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Abstract 

The eye is protected by several tissues that limit the permeability and entry of potentially harmful substances, 

but also hamper the delivery of drugs in the treatment of ocular diseases. Active transport across the ocular 

barriers may affect drug distribution, but the impact of drug transporters on ocular drug delivery is not well 

known. We have collected and critically reviewed the literature for ocular expression and activity of known 

drug transporters. The review concentrates on drug transporters that have been functionally characterized in 

ocular tissues or primary cells and on transporters for which there is available expression data at the protein 

level.  Species differences are highlighted, since these may explain observed inconsistencies in the influence of 

specific transporters on drug disposition. There is variable evidence about the pharmacokinetic role of 

transporters in ocular tissues. The strongest evidence for the role of active transport is available for the blood-

retinal barrier. We explored the role of active transport in the cornea and blood retinal barrier with 

pharmacokinetic simulations.  The simulations show that the active transport is important only in the case of 

specific parameter combinations.  
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1. Introduction 

Drug delivery is a challenge in the treatment of many ocular diseases. Drugs should reach the target site at 

concentrations that are effective, while maintaining the drug concentration at nontoxic levels in off-target 

tissues in the eye and elsewhere in the body. Topical administration is by far the most common way to treat 

ophthalmic diseases, even though the ocular bioavailability of topically applied drugs is generally less than 5% 

([1]. The low bioavailability is partly explained by the fast removal of the drug from the surface of the eye, but 

it is also affected by the low permeability of the cornea [1-3]. Still, topical administration can be used to deliver 

small molecular drugs at sufficient levels to treat diseases in the anterior parts of the eye (cornea, anterior 

chamber and iris). In contrast, drug delivery to the posterior tissues (retina, choroid, vitreous) by topical 

administration is not feasible, because the drugs do not distribute easily from the anterior parts to the back of 

the eye [4]. Systemic delivery of drugs to the posterior eye tissues is limited by the blood-ocular barriers that 

protect the sensitive ocular tissues [1]. However, the ocular barriers are not completely impermeable as 

lipophilic small molecules are able to cross these barriers [5]. Additionally, many hydrophilic endogenous 

compounds can cross those barriers with the help of transport proteins. For instance, nutrients like glucose and 

amino acids are supplied to the posterior ocular tissues through these barriers by active transport, similarly as 

in the blood-brain barrier. Active transport is also utilized in removal of metabolites from the eye to the blood 

circulation. However, the impact of ocular transporters on drug disposition is still not well understood, even 

though transporters are known to have an important role in the disposition of many drugs and their 

metabolites elsewhere in the body [6]. In principle, the involvement of transporters in drug disposition may 

lead to nonlinear pharmacokinetics, drug-drug interactions as well as inter-individual variability. Thus, 

transporters may alter the safety and efficacy of drugs and therefore, an evaluation of the interactions of new 

drug molecules with selected transporters is required during drug development [7, 8].  

Transport proteins can be divided into two major families: the solute carrier (SLC) family and the ATP-binding 

cassette (ABC) family. The SLC transporters utilize facilitated diffusion or they couple an ion or electrochemical 

gradient to the transfer of their substrates across the cell membrane [9]. ABC transporters, on the other hand, 

use ATP as the energy source to drive the transport. The human ABC transporter family consists of 48 members 

divided into seven subfamilies, whereas the human SLC family is considerably larger with 52 subfamilies, 

comprising over 430 transporters in total [10]. Only a few of these transporters are known to transport drugs. 

Among the ABC transporters, members from the ABCB, ABCC and ABCG subfamilies efflux a wide variety of 

drugs and drug metabolites out from cells. The most widely studied ABC drug transporter is ABCB1, known as 

the multidrug resistance protein 1 (MDR1) or p-glycoprotein. Also, some other ABC transporters are involved in 

translocating a wide variety of drugs. These include multidrug resistance associated proteins (MRPs) (members 

of the ABCC subfamily) and the breast cancer resistance protein (BCRP) (ABCG2). As their names indicate, these 

transporters have been associated to drug resistance in cancer cells, where they are often overexpressed. 

However, these transporters are also widely expressed in healthy tissues, such as enterocytes lining the 

intestine, in canalicular cell membranes of the liver and proximal tubules of the kidney [6].  Depending on 

localization of transporters in these polarized cells, they may affect drug disposition by removing drugs and 

their metabolites from the cells into the intestinal lumen, bile or urine or alternatively to the blood circulation. 

Additionally, both MDR1 and BCRP are expressed in the capillary endothelium of the blood-brain barrier, where 

they efficiently prevent drug entry into the brain.   



The most notable drug transporters within the SLC family include the organic anion transporting polypeptides 

(OATPs, SLCO family), organic anion transporters and organic cation transporters (OATs and OCTs, both 

belonging to the SLC22A family) [6]. In contrast to the human ABC transporters, which are all efflux 

transporters, the SLC proteins primarily assist the cellular uptake of drugs. Members of these subfamilies can 

be found in many epithelia, even though some transporters are expressed only in a specific cell type. For 

instance, OATP1B1 and OATP1B3 have been found only on the basolateral membrane of hepatocytes, where 

they extract their substrate drugs from the blood circulation to the liver [11]. The OCTs generally transport 

cations, while small, hydrophilic anions are substrates of OAT and larger, more hydrophobic anions are 

transported by OATPs.  

There is considerable overlap in the substrate specificity of transporters, both between members within the 

subfamilies as well as between efflux and influx transporters. Due to the substrate overlap and to the lack of 

specific substrates and inhibitors, the activity of a specific transporter is difficult to assess in vivo. In addition, 

when evaluating the impact of transporter activity, it is important to consider the passive membrane 

permeability of the substrate, as the total permeation depends on both the passive diffusion and the active 

transport [12, 13]. The passive diffusion is determined by the physicochemical properties of the drug, while the 

active transport depends both on the substrate affinity and transport rate, as well as the expression levels of 

the transporter at the barrier. The active transport (in either direction) may not significantly affect the total 

permeability of compounds that show high passive permeability, while the active transport can be responsible 

for most of drug permeation if the compound has limited passive diffusion through cellular barriers.  

The effect of transporter activity on ocular drug disposition is not well understood, even though ocular 

transporter expression has been the subject of numerous studies. We have collected and critically reviewed 

the literature to include only robust and well-performed studies on ocular expression and function of 

transporters that are known to affect drug disposition. Many contradictory reports can be found in the 

scientific literature and problems arise in comparing the expression and impact of the transporters due to the 

diverse array of methods that have been used. Most of the early expression data comes from studies on the 

mRNA expression, which does not necessarily correlate with the protein levels [14]. In this review, we focus on 

the ocular transporters with evidence on expression at protein level. Quantitative information of the ocular 

transporter expression is mostly missing, even though this would be required to assess the pharmacokinetic 

impact of active transport. The expression levels can be used to scale the in vitro cellular transporter activity to 

in vivo situation, which in many cases is practically impossible to quantitate. Quantitative proteomic analysis of 

transporters using liquid chromatography combined to mass spectrometry provides a huge promise for 

determining protein expression levels [15]. It is important also to realize that transporter expression may differ 

in cultured cells compared to the in vivo situation, especially in the case of continuous cell lines [16]. Therefore, 

we have included data mainly from ocular tissues, but also from ocular primary cells or differentiated stem 

cells when tissue expression data is scarce.  Data from continuous and transformed ocular cell lines was not 

included in the review. 

Finally, it should be noted that almost all studies on ocular drug pharmacokinetics are done in animals, mainly 

in rabbits and rodents, but the transporter expression and substrate recognition may differ between species. 

When assessing species differences, it is important to realize that many studies use antibodies that are raised 

against human transporters, and therefore they may not correctly recognize orthologues in other species. The 



species differences in transporter expression and function and their implications on the translation to human 

pharmacokinetics will be examined in this review. In order to distinguish between transporters in human and 

animal species, human transporters are abbreviated in capital letters, while other transporters from other 

species are abbreviated in lower case letters. Overall, literature on ocular transporters is confounded by many 

factors. Therefore, caution is needed to draw solid conclusions in this field.  We have tried to examine the 

literature critically in order to present a realistic view on the expression and pharmacokinetic importance of 

ocular transporters. 

2. Transporters in ocular surface tissues  

The cornea is a transparent tissue that covers the iris, pupil and the anterior chamber (Figure 1). The cornea 

consists of five layers, of which the corneal endothelium, a cellular monolayer, is the innermost. The three 

middle layers; Bowman’s layer, the stroma and Descemet’s membrane are mainly acellular collagenous 

matrices, with sparsely distributed keratinocytes in the stroma. The corneal endothelium regulates the fluid 

and solute transport between the stroma and the anterior chamber. The corneal epithelium is the outermost 

layer consisting of approximately six layers of epithelial cells that form tight junctions between the apical cells. 

The corneal epithelium is the main barrier that restricts the permeability of topically administered drugs to the 

anterior chamber [17].  

The conjunctival epithelium is located laterally from the corneal epithelium. In contrast to the cornea, the 

conjunctiva is a highly vascularized tissue. The conjunctiva covers the sclera of the eye (bulbar part) and lines 

the inside of the eyelids (palpebral part), where it produces mucus thus helping to lubricate the eye. The 

conjunctival epithelium is a thin stratified epithelium of 5-15 cell layers. Tight junctions exist on the outermost 

cell layers, but the conjunctiva is leakier than the cornea [18, 19]. Due to the large surface area of the 

conjunctiva and its leakier epithelia, the major fraction of a topically applied drug dose permeates through the 

conjunctiva and enters the systemic blood circulation [20-22].  

 

Figure 1. Schematic figure of the anatomy of the eye and the ocular barriers. Bold lines indicate tight barriers, while thin or 

dashed lines are leakier membranes. 

Cornea. Overall, several drug transporters have been shown to be present in the corneal epithelium at protein 

level (Table 1).  In contrast, information on the impact of corneal transporters on ocular drug delivery is sparse, 

but some in vivo or ex vivo studies, primarily in rabbits, have been reported. The transporters that are 



expressed and functional in the corneal epithelium are presented in figure 2. Among the efflux transporters, 

Mdr1 activity in rabbits has been well characterized. The impact of Mdr1 was reported in isolated rabbit cornea 

using rhodamine 123 as substrate [21]. A 2-3 fold higher permeability in the basolateral-to apical direction was 

observed compared to the apical-to-basolateral direction and the directionality was inhibited by verapamil, an 

Mdr1 inhibitor. The activity of Mdr1 was also studied in vivo using a single-dose infusion method, where a small 

well with Mdr1 substrate erythromycin was placed on top of the rabbit cornea [20]. The permeation of 

erythromycin through the cornea was determined by sampling the aqueous humor. The studied Mdr1 

inhibitors (testosterone, cyclosporine, quinidine and verapamil) caused a 1.4-4 fold increase in the AUC value of 

erythromycin in the aqueous humor. Later, Hariharan et al. suggested that erythromycin is transported by both 

MDR1 and MRP2 in transfected MDCKII cells [23]. They used the same single-dose infusion method as Dey et 

al. [20], and confirmed that inhibition of Mrp2 or Mdr1 increased the AUC of erythromycin 2.5-4-fold in the 

aqueous humor. Erythromycin transport by Mrp2 has also been studied in isolated rabbit corneas [24]. 

