conserved water molecule that is in 

contact with the Asp73 side chain (Figure 2) [25]. With this conserved binding motif of 

adjacent hydrogen bond donor/acceptor groups, GyrB inhibitors mimic the binding of ATP 

[8]. The NH of the amide group is additionally bridged by a water molecule to the side chain 

of Thr365 (Figure 2). The formation of several hydrophobic interactions between the dibromo 

substituted pyrrole moiety and the protein is crucial for achieving potent E. coli DNA gyrase 

inhibition, since 4-bromopyrrole, 4,5-dichloropyrrole and indole derivatives displayed weaker 

inhibition of the enzyme [24, 25]. In this new series, the 4,5-dibromopyrrolamide moiety has 

thus been retained. To further explore the structure-activity relationship of the 4,5,6,7-

tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives we synthesized compounds in which 

the 4,5-dibromopyrrole-2-carbonyl moiety is attached to the amino group at position 2, 

instead of that at position 6, resulting in the “reversed” type III analogues (Figure 3) of the 

parent compounds (compound II and its analogues [24], Figure 3). Additional substituents 

designed to target the Arg76/Arg136 side chain were then introduced at the 6-amino group 

(Figure 3). In addition, a series of 2-(2-aminothiazol-4-yl)acetic acid derivatives (type IV 

analogues, Figure 3) were designed and synthesized. These so-called “ring-opened” 

compounds are more flexible than type III compounds and possess a smaller central scaffold, 

and thereby offering the opportunity for the introduction of larger substituents for potential 

interaction with Arg76/Arg136. The design of all these compounds was supported by 

molecular docking to the E. coli DNA gyrase ATP-binding site. The predicted binding modes 

are presented in Figures 4 and 5. 
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Figure 2. Schematic representation of hydrogen bonds between inhibitor I and E. coli DNA gyrase ATP-binding 

site residues (PDB entry: 4ZVI [25]). 

a  b  	   	  

Figure 3. a) Molecular docking pose of E. coli DNA gyrase inhibitor II in the ATP-binding site of E. coli DNA 

gyrase [24]. b) Design of a novel series of 4,5-dibromopyrrolamide-based DNA gyrase inhibitors. 

2.2. Chemistry  

The designed 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives 5-8 were 

prepared according to the synthetic procedure presented in Scheme 1. Enantiomerically pure 

starting (S)- and (R)-4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2,6-diamines ((R)-1 and (S)-1) 

were synthesized according to the reported procedure [24, 35]. In the first step, the amino 

group at position 6 was protected as a tert-butylcarbamate using di-tert-butyl dicarbonate in 

tetrahydrofuran to yield (R)-2 and (S)-2. The amino group at position 2 of (R)-2 and (S)-2 was 

then acylated with 2,2,2-trichloro-1-(4,5-dibromo-1H-pyrrol-2-yl)ethanone in N,N-
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dimethylformamide (DMF) at elevated temperature. The Boc protecting groups of the 

compounds (R)-3 and (S)-3 obtained were removed with HCl gas generated in situ by the slow 

addition of acetyl chloride to methanol. This acidolysis yielded hydrochlorides (R)-4 and (S)-4 

which were then acylated with ethyl oxalyl chloride ((R)-5 and (S)-5) or methyl malonyl 

chloride ((S)-6) in DMF at room temperature. In the final step, esters (R)-5, (S)-5 and (S)-6 

were hydrolyzed to their acid derivatives (R)-7, (S)-7 and (S)-8 using alkaline conditions. 

	  

Scheme 1. Reagents and conditions. a) Boc2O, THF, r.t., 24 h; b) 2,2,2-trichloro-1-(4,5-dibromo-1H-pyrrol-2-

yl)ethanone, Na2CO3, DMF, 80 °C, 18 h; c) acetyl chloride, MeOH, 0 °C, 1 h, then r.t., 18 h; d) ethyl oxalyl 

chloride (for (R)-5 and (S)-5) or methyl malonyl chloride (for (S)-6), DBU, DMF, r.t., 24 h; e) 1 M NaOH, 

MeOH/H2O, r.t., 24 h. 

Synthesis of the 2-(2-aminothiazol-4-yl)acetic acid derivatives 11-20 is outlined in 

Scheme 2. 2-(2-Aminothiazol-4-yl)acetic acid (9) was first esterified with methanol to give 10 

and the amino group at position 2 of the thiazole moiety of 10 then acylated by 2,2,2-

trichloro-1-(4,5-dibromo-1H-pyrrol-2-yl)ethanone, as described above, to give compound 11. 

Hydrolysis of the methyl ester 11 resulted in carboxylic acid 12, which was coupled with 

either glycine methyl ester hydrochloride to give 13 or substituted aniline derivatives 15-18 

using EDC/HOBt-promoted amide bond formation. Further, methyl esters 13, 17 and 18 were 

converted to their carboxylic acid counterparts 14, 19 and 20 by alkaline hydrolysis.  
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Scheme 2. Reagents and conditions. a) SOCl2, MeOH, reflux, 1.5 h; b) 2,2,2-trichloro-1-(4,5-dibromo-1H-

pyrrol-2-yl)ethanone, Na2CO3, DMF, 80 °C, 18 h; c) 2 M NaOH, MeOH, r.t., 24 h; d) H-Gly-OMe HCl, EDC, 

HOBt, NMM, DMF, r.t., 18 h; e) corresponding H2NC6H4R1R2, EDC, HOBt, NMM, DMF, r.t., 18 h. 

2.3. Biological evaluation, structure-activity relationship and molecular modeling  

The final compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7, (S)-8, 13-20 were tested for E. 

coli DNA gyrase inhibition using the DNA gyrase supercoiling assay (Tables 1 and 2). 

Results are presented as residual activities (RA) of the enzyme at 100 µM of the tested 

compound, or as IC50 values for the more active compounds (RA<50% at 100 µM). All 

prepared final compounds were screened for their antibacterial activity at 50 µM against two 

Gram positive (Enterococcus faecalis ATCC 29212 and Staphylococcus aureus ATCC 

25923) and two Gram negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa 

ATCC 27853) bacterial strains. Results of the antibacterial activity evaluation are presented in 

Tables 1 and 2. 

2.3.1. 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazoles 

The in vitro E. coli DNA gyrase inhibitory activities of 4,5,6,7-tetrahydrobenzo[1,2-

d]thiazoles (R)-5, (S)-5, (S)-6, (R)-7, (S)-7 and (S)-8 (Table 1) showed weaker DNA gyrase 

inhibition than that of the parent compounds bearing a pyrrole moiety on the amino group at 
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position 6 (compound II and its analogues [24]). With an IC50 value of 4.47 µM the oxalic 

acid ester (S)-5 was a 2-fold weaker inhibitor than the malonic acid ester (S)-6 with an IC50 

value of 2.34 µM. Hydrolysis of these esters to their carboxylic acid counterparts resulted in 

improved E. coli DNA gyrase inhibition. The oxalic acid derivative (S)-7 (IC50 = 1.12 µM) 

was approximately 4-fold more potent than its parent ester (S)-5 (IC50 = 4.47 µM), while the 

activity of the malonic acid derivative (S)-8 was improved to the submicromolar range (IC50 = 

0.891 µM). These results highlight the importance of the chain length, since malonic acid 

ester and acid (compounds (S)-6 and (S)-8), with an additional methylene group, displayed 

more potent E. coli DNA gyrase inhibition than their oxalic acid-based analogues (S)-5 and 

(S)-7. The inhibitory activity of the oxalic acid-based R-enantiomers (compounds (R)-5 and 

(R)-7) was weaker (IC50 values of 10.4 µM and 3.58 µM, respectively) than that of their S-

enantiomers (S)-5 and (S)-7. A similar phenomenon was observed in our previous series of the 

4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2,6-diamines with pyrrole moiety attached to the 

amino group at position 6 [24].  

