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Abstract

Fruiting bodies of fungi constitute an important resource for thousands of other taxa.

The structure of these diverse assemblages has traditionally been studied with

labour‐intensive methods involving cultivation and morphology‐based species identifi-

cation, to which molecular information might offer convenient complements. To

overcome challenges in DNA extraction and PCR associated with the complex chemi-

cal properties of fruiting bodies, we developed a pipeline applicable for extracting

amplifiable total DNA from soft fungal samples of any size. Our protocol purifies

DNA in two sequential steps: (a) initial salt–isopropanol extraction of all nucleic acids

in the sample is followed by (b) an extra clean‐up step using solid‐phase reversible

immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with prac-

tically all of our samples—regardless of biomass or other properties—being success-

fully PCR‐amplified using metabarcoding primers and subsequently sequenced. As a

proof of concept, we apply our methods to address a topical ecological question: is

host specificity a major characteristic of fungus‐associated communities, that is, do

different fungus species harbour different communities of associated organisms?

Based on an analysis of 312 fungal fruiting bodies representing 10 species in five

genera from three orders, we show that molecular methods are suitable for studying

this rich natural microcosm. Comparing to previous knowledge based on rearing and

morphology‐based identifications, we find a species‐rich assemblage characterized by

a low degree of host specialization. Our method opens up new horizons for molecu-

lar analyses of fungus‐associated interaction webs and communities.
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host specificity, metabarcoding

1 | INTRODUCTION

Metabarcoding (Taberlet, Coissac, Pompanon, Brochmann, & Willer-

slev, 2012; Yu et al., 2012) has recently been successfully utilized

for resolving both the nodes (species) and links (interactions) of

natural communities (Roslin & Majaneva, 2016). In terms of describ-

ing the nodes present, molecular approaches provide new resolution,

both by uncovering cryptic taxa (Šigut et al., 2017) and by allowing

the dissection of communities unamenable to morphological analy-

ses, such as soil microbiota (Barberán, Bates, Casamayor, & Fierer,
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2012; Tedersoo et al., 2014). In terms of links, metabarcoding allows

us to study a wide variety of different interactions, such as pollina-

tion, predation or symbiosis (Clare, 2014; Roslin & Majaneva, 2016).

In terms of the architecture of such links, metabarcoding allows us

to study a wide range of aspects, ranging from diet composition of

individual species (Kaunisto, Roslin, Sääksjärvi, & Vesterinen, 2017;

Vesterinen et al., 2016) through host specificity of particular guilds

or food web modules (Baker, Bittleston, Sanders, & Pierce, 2016) to

community‐level structuring of trophic interactions (Geisen, Laros,

Vizcaíno, Bonkowski, & De Groot, 2015; Wirta et al., 2016).

The fruiting bodies of fungi constitute the resource base for a

multitude of ecological communities and networks (Hammond &

Lawrence, 1989). Among macroscopic organisms, arthropods such as

beetles and dipterans play a prominent role in fungus‐associated net-

works. Nearly 50% of beetle families are at least partially associated

with fungi, and the number of obligatory fungivorous beetle species

ranges at least in the thousands (Hammond & Lawrence, 1989;

Lawrence, 1989). The same holds true for dipterans, among which

sciarid fungus gnats alone encompass over 4,500 described species

(Søli, Vockeroth, & Matile, 2000). Mites (Acari) are likewise abundant

in mycophagous arthropod communities (O'Connell & Bolger, 1997;

Yamashita & Hijii, 2003). In addition to fungivorous arthropods, fruit-

ing bodies also provide habitats for predatory, parasitic and oppor-

tunistic arthropod groups (e.g., Hammond & Lawrence, 1989; Jonsell,

González Alonso, Forshage, van Achterberg, & Komonen, 2016; Lip-

kow & Betz, 2005). Beyond arthropods, fungal fruiting bodies sustain

a wide range of other taxa—in particular among microscopic organ-

isms (Gams, Diederich, & Põldmaa, 2004; Pent, Põldmaa, & Bahram,

2017). Parasitic and decomposing fungi thrive on fruiting bodies, and

so do bacteria of multiple orders and phyla (Gams et al., 2004; Pent

et al., 2017, 2018).