Verapamil was included to inhibit Mdr1-mediated transport of erythromycin across the corneal samples, and 

the remaining efflux transport activity, which was attributed to Mrp2, was sensitive to MK571, an MRP 

inhibitor. Low Mrp1 and Mrp5 activity was observed in uptake assays with isolated rabbit cornea. In line with 

this, the AUC of acyclovir in aqueous humor increased 2.2 times in the presence of MK571 in rabbit after 

topical administration [25]. The authors proposed that the effect was due to Mrp5 inhibition, but the influence 

of Mrp2 cannot be ruled out, as acyclovir is an Mrp2 substrate and MK571 is an Mrp2 inhibitor. No activity was 

observed for either Mrp3 or Bcrp in rabbit corneas when methotrexate was used as a substrate, even though 

Mrp3 expression was detected in the cornea [21]. 

 

 

Figure 2. Schematic presentation of corneal and conjunctival transporters for which protein expression and functionality 

have been reported in tissues or in primary cells. Arrows indicate the direction of transport. For further information, see 

text, table 1 and table 2.  



Clearly, differences in efflux transporter expression exist between species (Table 1). For instance, Mdr1 is 

expressed and functional in rabbit corneal epithelium [21], but it is not present in human or porcine corneal 

epithelium [21, 26]. Mrp4/MRP4 was detected in porcine, rat and human corneal epithelium, but not in rabbit 

corneal epithelium [16, 21, 27], while Bcrp/BCRP was found in human cornea, but not in rabbit, porcine or 

canine corneal epithelium [16, 21, 27, 28]. On the other hand Mrp1/MRP1, Mrp2/MRP2 and Mrp5/MRP5 are 

present in both human and rabbit corneal epithelium, and Mrp5 has also been detected in both porcine and rat 

cornea [16, 24, 29-31].  

Only a few influx transporters have been subjected to functional studies in the cornea, even though expression 

of several transporters has been reported (Table 1). The organic cation transporters (Octs) were studied in 

rabbits in vivo [32]. Oct substrates, tetraethylammonium (TEA) or metformin were administered topically 

followed by closing of the eyelids after dosing. Quinidine and atropine, both of which are inhibitors of Oct, 

were administered 30 min prior to the substrates. The largest decrease in AUC in aqueous humor (2.4 fold) was 

observed for TEA in the presence of atropine. Currently, only OCT3 is known to be expressed at protein level in 

humans [27], but mRNA of both OCT1 and OCT2 have been detected in human cornea [33].  

Benzoic acid permeability was found to be 12 times higher in the epithelium to endothelium direction than in 

the opposite direction in isolated rabbit corneas [34]. This directionality was reduced by a monocarboxylate 

drug, valproic acid, indicating that carrier-mediated transport for monocarboxylates exists in the rabbit cornea. 

The monocarboxylate transporters Mct1/MCT1 and Mct4/MCT4 have been detected in human and rabbit 

corneal epithelial cells. Active transport of amino acids (L-alanine, L-phenyl alanine and L-arginine) and nucleic 

acids has been demonstrated in isolated corneas, indicating existence of functional ASCT1, LAT1, B(0,+)-type 

amino acid transporter 1 and CNT3, respectively [35-38]. Prodrug technology has been investigated in order to 

improve drug absorption across the cornea by modifying the parent drugs to prodrugs that are influx 

substrates or able to bypass efflux transport. A 12-fold increase in the AUC was observed when the amino acid 

and peptide transporters in the cornea were targeted for the delivery of the dipeptide ester prodrug of 

ganciclovir [39], while a 1.5-3-fold increase in the permeability was obtained for amino acid and dipeptide ester 

prodrugs of the MDR1 substrate quinidine [40]. The modest effect of the prodrug derivatization of quinidine 

may be explained by a minor contribution of the efflux on its parent drug or by the low capacity of peptide 

transport. Additionally, as the prodrugs have different physicochemical properties than the parent compound it 

is difficult to assess the true role of the active transport.  

Conjunctiva. The expression and activity of transporters in the conjunctiva has received much less attention 

than the corneal transporters (Table 2). This is due to the dominant role of the cornea as a route of ocular drug 

absorption. The conjunctiva serves as a route in non-corneal drug absorption, but the drug distribution to inner 

ocular tissues after conjunctival permeation is limited by the extensive drug clearance to the blood circulation 

[41]. On the contrary, trans-corneal permeation results in almost unrestricted drug distribution to the anterior 

ocular tissues (e.g. trabecular meshwork, iris, ciliary body). Therefore, corneal transporters may have bigger 

therapeutic impact.   

The expression of Mdr1 has been confirmed in rabbits on the apical side of excised conjunctiva as well as in the 

primary cells of the conjunctiva [42, 43]. The Mdr1 substrates cyclosporine A, verapamil and propranolol 

showed 2-9-fold higher transport in the basolateral-to-apical than opposite direction in primary cells of rabbit 



conjunctiva. In addition, transport of both cyclosporine A and propranolol was inhibited by other Mdr1 

substrates (verapamil, progesterone) in a dose-dependent manner [42, 43]. Another efflux transporter, Mrp1, 

was localized to the basolateral side of the rabbit conjunctival epithelium both in primary epithelial cells and 

excised conjunctiva [44]. The transport of leukotriene C4 across cultured rabbit conjunctival epithelial cells 

showed a slightly preferred apical-to-basolateral transport with a ratio of 1.4, and the directionality of 

leukotriene C4 was abolished in the presence of the MRP inhibitor probenecid. 

The functionality of the Oct influx transporters has been verified in rabbit primary conjunctival cells [45]. 

Transport of the Oct substrates guanidine and TEA was 5- or 50-fold higher, respectively, in the apical-to-

basolateral direction, indicating that Oct transporters are expressed on the apical side of the epithelial cells of 

the rabbit conjunctiva. Amino acid and dipeptide transporters are also present in the conjunctival epithelium. 

Active uptake of L-carnosine was observed in primary cultured conjunctival rabbit epithelial cells, with a 5-fold 

higher uptake from the apical side of the cells, but the protein that was responsible for the transport was not 

identified [46]. 

2.1 Evaluation of the impact of active transport in the corneal epithelium 

Expression and activity of several transporters has been verified on the ocular surface, especially the cornea 

(Table 1, Figure 2). However, even though a transporter protein is expressed at the corneal epithelium, it does 

not necessarily have a significant pharmacokinetic impact on drug absorption. It is important to note that the 

experimental set up in the in vivo trans-corneal infusion studies may overestimate the impact of the active 

transport, since the drug is usually allowed to permeate at least for an hour, while topically applied drugs are 

removed from the ocular surface in a few minutes. Similarly, when the permeability across isolated corneas is 

determined, the incubation time is usually much longer than the interaction time in topical administration, 

potentially leading to misinterpretations of the significance of active transport.  

The impact of active transport depends on several factors, such as the affinity towards the drug substrate (Km), 

drug concentration, rate of passive drug permeation, and expression level of the transporter protein. In order 

to understand the impact of these factors we carried out simulations on the corneal drug absorption to the 

anterior chamber with STELLA simulation software (version 10.0.3, isee systems, Lebanon, NH, United States). 

We assumed a typical drug dose (25 µl eye drop solution with a drug concentration of 1%) and range of passive 

permeability (from 5x10-7 cm/s to 5x10-5 cm/s), Vmax values (0.001-5 µg/min) and Km values (0.1 – 1000 µg/ml, 

corresponding to approximately 0.25 - 2500 µM with 400 Da compounds, estimated based on the UCSF-FDA 

TransPortal Database, http://transportal.compbio.ucsf.edu). Realistic fixed values were used for intraocular 

pharmacokinetic parameters (for full model description, see supplementary material). Apical influx transport to 

the corneal epithelium (model 1) and apical efflux transport from the corneal epithelium (model 2) were 

simulated (Figure 3).  

 



 

Figure 3. Schematic presentation of the corneal simulation models. The eye drop is instilled into tear fluid and active 

transport at the corneal epithelium either increase (influx, model 1) or restrict (efflux, model 2) absorption into the 

aqueous humor.    

The clinical significance of the active transport can be estimated based on drug exposure (AUC) to the aqueous 

humor. The simulations were performed to identify the parameter combinations that cause a significant 

increase in the simulated AUC values compared to purely passive drug absorption. A difference that causes 

over 5-fold increase in AUC is considered significant, while a 2-5 fold change only leads to a minor effect and 

less than 2-fold differences are not deemed significant. The rate of both passive and active transport (Vmax) 

affect the impact of active transport on drug exposure in the aqueous humor. Based on the simulations, active 

influx does not reach over 5-fold increase of the AUC values in the aqueous humor if the passive permeability is 

high (5x10-6 or 5x10-5 cm/s), even when the Vmax of the influx is at the highest simulated level (5 µg/min) (model 

1, Figure 4A-C). In corneal permeability experiments, Vmax values between 0.001 -2 µg/min have been observed 

for influx transporters [23, 35, 47]. At low passive permeability (5x10-7 cm/s), influx transport has a significant 

effect on the drug exposure in the aqueous humor, when the Vmax is 1 µg/min or higher (Figure 4A-C). However, 

it should be noted that topically applied ophthalmic drugs rarely have a very low passive permeability, 

indicating that the overall influence of active transport in corneal absorption may be minor [48]. 

A suitable Vmax range for efflux transporters is difficult to estimate, since there are no corneal permeability 

reports available with quantitated rates for efflux transport. Still, a similar increase in the AUC of the aqueous 

humor as for the influx transporters could be achieved by using a 50-fold smaller Vmax value (0.1 µg/min) when 

the Km was set to 0.1 µg/ml (Figure 4D). However, when the substrate affinity for efflux transporters is low 

(1000 µg/ml, Figure 4F), the impact of active transport becomes minimal regardless of other tested 

parameters. The efflux model is much more sensitive to changes in the Km values than the influx model, which 

can be explained logically. In the efflux model the transport rate depends on the drug concentration in the 

corneal epithelium, but in the influx model the rate depends on the concentration in the tear fluid. The drug 

concentration in the tear fluid is very high at the time of administration and then swiftly decreases due to the 

rapid clearance from the surface of the eye, while the drug concentration in the corneal epithelium is initially 

much lower and declines slowly. This is also reflected in the obtained results from simulating the impact of the 

dose on the active transport. The drug concentration in eye drops is usually between 0.1-1%. In simulations 

with the influx model, a 0.1% dose had 3-6 fold larger impact on the AUC value compared to the 1% dose, 

when passive permeability was low and Vmax high (data not shown). In the efflux model the effect of a lower 

dose was even larger, also at lower Vmax, but only when the affinity for the transporter was high.  



We did not include back diffusion from the corneal epithelium into the lacrimal fluid to our simulation model, 

because the presence of the drug in the tear fluid, and period of drug absorption is short thereby minimizing 

the impact of back diffusion in the case influx transport. Also, reliable inclusion of this factor is complicated due 

to the unusual kinetic scheme (rapid kinetics in the tear fluid, partitioning and depot formation in the 

epithelium).  Simplified inclusion of back diffusion showed only minimal effects and this factor does not have 

influence on our conclusions in Figure 4.    