Molecular docking experiments using FlexX [36, 37], as available in LeadIT 

(BioSolveIT GmbH) [38], were conducted to study the binding modes of E. coli DNA gyrase 

inhibitors (R)-5, (S)-5, (S)-6, (R)-7, (S)-7 and (S)-8. We used our already described and 

validated docking protocol [24] using the high-resolution crystal structure of the 4,5’-

bithiazole inhibitor in complex with E. coli DNA gyrase (PDB entry: 4DUH) as the target 

protein [22]. The obtained docking poses and scoring function scores cannot explain the 

observed differences in binding affinities. All tested inhibitors are predicted to form two 

hydrogen bonds in the pyrrolamide-binding pocket, one direct and one bridged by a conserved 

water molecule to Asp73 side chain (Figure 4). Moreover, docking predicts formation of 

additional hydrogen bonds with Arg76 and/or Arg136 side chains, but the binding modes 

suggest that there is no interaction between a salt bridge made by Glu50-Arg76 residues and 
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the 4,5,6,7-tetrahydrobenzo[1,2-d]thiazole ring of inhibitors (Figure 4). This could explain 

why oxalic acid-based compound (S)-7 (IC50 = 1.12 µM) is less potent that its counterpart II 

(Figure 3, IC50 = 0.058 µM, while its benzothiazole-based analogue, in which such interaction 

is still possible, was shown to possess almost equipotent activity as compound II [39].  

Compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7 and (S)-8 were inactive or only weakly 

active against selected Gram positive and Gram negative bacterial strains at 50 µM (i.e. 

growth inhibition less than 50% for all compounds) (Table 1). There are several possible 

explanations for the observed lack of correlation between in vitro enzyme inhibition and 

antibacterial activity against selected bacterial strains. Firstly, the enzymatic activity could be 

too low (IC50 values between 0.891 and 10.4 µM) to result in inhibition of bacterial growth of 

Gram negative E. coli, since subnanomolar Ki values against cytoplasmic targets could be 

required to generate sufficient antibacterial potency on Gram negative bacteria [20]. 

Pyrrolamide-based type II analogues (compound II and its analogues, Figure 3) that displayed 

potent E. coli DNA gyrase inhibition in the low nanomolar range were also devoid of 

antibacterial activity against Gram negative strains [24]. Secondly, type II compounds [24] 

and pyrrolamides presented in Figure 1 were shown to possess more potent antibacterial 

activity against the ΔtolC E. coli strain, which lacks the outer membrane tolC efflux pump, 

than against the wild-type E. coli strain [16, 17]. Therefore, active efflux of the compounds 

from bacterial cells could be the second reason for the inactivity of pyrrolamide-based DNA 

gyrase inhibitors including compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7 and (S)-8 in vitro.  

We assume that the 4,5-dibromopyrrole moiety is too bulky to occupy the 

hydrophobic pocket of S. aureus DNA gyrase [24], resulting in weak inhibition of S. aureus 

DNA gyrase by 4,5-dibromopyrrolamide-based compounds and, hence, in the weak 

antibacterial activity against Gram positive S. aureus [24, 25]. To evaluate this hypothesis, 

compounds (S)-7 and (S)-8 were tested for S. aureus DNA gyrase inhibition and showed 
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weak inhibition with enzyme residual activities of 77% and 69% at 10 µM, respectively, 

which is probably too weak inhibition to result in antibacterial activity.  

Table 1. Inhibition of Escherichia coli DNA gyrase and antibacterial activity of 4,5,6,7-tetrahydrobenzo[1,2-

d]thiazoles (R)-5, (S)-5, (S)-6, (R)-7, (S)-7 and (S)-8. 

 

cpd n R 
E. coli DNA gyrase 

IC50 [µM]  

% inhibitiona 

S. aureus E. faecalis E. coli P. aeruginosa 

(S)-5 0 Et 4.47 µM 0 26 7 0 

(S)-6 1 Me 2.34 µM 0 48 0 8 

(S)-7 0 H 1.12 µM 11 4 5 0 

(S)-8 1 H 0.891 µM 1 0 0 3 

(R)-5 0 Et 10.4 µM 19 5 10 4 

(R)-7 0 H 3.58 µM 0 3 8 6 

a% growth inhibition at 50 µM of compound. 

 

 

Figure 4. Molecular docking pose of inhibitor (S)-7 (magenta sticks) in the E. coli DNA gyrase ATP-binding 

site (PDB entry: 4DUH [22]) in yellow cartoon representation. For clarity, only amino acid residues forming 

hydrogen bonds with inhibitor are presented as yellow sticks. The water molecule is shown as a red sphere. 

Figure was prepared by PyMOL [40]. 

2.3.2. 2-(2-Aminothiazol-4-yl)acetic acids  
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2-(2-Aminothiazol-4-yl)acetic acids 11-20 (Table 2) were designed as ring-opened 

analogues of the 4,5,6,7-tetrahydrobenzo[1,2-d]thiazoles (Figure 3). In the first step, 

compounds 13 and 14, which by their length mimic the structures of 5 and 7, were prepared. 

Their E. coli DNA gyrase inhibitory activity, with IC50 values of 170 µM for glycine ester 

derivative 13 and 16 µM for its carboxylic acid 14, are weaker than those for 5 and 7. 

However, docking studies suggest similar binding modes for 14 (Figure 5) and (S)-7 (Figure 

4), with formation of two hydrogen bonds with Arg136.  

The lack of antibacterial activity of compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7, (S)-8, 

13 and 14, as well as of previously reported type II analogues (compound II and its analogues 

[24]), which all possess flexible substituents addressing Arg136, suggested the introduction of 

more lipophilic and rigid aromatic moieties decorated with substituents with hydrogen bond 

acceptor properties and acidic character. Although sulfonamide 15, phenol 16 and methyl 

esters 17 and 18 were all devoid of inhibitory activity, benzoic acid 19 and salicylic acid 20 

derivatives inhibited E. coli DNA gyrase with IC50 values of 33 µM and 40 µM. Despite being 

more lipophilic (ChemBioDraw clogP = 3.37 for 19 vs clogP = 1.42 for 14) and less acidic 

than their aliphatic analogues, their antibacterial activity was not improved, because their 

inhibitory activity is probably still too weak to result in potent antibacterial activity (Table 2).      

Table 2. Inhibition of Escherichia coli DNA gyrase and antibacterial activity of 2-(2-aminothiazol-4-yl)acetic 

acid derivatives 13-20. 

 

cpd R1 R2 

E. coli DNA 

gyrase IC50 [µM] 

or RAa [%] 

% inhibitionb 

S. aureus E. faecalis E. coli P. aeruginosa 

13 Me - 169 µM  13 10 7 0  
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14 H - 15.9 µM 15 14 7 0  

15 SO2NH2 H 82% 0 0 6 0  

16 H OH 143 µM 0 0 3 0  

17 H COOMe 64% 8 11 25 0  

18 OH COOMe 100% 12 4 7 0  

19 H COOH 32.8 µM 6 2 8 0 

20 OH COOH 39.8 µM 0 0 3 0  

aResidual activity of the enzyme at 100 µM of compound. 

b% growth inhibition at 50 µM of compound. 

	  

 

Figure 5. Molecular docking pose of inhibitor 14 (in magenta sticks) in the E. coli DNA gyrase ATP-binding 

site (PDB entry: 4DUH [22]; in yellow cartoon representation). For clarity, only amino acid residues forming 

hydrogen bonds with inhibitor are presented as yellow sticks. The water molecule is shown as a red sphere. The 

figure was prepared by PyMOL [40]. 

3. Conclusions 

Two series of novel E. coli DNA gyrase inhibitors possessing 4,5,6,7-

tetrahydrobenzo[1,2-d]thiazole (compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7, (S)-8) or 2-(2-

aminothiazol-4-yl)acetic acid as a central core (compounds 13-20) were designed and 

synthesized. Compounds were designed based on our recently reported series of potent DNA 

gyrase inhibitors [24] in order to further explore the SAR and to improve their antibacterial 

activity. The results of in vitro enzymatic activity measurements using the E. coli DNA 
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supercoiling assay showed that active compounds (R)-5, (S)-5, (S)-6, (R)-7, (S)-7, (S)-8, 13, 

14, 19 and 20 inhibit E. coli DNA gyrase in the sub-micromolar to low micromolar range, 

however  they display weak activity against Gram positive S. aureus and E. faecalis and Gram 

negative E. coli and P. aeruginosa. Nevertheless, the described results for this novel structural 

class of DNA gyrase inhibitors provides valuable information for the discovery of improved 

DNA gyrase B inhibitors.     

4. Experimental section 

4.1. Chemistry  

4.1.1. General procedures 

Chemicals were obtained from Acros Organics (Geel, Belgium), Sigma-Aldrich (St. 

