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Abstract
We present a methodology for assessing similarities and dif-
ferences between language varieties and dialects in terms
of prosodic characteristics. A multi-speaker, multi-dialect
WaveNet network is trained on low sample-rate signal retain-
ing only prosodic characteristics of the original speech. The
network is conditioned on labels related to speakers’ region
or dialect. The resulting conditioning embeddings are subse-
quently used as a multi-dimensional characteristics of different
language varieties, with results consistent with dialectological
studies. The method and results are illustrated on a Swedia 2000
corpus of Swedish dialectal variation.
Index Terms: language comparison, prosodic typology,
WaveNet, embeddings

1. Introduction
Natural language processing approaches have recently been
used to learn distributed language representations that reflect
typological relationships among languages. Language embed-
dings trained within text-based multi-language machine trans-
lation systems have been shown to contain typological informa-
tion that can be used to derive language family trees closely re-
sembling the trees previously obtained by meticulous linguistic
analysis [1, 2, 3].

In addition to linguistic features, such as syntax, morphol-
ogy and lexicon, the languages show systematic similarities and
differences also in their prosodic characteristics. This is true in
particular for dialects and varieties of the same language. In
this paper we present and evaluate a methodology for compar-
ative typological prosodic analysis of language varieties based
on state-of-the-art deep network language modeling approach
(WaveNet). The presented method provides an alternative to
several signal-based approaches to prosodic typology published
in the past [4, 5, 6, 7].

WaveNet is an artificial neural network speech synthesis
platform trained to generate raw audio samples in an autoregres-
sive probabilistic fashion. Given a suitable corpus, the system
can learn voice characteristics of multiple speakers in parallel,
encoded in the form of learnt embeddings used as a conditioning
of the network [8]. We explore the possibility of learning dis-
tributed representations of prosodic characteristics of language
varieties in a similar manner and evaluate the extent to which
the resulting embeddings contain meaningful typological infor-
mation.

We use a WaveNet synthesis system to train distributed di-
alect representations in a form of embeddings of global condi-
tioning of the network. The network is conditioned (in addi-
tion to standard conditioning by previous waveform samples)
through two serially implemented embeddings. The first con-
ditioning is applied by feeding the ID of a language variety –

in the form of one-hot encoded vector – through an embed-
ding; this target embedding is assumed to capture typological
relationships between the varieties. The second embedding is
designed to capture and normalize the sources of variation that
are necessarily present in the data but are not deemed relevant
to the typological task: speaker’s sex and age as well as lexi-
cal properties of the material. As the aim is typological anaysis
based on prosody only, the network is trained on a low sample-
rate signal retaining only prosodic characteristics of the original
speech material, namely its f0 and energy. These signals used
are sinusoidal waveforms with instantaneous frequency equal to
the fundamental frequency of the original speech samples (two-
syllabic words from a dialectal database of Swedish) modulated
by the energy envelope from the original signal. The waveforms
are downsampled to 800 Hz sampling rate, enough to capture f0
within a range present in the data.

In standard WaveNet synthesis, modelling prosody is chal-
lenging due to long time scales involved. Instead, separately
predicted f0 trajectories are usually provided as local condi-
tioning features to the model. Apart from only keeping prosod-
ically relevant signal properties, the low sample rate signal used
here naturally increases the time step between two subsequent
samples, and in effect considerably expands the temporal ex-
tent of perceptive field, i.e., the samples effectively conditioning
generation of the next sample in the feedforward convolutional
WaveNet architecture. The receptive field of the tested networks
is 1024 samples corresponding to 1.28 s at 800 Hz. As a conse-
quence, the trained language model takes into account temporal
context long enough to encompass prosodically relevant phe-
nomena in the given corpus.

In summary, we can model the long-range phenomena re-
lated to suprasegmental prosody, while still operating with one-
dimensional time-domain signal where the dependencies be-
tween energy, pitch and duration are intact.

2. WaveNet-based prosodic clustering
2.1. Network design

A globally conditioned generative WaveNet deep neural net-
work was trained to generate downsampled speech signal wave-
forms. A TensorFlow implementation of network architecture
described in detail in [8] was used in this work.

Briefly, the WaveNet architecture learns to generate prob-
ability distributions of quantized sample values of a raw audio
signal by processing a stretch of the previous samples through
a stack of dilated convolutional layers. At generation time, the
predicted sample (selected based on the predicted distribution)
is directly fed back as part of the input of the network in an
auto-regressive fashion. The stacked dilated convolutional lay-
ers increase the size of the receptive filed for the prediction (i.e,
the length of the previous portion of the signal that conditions
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Figure 1: A part of the original waveform (in grey) and the
corresponding sinusoidal signal (in black).

sample generation). Gradually increasing dilation of each sub-
sequent layer also provides a sort of parallel hierarchical analy-
sis with more dilated layers capturing progressively longer-term
dependencies in the signal.