 

Figure 4. Simulations on the effect of corneal influx (A-C) and efflux (D-F) on drug absorption after topical administration 

of 1% eye drop. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range.  The AUC in aqueous humour was 

simulated with Km values of 0.1 µg/ml (A, D), 10 µg/ml (B, E) and 1000 µg/ml (C, F).   

Overall, the clinical significance of active transport on corneal drug permeability in vivo appears to be quite low 

and apparent only at specific parameter combinations. The conclusion is additionally supported by quantitative 

structure-property relationship (QSPR) modelling of passive corneal and conjunctival permeability, where 

predictive models did not yield significant outliers among the tested compounds that would indicate active 

transport [48, 49]. However, the impact can be substantial for drugs with low passive permeability and a high 

active transport rate as indicated by the pharmacokinetic simulations. The aforementioned principles 

determine the impact of active transport on drug delivery after administration of pharmaceutical suspensions 

or controlled release devices, but in these cases only the dissolved or released drug is subject to the active 

transport. Concentration of the dissolved or released drug is typically lower than the levels after instillation of a 

drug solution. Theoretically, relative importance of active transport is more pronounced at low drug 

concentrations, but it will be dependent on multiple factors as described above.  



3. Transporters in the blood-aqueous barrier 

The blood-aqueous barrier (BAB) is located in the iris-ciliary body and it is composed of the capillary 

endothelium of the iris and the ciliary muscle vessels, and the epithelial cell layers of the ciliary body 

(nonpigmented epithelial cell layer, NPE) and the posterior iris (Figure 1) [50-52]. The epithelium of the ciliary 

body is a cellular bilayer that also comprises the pigmented epithelial (PE) cell layer in addition to NPE. The 

apical membranes of the NPE and PE cells face each other and are connected by gap junctions. The ciliary body 

is highly vascularized, but unlike the tight capillaries in the iris and the ciliary muscle, the choroidal capillaries in 

the ciliary body are fenestrated and leaky. 

Efflux transporters (MDR1, MRPs) at the apical membrane of the NPE cell layer have been proposed to 

participate in maintaining the ocular barrier [30]. They would prevent drugs and other xenobiotics that diffuse 

from the fenestrated ciliary capillaries from permeating the NPE cell layer by actively pumping the compounds 

back into the space between the PE and NPE cells. In addition, hydrophilic compounds could be taken up from 

the aqueous or vitreous humor and transported across the NPE layer as the cooperation of basolateral uptake 

transporters and apical efflux transporters. 

The BAB expresses several efflux and influx transporters (Table 3, Figure 5B). In vivo studies on transporter 

function in the BAB are complicated by the difficulty of separating the impact of the blood-retinal barrier (BRB) 

and even the corneal barriers in some cases [53]. Still, there are several reports supporting MDR1 activity in the 

BAB   [54-56]. In rabbits, the aqueous humour distribution of intravenously administered rhodamine 123 was 

markedly increased by topical administration of the Mdr1 inhibitor quinidine in a dose dependent manner [55]. 

More recently, Fujii et al. studied the role of Mdr1 in the BRB, BAB and blood-brain barrier (BBB) using mdr1a 

knockout rats [54]. All studied Mdr1 substrates (quinidine, verapamil and digoxin) had lower aqueous humour 

and brain uptake index values (AHUI, BUI, respectively) in wild-type rats than predicted based on the 

lipophilicity of the compounds, whereas in Mdr1a knockout rats, AHUI and BUI values were closer to predicted 

values. For instance, Kin,aqueoushumor  for verapamil that was determined from Mdr1a knockout rats was three-fold 

higher than that obtained from wild-type rats. The contribution of Mdr1 efflux of verapamil, calculated as the 

ratio of Kin between wild-type and Mdr1a knockout rats, was 66.1% for the BAB. In contrast, the contribution of 

Mdr1 for the BRB and BBB, were 3.0% and 91.9%, respectively. These results suggest that in rats, the impact of 

Mdr1 on the permeability of verapamil at the BAB is higher than in the BRB, but lower than in the BBB [54]. 

Importantly, as most substrates, including verapamil, are recognized by several transporters, the apparent 

impact on permeability might arise from interaction with multiple transporters. Interestingly, in Mdr1a 

knockout rats, the AHUI of digoxin, and also quinidine and verapamil to a lesser extent, was decreased by Mdr1 

inhibitors, which indicates that unidentified carrier mediated influx transporters exist for these substrates in 

the blood-ocular barriers at least in rodents [54]. Digoxin has been suggested to be transported to the brain via 

Oatp1a4 [57] and Oatp1a5 [58], which are rodent orthologues of the human OATP1A2 transporter. OATP1A2, 

as well as Oatp1a4, but not Oatp1a5, have been found at the basolateral membrane of the NPE [59].  

In addition to in vivo studies, there is substantial ex vivo and in vitro evidence of transporter activity in the BAB. 

Already in 1994, Kondo and Araie observed a three-fold higher transport of carboxyfluorescein in the aqueous 

humor to stroma direction across isolated iris-ciliary bodies of albino rabbits [60]. Later, Mrp2 activity was 

found in porcine primary NPE cells, where several Mrp2 substrates displayed increased intracellular 



accumulation in the presence of MK571, an Mrp inhibitor. Recently, the active transport of organic anions was 

examined using bovine ciliary body sections mounted in Ussing chambers and a perfused eye preparation [61]. 

The transport of several marker substrates was followed; p-aminohippurate (a substrate of Mrp2, Mrp4 and 

Oat1), estrone-3-sulfate (Oat3, Bcrp, Mrp) and 6-carboxyfluorescein (Oat1, Oat3 and Mrps). Up to five-fold 

higher transport was measured for p-aminohippurate and estrone-3-sulfate in the aqueous humor-to-blood 

direction than in the opposite direction across excised ciliary body. Oat inhibitors, probenicid and novobiocin, 

were added to the aqueous humour side of the tissue, while the Mrp inhibitor, MK571, was added from the 

opposite side to match the expression of the Oat and Mrp target transporters at the basolateral and apical 

sides of the NPE cells. The inhibitors reduced the net active transport either completely (probenecid and 

novobiocin) or partially (MK571), indicating that Mrp and Oat transporters are indeed active at the BAB. The 

elimination of 6-carboxyfluorescein from the aqueous humor was measured ex vivo in a perfused bovine eye. 

The amount of the marker was 4.8-fold reduced in the venous perfusate when novobiocin was added to the 

aqueous humor [61]. 



 

Figure 5. Transporter expression at ocular barriers. A) Expressed transporters and localization of drug transporters at the 

BRB. ILM, inner limiting membrane; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner 

nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OLM, outer limiting membrane; POS, photoreceptors; 

RPE, retinal pigment epithelium; CHR, choroid. Arrows indicate the direction of transport, and dotted lines indicate that 

the activity could not be distinguished between inner and outer BRB. Transporters for which the localization to either the 

apical or basolateral membrane is not determined are placed intracellularly. B) Expressed transporters and localization at 



the BAB.  Transporters for which the localization to either the apical or basolateral membrane is not determined are 

placed intracellularly. NPE, non-pigmented epithelium and PE, pigmented epithelium. 

 

4. Transporters in the neural retina  

The neural retina is the light-sensitive tissue in the posterior part of the eye that converts absorbed light to 

nerve impulses that are sent to the brain. It contains multiple layers, from the photoreceptors lining the retinal 

pigment epithelium to the inner limiting membrane facing the vitreous (Figure 5A).  The neural retina is not 

considered to limit the diffusion of small molecular weight drugs in the eye, but it is a potentially important 

target for ocular drugs. Transporters may affect the accumulation of drugs in the target cells of the neural 

retina (e.g. photoreceptor and ganglion cells), efflux transporters by reducing the accumulation, while influx 

transporters could potentially be targeted for drug delivery. 

Currently, there is not much known regarding the expression of efflux transporters in the neural retina. In 

humans, BCRP was identified in the nerve fiber layer, while MRP1 and MRP5 could not be detected in the 

neural retina [27]. Uptake transporters that could potentially affect the accumulation of drugs in the cells have 

been detected in many cell types in the neural retina. The expression of the organic anion transporters 

OATP1A2, OATP1B3 and OATP2B1 and the organic cation transporter OCT3 was studied in human tissues by 

immunohistochemistry [27, 62]. OCT3 is expressed in the photoreceptors and OATP1A2 was found both in the 

plasma membrane of photoreceptor bodies in the outer nuclear layer and in the inner nuclear layer where it is 

most likely expressed in the soma of amacrine cells, as well as in the ganglion cell layer. OATP1B3 was not 

detected, but OATP2B1 was localized to the proximal processes of amacrine cells in the innermost part of the 

inner nuclear layer and to the neuronal processes in the inner plexiform layer. In rats, two OATP1A2 

orthologues, Oatp1a4 and Oatp1a5, were detected in the inner nuclear layer and ganglion cells and the inner 

plexiform and ganglion cell layers, respectively [63]. The amino acid transporter LAT1 has a similar localization 

in the neural retina of rats; it is expressed in neural cells in the ganglion and inner nuclear cell layer [64]. In 

addition, the expression of monocarboxylate transporters has been reported in the neural retina of rats. Mct1 

was localized to Muller cell microvilli and photoreceptor inner segments [65-67] and Mct2 was not found at all 

in the neural retina by Bergelsen et al [67], while it was localized to the inner and outer plexiform layers in 

other studies [65-67]. 

 

5. Transporters in the blood-retinal barrier  

The BRB limits the distribution of drugs from blood circulation to the posterior tissues of the eye, effectively 

restricting the use of systemic drug administration for treatment of these tissues. The BRB consists of the 

retinal pigment epithelium (RPE) that forms the outer BRB and the endothelium of the retinal capillaries in the 

inner BRB. The RPE is a pigmented monolayer that maintains the homeostasis of the neural retina. The barrier 

function in the RPE and in the endothelial cells of the capillaries is supported by tight junctions, similarly to 

capillaries in the BBB. Some species, e.g. rabbits and horses, do not have retinal vasculature, and therefore only 

possess the outer BRB [68]. 



Several efflux transporters in the BRB (Table 4, Figure 5A) may contribute to its barrier function. On the other 

hand, basolateral influx transporters could enhance the uptake of substrate drugs from the systemic 

circulation, and might be targeted to deliver drugs to treat retinal diseases. The reports on MDR1 expression in 

the BRB are conflicting; expression on both apical and basolateral membranes of human RPE tissue was 

reported by Kennedy et al. 2002, while the protein remained below the detection limit in primary human fetal 

RPE cells in our recent quantitative proteomics study [69]. Species differences may exist, as the expression of 

Mdr1 protein was localized to the inner BRB rather than the RPE in a recent rodent study [70]. Numerous 

studies on rodents [54, 56, 70, 71], rabbit [72, 73] and porcine Mdr1 [74]  have investigated the activity of 

Mdr1 in the BRB. The effect of Mdr1 in these studies is generally low, with the increase in retinal uptake 

ranging from none to 3.5-fold in knock-out animals or after Mdr1 inhibition. Recently, a human study was 

published utilizing PET scans to determine the ocular uptake of verapamil, an MDR1 substrate [75]. Taken 

together, MDR1 can have a statistically significant effect on the transport across the BRB, but the clinical 

significance is low and the inhibition of MDR1 has lesser effect on the retinal distribution than the brain 

distribution both in rodents and humans [54, 56, 70, 71, 75].  