Louis, MO, USA) and TCI Europe N.V. (Zwijndrecht, Belgium) and used without further 

purification. Analytical TLC was performed on silica gel Merck 60 F254 plates (0.25 mm), 

using visualization with UV light and spray reagents. Column chromatography was carried 

out on silica gel 60 (particle size 240–400 mesh). HPLC analyses were performed on Agilent 

Technologies 1100 instrument with G1365B UV-VIS detector, G1316A thermostat and 

G1313A autosampler using Agilent Eclipse Plus C18 column (5 µm, 4.6 × 150 mm) using 

Method A: mobile phase: 0.1% trifluoroacetic acid in water (A) and methanol (B); gradient: 

90% A to 10% A in 20 min, then 5 min 10 % A; flow rate 1.0 mL/min; injection volume: 10 

µL; Method B: mobile phase: 0.1% trifluoroacetic acid in water (A) and acetonitrile (B); 

gradient: 2 min 95 % A, 90% A to 10% A in 12 min, 10% A to 5% A in 1 min, then 5 min 5% 

A; flow rate 1.0 mL/min; injection volume: 10 µL. All tested compounds were ≥95% pure by 

HPLC. Melting points were determined on a Reichert hot stage microscope and are 

uncorrected. 1H and 13C NMR spectra were recorded at 400 and 100 MHz, respectively, on a 

Bruker AVANCE III 400 spectrometer (Bruker Corporation, Billerica, MA, USA) in DMSO-
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d6 or CDCl3 solutions, with TMS as the internal standard. IR spectra were recorded on a 

Thermo Nicolet Nexus 470 ESP FT-IR spectrometer (Thermo Fisher Scientific, Waltham, 

MA, USA). Mass spectra were obtained using a VG Analytical Autospec Q mass 

spectrometer (Fisons, VG Analytical, Manchester, UK). Optical rotations were measured on a 

Perkin-Elmer 241 MC polarimeter. The reported values for specific rotation are average 

values of 5 successive measurements using an integration time of 5 s.  

4.1.2. General procedure A. Synthesis of compounds (R)-2 and (S)-2 

A solution of (S)- or (R)-4,5,6,7-tetrahydrobenzo[1,2-d]thiazole-2,6-diamine ((S)- or 

(R)-1) (1 mmol) in tetrahydrofuran (THF) (5 mL) was cooled to 0 °C on an ice bath. Then a 

solution of di-tert-butyl dicarbonate (Boc2O) (1.1 mmol) in THF (3 mL) was added dropwise 

over 20 min. The reaction mixture was stirred at room temperature overnight. The solvent was 

removed under reduced pressure and the crude product dissolved in ethyl acetate (10 mL). 

Organic phase was successively washed with saturated aqueous NaHCO3 solution (10 mL) 

and brine (10 mL), dried over Na2SO4, filtered and the solvent removed under reduced 

pressure. Product was used without further purification. 

4.1.2.1. tert-Butyl (S)-(2-amino-4,5,6,7-tetrahydrobenzo[1,2-d]thiazol-6-yl)carbamate ((S)-2) 

Compound was prepared from (S)-1 (2.436 g, 14.40 mmol) and Boc2O (3.457 g, 15.84 

mmol) according to the general procedure A. Yield: 3.892 g (100%); white solid; m.p. 147-

149 °C; [α]D -40.3 (c 0.26, MeOH); IR (ATR) ν 3363, 2976, 1684, 1634, 1514, 1445, 1365, 

1307, 1282, 1249, 1229, 1167, 1090, 1050, 975, 880, 829, 783, 760, 742, 690, 609 cm-1; 1H 

NMR (400 MHz, DMSO-d6): δ 1.38 (s, 9H, C(CH3)3), 1.54-1.65 (m, 1H, HA-7), 1.80-1.86 (m, 

1H, HB-7), 2.31-2.47 (m, 3H, HA-4, H-5), 2.68 (dd, 1H, J1 = 14.8 Hz, J2 = 5.5 Hz, HB-4), 

3.57-3.69 (m, 1H, CHNH), 6.64 (s, 2H, NH2), 6.94 (d, 1H, J = 7.9 Hz, NH) ppm; 13C NMR 
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(100 MHz, DMSO-d6): δ 24.9, 28.2 (3C), 28.87, 28.94, 46.8, 77.6, 112.4, 144.1, 154.9, 166.1 

ppm.  

4.1.2.2. tert-Butyl (R)-(2-amino-4,5,6,7-tetrahydrobenzo[1,2-d]thiazol-6-yl)carbamate ((R)-2)  

Compound was prepared from (R)-1 (1.000 g, 5.92 mmol) and Boc2O (1.360 g, 6.21 

mmol) according to the general procedure A. Yield: 1,59 g (100%); off-white solid; m.p. 153-

154 °C; [α]D +39.7 (c 0.24, MeOH); IR (ATR) ν 3361, 3122, 2976, 2934, 1684, 1514, 1443, 

1367, 1307, 1251, 1228, 1171, 1090, 1047, 993, 975, 866, 827, 744 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ 1.38 (s, 9H, C(CH3)3), 1.54-1.65 (m, 1H, HA-7), 1.80-1.86 (m, 1H, HB-7), 2.31-

2.47 (m, 3H, HA-4, H-5), 2.68 (dd, 1H, J1 = 14.8 Hz, J2 = 5.5 Hz, HB-4), 3.57-3.69 (m, 1H, 

CHNH), 6.64 (s, 2H, NH2), 6.94 (d, 1H, J = 7.9 Hz, NH) ppm. 

4.1.3. General procedure B. Synthesis of compounds (R)-3 and (S)-3 

A solution of (S)- or (R)-2 (1 mmol) and Na2CO3 (1 mmol) in N,N-dimethylformamide 

(5 mL) was stirred at room temperature for 15 min. Then 2,2,2-trichloro-1-(4,5-dibromo-1H-

pyrrol-2-yl)ethan-1-one (1.1 mmol) was added and the mixture stirred at 80 °C overnight. 

Solvent was removed under reduced pressure and the crude product dissolved in ethyl acetate 

(10 mL). Organic phase was successively washed with 10% citric acid (10 mL), saturated 

aqueous NaHCO3 solution (10 mL) and brine (10 mL), dried over Na2SO4, filtered and the 

solvent removed under reduced pressure. Product was purified by column chromatography 

using dichloromethane/methanol (30:1) as eluent. 

4.1.3.1. tert-Butyl (S)-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-

tetrahydrobenzo[1,2-d]thiazol-6-yl)carbamate ((S)-3)  

Compound was prepared from (S)-2 (0.800 g, 2.97 mmol) according to the general 

procedure B. Yield: 0.610 g (39.5%); white crystals; m.p. 176-178 °C; [α]D -36.8 (c 0.21, 

MeOH); IR (ATR) ν 3366, 3120, 2844, 1680, 1616, 1556, 1457, 1379, 1335, 1280, 1160, 
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1090, 972, 856, 779, 750, 708, 680 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 1.41 (s, 9H, 

C(CH3)3), 1.68-1.78 (m, 1H, HA-7), 1.91-1.99 (m, 1H, HB-7), 2.55-2.76 (m, 3H, HA-4, H-5), 

2.91 (dd, 1H, J1 = 15.1 Hz, J2 = 4.5 Hz, HB-4), 3.69-3.79 (m, 1H, CHNH), 7.01 (d, J = 7.7 Hz, 

CHNH), 7.40 (s, 1H, pyrrole-H), 12.18 (s, 1H, NH), 13.08 (s, 1H, NH) ppm; 13C NMR (100 

MHz, DMSO-d6): δ 24.5, 28.2 (3C), 28.4, 28.8, 46.5, 77.7, 98.7, 107.6, 115.1, 119.7, 123.3, 

125.97, 126.01, 154.7, 160.2 ppm; HRMS (ESI-) m/z for C17H19N4O3SBr2 ([M-H]-): calcd 

516.9545, found 516.9541. 

4.1.3.2. tert-Butyl (R)-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-

tetrahydrobenzo[1,2-d]thiazol-6-yl)carbamate ((R)-3)  

Compound was prepared from (R)-2 (1.000 g, 3.72 mmol) according to the general 

procedure B. Yield: 0.645 g (33.4%); white crystals; m.p. 174-176 °C; [α]D +35.2 (c 0.23, 

MeOH); IR (ATR) ν 3227, 2973, 1735, 1655, 1541, 1442, 1406, 1377, 1315, 1291, 1215, 

1178, 1090, 1046, 1015, 992, 975, 858, 744 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 1.40 (s, 

9H, C(CH3)3), 1.67-1.77 (m, 1H, HA-7), 1.90-1.99 (m, 1H, HB-7), 2.55-2.76 (m, 3H, HA-4, H-

5), 2.91 (dd, 1H, J1 = 15.7 Hz, J2 = 4.4 Hz, HB-4), 3.69-3.79 (m, 1H, CHNH), 7.03 (d, J = 7.9 

Hz, CHNH), 7.38 (s, 1H, pyrrole-H), 12.21 (s, 1H, NH), 13.11 (s, 1H, NH) ppm; 13C NMR 

(100 MHz, DMSO-d6): δ 24.5, 28.2 (3C), 28.4, 28.8, 46.5, 77.7, 98.7, 107.6, 115.1, 119.7, 

123.3, 125.97, 126.01, 154.7, 160.2 ppm; HRMS (ESI-) m/z for C17H19N4O3SBr2 ([M-H]-): 

calcd 516.9545, found 516.9540. 