By tradition, associations between fungi and associated arthropod

taxa have been investigated by rearing adult arthropods from fruiting

bodies, followed by morphological identification. This approach has

been used to study competition (Ståhls, Ribeiro, & Hanski, 1989),

overall faunistic patterns (Hackman & Meinander, 1979; Jakovlev,

2012; Ševčík, 2006) and, more recently, host specialization (Põldmaa

et al., 2016). Yet, rearing‐based studies are slow and work‐intensive,
and taxon‐specific rearing mortality may lead to underestimation of

species diversity. This can, in turn, bias inferences of community and

food web structure (Wirta et al., 2014). In the same vein, studies of

fungal associate taxa have been based on cultivation followed by

morphological identification (Gams et al., 2004). Yet, only some fungal

associates are actually cultivable outside their host, risking biases in

the interpretation of community structure. From these perspectives,

metabarcoding methods may offer not only a more cost‐efficient, but
also a more standardized and perhaps less biased route for investigat-

ing factors influencing the species composition and trophic structuring

of fungus‐associated communities.

A classical question targeted by rearing‐based work is the degree

of host specificity of fungus‐feeding taxa. Rearing‐based studies of

insects have revealed, for example, clear differences in fungivore

community composition between ephemeral and annual fungi

(Jonsell & Nordlander, 2004; Põldmaa, Jürgenstein, Bahram, Teder, &

Kurina, 2015), as well as effects of host phylogeny and morphology

on fungivore guild composition (Thorn et al., 2015). Molecular meth-

ods, in turn, have hinted at the presence of substantial cryptic diver-

sity (Jürgenstein, Kurina, & Põldmaa, 2015) and more limited host

use than suggested by morphological analyses (Põldmaa et al., 2016).

While fungus‐based communities may seem ideal targets for res-

olution by molecular techniques, several challenges have hindered

the efficient application of such methods. The large size of many

fruiting bodies poses challenges for sample handling and makes stan-

dard DNA extraction methods ungainly. More important, the com-

plex chemical properties of fungi, such as high amounts of chitin,

trehalose and secondary metabolites, have impaired the PCR steps

critical in molecular analyses (California et al., 2012; Cubero, Crespo,

Fatehi, & Bridge, 1999; Haugland, Heckman, & Wymer, 1999). The

solutions developed to date have generally been optimized for rela-

tively small‐sized samples. Hence, when aiming to build further from

previous efforts, we need a size‐insensitive method for extracting

PCR amplifiable DNA from fungal fruiting bodies.

In this study, we decided to aim for efficient and scalable meth-

ods for metabarcoding of the highly diverse communities inhabiting

fungal fruiting bodies. Therefore, we first developed a pipeline appli-

cable for extracting and purifying total genomic DNA from soft fun-

gal samples of any size. As a proof of concept, we then applied our

methods to address a topical ecological question: do different fungus

species and taxa harbour distinct associated communities?