Bcrp does not appear to have a high clinical significance for ocular drug distribution, as Bcrp knockout mice or 

Bcrp inhibition did not result in increased entry rate of a studied Bcrp substrate, mitoxantrone [70]. The 

expression pattern of BCRP in the BRB is still unclear. BCRP was not identified in cultured human fetal primary 

RPE cells, but there is convincing evidence for Bcrp expression in the inner BRB of mice (Table 4).  

The presence of MRPs in the BRB is beyond doubt, but there are conflicting reports on expression of specific 

MRPs. Most reports have identified MRP1, MRP4, MRP5 and MRP7 at the BRB, while the expression of MRP2, 

MRP3 and MRP6 is more unclear (Table 4). However, the studies have been performed with tissues or cells 

from several species and using different detection methods, which may explain some of the reported 

inconsistencies. The potential clinical significance of MRP activity is supported by the observed directionality in 

the blood-ocular permeability of fluorescein, which is a substrate of the MRPs.  The permeability of fluorescein 

was about 10-5 cm/s in the vitreous-to-blood direction, while it was only 10-7 – 10-6 cm/s in the opposite 

direction in monkeys and humans [76-78]. In line with these early studies, fluorescein displayed 11.3-fold 

higher permeability in the retina-to-choroid direction across isolated porcine RPE tissue sheets [74]. When the 

MRP inhibitor probenecid was added, the permeability difference was equalized, indicating expression of Mrp 

transporters on the choroidal side of the RPE. However, it should be noted that both MRPs and OATs transport 

fluorescein and are inhibited by probenecid, and therefore all observed activity cannot be attributed to the 

MRPs without further studies. Added evidence for Mrp basal membrane expression and activity at the outer 

BRB of mice was recently presented [70]. Inhibition by a broad-spectrum MRP inhibitor, MK571, increased the 

retinal entry of zidovudine. In contrast to Mdr1 and Bcrp, which seem to have a higher impact on drug 

disposition at the BBB, Mrp was evaluated to be similarly involved at both the BRB and the BBB [70]. 

The activity of influx transport on drug permeability in the BRB is not as well established as the efflux activity, 

even though carrier-mediated uptake for several substrates has been identified. In vivo uptake of TEA and 

pravastatin has been reported in rabbits and rats, respectively, and for both substrates the ocular uptake after 

inhibition was decreased to approximately half of the control [56, 79]. The active transport was suggested to be 

mediated by Oct and Oatp1a4 (a rodent orthologue of human OATP1A2), respectively. OATP1A2 is expressed in 

human RPE, but there is only evidence for OCT3 expression in the human oBRB [27, 69]. Similarly, active uptake 



for L-leucine, L-carnitine and nicotinate has been attributed to LAT-1, MCT1 and OCTN2, respectively [64, 80, 

81]. 

 

Figure 6. Quantitative transporter expression in human fetal RPE cells. A) Influx transporters, B) efflux transporters and C) 

drug transporters whose expression was below the detection limit (data from [69]). 

Recently, we quantitated several ABC- and SLC transporters in the plasma membranes of human fetal RPE cells 

(Figure 6, [82]). These proteins included several transporters for nutrients and amino acids, lactate and drugs. 

Many influx transporters with known drug substrates remained below the detection limit, however, multidrug 

and toxin extrusion protein 1 (MATE1, SLC47A1), OAT2 and folate transporters reduced folate carrier 1 (RFC1, 

SLC19A1) and the proton-coupled folate transporter (PCFT, SLC46A1) were quantitated (Figure 6A). Among ABC 

transporters, MRP1 displayed the highest expression (Figure 5B). In addition, MRP4, MRP5 and MRP7 were 

expressed above quantitation limits, whereas MRP2, MRP3, MRP6, MRP8 expression remained below the 

detection limit. MDR1 and BCRP also remained below the detection limit, supporting the previous conclusions 

that MRP’s are mainly responsible for the active efflux in the RPE cells. PCFT and the lactate transporters MCT1 

and MCT4 had the highest expression level of the transporters with known drug substrates (3-7 fmol/µg total 

protein), while the other detected drug transporters had clearly lower expression levels (<2 fmol/µg total 

protein).The LAT1, RFC1, MCT1 and MRP4 expression levels were similar as reported for human BBB 

microvessels, while the other transporters found here were below the detection limit in the brain. On the other 

hand, the expression level of the efflux transporters MDR1 and BCRP was much higher in the BBB (6 and 8 

fmol/µg protein, respectively) [83]. 

 

 

 

5.1 Evaluation of the impact of active transport in the blood-retinal barrier 

Many known drug transporters are expressed at the BRB (Table 4, Figure 5A), but the clinical significance of 

their activity for drug distribution is not yet clear. In general it could be assumed that the transporters would 

have smaller impact on drug disposition after intravitreal administration, as the drug concentrations are 

relatively high and may saturate the active transport. On the other hand, the drug concentrations are much 

lower in the blood, and the transporters may have a larger influence on the permeability in the choroid-to-

retina direction. Unfortunately, only a few in vivo studies have been conducted, mostly in rodents, which 



usually describe the retinal uptake index after a single dose of transporter substrate and inhibitor. The animals 

are sacrificed very shortly after the injection, making it difficult to assess the clinical relevance, which ideally 

should be determined from the drug exposure, i.e. the AUC. The overlapping substrate and inhibitor 

specificities between transporters add another layer of uncertainty to the evaluation of the involvement of 

individual transporters. The expression levels of many transporters may also be too low to have a large 

influence on drug disposition, as suggested by quantitative proteomics studies [82][69](Pelkonen et al., 

2017a)[69]. Furthermore, QSPR modeling of half-life or clearance of intravitreously administered drugs [84-86], 

did not reveal any clear outliers from passive diffusion driven clearance, indicating that active transport does 

not greatly influence the permeability of the drugs used in the studies.  

Importantly, in addition to its barrier function, the RPE itself is a drug target. Efflux proteins expressed on the 

RPE surface may have significant impact on the RPE drug exposure, even if the impact on the overall drug 

distribution in the posterior eye segment would be small. We simulated the AUC in the RPE with several Km 

(0.1-1000 µg/ml), Vmax (0.01-0.1 µg/min) and Papp (6 x 10-6 cm/sec – 6 x 10-4 cm/sec) values using STELLA 

simulation software (version 10.0.03, isee systems, Lebanon, NH, United States) to evaluate the influence of 

efflux proteins at the RPE on the tissue exposure. Systemic and intravitreal administration were simulated with 

two separate model structures (Figure 7), and both models were modified according to efflux localization 

either on the vitreal (apical) or choroidal (basolateral) side of the RPE. Model parameter values represent 

realistic values collected from the literature (for further information, see the supplementary material). In the 

case of Vmax, only relatively small values were simulated (0.01-0.1 µg/min); however, even these levels were 

shown to alter the kinetics in the RPE. 

 



Figure 7. Schematic presentation of RPE simulation models. The drug is delivered to the RPE via intravitreal administration 

(A) or from the choroidal blood flow by systemic administration (B). Active transport (efflux out from the RPE) is localized 

either on the apical or basolateral side of the RPE. Both administration routes represent steady state concentrations in the 

vitreous (A) or in the systemic blood flow (B). Passive diffusion from the systemic blood flow to the RPE was not 

considered in the intravitreal administration model (A) since the concentration in the systemic circulation is extremely low 

after intravitreal drug administration. 

Our aim was to identify situations where the simulated AUC in the RPE with transport activity would show 

more than 5-fold increases over the situation without any active transport. In the case of intravitreal 

administration (Figure 8A), AUC was simulated only in the RPE compartment. Due to the model structure, the 

simulations result in similar AUC values regardless of the localization of the efflux transport to the apical or 

basolateral side of the RPE compartment. In the simulations, active transport did not significantly alter RPE 

drug exposure with any parameter combinations when using the highest simulated vitreal concentration (2500 

µg/ml) or the highest Km values (Figure 8A-F). However, large changes were seen in the intracellular AUC of the 

RPE at lower vitreal concentrations and higher transporter affinity. The most dramatic differences (over 5000-

fold) resulted from simulations with low vitreal concentration, high affinity (Km 0.1 µg/ml) and the high Vmax 

values (0.1 µg/min) combined with the lowest passive permeability value (Papp = 6 x 10-6 cm/sec) (Figure 8B). 

Our simulations with the systemic administration model (Figure 9) resulted in a comparable dramatic 

reduction (over 2000-fold difference) of the AUC in the RPE with the same parameter combinations (Figure 9B). 

Other parameter combinations resulted in more modest changes, but over 5-fold differences could be 

observed at each permeability rate. As with the vitreous administration model, the simulations with systemic 

administration resulted in similar AUC values in the RPE regardless of on which side of the RPE the efflux is 

localized. In contrast, the AUC in the vitreous was not significantly altered when the efflux activity was localized 

to the apical side of the RPE, however, basolateral efflux reduced the AUC in the vitreous to similar extent as in 

the RPE (data not shown).  

In general, for compounds with low affinity to efflux proteins (Km = 1000 µg/ml, which corresponds to 2500 µM 

of a 400 Da compound), the active transport does not change the AUC profile. When Km decreases to 100 

µg/ml, AUC is altered significantly in both models, but only when passive permeation is slow (Papp 6 x 10-6 

cm/sec) and protein expression high (Vmax 0.1 µg/min). With the highest simulated passive permeability (Papp = 

6 x 10-4 cm/sec), over 5-fold differences are observed only when the transporter affinity is high (Km 0.1 µg/ml, 

corresponding to 0.25 µM of a 400 Da compound), and vitreal or systemic drug concentration is low to 

intermediate (0.25-2.5 µg/ml and 0.001-10 µg/ml, respectively). 

Our simulation data clearly shows that efflux proteins on the RPE surface can have a major impact on drug 

exposure in the RPE by limiting the drug access and/or enhancing the elimination from the RPE compartment. 

The rate of active transport can define whether the drug reaches its target in the RPE. These findings should be 

considered carefully in drug discovery: good candidate molecules to treat retinal diseases should not be 

transported by the efflux proteins, since they can affect the RPE drug exposure in both systemic and intravitreal 

administration. Our simulations indicate that the impact of active transport on vitreal kinetics is not as 

dramatic, which was suggested already previously [85-87]. The vitreal drug exposure is affected by several 

elimination routes, and thus the active transport across the RPE is not a dominating factor. Melanin binding is 

another important factor defining the drug exposure inside the RPE [88], but the binding was not considered in 



our model. Thus, the active transport might not be the most dominating factor affecting the drug exposure, but 

our simulations demonstrate that their impact can be significant in certain conditions. Pharmacokinetic impact 

of melanin binding results from a complex interplay between the membrane permeability and melanin binding 

kinetics, a situation where active transport may also contribute [88].   

 

 



Figure 8. Simulated AUC differences in the RPE compartment with active efflux on the RPE surface compared to only 

passive diffusion after intravitreal administration. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range. 

A and B represent the slowest passive permeability (Papp 10
-6

 cm/sec), C and D intermediate (Papp 10
-5

 cm/sec) and E and F 

the fastest passive permeability (Papp 10
-4

 cm/sec). The left-hand sided column (A, C, E) represents a Vmax value of 0.01 

µg/ml, and the right-hand sided column (B, D, F) a Vmax value of 0.1 µg/ml. 