4.1.4. General procedure C. Synthesis of compounds (R)-4 and (S)-4 

Methanol (10 mL) was cooled on an ice bath and then acetyl chloride (10 mmol) was 

added dropwise. The mixture was stirred at 0 °C for 30 min and then solution of (R)-3 or (S)-3 

(1 mmol) in methanol (10 mL) was added. Reaction mixture was stirred at 0 °C for 1 h and 

then at room temperature overnight.  
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4.1.4.1. (S)-2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-tetrahydrobenzo[1,2-

d]thiazol-6-aminium chloride ((S)-4) 

Compound was prepared from (S)-3 (0.505 g, 0.97 mmol) according to the general 

procedure C. The precipitate was filtered off and dried. Additional amount of (S)-4 was 

obtained from mother liquor, which was concentrated in vacuo and dried. Yield: 0.443 g 

(100%); off-white solid; m.p. >300 °C; [α]D -60.7 (c 0.20, MeOH); IR (ATR) ν 3394, 2828, 

1692, 1631, 1567, 1519, 1382, 1338, 1199, 1183, 1073, 970, 904, 845, 733, 616 cm-1; 1H 

NMR (400 MHz, DMSO-d6): δ 1.87-1.97 (m, 1H, HA-7), 2.11-2.19 (m, 1H, HB-7), 2.71-2.80 

(m, 3H, HA-4, H-5), 3.10 (dd, 1H, J1 = 16.0 Hz, J2 = 5.1 Hz, HB-4), 3.51-3.54 (m, 1H, 

CHNH), 7.40 (d, 1H, J = 2.7 Hz, pyrrole-H), 8.28 (d, 3H, J = 4.4 Hz, NH3
+), 12.30 (s, 1H, 

NH), 13.14 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 23.5, 26.4, 26.6, 46.4, 98.8, 

107.7, 115.4, 117.8, 124.3, 125.9, 143.2, 156.2 ppm; HRMS (ESI-) m/z for C12H11N4OSBr2 

([M-H]-): calcd 416.9020, found 416.9030. 

4.1.4.2. (R)-2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-tetrahydrobenzo[1,2-

d]thiazol-6-aminium chloride ((R)-4) 

Compound was prepared from (R)-3 (0.600 g, 1.15 mmol) according to the general 

procedure C. The precipitate was filtered off and dried. Additional amount of (R)-4 was 

obtained from mother liquor, which was concentrated in vacuo and dried. Yield: 0.527 g 

(100%); off-white solid; m.p. >300 °C; [α]D +58.7 (c 0.21, MeOH); IR (ATR) ν 3355, 3312, 

3226, 3127, 2980, 1697, 1651, 1547, 1508, 1436, 1409, 1375, 1292, 1219, 1175, 1115, 1089, 

1010, 979, 855, 825, 781, 736, 704 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 1.86-1.96 (m, 1H, 

HA-7), 2.09-2.18 (m, 1H, HB-7), 2.71-2.80 (m, 3H, HA-4, H-5), 3.10 (dd, 1H, J1 = 15.7 Hz, J2 

= 5.0 Hz, HB-4), 3.51-3.54 (m, 1H, CHNH), 7.41 (s, 1H, pyrrole-H), 8.23 (s, 3H, NH3
+), 12.29 

(s, 1H, NH), 13.13 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 23.5, 26.4, 26.6, 
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46.4, 98.8, 107.7, 115.4, 117.8, 124.3, 125.9, 143.2, 156.2 ppm; HRMS (ESI-) m/z for 

C12H11N4OSBr2 ([M-H]-): calcd 416.9020, found 416.9030. 

4.1.5. General procedure D. Synthesis of compounds (S)-5, (R)-5 and (S)-6  

To a solution of amine (1 mmol) in N,N-dimethylformamide (DMF) (5 mL) cooled to 

0 °C, 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) (3 mmol) and ethyl 2-chloro-2-oxoacetate or 

methyl 3-chloro-3-oxopropanoate (1.3 mmol) were added dropwise. Reaction mixture was 

stirred at room temperature overnight. The solvent was evaporated under reduced pressure 

and the oily residue dissolved in ethyl acetate (20 mL). Organic phase was successively 

washed with 10% citric acid (2 × 10 mL), saturated aqueous NaHCO3 solution (2 × 10 mL) 

and brine (10 mL), dried over Na2SO4, filtered and the solvent removed under reduced 

pressure.  

4.1.5.1. Ethyl (S)-2-((2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-

tetrahydrobenzo[1,2-d]thiazol-6-yl)amino)-2-oxoacetate ((S)-5) 

Compound was prepared from (S)-4 (0.115 g, 0.25 mmol) according to the general 

procedure D. Yield: 0.080 g (61.1%); off-white solid; m.p. 160-162 °C; [α]D -19.8 (c 0.11, 

MeOH); IR (ATR) ν 3228, 2937, 1734, 1668, 1535, 1443, 1405, 1378, 1318, 1284, 1262, 

1211, 1110, 1017, 973, 933, 859, 745, 699, 639, 620 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 

1.28 (t, 3H, J = 7.1 Hz, CH2CH3), 1.87-1.98 (m, 2H, H-7), 2.69-2.76 (m, 3H, HA-4, H-5), 2.93 

(dd, 1H, J1 = 15.8 Hz, J2 = 5.5 Hz, HB-4), 4.07-4.14 (m, 1H, CHNH), 4.25 (q, 2H, J = 7.1 Hz, 

CH2CH3), 7.41 (s, 1H, pyrrole-H), 9.04 (d, 1H, J = 8.1 Hz, CONHCH), 12.23 (s, 1H, NH), 

13.12 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 13.8, 24.5, 27.5, 28.0, 45.7, 62.0, 

98.8, 107.7, 115.2, 119.5, 130.8, 131.5, 141.0, 155.8, 156.9, 160.9 ppm; HRMS (ESI-) m/z for 

C16H15N4O4SBr2 ([M-H]-): calcd 516.9181, found 516.9186. HPLC: method B, tr 12.91 min 

(95.1% at 254 nm). 
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4.1.5.2. Ethyl (R)-2-((2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-

tetrahydrobenzo[1,2-d]thiazol-6-yl)amino)-2-oxoacetate ((R)-5) 

Compound was prepared from (R)-4 (0.150 g, 0.33 mmol) according to the general 

procedure D. Crude product was purified by column chromatography using 

dichloromethane/methanol (40:1) as eluent. Yield: 0.021 g (11.5%); yellow solid; m.p. 161-

164°C; [α]D +20.1 (c 0.12, MeOH); IR (ATR) ν 3356, 3226, 2936, 1735, 1696, 1651, 1538, 

1442, 1407, 1376, 1315, 1290, 1214, 1177, 1091, 1014, 992, 976, 858, 826, 742 cm-1; 1H 

NMR (400 MHz, DMSO-d6): δ 1.28 (t, 3H, J = 7.1 Hz, CH2CH3), 1.85-1.99 (m, 2H, H-7), 

2.67-2.76 (m, 3H, HA-4, H-5), 2.93 (dd, 1H, J1 = 15.6 Hz, J2 = 4.9 Hz, HB-4), 4.04-4.14 (m, 

1H, CHNH), 4.25 (q, 2H, J = 7.1 Hz, CH2CH3), 7.41 (s, 1H, pyrrole-H), 9.04 (d, 1H, J = 8.1 

Hz, CONHCH), 12.23 (s, 1H, NH), 13.12 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): 

δ 13.8, 24.5, 27.5, 28.0, 45.7, 62.0, 98.8, 107.7, 115.2, 119.5, 130.8, 131.5, 141.0, 155.8, 

156.9, 160.9 ppm; HRMS (ESI-) m/z for C16H15N4O4SBr2 ([M-H]-): calcd 516.9181, found 