In addition to conditioning by the previous signal, the
WaveNet architecture allows implementation of global condi-
tioning. The relevant characteristics of a given signal (language,
speaker’s id, speakers sex, ...) are fed as an additional input to
each dilated convolutional network trough embeddings trained
alongside the other network components. The network can thus
learn to produce audio signal with the required characteristics.
In essence, when trained, each embedding layer maps a discrete
set of relevant parameters, e.g., a one-hot encoded set of lan-
guage labels, to a real number valued vector directly used to
condition each convolutional layer. Presumably, this mapping
captures mutual relationships within the labeled material: intu-
itively, the more similar the waveforms to be generated the more
similar the conditioning vectors.

2.2. Prosody Signal

The aim of this work is to evaluate relationships concerning
prosodic characteristics of speech material. That is, we are try-
ing to extract statistical similarities and differences in signal at-
tributes such as f0 and intensity patterns, while disregarding
segmental properties of the signal.

In order to preserve the required signal characteristics and
suppress the other properties, the speech signal used for training
the networks was pre-processed as follows:

First, f0 contours (in Hz) were extracted from the speech
material using YAAPT fundamental frequency tracking proce-
dure [9]; subsequently, the unvoiced intervals were interpolated
(and extrapolated). Sinusoidal signal with the instantaneous fre-
quency given by the f0 contours (i.e., the same as the funda-
mental frequency of the original signal) and the same energy
envelope as the original signal was generated:

s(t) = e(t) sin
(
2π

∫ t

0

f0(τ)dτ
)
,

where e(t) is the energy envelope of the original signal (see
Fig. 1). The signal s(t) was then downsampled to 800 Hz and
scaled to the range −1 and 1. A µ-law companding transfor-
mation was applied to reduce the dynamic range and the wave-
forms were quantized to 256 possible values.

A more straightforward approach, namely utilizing
lowpass-filtered and downsampled original speech signals was
also tested, with the benefit of not requiring explicit f0 extrac-
tion. But similarly to what has been observed in other dialect
corpora [10], the models trained with such raw signals were bet-
ter in differentiating the recording conditions1 than the dialectal

1Specifically, the Swedia 2000 corpus recordings from the northern
(Norrland, Östrabotten) and southern (Götaland) regions contain distin-
guishable mains hum of 50 Hz, absent in the recordings from central
(Svealand) region.

variation of the sites.

2.3. Embeddings

Although the implemented network is generative and thus
learns to produce the downsampled signals, we are primarily
interested in the embeddings implementing global condition-
ing. We assume that the embeddings quantify the prosodically
relevant differences and similarities among different categories
used as global conditionings of the network.

Two parallel global conditioning embeddings were incor-
porated in the WaveNet implementation used here.

The first embedding layer, which we refer to as target
embedding, maps a one-hot encoded category label of inter-
est (recording location, or a combination of geographical and
phonological information, see below) to a multi-dimensional
real-valued conditioning vector. These conditioning vectors
corresponding to individual labels will be used as representa-
tions of the relevant learnt prosodic characteristics pertaining to
given categories of interest.

The downsampling process described above keeps intact
some properties of the signal that might be interfering with the
aims of typological analysis. In particular, the processed signals
are not normalized with respect to gender-based pitch differ-
ences and differences in linguistic material. To counteract this
source of variability, we use a second embedding layer, called
here normalization embedding. This layer simply conditions
the network through a learnt embedding of labels combining
sex and age group of the speakers and the uttered words (see
below).

3. Evaluation
3.1. Material

The WaveNet based prosodic clustering approach as well as the
speaker normalization technique described above was evaluated
on Swedia 2000, a corpus of Swedish dialects spoken around
Sweden and Swedish-speaking areas in Finland, collected in the
years 1998–2003 [11].

A subset of SweDia 2000 containing isolated words was
used for training. This part contains 253,725 recordings (indi-
vidual words, read as sequences of several repetitions of each
word), recorded in 104 locations with multiple speakers (12 on
average) for each location. Only two-syllabic words (14 differ-
ent Swedish words) and the first two repetitions in a sequence
were used for training and validation, resulting in 25,491 tokens
in total (20,477 for training and 5,044 for validation).

Each recording is labeled by a recording location and the
location’s geographical region: (mainland) Finland, Åland,
and (from south northwards in mainland Sweden) Götaland,
Svealand, Norrland. The recordings also contain speakers’ age
and sex information (four categories: younger or older female
or younger or older male).