 

Figure 9. Simulated AUC differences in the RPE compartment with active efflux on the RPE surface compared to only 

passive diffusion after systemic administration. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range. A 

and B represent the slowest passive permeability (Papp 10
-6

 cm/sec), C and D intermediate (Papp 10
-5

 cm/sec) and E and F 

the fastest passive permeability (Papp 10
-4

 cm/sec). The left-hand sided column (A, C, E) represents a Vmax value of 0.01 

µg/ml, and right-hand sided column (B, D, F) a Vmax value of 0.1 µg/ml. 



6. Pharmacogenetics in ocular transporters  

Many transporter proteins are associated to rare diseases, which are caused by mutations that affect the 

activity of a transporter. For example, a deletion of three nucleotides in the ABCC7 gene leads to misfolding of 

the corresponding transporter, and is responsible for 70% of cystic fibrosis cases. In the eye, mutations in the 

ABCA4 gene cause the most common form of the Stargardt’s disease as well as other blinding diseases 

affecting the retina [89]. Mutations in MRP6 have been associated with pseudoxanthoma elasticum, a rare 

hereditary disease resulting in macular degeneration, among other complications [90]. SLC4A11 is a sodium 

transporter that is involved in sodium-mediated fluid transport in many organs. Mutations in SLC4A11 have 

been linked to congenital hereditary endothelial dystrophy (CHED), which is a rare disorder of the corneal 

endothelium, causing corneal oedema and opacification of the cornea [91, 92]. In addition, SLC4A11 has been 

associated to Fuchs’ corneal dystrophy, which is the most common hereditary corneal disease leading to 

corneal oedema [93].  

In addition to disease-causing mutations, the importance of genetic variation in transporters for drug 

pharmacokinetics and pharmacodynamics is gaining recognition. Numerous transporter polymorphisms are 

known, but the impact in drug treatment is not yet well characterized for the majority of them. Still, some 

clinically important variants have been identified, as for instance the OATP1B1 521T<C (SLCO1B1*5) 

polymorphism that is associated with adverse effects in statin treatment [94]. OATP1B1 is expressed 

exclusively at the basolateral membrane of hepatocytes, and reduced transport of statin into the hepatocytes 

cause an increase in plasma levels, which leads to muscle toxicity. In addition to affecting systemic exposure, 

transporter polymorphisms can affect tissue concentrations. One example is cisplatin-induced nephrotoxicity, 

which is a common adverse effect in patients receiving cisplatin-containing chemotherapy. Cisplatin is 

transported into the proximal tubular cells by OCT2 and the OCT2 808G>T polymorphism has been associated 

with a reduced risk of nephrotoxicity due to lower cellular cisplatin levels [95]. Currently, there are only a few 

reports on the effects of polymorphisms in transporters on ocular drug pharmacokinetics or 

pharmacodynamics. The effect of polymorphisms on the response to latanoprost that is used as a treatment 

for glaucoma has been studied recently. Carriers of a genetic variant of MRP4 (rs11568658) had significantly 

lower intraocular pressure after latanoprost treatment, indicating that MRP4 efflux affects the absorption of 

latanoprost [96]. Similarly, an OATP2A1 genetic variant (rs4241366) was found to have some correlation to the 

intraocular pressure response after topically applied latanoprost in glaucoma patients [97]. Additionally, a 

MDR1 variant (3435c>T, rs1045642) was recently associated to the enhanced intraocular pressure response of 

latanoprost [98]. Notably, several other studied variants of MRP4, MDR1 and OATP2A1 showed no impact on 

intraocular pressure response after latanoprost or other prostaglandin analog treatment [97, 99]. OATP2A1 

and MRP4 are both found at the corneal epithelium (Table 1), but MDR1 has not been detected. The influence 

of MDR1 polymorphism on topically administered latanoprost might be explained by expression in the 

conjunctiva or the BAB, but this reasoning does not yet have experimental proof. 

Genetic variations in transporters that are expressed at the blood-ocular barriers have been associated with 

altered drug response for drugs that are also used for ocular diseases. For instance, higher doses of 6-

mercaptopurine were needed for leukemia patients with homozygous variant allelles of MRP4 [100]. 6-

mercaptopurine is a metabolite of azathioprine, which is also used as an immunosuppressive agent in non-

infectious uveitis and in ocular inflammation, similarly as systemically administered methotrexate. 



Methotrexate can be injected intravitreally to treat B-cell intraocular lymphoma. The clearance of 

methotrexate was found to increase by an MRP2 polymorphism, causing patients carrying the polymorphism to 

reach non-toxic levels faster after a high dose of methotrexate [101]. Polymorphisms can also lead to adverse 

effects, as shown by certain MRP2 polymorphisms that have been associated to methotrexate toxicity [102, 

103]. Melphalan can be used to treat pediatric tumor retinoblastoma. A LAT1 polymorphism was found to 

correlate with gastrointestinal toxicity of melphalan in a recent study [104], while in an earlier study no 

correlation could be found between LAT1 polymorphisms and melphalan pharmacokinetics or toxicity [105]. 

7. Conclusions 

Many ophthalmic drugs are known to interact with drug transporters [106], but whether these interactions 

have a clinical significance in ocular drug pharmacokinetics and pharmacodynamics, depends on the expression 

and localization of the interacting transporters in the ocular tissues. The expression of many transporters has 

been confirmed in the ocular tissues, but their relative or absolute expression levels are mostly not known. This 

information would be of importance to evaluate the transport rate and subsequently the impact of the active 

transport, as the permeability of a compound depends on both the active transport and the passive diffusion. 

Our simulations indicate that active transport may have significant impact on the absorbance of compounds 

with low passive permeability. Changes in expression levels may occur due to environmental factors, which 

could affect the pharmacokinetics of drugs. For instance, diseases may affect the expression level of 

transporters in other tissues and barriers [107], but the effect of diseases on ocular transporter expression 

levels and impact on drug permeability has not yet been studied. 

The corneal epithelium is the most important permeability barrier of a topically administered drug dose. The 

corneal epithelium expresses several transporters, but based on the available literature and our simulations 

the clinical significance of active transport on corneal drug permeability in vivo appears to be low. Still, in some 

cases the active transport might be important. The active transport in the conjunctiva has not been as 

thoroughly investigated as in the cornea, but directionality of transport has been shown for several substrates. 

This indicates that active transport might affect drug absorption across the conjunctiva, but there is not yet 

evidence of significant impact of conjunctival transporters on ocular drug absorption.  

Evaluation of the BAB is more difficult, as it consist of several tissues and it can be hard to distinguish the 

impact of the BAB from the BRB in vivo. Nevertheless, it is clear that the BAB expresses several transporters 

that can affect drug permeability, but the clinical significance of the active transport is not yet proven.  

The neural retina is unlikely to form a barrier for small molecular weight drugs, but as it comprises many cell 

types that are targeted in ocular diseases, transporters might have a large impact on the drug response. 

Unfortunately, the presence of transporters in the neuronal retina has been sparsely studied. The influx 

transporters that have been localized to photoreceptors and neuronal cells could potentially be used for 

targeting and enhancing uptake of drugs to these cells. 

There is evidence for the activity of drug transporters at the BRB, but the clinical significance of drug 

permeability may vary depending on the route of administration. The active transport is likely to have a higher 

impact on the total permeability at the low concentrations that are encountered at the BRB after systemic 

administration, than at the much higher concentrations that are reached after intravitreal administration, 



which are more likely to saturate the transporters in the BRB. In addition, the RPE is by itself an important 

target tissue and our simulations indicate that efflux transporters can effectively limit drug accumulation in the 

RPE. Based on the current literature, especially MRP transporters appear to have an important role in RPE 

permeability. 

In some cases the significance of a transporter for the permeability of a drug has been studied in animals 

where the transporter of interest has been knocked-out. However, this might lead to an increase in the 

expression levels of other transporters in comparison to the wild-type animal and as there is considerable 

substrate overlap between many transporters, the higher expression levels of other transporters may obscure 

the role of the knocked-out protein. Overall, studying the impact of specific transporters in tissues or cells is 

hampered by the lack of specific substrates and inhibitors. One way to overcome the issue is to study the 

influence of transporter pharmacogenetics on ocular drug disposition and response. This is a quite unexplored 

topic, but importantly, in addition to acquiring information on the effect of the variant, these studies present 

an opportunity to gain insights of the clinical impact of the transporters in vivo in humans. With a few 

exceptions, the activity of ocular transporters has been studied in vivo only in animals and differences in ocular 

transporter expression and activity has been shown between species. The species differences in transporter 

expression need to be considered when interpreting the results from animal studies and extrapolating them to 

humans. 
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Figure captions 

Figure 1. Schematic figure of the anatomy of the eye and the ocular barriers. Bold lines indicate tight barriers, while thin or 

dashed lines are leakier membranes. 

Figure 2. Schematic presentation of corneal and conjunctival transporters for which protein expression and functionality 

have been reported in tissues or in primary cells. Arrows indicate the direction of transport. For further information, see 

text, table 1 and table 2. 

Figure 3. Schematic presentation of the corneal simulation models. The eye drop is instilled into tear fluid and active 

transport at the corneal epithelium either increase (influx, model 1) or restrict (efflux, model 2) absorption into the 

aqueous humor.    

Figure 4. Simulations on the effect of corneal influx (A-C) and efflux (D-F) on drug absorption after topical administration 

of 1% eye drop. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range.  The AUC in aqueous humour was 

simulated with Km values of 0.1 µg/ml (A, D), 10 µg/ml (B, E) and 1000 µg/ml (C, F).   

Figure 5. Transporter expression at ocular barriers. A) Expressed transporters and localization of drug transporters at the 

BRB. ILM, inner limiting membrane; NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner 

nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OLM, outer limiting membrane; POS, photoreceptors; 

RPE, retinal pigment epithelium; CHR, choroid. Arrows indicate the direction of transport, and dotted lines indicate that 

the activity could not be distinguished between inner and outer BRB. Transporters for which the localization to either the 

apical or basolateral membrane is not determined are placed intracellularly. B) Expressed transporters and localization at 

the BAB.  Transporters for which the localization to either the apical or basolateral membrane is not determined are 

placed intracellularly. NPE, non-pigmented epithelium and PE, pigmented epithelium. 

Figure 6. Quantitative transporter expression in human fetal RPE cells. A) Influx transporters, B) efflux transporters and C) 

drug transporters whose expression was below the detection limit (data from [69]). 

Figure 7. Schematic presentation of RPE simulation models. The drug is delivered to the RPE via intravitreal administration 

(A) or from the choroidal blood flow by systemic administration (B). Active transport (efflux out from the RPE) is localized 

either on the apical or basolateral side of the RPE. Both administration routes represent steady state concentrations in the 

vitreous (A) or in the systemic blood flow (B). Passive diffusion from the systemic blood flow to the RPE was not 

considered in the intravitreal administration model (A) since the concentration in the systemic circulation is extremely low 

after intravitreal drug administration. 

Figure 8. Simulated AUC differences in the RPE compartment with active efflux on the RPE surface compared to only 

passive diffusion after intravitreal administration. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range. 

A and B represent the slowest passive permeability (Papp 10
-6

 cm/sec), C and D intermediate (Papp 10
-5

 cm/sec) and E and F 

the fastest passive permeability (Papp 10
-4

 cm/sec). The left-hand sided column (A, C, E) represents a Vmax value of 0.01 

µg/ml, and the right-hand sided column (B, D, F) a Vmax value of 0.1 µg/ml. 