516.9186. HPLC: method B, tr 12.90 min (95.3% at 254 nm). 

4.1.5.3. Methyl (S)-3-((2-(4,5-dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-

tetrahydrobenzo[1,2-d]thiazol-6-yl)amino)-3-oxopropanoate ((S)-6) 

Compound was prepared from (S)-4 (0.100 g, 0.22 mmol) according to the general 

procedure D. Yield: 0.062 g (46.3%); white solid; m.p. 205-207 °C; [α]D -17.5 (c 0.13, MeOH); 

IR (ATR) ν 3261, 3124, 2952, 1721, 1641, 1538, 1438, 1384, 1324, 1352, 1281, 1226, 1177, 

1122, 1018, 991, 975, 902, 856, 832, 773, 740, 696 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 

1.74-1.84 (m, 1H, HA-7), 1.87-1.95 (m, 1H, HB-7), 2.51-2.57 (m, 2H, HA-4, HA-5), 2.67-2.73 

(m, 1H, HB-5), 2.94 (dd, 1H, J1 = 15.8 Hz, J2 = 5.0 Hz, HB-4), 3.24 (d, 2H, J = 1.9 Hz, 

COCH2CO), 3.59 (s, 3H, CH3), 4.02-4.10 (m, 1H, CHNH), 7.38 (s, 1H, pyrrole-H), 8.23 (d, 

1H, J = 7.6 Hz, CONHCH), 12.21 (s, 1H, NH), 13.08 (s, 1H, NH) ppm; 13C NMR (100 MHz, 

DMSO-d6): δ 23.6, 27.7, 28.2, 42.2, 44.8, 51.8, 98.7, 107.7, 115.2, 119.4, 126.0, 132.5, 143.6, 
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156.6, 164.7, 168.4 ppm; HRMS (ESI-) m/z for C16H15N4O4SBr2 ([M-H]-): calcd 516.9181, 

found 516.9188. HPLC: method B, tr 12.26 min (95.5% at 254 nm). 

4.1.6. General procedure E. Synthesis of compounds (S)-7, (R)-7 and (S)-8 

To a solution of ester (1 mmol) in methanol (5 mL), 1 M NaOH (5 mmol) was added 

and the reaction mixture stirred at room temperature overnight. Methanol was evaporated 

under reduced pressure and reaction mixture extracted with ethyl acetate (10 mL). Water 

phase was acidified with 1 M HCl to pH ~ 2, precipitate was filtered off and purified by flash 

column chromatography using dichloromethane/methanol (1:1) as eluent. 

4.1.6.1. (S)-2-((2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-tetrahydrobenzo[1,2-

d]thiazol-6-yl)amino)-2-oxoacetic acid ((S)-7) 

Compound was prepared from (S)-5 (0.050 g, 0.097 mmol) according to the general 

procedure E. Yield: 0.032 g (67.7%); off-white solid; m.p. 236-238 °C; [α]D -48.6 (c 0.18, 

MeOH); IR (ATR) ν 2941, 1657, 1555, 1408, 1383, 1325, 1223, 1171, 1079, 973, 864, 829, 

742, 662, 618 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 1.89-1.97 (m, 2H, H-7), 2.45-2.47 (m, 

1H, H-4/H-5), 2.70-2.77 (m, 2H, H-4/H-5), 2.92 (dd, 1H, J1 = 15.6 Hz, J2 = 5.1 Hz, HB-4), 

4.03-4.12 (m, 1H, CHNH), 7.40 (s, 1H, pyrrole-H), 8.95 (d, 1H, J = 8.4 Hz, CONHCH), 

12.23 (s, 1H, NH), 13.11 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 24.5,  27.6, 

28.0, 45.7, 98.8, 107.6, 115.2, 119.4, 126.0, 137.1, 143.2, 156.5, 158.0, 162.3 ppm; HRMS 

(ESI-) m/z for C14H11N4O4SBr2 ([M-H]-): calcd 488.8868, found 488.8879. HPLC: method B, 

tr 11.74 min (95.0% at 254 nm). 

4.1.6.2. (R)-2-((2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-tetrahydrobenzo[1,2-

d]thiazol-6-yl)amino)-2-oxoacetic acid ((R)-7) 
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Compound was prepared from (R)-5 (0.010 g, 0.020 mmol) according to the general 

procedure E. Yield: 0.008 g (84.2%); off-white solid; m.p. 240-242°C; [α]D +47.7 (c 0.20, 

MeOH); 1H NMR (400 MHz, DMSO-d6): δ 1.89-1.97 (m, 2H, H-7), 2.44-2.47 (m, 1H, H-

4/H-5), 2.70-2.78 (m, 2H, H-4/H-5), 2.92 (dd, 1H, J1 = 15.4 Hz, J2 = 5.2 Hz, HB-4), 4.03-4.12 

(m, 1H, CHNH), 7.40 (s, 1H, pyrrole-H), 8.94 (d, 1H, J = 8.2 Hz, CONHCH), 12.24 (s, 1H, 

NH), 13.10 (s, 1H, NH) ppm; HRMS (ESI-) m/z for C14H11N4O4SBr2 ([M-H]-): calcd 

488.8868, found 488.8872. HPLC: method B, tr 11.744 min (100% at 254 nm). 

4.1.6.3. (S)-3-((2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)-4,5,6,7-tetrahydrobenzo[1,2-

d]thiazol-6-yl)amino)-3-oxopropanoic acid ((S)-8) 

Compound was prepared from (S)-6 (0.040 g, 0.0077 mmol) according to the general 

procedure E. Yield: 0.020 g (51.3%); off-white solid; m.p. 123-125 °C; [α]D -15.6 (c 0.12, 

MeOH); IR (ATR) ν  3287, 2924, 1711, 1656, 1558, 1383, 1328, 1304, 1260, 1213, 1182, 

1099, 1014, 977, 921, 863, 836, 802, 740, 673, 632 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 

1.77-1.87 (m, 1H, HA-7), 1.90-2.00 (m, 1H, HB-7), 2.64-2.76 (m, 3H, HA-4, H-5), 2.97 (dd, 

1H, J1 = 15.5 Hz, J2 = 4.7 Hz, HB-4), 3.15 (d, 2H, J = 2.6 Hz, COCH2CO), 4.05-4.17 (m, 1H, 

CHNH), 7.40 (s, 1H, pyrrole-H), 8.21 (d, 1H, J = 7.5 Hz, CONHCH), 12.37 (s, 1H, NH), 

13.11 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 23.7, 27.8, 28.9, 42.6, 44.7, 98.7, 

107.6, 115.1, 121.0, 126.0, 133.4, 142.5, 156.5, 157.7, 169.5 ppm; HRMS (ESI-) m/z for 

C15H13N4O4SBr2 ([M-H]-): calcd 502.9024, found 502.9010. HPLC: method B, tr 11.70 min 

(96.2% at 254 nm). 

4.1.7. Methyl 2-(2-aminothiazol-4-yl)acetate (10) 

Methanol (30 mL) was cooled to 0 °C and thionyl chloride (3.45 mL, 47.6 mmol) was 

added dropwise. Then 2-(2-aminothiazol-4-yl)acetic acid (9) (3.00 g, 19.0 mmol) was added 

and reaction mixture stirred under reflux for 1.5 h. The solvent was evaporated and the oily 
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residue triturated with diethyl ether. White precipitate (3.564 g, 89.9%) was filtered off and 

dried. 1H NMR (400 MHz, DMSO-d6) δ 3.66 (s, 3H, CH3), 3.77 (s, 2H, CH2), 6.71 (s, 1H, Ar-

H), 9.30 (s, 2H, NH2) ppm; 13C NMR (100 MHz, DMSO-d6): δ 32.7, 52.1, 105.6, 132.4, 

169.0, 169.5 ppm. 

4.1.8. Methyl 2-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetate (11) 

A solution of 10 (1.044 g, 5.00 mmol) and Na2CO3 (0.530 g, 5.00 mmol) in DMF (20 

mL) was stirred at room temperature for 15 min. 2,2,2-Trichloro-1-(4,5-dibromo-1H-pyrrol-2-

yl)ethan-1-one (1.852 g, 5.00 mmol) was added and mixture was stirred at 80 °C overnight. 