2 | MATERIALS AND METHODS

2.1 | Sampling design

To evaluate the potential of DNA‐based approaches to characterize

communities associated with mushroom fruiting bodies, we targeted

12 species of basidiomycete fungi from five genera in three orders

(Table 1). These species produce soft, ephemeral fruiting bodies and

were chosen to represent locally common and socioeconomically

important mycorrhizal taxa with different habitat preferences: Rus-

sula decolorans, Russula vinosa, Russula xerampelina coll. and Leccinum

vulpinum are most common in Pinus stands, whereas Lactarius turpis,

Lactarius trivialis and Boletus edulis favour Picea stands. The rest of

the species show variable mycorrhizal associations with both coni-

fers and broad‐leaved trees. It is important to note that taxa associ-

ated with soft fungi (mushrooms and boletes) have been explored in

much less detail than taxa associated with “hard fungi,” such as

perennial polypores (Jonsell & Nordlander, 2004; Jonsell, Nordlander,

& Jonsson, 1999; Jonsell et al., 2016; Komonen, Jonsell, Økland,

Sverdrup‐Thygeson, & Thunes, 2004; Komonen, Siitonen, & Muta-

nen, 2001; Orledge & Reynolds, 2005; Selonen, Ahlroth, & Kotiaho,

2005; Yamashita et al., 2015). Our study therefore targets not only a

methodological challenge, but also an ecological knowledge gap.

All samples were collected from southern and eastern Finland dur-

ing July–September 2016 and 2017. The southernmost sampling loca-

tions were near Helsinki, Finland (60.1°N, 24.9°E), the majority
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around Joensuu, Finland (62.6°N, 29.7°E), and the northernmost at

Suomussalmi, Finland (64.8°N, 28.9°E). Fruiting bodies were identified

in the field based on recent literature (Salo, Niemelä, & Salo, 2009). In

the laboratory, six identifications for which ITS2 sequences were

dominated by reads from a genus different from that identified in the

field were judged dubious and removed. Each fruiting body was then

placed in a separate resealable plastic bag, labelled and transferred to

a −21°C storage room during the same day. The resulting raw mate-

rial consisted of 319 unique fruiting bodies. Of these fruiting bodies,

the 42 largest ones were split into two to six subsamples for DNA

extraction and metabarcoding, but read data from these subsamples

were combined for each sample in the final data set.

2.2 | DNA extraction

Fruiting bodies were homogenized in the laboratory using a hand-

held Bosch® MSM67160/01 blender, with replacement tips (cata-

logue number 00657259) sterilized in 2.5% sodium hypochlorite

(bleach) solution for at least 1 hr and then rinsed carefully before

use. Total DNA was extracted from the homogenates using a modi-

fied salt extraction protocol (Aljanabi & Martinez, 1997; Vesterinen

et al., 2016) (see Protocol S1 for details). However, we further modi-

fied the protocol by including an extra purification step using Sera‐
Mag SPRI beads as the last step. This method was derived from

Rohland & Reich (2012) as further clarified by Faircloth and Glenn

(2014) (see also Deangelis, Wang, & Hawkins, 1995; Vesterinen et

al., 2016). The full protocol can be summarized as follows: one vol-

ume (in our study 50 μl) of DNA extract and two volumes of SPRI

bead solution were mixed and thoroughly vortexed. After 5 min of

incubation at room temperature (RT), the sample was briefly cen-

trifuged down and placed on a strong magnet rack until the solution

was clear and a pellet was formed (usually in 1–3 min). Then, the

supernatant (along with possible inhibitors) was removed and, while

keeping the sample still on magnet, the pellet (containing only the

DNA) was washed twice for 1 min with 150 μl of freshly prepared

80% ethanol. After the second wash, all ethanol residues were care-

fully removed by drying the pellet for 3–10 min while still on the

magnet. Here, it is essential that the pellet is dry of ethanol, whereas

overdrying makes the subsequent elution step more difficult and

decreases yield. Sterile water (equalling the volume of DNA extract

introduced in the first step) was added to the sample. The sample

was removed from the magnet, vortexed, incubated for 5 min at RT,

centrifuged briefly and placed on the magnet. At last, the super-

natant containing the purified DNA was transferred to a new tube.

Along with the samples, we ran nine negative controls through

the protocol. Of these, one was a homogenization‐phase control

including only the lysis buffer, which was “homogenized” with the

blender the same way as the real samples. The other eight were

purification‐phase controls, that is, samples containing 150 μl of dis-

tilled water instead of DNA extracts, which were otherwise treated

as the real samples.

2.3 | PCR amplification

To examine the potential for versatile molecular identification of

multiple organismal groups from individual fruiting bodies, we

attempted amplification of arthropods, fungal associates and bacteria

from the full set of samples.