Figure 9. Simulated AUC differences in the RPE compartment with active efflux on the RPE surface compared to only 

passive diffusion after systemic administration. Fold change in the AUC (AUCpassive/AUCactive) is shown by the color range. A 

and B represent the slowest passive permeability (Papp 10
-6

 cm/sec), C and D intermediate (Papp 10
-5

 cm/sec) and E and F 

the fastest passive permeability (Papp 10
-4

 cm/sec). The left-hand sided column (A, C, E) represents a Vmax value of 0.01 

µg/ml, and right-hand sided column (B, D, F) a Vmax value of 0.1 µg/ml. 



Table 1. Efflux protein expression in corneal and conjunctival epithelium 

Transporter Species Tissue/cells Detectiona Localization/comments Ref. 

CORNEA      

MDR1/P-
glycoprotein 

Rabbit*  Corneal tissue + WB, + IHC Staining in the superficial layer of epithelium [21] 

  Corneal epithelium + WB  [108] 

  Primary cells + WB  [20, 108] 

  Isolated mitochondria from the 
cultured rabbit corneal epithelial cells 
(WB) and whole cells (ICC) 

+ WB, + ICC Staining localized into mitochondria  [109]  

 Porcine* Corneal tissue - WB, - IHC  [21] 

      

MRP1 Human Corneal epithelium + WB, + IHC Staining predominantly in basal layer, 
localized to cell membrane  

[16] 

  Cultured primary corneal epithelial cells + WB  [16] 

 Rabbit* Corneal tissue + WB, +IHC Staining predominantly in the superficial 
layer of corneal epithelium 

[24] 

 Porcine* Corneal tissue - WB, - IHC  [24] 

      

MRP2 Human Corneal tissue + WB  [30] 

 Rabbit* Corneal tissue + WB, + IHC Apical localization in corneal epithelium [24]  

 Rabbit Cultured rabbit corneal epithelial cells + WB  [29] 

 Porcine* Corneal tissue - WB, - IHC  [24]  

      

MRP3 Human Corneal epithelium - WB  [16]  

  Cultured primary corneal epithelial cells  + WB  [16]  

 Rabbit  Corneal tissue + WB, - IHC  [21]  

 Porcine Corneal tissue - WB, + IHC  [21]  

      

MRP4 Human Corneal epithelium - WB  [16]  

  Corneal epithelium + IHC  [27]  

  Cultured primary corneal epithelial cells + WB  [16] 



 Rabbit* Corneal tissue - WB, - IHC  [24]  

 Porcine* Corneal tissue + WB, + IHC Predominantly apical staining in the corneal 
epithelium 

[24] 

 Rat Corneal epithelium + IHC Expression in basal and wing cells of corneal 
epithelium 

[31] 

      

MRP5 Human Corneal epithelium + WB, + IHC Staining on cell membranes of basal cells  [16]  

  Cultured primary corneal epithelial cells + WB  [16]  

 Rabbit* Corneal tissue + WB, - IHC  [24]  

 Porcine* Corneal tissue + WB, +IHC Positive staining in the corneal epithelium, 
predominantly in the apical side 

[24]  

 Rat Corneal epithelium + IHC Expression in all layers of corneal epithelium [31]  

      

BCRP Human Corneal epithelium + WB  [16]  

  Corneal epithelium + IHC  [27]  

  Cultured primary corneal epithelial cells + WB  [16]  

 Rabbit* Corneal tissue - WB, - IHC  [21]  

 Porcine* Corneal tissue - WB, - IHC  [21]  

 Canine  Corneal tissue - IHC Expression  localized in the basal layer of the 
limbal epithelium, but not any layers of 
central corneal epithelium  

[28]  

 Canine  Cultured primary corneal epithelial cells - ICC Not detected in the corneal or  limbal  
epithelial cells after subculture 

[28] 

CONJUNCTIVA      
MDR1/P-
glycoprotein 

Rabbit  Conjunctival tissue and primary cells 
grown on membrane 

+ WB, + IHC Localization on apical site [42, 43]  

      
MRP1 Rabbit Conjunctival tissue and primary cells 

grown on membrane 
+ WB, +IHC Localization on basolateral site [44] 

a WB, western blot; IHC, immunohistochemistry *Antibody used was not specific for rabbit/porcine antigen 

 

 



Table 2. Influx protein expression in corneal and conjunctival epithelium 

Transporter Species Tissue/cells Detection Localization/comments References 

CORNEA      
MCT1 Human Corneal epithelium + WB  [34] 

  Cultured primary corneal epithelial cells  + WB  [34]  

 Rabbit Primary corneal epithelial cells grown 
on support membrane 

+ ICC Staining especially on superficial cells, some 
also on intermedialte layers  

[110]  

 Rat Corneal epithelium + IHC Labeling in the epithelium, concentrated 
toward stroma  

[111]  

      

MCT2 Rabbit Primary corneal epithelial cells grown 
on support membrane 

+ ICC Staining in all cell layers [110]  

 Rat Corneal epithelium + IHC  [111]  

      

MCT3 Rat Corneal epithelium +/- IHC  Antibody-dependent staining [111]  

      

MCT4 Human Corneal epithelium +  WB  [34]  

  Cultured primary corneal epithelial cells + WB  [34]  

 Rabbit Primary corneal epithelial cells grown 
on support membrane 

+ ICC Staining especially on superficial cells [110]  

      

MCT5 Rabbit Primary corneal epithelial cells grown 
on support membrane 

+ ICC Staining especially on superficial cells [110]  

      

OAT2 Human Corneal epithelium + IHC  [27]  

      

OAT3 Rat  Corneal tissue - IHC  [31]  

      

OATP2A1 Human Corneal epithelium + IHC Immunoreactivity particularly in superficial 
layers, but also basal cells, of corneal 
epithelium 

[112]  

      

OATP2B1 Human Corneal epithelium + IHC Immunoreactivity in basal and superficial 
layers of corneal epithelium 

[112]  



      

OATP4A1 Rat Corneal tissue + WB, + IHC Immunostaining in all layers of corneal 
epithelium, but especially in the stroma of 
basal cells and wing cells 

[113]  

      

OCT3 Human Corneal epithelium + IHC  [27]  

      

OCTN1 Rabbit Corneal epithelium  + IHC Expression predominantly on the apical 
surface of the epithelium 

[114]  

      

OCTN2 Rabbit Corneal epithelium + IHC Expression predominantly on the apical 
surface of the epithelium 

[114]  

      

PEPT1 Rabbit Isolated mitochondria from the 
cultured primary rabbit corneal 
epithelial cells (WB) and whole cells 
(ICC) 

+ WB, + ICC PEPT1 staining localized into mitochondria  [109]  

      

4F2hc heavy chain Human  Corneal epithelium + IHC Detected in all corneal epithelial layers [115]  

      

CONJUNCTIVA      

      

OCTN1 Rabbit Conjunctival tissue +IHC Localization on apical site [114]  

OCTN2 Rabbit Conjunctival tissue +IHC Localization on apical site [114]  

OATP2A1 Human Conjunctival tissue +IHC Suprabasal epithelial cell of bulbar 
conjunctiva 

[112]  

OATP2B1 Human Conjunctival tissue +IHC Basal and superficial cells of conjunctiva [112]  
a WB, western blot; IHC, immunohistochemistry 

 

 



Table 3. Transporter protein expression in BAB 

Transporter Species Tissue/cells Detection 
methoda 

Localization /commentsb Ref.  

EFFLUX 
TRANSPORTERS 

     

P-glycoprotein Bovine Primary fresh NPE cells +IHC  [116]  
 Human Ciliary body +WB  [30] 
 Rat Iris  +IHC Capillaries [117]  
 Human 

Rabbit 
Monkey 
Calf 
Sheep 

Iris 
Ciliary muscle 
 

+IHC Capillaries [118]  

 Human Iris -WB  [30] 
MRP1 Human Ciliary body +WB  [30] 
 Human Iris +WB  [30] 
MRP2 Human Ciliary body +WB, 

+IHC 
Apical membrane of NPE, both pars 
plana and pars plicata* 

[30] 

 Porcine freshly dissected and 
cultured NPE  

+IHC 
+WB 

Apical membrane of NPE*  [30] 

 Human Iris +WB  [30] 
MRP4 Human Ciliary body +WB  [30] 
 Human Ciliary body +WB  

+IHC 
Basolateral membrane of PE cells [61]  

 Human Iris +WB  [30] 
BCRP Human Ciliary body +WB  [30] 
 Human Iris +WB  [30] 
INFLUX 
TRANSPORTERS 

     

MCT1  Ciliary body +IHC NPE [111] 
MCT2  Ciliary body +IHC NPE [111] 
Oatp1a4 Rat Ciliary body  +WB 

+IHC 
Basolateral membrane of NPE (pars 
plicata and plana) 

[59] 

Oatp1a5 Rat Ciliary body +WB,  
-IHC 

Not detected in ciliary body epithelium 
by IHC 

[57] 

Oatp1b2 Rat Ciliary body +WB Basolateral membrane of NPE (pars [57] 



+IHC plicata and plana) 
OATP1A2 Human Ciliary body +WB 

+IHC 
Basolateral membrane of NPE (only pars 
plana) 

[57] 

OATP1C1 Human Ciliary body +WB 
+IHC 

Basolateral membrane of NPE and PE 
(only pars plana) 

[57] 

OATP2A1 Human Ciliary body 
 

+IHC Basalateral membrane of NPE and PE 
pars plicata 

[57] 

OATP2A1 Human Iris +IHC Capillaries [112] 
OATP2B1 Human Ciliary body +WB 

+IHC 
Basolateral membrane of NPE (pars 
plicata and plana) 

[57] 

OATP2B1 Human Ciliary body 
 

+IHC Basal membranes of NPE and PE [112] 

OATP2B1 Human Iris +IHC Capillaries [112] 
OATP3A1 Human Ciliary body +WB 

+IHC 
Basolateral membrane of NPE (pars 
plicata and plana) and PE pars plana 

[57] 

OATP4A1 Human Ciliary body +WB 
+IHC 

Basolateral membrane of NPE (pars 
plicata and plana) and PE pars plana 

[57] 

Oatp4a1 (Oatp-E) Rat Ciliary body +IHC NPE and PE [113]  
OAT1 Human Ciliary body +WB 

+IHC 
Basolateral membranes of NPE [61] 

OAT3 Human Ciliary body +WB 
+IHC 

Basolateral membranes of NPE [61] 

a WB, western blot; IHC, immunohistochemistry b NPE, Non-pigmented epithelial cells of ciliary body; PE, Pigmented epithelial cells of ciliary body 

*localization also on apical membrane of PE cannot be excluded 

 

 

 

 

 

 



Table 4. Transporter protein expression in blood-retinal barrier. 

Transporter Species Tissue/cells Detectiona Localization/comments Ref. 