Solvent was removed under reduced pressure, residue was suspended in ethyl acetate (60 mL) 

and successively washed with 10% citric acid (2 × 30 mL), saturated aqueous NaHCO3 

solution (2 × 30 mL) and brine (30 mL), dried over Na2SO4, filtered and the solvent removed 

under reduced pressure. The crude product was recrystallized from methanol. Yield: 1.630 g 

(77.0%); white crystals; m.p. 200-202 °C; IR (ATR) ν 3352, 3232, 3129, 2982, 1698, 1650, 

1543, 1505, 1442, 1410, 1368, 1274, 1218, 1172, 1116, 1085, 1010, 980, 886, 854, 823, 782, 

729, 687 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.63 (s, 3H, CH3), 3.75 (s, 2H, CH2), 7.04 

(s, 1H, thiazole-H), 7.45 (d, 1H, J = 2.6 Hz, pyrrole-H), 12.42 (s, 1H, NH), 13.12 (s, 1H, NH) 

ppm; 13C NMR (100 MHz, DMSO-d6): δ 36.4, 51.7, 98.8, 107.8, 110.8, 115.4, 125.8, 143.7, 

156.6, 157.8, 170.5 ppm; HRMS (ESI-) m/z for C11H8N3O3SBr2 ([M-H]-):calcd 419.8653, 

found 419.8650; HPLC: method A, tr 13.09 min (95.4% at 254 nm). 

4.1.9. 2-(2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetic acid (12) 

To a solution of 11 (0.702 g, 1.66 mmol) in methanol (25 mL) 2 M NaOH (1.66 mL, 

3.32 mmol) was added and the reaction mixture stirred at room temperature overnight. 

Methanol was evaporated under reduced pressure. Water phase was acidified with 2 M HCl to 

pH ~ 2, white precipitate filtered and dried. Yield: 0.504 g (74.2%); white crystals; m.p. 240-
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242 °C; IR (ATR) ν 3353, 3230, 3129, 2983, 1699, 1652, 1545, 1505, 1442, 1408, 1367, 

1292, 1217, 1174, 1115, 1087, 1010, 989, 898, 856, 823, 782, 740 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ 3.64 (s, 2H, CH2), 7.00 (s, 1H, thiazole-H), 7.44 (d, 1H, J = 2.7 Hz, pyrrole-H), 

12.41 (s, 1H, NH), 13.13 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 97.5, 109.9, 

110.0, 115.3, 127.8, 130.5, 139.9, 157.9, 160.3, 164.7 ppm, signal for CH2 overlapped with 

DMSO-d6; HRMS (ESI-) m/z for C10H6N3O3SBr2 ([M-H]-): calcd 405.8497, found 405.8488. 

4.1.10. Methyl (2-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetyl)glycinate 

(13) 

A solution of 12 (0.200 g, 0.49 mmol) in N,N-dimethylformamide (5 mL) was cooled 

to 0 °C and then EDC (0.113 g, 0.51 mmol) and HOBt (0.072 g, 0.51 mmol) were added. pH 

was adjusted to 8 with N-methylmorpholine and the reaction mixture stirred for 20 min at 0 

°C. Then glycine methyl ester hydrochloride (0.061 g, 0.49 mmol) was added and reaction 

mixture stirred overnight at room temperature. The solvent was evaporated in vacuo and the 

oily residue dissolved in ethyl acetate (30 mL) and washed successively with 10% citric acid 

(2 × 30 mL), saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (30 mL). The 

organic phase was dried over Na2SO4, filtered and the solvent evaporated under reduced 

pressure. Yield: 0.159 g (69.4%); white crystals; m.p. 231-233 °C; IR (ATR) ν 3354, 3225, 

3129, 2980, 1698, 1650, 1543, 1508, 1441, 1409, 1369, 1290, 1216, 1172, 1116, 1086, 1010, 

981, 856, 824, 782, 739 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.58 (s, 2H, CH2CO), 3.64 

(s, 3H, CH3), 3.87 (d, 2H, J = 5.8 Hz, NHCH2CO), 6.97 (s, 1H, thiazole-H), 7.45 (d, 1H, J = 

2.5 Hz, pyrrole-H), 8.40 (t, 1H, J = 5.8 Hz), NHCH2CO), 12.40 (s, 1H, NH), 13.11 (s, 1H, 

NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 38.0, 40.7, 51.7, 98.8, 107.8, 110.2, 115.3, 

125.9, 145.2, 156.5, 157.6, 169.5, 170.4 ppm; HRMS (ESI-) m/z for C13H11N4O4SBr2 ([M-H]-

): calcd 476.8868, found 476.8867; HPLC: method B, tr 11.98 min (95.0% at 254 nm). 

4.1.11. (2-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetyl)glycine (14) 
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To a solution of 13 (0.122 g, 0.25 mmol) in methanol (5 mL) 1 M NaOH (0.42 mL, 

0.42 mmol) was added and the reaction mixture stirred at room temperature overnight. 

Methanol was evaporated under reduced pressure. Water phase was acidified with 2 M HCl to 

pH ~ 2, white precipitate filtered and dried. Yield: 0.050 g (42.4%); white crystals; m.p. >300 

°C; IR (ATR) ν 3355, 3228, 3128, 2982, 1699, 1651, 1543, 1512, 1441, 1408, 1376, 1294, 

1220, 1175, 1090, 1011, 981, 857, 826, 738 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.56 (s, 

2H, CH2CO), 3.77 (d, 2H, J = 5.6 Hz, NHCH2CO), 6.96 (s, 1H, thiazole-H), 7.43 (s, 1H, 

pyrrole-H), 8.28 (t, 1H, J = 5.6 Hz), NHCH2CO), 12.41 (s, 1H, NH), 13.11 (s, 1H, NH) ppm, 

signal for COOH is not seen in the spectrum; 13C NMR (100 MHz, DMSO-d6): δ 38.0, 40.7, 

98.8, 107.7, 110.1, 115.3, 125.9, 145.2, 156.6, 157.6, 169.3, 171.3 ppm; HRMS (ESI-) m/z for 

C12H9N4O4SBr2 ([M-H]-): calcd 462.8711, found 462.8721; HPLC: method B, tr 11.24 min 

(95.2% at 220 nm). 

4.1.12. 4,5-Dibromo-N-(4-(2-oxo-2-((4-sulfamoylphenyl)amino)ethyl)thiazol-2-yl)-1H-

pyrrole-2-carboxamide (15) 

A solution of 12 (0.207 g, 0.51 mmol) in N,N-dimethylformamide (5 mL) was cooled 

to 0 °C and then EDC (0.120 g, 0.61 mmol) and HOBt (0.082 g, 0.61 mmol) were added. pH 

was adjusted to 8 with N-methylmorpholine and the reaction mixture stirred for 20 min at 0 

°C. Then 4-aminobenzenesulfonamide (0.087 g, 0.51 mmol) was added and reaction mixture 

stirred overnight at room temperature. The solvent was evaporated in vacuo and the oily 

residue dissolved in ethyl acetate (30 mL) and washed successively with 10% citric acid (2 × 

30 mL), saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (30 mL). The organic 

phase was dried over Na2SO4, filtered and the solvent evaporated under reduced pressure. 

Crude product was recrystallized from methanol. Yield: 0.044 g (15.4%); white crystals; m.p. 

>300 °C; IR (ATR) ν 3244, 3130, 2981, 1698, 1651, 1544, 1513, 1443, 1409, 1368, 1292, 

1218, 1172, 1116, 1086, 1010, 982, 886, 855, 823, 782, 738, 660 cm-1; 1H NMR (400 MHz, 
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DMSO-d6): δ 3.78 (s, 2H, CH2), 7.03 (s, 1H, thiazole-H), 7.07 (t, 1H, J = 8.1 Hz, Ar-H), 7.27 

(s, 2H, SO2NH2), 7.42 (s, 1H, pyrrole-H), 7.77 (s, 4H, 4 × Ar-H), 10.51 (s, 1H, CH2CONH), 

12.38 (br s, 1H, NH), 13.12 (br s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 98.7, 

107.7, 110.5, 115.3, 118.6, 126.7, 138.3, 142.0, 144.8, 149.0, 156.7, 157.8, 168.5 ppm, signal 

for CH2 overlapped with DMSO-d6; HRMS (ESI-) m/z for C16H12N5O4S2Br2 ([M-H]-): calcd 

559.8697, found 559.8687; HPLC: method B, tr 12.31 min (95.2% at 254 nm). 