For metabarcoding of arthropod communities, we chose the

most common marker used in molecular identification of animals:

the mitochondrial cytochrome c oxidase subunit I gene (COI) (Hebert,

Ratnasingham, & DeWaard, 2003). We amplified a 157‐bp COI frag-

ment with the primer pair ZBJ‐Art1c and ZBJ‐Art2c (Zeale, Butlin,

Barker, Lees, & Jones, 2011). For analysing communities of associ-

ated fungi, we chose the commonly used nuclear ribosomal internal

transcribed spacer region 2 (ITS2) (Schoch et al., 2012; Seifert,

TABLE 1 The identity, taxonomic affinity and number of fruiting bodies analysed in this study, n = 312

Order Family Genus Species Samples Main host trees Main habitat

Agaricales Cortinariaceae Cortinarius C. armillatus 22 Pinus, Betula, Picea All forest types

C. caperatus 44 Pinus, Picea, Betula All forest types

Russulales Russulaceae Russula R. vinosa 62 Pinus, Picea, Betula Prefers Pinus stands

R. paludosa 24 Pinus, Betula All forest types

R. decolorans 86 Pinus Prefers Pinus stands

R. xerampelina 8 All tree species Prefers Pinus stands

Russula sp. 1

Lactarius L. trivialis 28 Picea, Betula Prefers Picea stands

L. turpis 12 Picea, Betula Picea stands

Boletales Boletaceae Boletus B. edulis 4 Picea Picea stands

Leccinum L. versipelle 8 Betula All forest types

L. vulpinum 7 Pinus Pinus stands

L. scabrum 6 Betula All forest types

Note. Main host trees denote the tree species in which the fruiting bodies are most commonly associated with. Main habitat denotes the woodland

habitat type with which the fruiting bodies are most often associated in Finland south of northernmost Lapland. Nomenclature, ecological information

and taxonomy are based on Salo et al. (2009).
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2009), 327 bp of which were amplified with the primer pair ITS3_-

KYO2 and ITS4_KYO3 (Toju, Tanabe, Yamamoto, & Sato, 2012). For

bacterial communities, we used the widely applied 16S ribosomal

RNA gene; the 465‐bp portion amplified by the primer pair

Bakt_341F and Bakt_805R spans the variable V3 and V4 regions of

16S (Herlemann et al., 2011). Primer information is collected in Sup-

porting Information Table S1, with a critical evaluation of potential

biases in the same section, Supporting Information Appendix S1.

For all primer pairs, we used a reaction volume of 10 μl, including

5 μl of 2× MyTaq HS Red Mix (BIO‐25048; Bioline, UK), 2.6 μl of

H2O, 0.2 μM of each primer and 2 μl of DNA extract. The PCR cycling

conditions for the respective barcode regions were as follows:

1. COI: 3 min at 94°C, then 16 cycles of 94°C for 30 s, 61°C for

30 s and 72°C for 30 s, followed by 24 cycles of 94°C for 30 s,

53°C for 30 s and 72°C for 30 s, followed by 72°C for 10 min.

2. ITS2: 95°C for 10 min, then 35 cycles at 94°C for 20 s, 47°C for

30 s and 72°C for 20 s, followed by 72°C for 7 min.

3. 16S: 95°C for 5 min, then 25 cycles of 95°C for 40 s, 55°C for

2 min and 72°C for 1 min, followed by 72°C for 7 min.