EFFLUX 
PROTEINS 

     

P-
glycoprotein 

     

oBRB      
 Human RPE tissue + IHC apical and basolateral membranes of the RPE  [119]  
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 

 [69, 82] 

 Porcine RPE-choroid tissue sheets + IHC  [74] 
iBRB      
 Mouse retina (RPE removed) + IHC retinal endothelium [120]  
 Mouse retina + IHC detected in inner BRB, not in the RPE [70] 
 Rat retina + IHC luminal side in the iBRB [121] 
 Bovine cultured retinal endothelial cells + WB  [122]  
BCRP      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 

 [69, 82] 

 Human hfRPE cells - WB  [123]  
 Bovine RPE tissue - WB human ab used [123] 
 Mouse RPE + IHC expression in the RPE mainly on the 

basolateral membrane  
[124] 

iBRB      

 Mouse retina (RPE removed) + IHC retinal endothelium [120] 
 Mouse retina + IHC 

+ WB 
luminal membrane of retinal capillary 
endothelial cells 

[125]  

 Mouse retina + IHC detected in inner BRB, not RPE [70] 
MRP’s      
MRP1      
oBRB      
 Porcine RPE-choroid tissue + IHC MRP protein not specified with number [74] 
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 

 [69, 82] 



+ IHC 
 Human hESC-RPE + WB 

+ IHC 
apical plasma membrane [126]  

 Human cultured RPE cells + WB 
 

 [127] 

 Horse RPE tissue, membrane fraction + LC-
MS/MS 
 

 [128] 

iBRB      
 Mouse retina (RPE removed) -IHC not detected in retinal endothelium [120] 
 Human retina -IHC not detected in any regions of the retina [27] 
MRP2      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 
 

 [69, 82] 

iBRB      
 Mouse retina (RPE removed) -IHC not detected in retinal endothelium [120] 
MRP3      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 
 

 [69, 82] 

iBRB      
 Mouse retina (RPE removed) -IHC not detected in retinal endothelium [120] 
MRP4      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 
 

 [69, 82] 

  hESC-RPE + WB 
+ IHC 

apical plasma membrane [126] 

 Mouse RPE + IHC experessed in the basolateral membrane 
of the RPE but not in the inner BRB 

[70] 

iBRB      
 Mouse retina (RPE removed) + IHC retinal endothelium [120] 



MRP5      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 
 

 [69, 82] 

 Human hESC-RPE + WB 
+ IHC 

apical plasma membrane [126] 

iBRB      
 Human retina -IHC Undetectable in all regions of the retina [27] 
MRP6      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 
 

 [69, 82] 

MRP7      
oBRB      
 Human cultured hfRPE cells + LC-

MS/MS 
 

 [69, 82] 

INFLUX 
PROTEINS 

     

MCT1      
oBRB      
 Human RPE tissue + IHC 

 
apical membrane of the RPE [129] 

  hfRPE cells, plasma membrane 
fraction 

+ LC-
MS/MS 
+ IHC 

apical membrane of hfRPE cells [69, 82] 

 Mouse RPE + IHC apical membrane of the RPE [124] 
 Mouse RPE apical microvilli + LC-

MS/MS 
  

 [130] 

 Mouse RPE apical microvilli and cell bodies + LC-
MS/MS 
 

Detected in both fractions and in young and 
old mice 

[131] 

 Rat retina + WB  apical membrane of the RPE [132] 



(RPE and 
NR) 
+ IHC 

 Rat RPE + WB  [133] 
 Horse RPE tissue, membrane fraction + LC-

MS/MS 
 

 [128] 

iBRB and 
oBRB 

     

 Rat retina and choroid + IHC IEM: apical membrane of the RPE, non-
endothelial choroidal elements, retinal 
capillaries of the nuclear and plexiform 
layers (luminal and abluminal membranes) 

[134]  

 Rat retina + WB  [133] 
MCT2      
iBRB and 
oBRB 

     

 Rat retina and choroid + IHC 
(retina) 
-IHC 
(choroid) 
 

IEM: MCT2 reactivity 
was not detected in the choroid, the RPE 
cells, or retinal endothelial 
cells  

[134] 
 

 Rat RPE + WB 
+ IHC 

faint expression throughout the RPE [133] 

 Rat retina + WB 
+ IHC 

faint expression  throughout 
the inner retina 

[133] 

MCT3      
oBRB      
 Human RPE tissue + IHC basolateral membrane [129] 
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 
 

 [69, 82] 

 Mouse RPE apical microvilli and cell bodies + LC-
MS/MS 
 

Detected in both fractions in young mice, 
only in cell bodies in old mice 

[131] 

 Rat retina + WB basolateral membrane of the RPE [132] 



+ IHC 
 Rat retina -WB 

-IHC 
only in the RPE [133] 

 Rat RPE + WB 
+ IHC 

basolateral membrane [133] 

MCT4      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 
 

 [69, 82] 

 Rat RPE - WB 
- IHC 

 [133] 

iBRB      
 Rat retina + WB 

+ IHC 
faint expression in iBRB (IHC) 
 

[133] 

OCT1      
oBRB      
 Human hfRPE cells - LC-

MS/MS 
 [69, 82] 

OCT2      
oBRB      
 Human hfRPE cells - LC-

MS/MS 
 [69, 82] 

OCT3      
oBRB      
 Human retina + IHC RPE  [27] 
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 

 [69, 82] 

OAT1      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 

 [69, 82] 

OAT2      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 

 [69, 82] 



 
OAT3      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
- LC-
MS/MS 

 [69, 82] 

iBRB      
 Human Cultured retinal endothelial cells + WB  [121] 
 Rat Retina + WB abluminal membrane of retinal endothelial 

cells 
[121] 

OATP1A2      
oBRB      
 Human RPE tissue + IHC mainly on the apical membrane [135] 
 Human cultured adult RPE cells + WB  [135] 
 Horse RPE tissue, membrane fraction + LC-

MS/MS 
 

 [128] 

OATP1A4      
iBRB and 
oBRB 

     

 Rat Retina + WB 
+ IHC 

expression inner BRB (luminal and abluminal) 
and in the apical membrane of the RPE  

[136] 

OATP1C1      
iBRB and 
oBRB 

     

 Rat Retina + WB 
+ IHC 

expression inner BRB (luminal and abluminal) 
and in the apical and basolateral membranes 
of the RPE 

[136] 

OATP2A1      
oBRB      
 Human RPE tissue + IHC  [137] 
OATP1B3      
iBRB and 
oBRB 

     

 Human retina -IHC Undetectable in all regions of the retina [27] 
OATP2B1      
oBRB      



 Human RPE tissue + IHC  [137] 
LAT1      
oBRB      
 Human hfRPE cells, plasma membrane 

fraction 
+ LC-
MS/MS 
 

 [69, 82] 

iBRB      
 Human primary cultured retinal endothelial 

cells 
+ WB  [64] 

 Rat retina + WB 
+ IHC 

Expressed in the inner BRB  [64] 
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Figure x. Schematic presentation of corneal and conjunctival transporters which protein expression and 

functionality have been reported in tissue or primary cells. MRP4 function has been reported in porcine cornea, but

not in rabbit. For further information, see text and table X. 
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Supplementary material on corneal simulation models  
 
All simulations were conducted using STELLA v10.0.03 Simulations Software (isee systems, Lebanon, NH, 

United States) with fourth-order Runge–Kutta algorithm. Cornea model structures are presented in Figures 

S1 and S2 (models numbered 1-2), and the equations of the models are displayed below the figures. The 

parameter values with literature references are presented in the Table S1. The simulation time of 360 min 

and DT value of 0.02 was used. 

Table S1: Parameter values for cornea simulation models 

 Value Unit Notes Reference 

Apparent permeability 
(Papp) across cornea 

0.00003 - 0.003  cm/min Wide range 
was selected 
to cover 
permeability 
values of 
hydrophilic 
and lipophilic 
compounds 

 

Clearance across 
conjunctiva 
(CL_TF_CNJ) 

0.0104  ml/min  (Ahmed et al., 1987) 

Clearance from 
aqueous humor 
(CL_outflow) 

0.02  ml/min  (Del Amo et al., 
2016;Urtti et al., 
1990)  

Clearance on tear 
turnover (CL_TT) 

0.00053  

 
ml/min  (Chrai et al., 1973) 

Rate constant for drug 
transfer from cornea 
to aqueous humor 
(k_D) 

0.0179  1/min  (Ranta et al., 2003) 

Rate constant for 
drainage (k_drain) 

0.545  1/min  (Chrai et al., 
1973;Ranta et al., 
2003) 

Surface area of cornea 1.73 cm2  (Watsky et al., 1988) 

Thickness of cornea 0.004 cm  (Maurice and 
Mishima, 1984) 

Volume of cornea 
(V_cornea) 

0.0692  ml Surface area x 
thickness of 
cornea 

 

Volume of the tear 
fluid (V_tear_fluid) 

0.0075  ml  (Chrai et al., 1973) 

Vmax model 1 (influx): 
0.001–5  
 
model 2 (efflux): 
0.001-0.1 

µg/min corneal 
permeability 
studies 

(Anand and Mitra, 
2002;Hariharan et 
al., 2006;Jain-
Vakkalagadda et al., 
2004;Katragadda et 
al., 2005) 

     

Km  µg/ml  (UCSF-FDA 
TransPortal 
database) 
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Figure S1. Illustration of the cornea simulation model 1 displaying active influx on the apical surface of the 

cornea after topical administration. 

 

Figure S2. Illustration of the cornea simulation model 2 displaying active efflux on the apical surface of the 

cornea after topical administration. 



EQUATIONS FOR THE CORNEAL SIMULATION MODEL 

 
AH_AUC(t) = AH_AUC(t - dt) + (AUC_calculator) * dt 
INIT AH_AUC = 0 
 
INFLOWS: 
AUC_calculator = C_AH 
Aqueous_humor(t) = Aqueous_humor(t - dt) + (Flux_cornea_AH - AH_outflow) * dt 
INIT Aqueous_humor = 0 
 
INFLOWS: 
Flux_cornea_AH = Cornea*K_D 
 
OUTFLOWS: 
AH_outflow = CL_outflow*C_AH 
Cornea(t) = Cornea(t - dt) + (Passive - Flux_cornea_AH - Efflux) * dt 
INIT Cornea = 0 
 
INFLOWS: 
Passive = Papp*Surface_area_of_cornea*(C_tear_fluid-C_cornea) 
 
Model 1:  Influx = (Vmax*C_tear_fluid)/(Km+C_tear_fluid) 
 
OUTFLOWS: 
Flux_cornea_AH = Cornea*K_D 
 
Model 2:  Efflux = (Vmax*C_cornea)/(Km+C_cornea) 
 
Tear_fluid(t) = Tear_fluid(t - dt) + (Efflux - Flux__Drainage - Passive - Flux__conjunctiva - Flux__tear__turnover) * 
dt 
INIT Tear_fluid = 250 (µg) 
 
INFLOWS: 
Efflux = (Vmax*C_cornea)/(Km+C_cornea) 
 
OUTFLOWS: 
Flux__Drainage = CL_drain*C_tear_fluid 
 
Passive = Papp*Surface__Area_of_Cornea*(C_tear_fluid-C_cornea) 
Flux__conjunctiva = CL_TF_CNJ*C_tear_fluid 
 
Flux__tear__turnover = C_tear_fluid*CL_TT 
V_eye_drop(t) = V_eye_drop(t - dt) + (-CL_drain) * dt 
INIT V_eye_drop = 0.025 (ml) 
 
OUTFLOWS: 
CL_drain = k_drain*V_eye_drop 
CL_outflow = 0.02 (ml/min) 
CL_TF_CNJ = 0.0104 (ml/min) 
CL_TT = 0.00053 (ml/min) 
C_AH = Aqueous_humor/V_AH 
 
C_cornea = Cornea/V_cornea 
C_tear_fluid = Tear_fluid/V_precorneal 



Km = 0.1 – 1000 (µg/ml) 
k_D = 0.0179 (1/min) 
k_drain = 0.545 (1/min) 
Papp = 0.00003 - 0.003 (cm/min) 
Surface__area_of_cornea = 1.73 (cm2) 
Vmax = 0.001 – 1 – 5 (µg/min)  
V_AH = 0.3 (ml) 
V_cornea = 0.0692 (ml) 
V_precorneal = V_tear_fluid+V_eye_drop 
 
V_tear_fluid = 0.0075 (ml) 
  



Supplementary material on RPE simulation models 

All simulations were conducted using STELLA v10.0.03 Simulations Software (isee systems, Lebanon, NH, 

United States) with fourth-order Runge–Kutta algorithm.  RPE model structures are presented in Figure S3-

S6 (models numbered 1-4), and the equations in the models are displayed below each figure. The 

parameter values with literature references are presented in Table S2. 