4.1.13. 4,5-Dibromo-N-(4-(2-((3-hydroxyphenyl)amino)-2-oxoethyl)thiazol-2-yl)-1H-pyrrole-

2-carboxamide (16) 

A solution of 12 (0.200 g, 0.49 mmol) in N,N-dimethylformamide (5 mL) was cooled 

to 0 °C and then EDC (0.113 g, 0.59 mmol) and HOBt (0.079 g, 0.59 mmol) were added. pH 

was adjusted to 8 with N-methylmorpholine and the reaction mixture stirred for 20 min at 0 

°C. Then 3-aminophenol (0.053 g, 0.49 mmol) was added and reaction mixture stirred 

overnight at room temperature. The solvent was evaporated in vacuo and the oily residue 

dissolved in ethyl acetate (30 mL) and washed successively with 10% citric acid (2 × 30 mL), 

saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (30 mL). The organic phase was 

dried over Na2SO4, filtered and the solvent evaporated under reduced pressure. Crude product 

was recrystallized from methanol. Yield: 0.110 g (45.3%); white crystals; m.p. 288-290 °C; 

IR (ATR) ν 3259, 1655, 1604, 1530, 1489, 1443, 1411, 1377, 1323, 1280, 1225, 1170, 1044, 

980, 860, 779, 732, 686 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.71 (s, 2H, CH2), 6.45 (ddd, 

1H, J1 = 7.9 Hz, J2 = 2.3 Hz, J3 = 0.9 Hz, Ar-H), 6.98 (ddd, 1H, J1 = 8.1 Hz, J2 = 1.8 Hz, J3 = 

0.9 Hz, Ar-H), 7.00 (s, 1H, thiazole-H), 7.07 (t, 1H, J = 8.1 Hz, Ar-H), 7.20 (t, 1H, J = 2.1 

Hz, Ar-H), 7.44 (d, 1H, J = 2.6 Hz, Ar-H), 9.39 (s, 1H, OH), 10.02 (s, 1H, CH2CONH), 12.38 

(br s, 1H, NH), 13.12 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 98.8, 106.1, 

107.8, 109.8, 110.3, 115.3, 125.8, 129.4, 140.2, 145.3, 156.5, 157.6, 157.7, 167.7 ppm, signal 
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for CH2 overlapped with DMSO-d6; HRMS (ESI-) m/z for C16H11N4O3SBr2 ([M-H]-): calcd 

496.8919, found 496.8908; HPLC: method B, tr 12.61 min (100% at 254 nm). 

4.1.14. Methyl 3-(2-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)thiazol-4-

yl)acetamido)benzoate (17) 

A solution of 12 (0.155 g, 0.38 mmol) in N,N-dimethylformamide (5 mL) was cooled 

to 0 °C and then EDC (0.087 g, 0.45 mmol) and HOBt (0.061 g, 0.45 mmol) were added. pH 

was adjusted to 8 with N-methylmorpholine and the reaction mixture stirred for 20 min at 0 

°C. Then methyl 3-aminobenzoate (0.057 g, 0.38 mmol) was added and reaction mixture 

stirred overnight at room temperature. The solvent was evaporated in vacuo and the oily 

residue dissolved in ethyl acetate (30 mL) and washed successively with 10% citric acid (2 × 

30 mL), saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (30 mL). The organic 

phase was dried over Na2SO4, filtered and the solvent evaporated under reduced pressure. 

Compound 17 was obtained as a white solidified oil. Yield: 0.158 g (77.1%); white solidified 

oil; 1H NMR (400 MHz, DMSO-d6): δ 3.79 (s, 2H, CH2), 3.86 (s, 3H, CH3), 7.03 (s, 1H, 

thiazole-H), 7.43 (s, 1H, pyrrole-H), 7.48 (t, 1H, J = 8.0 Hz, Ar-H-3), 7.65 (d, 1H, J = 8.0 Hz, 

Ar-H-2/4), 7.87 (d, 1H, J = 8.0 Hz, Ar-H-2/4), 8.30 (s, 1H, Ar-H-6), 10.40 (s, 1H, 

CH2CONH), 12.38 (s, 1H, NH), 13.12 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 

52.2, 98.8, 107.8, 110.5, 115.4, 119.5, 123.5, 123.8, 125.8, 129.3, 130.1, 139.5, 145.0, 156.6, 

157.7, 166.0, 168.3 ppm, signal for CH2 overlapped with DMSO-d6; HRMS (ESI-) m/z for 

C18H13N4O4SBr2 ([M-H]-): calcd 538.9024, found 538.9033; HPLC: method A, tr 21.45 min 

(100% at 254 nm). 

4.1.15. Methyl 5-(2-(2-(4,5-dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetamido)-2-

hydroxybenzoate (18) 
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A solution of 12 (0.209 g, 0.51 mmol) in N,N-dimethylformamide (5 mL) was cooled 

to 0 °C and then EDC (0.117 g, 0.61 mmol) and HOBt (0.083 g, 0.61 mmol) were added. pH 

was adjusted to 8 with N-methylmorpholine and the reaction mixture stirred for 20 min at 0 

°C. Then methyl 5-amino-2-hydroxybenzoate (0.085 g, 0.51 mmol) was added and reaction 

mixture stirred overnight at room temperature. The solvent was evaporated in vacuo and the 

oily residue dissolved in ethyl acetate (30 mL) and washed successively with 10% citric acid 

(2 × 30 mL), saturated aqueous NaHCO3 solution (2 × 30 mL) and brine (30 mL). The 

organic phase was dried over Na2SO4, filtered and the solvent evaporated under reduced 

pressure. Crude product was recrystallized from methanol. Yield: 0.100 g (35.2%); white 

crystals; m.p. 257-259 °C; IR (ATR) ν 3235, 3129, 2981, 1697, 1651, 1543, 1505, 1441, 

1409, 1367, 1288, 1216, 1172, 1116, 1085, 1009, 981, 899, 856, 824, 782, 737, 692 cm-1; 1H 

NMR (400 MHz, DMSO-d6): δ 3.71 (s, 2H, CH2), 3.90 (s, 3H, CH3), 6.93-7.01 (m, 2H, 

thiazole-H, Ar-H-3), 7.44 (s, 1H, pyrrole-H), 7.67 (dd, 1H, J1 = 9.2 Hz, J2 = 2.6 Hz, Ar-H-4), 

8.17 (d, 1H, J = 2.6 Hz, Ar-H-6), 10.17 (s, 1H, CH2CONH or OH), 10.28 (s, 1H, CH2CONH 

or OH), 12.37 (s, 1H, NH), 13.12 (s, 1H, NH) ppm; 13C NMR (100 MHz, DMSO-d6): δ 52.5, 

98.8, 107.8, 110.4, 112.4, 115.4, 117.6, 120.0, 125.9, 127.2, 131.1, 145.1, 145.2, 155.9, 156.6, 

167.7, 169.0 ppm, signal for CH2 overlapped with DMSO-d6; HRMS (ESI-) m/z for 

C18H13N4O5SBr2 ([M-H]-): calcd 554.8973, found 554.8979; HPLC: method B, tr 10.46 min 

(95.8% at 254 nm). 

4.1.16. 3-(2-(2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetamido)benzoic acid 

(19) 

To a solution of 17 (0.113 g, 0.21 mmol) in ethanol (5 mL) 2 M NaOH (0.42 mL, 0.42 

mmol) was added and the reaction mixture stirred at room temperature for 8 h. Ethanol was 

evaporated under reduced pressure. Water phase was acidified with 2 M HCl to pH ~ 2, white 

precipitate filtered and dried. Yield: 0.103 g (93.6%); white crystals; m.p. >300 °C; IR (ATR) 
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ν 3067, 1656, 1592, 1539, 1488, 1436, 1381, 1330, 1178, 1081, 981, 863, 833, 740, 680, 616, 

544, 515 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.78 (s, 2H, CH2), 7.04 (s, 1H, thiazole-H), 

7.41-7.45 (m, 2H, pyrrole-H, Ar-H-3), 7.62 (dd, 1H, J1 = 7.7 Hz, J2 = 2.5 Hz, Ar-H-2/4), 7.87 

(ddd, 1H, J1 = 8.0 Hz, J2 = 2.0 Hz, J3 = 0.9 Hz, Ar-H-2/4), 8.28 (t, 1H, J1 = 1.7 Hz, Ar-H-6), 

10.57 (s, 1H, CH2CONH), 12.39 (br s, 1H, NH), 13.15 (s, 1H, NH) ppm, signal for COOH is 

not seen in the spectrum; 13C NMR (100 MHz, DMSO-d6): δ 98.8, 107.8, 110.5, 115.4, 119.8, 

123.2, 124.0, 125.9, 129.0, 131.2, 139.4, 145.0, 156.6, 157.7, 167.1, 168.2 ppm, signal for 

CH2 overlapped with DMSO-d6; HRMS (ESI+) m/z for C17H13N4O4SBr2 ([M+H]+): calcd 

526.9029, found 526.9028; HPLC: method A, tr 20.10 min (95.2% at 254 nm). 