2.4 | Library preparation

We used a dual indexing approach; that is, both forward and reverse

primers were tagged with different indexing barcodes (Shokralla et

al., 2015). All samples included a unique index combination to track

the reads correctly after sequencing. Library preparation followed

Vesterinen et al. (2016) with minor modifications: For a reaction vol-

ume of 10 μl, we mixed 5 μl of 2× MyTaq HS Red Mix, 2 μl of ster-

ile H2O, 0.3 μM of each primer and 2.6 μl of locus‐specific PCR

product. The PCR cycling conditions were 5 min in 95°C, then 15

cycles of 20 s in 95°C, 15 s in 60°C and 30 s in 72°C, followed by

5 min in 72°C. Following Aizpurua et al. (2018), Alberdi, Aizpurua,

Gilbert, and Bohmann (2018) and Kaunisto et al. (2017), we refrained

from measuring the DNA concentration of individual libraries and

instead pooled 2.5 μl of each indexed sample per sequencing run

(i.e., each pool consisted of samples amplified with either COI or

ITS+16S primers), then cleaned pools using dual SPRI purification to

remove any possible artefacts or nontarget size amplicons (Wirta et

al., 2015). Sequencing was performed on an Illumina MiSeq platform

at the Functional Genomics Unit of the University of Helsinki, Fin-

land. For the pooled arthropod library, we used v2 (300 cycles)

2 × 150 bp paired‐end sequencing, and for the fungal and bacterial

data, we used v3 (600 cycles) 2 × 300 bp sequencing. Pooled ITS2

and 16S libraries were sequenced simultaneously, but the run

included two independent PCR and indexing replicates of each DNA

extract (i.e., sample or subsample) for both markers.

2.5 | Bioinformatics

The three sequencing runs yielded the following amounts of quality‐
controlled paired‐end reads: The arthropod COI library produced

16,182,449 reads, of which 11,165,977 could be assigned to

samples with unique indexing barcodes. The two replicate sequenc-

ing runs involving pooled fungal ITS2 and bacterial 16S libraries pro-

duced altogether 23,182,536 reads, of which 18,773,401 were

assigned to samples.

The FASTQ files were uploaded to the servers of the CSC—IT

Center for Science (www.csc.fi)—for trimming and further analysis.

Paired‐end reads were merged and trimmed for quality using USEARCH

version 9 (Edgar, 2010), and primers were removed using cutadapt

version 1.11 (Martin, 2011). The reads were then collapsed into

unique sequences (singletons removed), chimeras were removed, and

reads were clustered into ZOTUs and mapped back to the original

trimmed reads to establish the total number of reads in each sample

using USEARCH UNOISE3 command (Edgar & Flyvbjerg, 2015).

After filtering, our raw data set consisted of 2,303,923 COI,

3,430 112 ITS2 and 3,547 123 16S reads that could be mapped to

original samples. The arthropod ZOTUs were identified to species or,

when species name could not be achieved, to BINs (Ratnasingham &

Hebert, 2013) using the Python script package bold‐retriever v. 1.0.0
(Vesterinen et al., 2016) or custom scripts. For the Arthropoda COI

data, we removed rare species or OTUs that were found in fewer

than 10 samples (only two OTUs removed in this step) and those

samples with fewer than 10 reads (71 samples removed). Fungal

OTUs were initially filtered for ITS2 reads using ITSx software

(Bengtsson‐Palme et al., 2013), then assigned to taxa using the UNITE

database (UNITE Community, 2017) with QIIME (Caporaso et al.,

2010) and an E‐value cut‐off of 0.0001. For this purpose, we focused

on samples yielding at least one thousand reads. We also validated

the identity of each analysed fruiting body based on the ITS2 data

set; this resulted in removal of six samples in which the identification

based on ITS2 reads contrasted strongly (dominance of wrong host

taxon with over 1,000 reads) with the species name recorded in the

field. At last, to omit host taxa from community analyses of fungal

associates, we discarded all OTUs that represented the species and/

or genera of fungi explicitly sampled. Bacterial OTUs were identified

to species sensu lato using SINTAX algorithm with RDP classifier

(Edgar, 2016) with a probability cut‐off of 0.8. For final analyses, we

used negative controls as a minimum threshold. In other words, we

subtracted the maximum number of reads found in any negative con-

trol from the read counts observed in the ecological samples.