Every recording location was assigned to one of the five
Swedish tonal dialect types. Briefly, regional variation in the
realization of the two Swedish word accent types (acute and
grave), associated with the stressed syllable, has been tradition-
ally described in terms of two binary features: (i) the number of
pitch peaks in the grave accent (type 1 and type 2 dialects), and
(ii) the timing of the pitch peak in the acute accent (type A and
type B dialects). In addition to the resulting dialectal categories
(1A, 1B, 2A, 2B), type 0 dialects do not use contrastive word
accents [12]. The tonal dialect labels in SweDia were added by
[13] using a method based on the classification of neighbour-
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ing sites in [12]. We excluded all uncertain cases for which this
method failed to produce a single dialectal category.

In an earlier study [7], we have used the Swedia 2000 word
lists for automatic classification of the Swedish tonal dialects
using a wavelet-based hierarchical prosodic analysis. Our re-
sults indicated that the traditional dialectal categories are medi-
ated by geographical proximity, i.e., neighbouring sites belong-
ing to different dialectal categories are prosodically similar.

3.2. Network parameters and training

In order to evaluate whether the models capture typologically
relevant information, we carried out two separate clustering ex-
periments: one using embeddings for individual recording sites,
and another one using embeddings for the geographical regions
(Norrland, Svealand, Götaland, Åland and Finland) and tonal
dialects (0, 1A, 1B, 2A, 2B). In a more general view, the first
model is largely unsupervised, with no dialectal knowledge ap-
plied. Should meaningful results be achieved, such model could
be applied on languages where information of dialects and their
geographical distribution is more limited. In contrast, the sec-
ond experiment demonstrates how the proposed framework can
be applied to complement and test existing typological descrip-
tions.

For both experiments, we built a WaveNet model with 18
dilated convolutional layers arranged in two stacks, yielding a
receptive field of 1024 samples or 1.28 seconds, covering the
full length of the short utterances in our training data. The
numbers of residual and skip channels were set to 32 and 128,
respectively. Both normalization and target embedding dimen-
sions were set to 32 in Experiment 1 (Section 3.3.1) whereas the
target embedding was reduced to 16 dimensions in Experiment
2 (Section 3.3.2). The trained embedding values were normal-
ized by subtracting the means from the columns corresponding
to the embedding dimensions.

Models were trained using Adam optimizer (learning rate
of 0.001), with batch size of approximately 10 words (8 sec-
onds). Training was stopped when the loss on validation set
failed to decrease for 20 consecutive epochs. Training was
repeated several times, and the resulting embeddings were
checked. All the trained embeddings yielded qualitatively sim-
ilar results.

3.3. Results

3.3.1. Site-based embeddings

Fig. 2 visualizes the normalization embeddings of labels com-
bining speakers’ sex and age, and the uttered word, transformed
using principal component analysis. Along the first principal
component, the embedding clearly reflects separation by sex, as
well as age, in particular for females. Presumably, the separa-
tion reflects mean f0 of the speakers’ groups, including lower
average pitch for older females compared to younger ones and
somewhat higher for older than for younger males [14]. The
second principal component then captures linguistic content of
the utterances with, as indicated on a few examples, similar
topology of the word embeddings for all sex-age groups.

The left panel in Fig. 3 shows a k-means-based clustering
(n=5) of the target embedding vectors corresponding to individ-
ual recording sites. The sites cluster in a geographically rela-
tively homogeneous and meaningful way. The cluster depicted
in green contains predominantly Finnish sites. In Sweden, the
blue cluster contains mostly northern recording sites and largely
overlaps with the Norrland region. The cluster shown in ma-

Figure 2: First two principal components of the normalization
embedding. (blue: male, red: female; light: young, dark: old)

Figure 3: Left: k-means-based clustering (n=5) of the embed-
ding vectors for individual recording sites. Right: recording
locations connected with their prosodic nearest neighbors; the
edges are colored by geographical region (green: Götaland,
yellow: Svealand, red: Norrland, blue: Finland).

genta contains mostly sites from central Sweden around the
capital, roughly corresponding to Svealand region. The red
and orange clusters cover most sites in the southern Götaland
region, with the “orange” cluster containing the southernmost
sites (Skåne) and the sites from the Gotland island. The clus-
tering broadly corresponds to the traditional geographical dis-
tribution of Swedish dialects [12].

A strong effect of geographical proximity is also demon-
strated by the results in the right panel of Fig. 3, where each
recording site was connected to its two nearest neighbours in
terms of distance between the embedding vectors. It is clear
that the edges predominantly join locations within geographical
regions with connections crossing region boundaries (e.g. from
Svealand to Norrland) being exceedingly rare.

To quantify the degree to which the embedding vectors cap-
ture geographical distribution of the sites, we compared the
mutual Euclidean distances among the embedding vectors (em-
beddist) with geographical distances of the corresponding sites
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(geodist). A linear regression with vector distance as a de-
pendent and geographical distance as an independent variable
shows significantly positive slope (p < 0.001), and yields sig-
nificant adjusted R2 value of 0.054 (corresponding to signifi-
cantly positive correlation of 0.23 between these distance vari-
ables).