4.1.17. 5-(2-(2-(4,5-Dibromo-1H-pyrrole-2-carboxamido)thiazol-4-yl)acetamido)-2-

hydroxybenzoic acid (20) 

To a solution of 18 (0.090 g, 0.16 mmol) in methanol (5 mL) 1 M NaOH (0.65 mL, 

0.64 mmol) was added and the reaction mixture stirred at room temperature overnight. 

Ethanol was evaporated under reduced pressure. Water phase was acidified with 2 M HCl to 

pH ~ 2, white precipitate filtered and dried. Crude product was recrystallized from methanol. 

Yield: 0.033 g (37.8%); white crystals; m.p. >300 °C; IR (ATR) ν 3355, 3224, 3129, 2983, 

1698, 1651, 1544, 1505, 1442, 1409, 1367, 1291, 1216, 1171, 1116, 1086, 1009, 988, 898, 

854, 823, 781, 738, 696 cm-1; 1H NMR (400 MHz, DMSO-d6): δ 3.72 (s, 2H, CH2), 6.93 (d, 

1H, J = 8.8 Hz, Ar-H-3), 7.02 (s, 1H, thiazole-H), 7.43 (d, 1H, J = 2.8 Hz, pyrrole-H), 7.70 

(dd, 1H, J1 = 8.8 Hz, J2 = 2.6 Hz, Ar-H-4), 8.15 (d, 1H, J = 2.6 Hz, Ar-H-6), 10.22 (s, 1H, 

CH2CONH or OH), 11.01 (br s, 1H, CH2CONH or OH), 12.39 (br s, 1H, NH), 13.13 (s, 1H, 

NH) ppm, signal for COOH not seen in the spectrum; 13C NMR (100 MHz, DMSO-d6): δ 

98.8, 101.1, 110.4, 112.4, 115.4, 117.2, 120.3, 125.9, 127.3, 131.0, 145.4, 146.6, 155.8, 157.0, 

167.6, 171.7 ppm, signal for CH2 overlapped with DMSO-d6; HRMS (ESI-) m/z for 
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C17H11N4O5SBr2 ([M-H]-): calcd 540.8817, found 540.8824; HPLC: method B, tr 8.81 min 

(95.3% at 254 nm). 

4.2. In vitro inhibitory activity screening and determination of IC50 values on E. coli DNA 

gyrase 

The assay for determining IC50 values (Inspiralis) was performed on black 

streptavidin-coated 96-well microtiter plates (Thermo Scientific Pierce). The plate was first 

rehydrated with the wash buffer supplied (20 mM Tris-HCl (pH 7.6), 137 mM NaCl, 0.01% 

(w/v) BSA, 0.05% (v/v) Tween 20). Biotinylated oligonucleotide in wash buffer was 

immobilized onto the wells. The excess of oligonucleotide was then washed off and the 

enzyme assay carried out in the wells (5 min). The final reaction volume of 30 µL in buffer 

(35 mM Tris HCl (pH 7.5); 24 mM KCl; 4 mM MgCl2; 2 mM DTT; 1.8 mM spermidine; 1 

mM ATP; 6.5 % (w/v) glycerol; 0.1 mg/mL albumin) contained 1.5 U of DNA gyrase from E. 

coli, 0.75 µg of relaxed pNO1 plasmid, and 3 µL of inhibitors solution in 10% DMSO and 

0.008% Tween® 20. Reactions were incubated for 30 min at 37 °C and, after addition of the 

TF buffer (50 mM NaOAc (pH 5.0), 50 mM NaCl and 50 mM MgCl2), which terminated the 

enzymatic reaction, for another 30 min at room temperature to allow triplex formation 

(biotin−oligonucleotide−plasmid). The unbound plasmid was then washed off using TF 

buffer, and a solution of SybrGOLD stain in T10 buffer (10 mM Tris × HCl (pH 8.0) and 1 

mM EDTA) was added. After mixing, the fluorescence (excitation, 485 nm; emission, 535 

nm) was read using a BioTek's Synergy H4 microplate reader. Preliminary screening was 

performed at inhibitor concentrations of 100 µM and 10 µM. For the most potent compounds 

IC50 was determined with 7 concentrations of the inhibitors. IC50 values were calculated using 

GraphPad Prism software and represent the concentration of inhibitor where the residual 

activity of the enzyme is 50% in three independent measurements; the final result is given as 
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their average value. Novobiocin (IC50 = 0.17 µM (lit. 0.08 µM [41]) for E. coli DNA gyrase) 

was used as a positive control. 

4.3. Determination of antibacterial activity 

Clinical control strains of Enterococcus faecalis (Gram positive, ATCC 29212), 

Staphylococcus aureus (Gram positive, ATCC 25923), Escherichia coli (Gram negative, 

ATCC 25922) and Pseudomonas aeruginosa (Gram negative, ATCC 27853), were obtained 

from Microbiologics Inc. (St. Cloud, Minnesota, USA). Antimicrobial testing was carried out 

by using the broth microdilution method in 96-well plate format according to the CLSI 

guidelines. Briefly, bacterial suspensions for the assays were prepared into MH II broth 

(Becton Dickinson, Franklin Lakes, NJ, USA) from fresh slant cultures on cation-adjusted 

MH agar (Becton Dickinson, Franklin Lakes, NJ, USA), and incubated at 37 °C for 16–20 h 

at 100 rpm. Suspension yielding final inoculum of 5 × 105 CFU/mL was prepared and mixed 

on the plate with test compound solution diluted into assay media. After incubating the plate 

for 24 h at 37 °C, absorbance values were measured at 620 nm and used for evaluating the 

antimicrobial effects of test compounds by comparing to untreated controls and expressed as 

percentage inhibition of growth. Ciprofloxacin was used as a positive control every assay 

plate (minimum inhibitory concentration against E. faecalis, S. aureus, E. coli and P. 

aeruginosa, was 3.0, 1.5, 0.05 and 3.0 µM, respectively). Compounds were assayed at final 

concentration of 50 µM (n = 3). 

4.4. Molecular modeling 

4.4.1. Ligand and protein preparation 

Three-dimensional models of designed compounds were built in ChemBio3D Ultra 

13.0 [42]. Their geometries were optimized using MMFF94 [43] force field and partial atomic 

charges were added. Energy was minimized until the gradient value was smaller than 0.001 

kcal/(mol Å). The optimized structure was further refined with GAMESS interface in 
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ChemBio3D Ultra 13.0 using the semiempirical PM3 method, QA optimization algorithm and 

Gasteiger Hückel charges for all atoms for 100 steps [42]. Molecular docking calculations 

were performed using FlexX [36, 37], as available in LeadIT [38], running on four octal core 

AMD Opteron CPU processors, 16 GB RAM, two 750 GB hard drives, running 64-bit 

Scientific Linux 6.0. Receptor was prepared in a LeadIT graphical user interface using the 

Receptor wizard. Amino acid residues within a radius of 7 Å around the ligand from the X-ray 

structure (PDB entry: 4DUH [22]) were defined as the binding site. Hydrogen atoms were 

added to the binding site residues and correct tautomers and protonation states were assigned. 

Water molecules, except HOH614, and the ligand were deleted from the crystal structure. 

4.4.2. Validation of the docking protocol and ligand docking 

The FlexX molecular docking program, as available in LeadIT [38], was used for 

ligand docking. A hybrid algorithm (enthalpy and entropy driven ligand binding) was used to 

place the ‘base fragment’. The maximum number of solutions per iteration and the maximum 

number of solutions per fragmentation parameter values were increased to 1000, while other 

parameters were set at their default values.  

In order to validate our docking protocol, crystal structure ligand was docked into the 

defined ATP-binding site of E. coli GyrB using the above described docking parameters. The 

protocol was able to reproduce the binding of the crystal structure ligand with an RMSD value 

of 1.2 Å, which highlights the docking protocol as suitable for binding mode studies of the 

designed DNA gyrase inhibitors that were docked using the same settings as used for docking 

protocol validation. Proposed binding modes and scoring function scores of the top five 

highest scored docking poses per ligand were evaluated and the highest ranked binding pose 

was used for graphical representation in PyMOL [40].  
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