Before combining outputs from the two 16S amplification and

indexing replicates, we used the 16S data sets to assess the repeatabil-

ity of our metabarcoding approach. For this, we first processed the

two sequence sets individually using the DaDa2 v. 1.6.0 (Callahan et

al., 2016) pipeline in R (R Core Team, 2017) and then generated

nonmetric multidimensional scaling (NMDS) ordination plots based on

Bray–Curtis distances (Bray & Curtis, 1957) among samples (including

replicates and subsamples of the same fruiting body) with the

phyloseq package v. 1.23.1 (McMurdie & Holmes, 2013) in R.

2.6 | Statistical analyses

To visualize the arthropod–fungus interactions structures resolved

by our molecular data, we used package bipartite (Dormann, Frund,
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Bluthgen, & Gruber, 2009) in R to construct a quantitative food web

based on relative read abundance (number of OTU reads/sum of all

OTU reads) of arthropods in each sample of each host fungus spe-

cies. We chose to use relative read count data as a proxy for arthro-

pod abundance, as supported by Piñol, Senar, and Symondson

(2018) and Deagle et al. (2018).

To visualize similarities of arthropod, fungal and bacterial com-

munities across fungal samples and taxa, we used NMDS ordination

based on intersample Bray–Curtis dissimilarity index values as imple-

mented in the package vegan (Oksanen et al., 2015) in R. For the

COI data set, we used all samples containing more than one identifi-

able arthropod OTU after the trimming scheme explained in Bioin-

formatics section. For the ITS2 data set, we used samples containing

more than one identifiable OTU with at least 1,000 or more fungal

OTU reads. Because the final 16S data set consisted of 3,370 spe-

cies or taxa, and as it was not possible to produce NMDS ordina-

tions with acceptable stress values (i.e., values below 0.2), we

reduced the dimensions of the data by removing those bacterial spe-

cies with prevalence equal to or below 5% among the sampling

units. To account for differences in sequencing depth, we divided

the number of reads of each OTU in each sample by the total num-

ber of reads in the sample. These data were then square‐root‐trans-
formed prior to running the NMDS analysis.

At last, we quantified host specificity by fitting joint species

distribution models to the arthropod, fungal and bacterial data

using the Hierarchical Modelling of Species Communities (HMSC)

R package (Ovaskainen et al., 2017). This modelling framework

allowed us to measure the community‐level responses of all taxa

identified to taxonomic variation among fungal hosts. In the fitted

models, we included the presence–absence of the molecularly

identified species at the level of individual fruiting bodies as the

response matrix, and the species and orders of the host fungi as

categorical explanatory variables. For computational reasons, in

the case of the bacterial data set the analyses were limited to

those species with a prevalence higher than 10% among the sam-

pling units (a criterion fulfilled by 920 species). To control for

variation in sequencing depth, we included the log‐transformed

number of reads as a continuous explanatory variable. We mod-

elled the presence–absence data using a probit link function and

measured the effect of each of the explanatory variables by per-

forming the variance partitioning procedure described in Ovaskai-

nen et al. (2017).

3 | RESULTS

3.1 | Overall success metrics

As compared to standard salt extraction, our novel method for DNA

extraction and purification clearly improved PCR amplification suc-

cess (Supporting Information Figure S1). Therefore, we were able to

amplify arthropod COI barcodes from the vast majority of samples:

of an original 318 fruiting bodies, after discarding the six dubious

identifications of the fungal host species (see Sampling design), and

two samples that failed during sequencing, we retained a pool of

310 samples suitable for COI analyses. Of these, 295 (95%) yielded

sequences attributable to at least one arthropod taxon. This high

rate of success was achieved despite the large and variable size of

the original fruiting bodies. The trimmed, pruned and filtered molec-

ular data set used for the analyses consisted of two acarid, six arach-

nid, two collembolan and 200 insect species, collectively

representing 59 different families in 12 orders (Supporting Informa-

tion Table S2). Of the arthropods, 74 could only be assigned to fam-

ily or higher taxa, although all of these could be assigned to a BIN,

which is a close approximation to a biological species but for some

reason (e.g., new or cryptic species) lacking a species name (Ratnas-

ingham & Hebert, 2013). The most common insect groups were the

dipteran families Phoridae, Muscidae, Chironomidae, Anthomyiidae

and Mycetophilidae, and the coleopteran family Staphylinidae. A

total of 260 samples yielded two or more arthropod taxa, and 133

samples yielded 10 or more identified taxa.