To test the degree to which embedding distance depends on
dialectal characteristics of recording sites, we created two factor
variables based on tonal dialect distinctions: variable numtype
capturing the main tonal dialect type (0, 1 vs 2) of the pair of
sites, and ABtype containing the subtypes (0, A or B) of the site
pairs. Each of these variables has six levels corresponding to
all possible type comnbinations (0-0, 0-1, 0-2, 1-1, 1-2, 2-2 for
numtype; 0-0, 0-A, 0-B, A-A, A-B, B-B for ABtype).

Table 1: Adjusted R2 values of linear models predicting embed-
ding vector distance (embeddist), from geographical distance
(geodist), main tonal dialect types (numtype) and the ABtypes
of location pairs.

Model Adjusted R2

embeddist ∼ geodist 0.055
embeddist ∼ geodist * ABtype 0.116
embeddist ∼ geodist * numtype 0.146
embeddist ∼ geodist * numtype * ABtype 0.154

Including these two variables as independent variables
alongside geographical distance in the linear regression model
with embedding vector distance as a dependent variable in-
creases the quality of fit of the model in the way summarized
in Table 1. In all cases reported in the table, the more complex
model explained significantly more variance in the data than
the simpler model, suggesting that the properties of the tonal
dialects of the recording sites are indeed reflected in the corre-
sponding embedding vectors.

3.3.2. Tonal dialect and region based embeddings

To evaluate the relative influence of geography and tonal di-
alect explicitly, another model was trained with the target em-
beddings based on conditioning by a geographical region and
tonal dialect type to each recording. Five geographically dis-
tinct regions (Norrland, Svealand, Götaland, Åland and Finland
were used as a proxy of geographical locations of individual
sites. The region information was combined with one of the
five possible tonal dialect type (0, 1A, 1B, 2A, 2B). This lead
to 11 region-dialect combinations, as not all dialectal types are
spoken in every region.

Fig. 4 shows a dendrogram obtained by hierarchical clus-
tering based on Euclidean distances among the resulting 11 em-
bedding vectors (R fuction hclust was used). The primary
split runs along major dialect type, perfectly separating types 0,
1 and 2. Within these dialectal types, however, the geographical
influences dominate the influence of the subtype (A vs B).

4. Discussion
The evaluation shows that typologically meaningful clustering
based on purely prosodic information can be obtained by the
proposed methodology. Also, we have shown that the second
embedding containing information about speakers’ sex and age
as well as lexical particulars of the word tokens can be used
to effectively disentangle these influences from the typological
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Figure 4: Dendrogram of region and dialect type combinations.

characteristics of the material.
The clustering of geographically subdivided tonal accent

types largely agree with the previous analysis of the same cor-
pus presented in [7]. Namely, the embedding topology reflects
the primary division of the speech tokens based on major di-
alect types, but the division based on timing of pitch peaks is
obscured by geographical proximity of recording sites. We be-
lieve that this interaction between tonal dialects and geography
is a genuine typological phenomenon. Admittedly, however, it
is possible that the method fails to robustly distinguish between
pitch contours differing in timing because there is no precise
information on syllable structure available in the dataset (other
than the energy envelope).

The meaningful typological information have been ex-
tracted from the material well suited to this type of analysis,
namely read word lists, where word accent realization is known
to vary between dialects. It can be assumed that the results
might somewhat differ for other types of material (e.g., spon-
taneous speech, longer read stories, etc.) even for the same lan-
guage. The current methodology provides a means of analysing
any given speech material by constructing a conditional proba-
bilistic language model trained as a part of a generative synthe-
sis system.

As mentioned in the introduction, pre-processing of the data
(replacing the original waveforms by downsampled sinusoids
with the same fundamental frequency and energy envelope, see
Section 2.2) provided two benefits: (1) a guarantee that the ty-
pological analysis was done based on purely prosodic features,
and (2) the expansion of the temporal context used to construct
the probabilistic language model. In addition, this step may
bring an additional advantage, namely removing potential spec-
tral “noise” that might be present in analysed data due to chal-
lenging recording conditions, (moderate amount of) cross-talk,
etc. This might prove to be advantageous when applying the
proposed method to speech material often used for typological
analysis, such as field recordings.
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[3] J. Bjerva, R. Östling, M. H. Veiga, J. Tiedemann, and I. Augen-
stein, “What do language representations really represent?” arXiv
preprint arXiv:1901.02646, 2019.

[4] F. Cummins, F. Gers, and J. Schmidhuber, “Automatic discrimina-
tion among languages based on prosody alone,” Dalle Molle Insti-
tute for Artificial Intelligence, Lugano, Switzerland, Tech. Rep.,
1999.
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