Table S2. Parameters used in the RPE simulations 

 Model 
number 

Value Unit Notes Reference 

RPE thickness 1-4 0.0014 cm  (Curcio et al., 2011) 

RPE surface area 1-4 12.04 cm2  (Del Amo and Urtti, 
2015) 

Volume of the 
vitreous 

1-2 4 ml  (Del Amo and Urtti, 
2015) 

Unbound 
concentration in blood 
(Cu blood) 

1-2 0.001-50 µg/ml peak 
concentrations 
in plasma 
(humans) 

(Goodman and 
Gilman 2001) 

Concentration in the 
vitreous  

3-4 0.25-2500 µg/ml vitreal 
concentrations 
(rabbits) 

(Del Amo and Urtti, 
2015) 

Vitreal clearance 1-2 0.000517 ml/min gentamicin as 
a model 
substrate 

(Del Amo and Urtti, 
2015) 

Apparent permeability 
coefficient (Papp) 

1-4 6 x 10-4 – 6 x 10-6 cm/min permeability 
across porcine 
RPE-choroid 

(Pitkanen et al., 
2005;Steuer et al., 
2005) 

Vmax 1-4 0.01-0.1 µg/min various cell 
models 

(Dahlin et al., 
2013;Han et al., 
2001;Karlgren et al., 
2012;Vildhede et al., 
2016;Zhang et al., 
2006); UCSF-FDA 
TransPortal 
database) 

Km 1-4 0.1-1000 µg/ml  (UCSF-FDA 
TransPortal 
database) 

 

We used our own data to calculate the total protein amount in the RPE. The calculations were based on the 

protein amount of human fetal RPE cells per 12.04 cm2 culture area (RPE surface area, Table S1). The ranges 

for unbound plasma concentrations, vitreal concentrations and Michaelis costant (Km) values were selected 

based on the realistic values for variety of small molecular weight compounds (Table S1).  

The simulation time was 24 h (1440 min) for the systemic administration models  and 12 h (720 min) for the 

vitreal administration model displaying time intervals (dt) of 0.05 and 0.04 min, respectively.  



 

Figure S3. Illustration of the RPE simulation model 1 displaying systemic administration and active efflux on 

the apical surface of the RPE. 

EQUATIONS FOR THE RPE SIMULATION MODEL 1 (systemic administration and apical efflux in the RPE).  

AUC_RPE(t) = AUC_RPE(t - dt) + (AUC_calculation_RPE) * dt 

INIT AUC_RPE = 0 

INFLOWS: 

AUC_calculation_RPE = Concentration_RPE 

AUC_vitreous(t) = AUC_vitreous(t - dt) + (AUC_calculation_vitreous) * dt 

INIT AUC_vitreous = 0 

INFLOWS: 

AUC_calculation_vitreous = Concentration_vitreous 

RPE(t) = RPE(t - dt) + (Passive_diffusion_3 + Passive_diffusion_2 - Active_transport - Passive_diffusion_1 - 

Passive_diffusion_4) * dt 

INIT RPE = 0 

INFLOWS: 

Passive_diffusion_3 = (Cu_blood-Concentration_RPE)*Papp*RPE_surface_area 

Passive_diffusion_2 = (Concentration_vitreous-Concentration_RPE)*Papp*RPE_surface_area 

OUTFLOWS: 

Active_transport = Vmax*Concentration_RPE/(Km+Concentration_RPE) 



Passive_diffusion_1 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

Passive_diffusion_4 = (Concentration_RPE-Cu_blood)*Papp*RPE_surface_area 

Vitreous(t) = Vitreous(t - dt) + (Active_transport + Passive_diffusion_1 - Elimination_from_vitreous - 

Passive_diffusion_2) * dt 

INIT Vitreous = 0 

INFLOWS: 

Active_transport = Vmax*Concentration_RPE/(Km+Concentration_RPE) 

Passive_diffusion_1 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

OUTFLOWS: 

Elimination_from_vitreous = Clearance_vitreous*Concentration_vitreous 

Passive_diffusion_2 = (Concentration_vitreous-Concentration_RPE)*Papp*RPE_surface_area 

Clearance_vitreous = 0.000517 ml/min 

Concentration_RPE = RPE/Volume_RPE 

Concentration_vitreous = Vitreous/Volume_vitreous 

Cu_blood = 0.001-50 µg/ml 

Km = 0.1-1000 µg/ml 

Papp = 0.0006-0.000006 cm/min 

RPE_thickness = 0.0014 cm 

Surface_area_RPE = 12.04 cm2 

Vmax = 0.01-0.1 µg/min 

Volume_RPE = RPE_thickness*Surface_area_RPE 

Volume_vitreous = 4 ml 

 



 

Figure S4. Illustration of the RPE simulation model 2 displaying systemic administration and active efflux on 

the basolateral surface of the RPE. 

EQUATIONS FOR THE RPE SIMULATION MODEL 2 (systemic administration and basolateral efflux in the 

RPE).  

AUC_RPE(t) = AUC_RPE(t - dt) + (AUC_calculation_RPE) * dt 

INIT AUC_RPE = 0 

INFLOWS: 

AUC_calculation_RPE = Concentration_RPE 

AUC_vitreous(t) = AUC_vitreous(t - dt) + (AUC_calculation_vitreous) * dt 

INIT AUC_vitreous = 0 

INFLOWS: 

AUC_calculation_vitreous = Concentration_vitreous 

RPE(t) = RPE(t - dt) + (Passive_diffusion_3 + Passive_diffusion_2 - Passive_diffusion_1 - Passive_diffusion_4 - 

Active_efflux) * dt 

INIT RPE = 0 

INFLOWS: 

Passive_diffusion_3 = (Cu_blood-Concentration_RPE)*Papp*RPE_surface_area 

Passive_diffusion_2 = (Concentration_vitreous-Concentration_RPE)*Papp*RPE_surface_area 

OUTFLOWS: 

Passive_diffusion_1 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

Passive_diffusion_4 = (Concentration_RPE-Cu_blood)*Papp*RPE_surface_area 



Active_efflux = Vmax*Concentration_RPE/(Km+Concentration_RPE) 

Vitreous(t) = Vitreous(t - dt) + (Passive_diffusion_1 - Elimination_from_vitreous - Passive_diffusion_2) * dt 

INIT Vitreous = 0 

INFLOWS: 

Passive_diffusion_1 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

OUTFLOWS: 

Elimination_from_vitreous = Clearance_vitreous*Concentration_vitreous 

Passive_diffusion_2 = (Concentration_vitreous-Concentration_RPE)*Papp*RPE_surface_area 

Clearance_vitreous = 0.000517 ml/min 

Concentration_RPE = RPE/Volume_RPE 

Concentration_vitreous = Vitreous/Volume_vitreous 

Cu_blood = 0.001-50 µg/ml 

Km = 0.1-1000 µg/ml 

Papp = 0.0006-0.000006 cm/min 

RPE_thickness = 0.0014 cm  

Surface_area_RPE = 12.04 cm2 

Vmax = 0.01-0.1 µg/min 

Volume_RPE = RPE_thickness*Surface_area_RPE 

Volume_vitreous = 4 ml 



 

Figure S5. Illustration of the RPE simulation model 3 displaying intravitreal administration and active efflux 

on the apical surface of the RPE. 

EQUATIONS FOR THE RPE SIMULATION MODEL 3 (intravitreal administration and apical efflux in the 

RPE).  

AUC_RPE(t) = AUC_RPE(t - dt) + (AUC_calculation) * dt 

INIT AUC_RPE = 0 

INFLOWS: 

AUC_calculation = Concentration_RPE 

RPE(t) = RPE(t - dt) + (Passive_diffusion_1 - Passive_diffusion_3 - Active_transport - Passive_diffusion_2) * dt 

INIT RPE = 0 

INFLOWS: 

Passive_diffusion_1 = Papp*RPE_surface_area*(Concentration_vitreous-Concentration_RPE) 

OUTFLOWS: 

Passive_diffusion_3 = Concentration_RPE*Papp*RPE_surface_area 

Active_transport = Vmax*Concentration_RPE/(Km+Concentration_RPE) 

Passive_diffusion_2 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

Concentration_RPE = RPE/Volume_RPE 

Concentration_vitreous = 0.25-2500 µg/ml 

Km = 0.1-1000 µg/ml 

Papp = 0.0006-0.000006 cm/min 



RPE_surface_area = 12.04 cm2 

RPE_thickness = 0.0014 cm 

Vmax = 0.01-0.1 µg/min 

Volume_RPE = RPE_thickness*RPE_surface_area 

 

Figure S6. Illustration of the RPE simulation model 4 displaying intravitreal administration and active efflux 

on the basolateral surface of the RPE. 

EQUATIONS FOR THE RPE SIMULATION MODEL 4 (intravitreal administration and basolateral efflux in the 

RPE).  

AUC_RPE(t) = AUC_RPE(t - dt) + (AUC_calculation) * dt 

INIT AUC_RPE = 0 

INFLOWS: 

AUC_calculation = Concentration_RPE 

RPE(t) = RPE(t - dt) + (Passive_diffusion_1 - Passive_diffusion_3 - Passive_diffusion_2 - Active_transport) * dt 

INIT RPE = 0 

INFLOWS: 

Passive_diffusion_1 = Papp*RPE_surface_area*(Concentration_vitreous-Concentration_RPE) 

OUTFLOWS: 

Passive_diffusion_3 = Concentration_RPE*Papp*RPE_surface_area 

Passive_diffusion_2 = (Concentration_RPE-Concentration_vitreous)*Papp*RPE_surface_area 

Active_transport = Vmax*Concentration_RPE/(Concentration_RPE+Km) 



Concentration_RPE = RPE/Volume_RPE 

Concentration_vitreous = 0.25-2500 µg/ml 

Km = 0.1-1000 µg/ml 

Papp = 0.0006-0.000006 cm/min 

RPE_surface_area = 12.04 cm2 

RPE_thickness = 0.0014 cm 

Vmax = 0.01-0.1 µg/min 

Volume_RPE = RPE_thickness*RPE_surface_area 
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