For ITS2 and 16S, the final data set included 312 unique fruiting

bodies (Table 1). In ITS2 sequences, 865 (of a total of 1,166) OTUs

passed ITSx filtering, and 649 of these were identified as fungal

ITS2. In total, 3,243 185 could be assigned to a taxon with a 100%

match to reference sequences in the UNITE database. As expected,

the majority (over 80%) of these reads represented the fungal taxa

and genera of the sampled fruiting bodies. After filtering out evident

host reads, the final community data consisted of 465,003 reads rep-

resenting 613 OTUs, of which 81 could be identified to a specific

species, 188 to a genus, 71 to a family and the rest to a higher level

or left unassigned. The most common classes were Leotiomycetes,

Agaricomycetes and Dothideomycetes, with Helotiales being by far

the most common order with a total of 172 OTUs. A total of 269

samples yielded two or more and 185 samples 10 or more identifi-

able OTUs.

For bacterial 16S analyses, 3,469 OTUs passed 16Sx filtering.

The final combined bacterial data set consisted of 2,689 225 reads

of 3,370 OTUs, which could be identified with 80% certainty based

on comparisons to reference databases. Of these, 1,057 OTUs could

be identified to level comparable to genus, 656 to family, 323 to

order and the rest to class or higher levels.

Sample‐specific sequence contents resulting from the two inde-

pendent 16S amplification and indexing replicates were generally

highly consistent, which was reflected as a tendency for sample

replicates to a position close to each other in NMDS ordination

space (Supporting Information Figure S2A). This general tendency

extended to subsamples of large fruiting bodies (Supporting Informa-

tion Figures S2B and S3).

3.2 | Imprints of host taxonomy on fungus‐
associated communities

Different species of fungi shared a wide variety of arthropods with

each other, with even abundant arthropod taxa showing no strong

links to particular fungal genera or orders (Figure 1). As a conse-

quence of this general lack of specialization in arthropod–fungus
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associations, communities associated with different host fungi were

generally highly similar, so that samples representing specific fungal

genera and orders overlapped broadly in NMDS ordination space

(Figure 2a). Similar broad overlaps were found in NMDS ordinations

based on communities of fungal associates (Figure 2b) and bacterial

taxa (Figure 2c).
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F IGURE 1 A quantitative interaction network based on relative read abundance of arthropods in each sample of each host fungus species.
The upper blocks show arthropod species revealed by metabarcoding, and the lower blocks refer to studied fungal species. The systematic
affinity of arthropods and fungi is indicated by colours (see legend). The thickness of the lines connecting arthropods with fungi represents the
proportional abundance of each detected interaction event. Full names for arthropod taxon numbers are given in Supporting Information
Table S2

(a) (b) (c)

F IGURE 2 Nonmetric multidimensional scaling (NMDS) ordination of the community compositions of (a) arthropods, (b) fungal associates
and (c) bacterial taxa in fruiting bodies of the focal fungal host taxa. In all panels, symbols denote the order to which the host species belongs,
and different colours indicate genera (see legend)
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Results from our HMSC analyses were in line with the ordina-

tion‐based inferences: averaged over species, the fitted HMSC mod-

els explained only 18%, 15% and 45% of the variation in arthropod,

fungal and bacterial occurrences in the fruiting bodies, respectively.

However, within each associate group, the amount of variance

explained by the models differed considerably across species (Fig-

ure 3). It is important that the overall amount of explained variance

was not constrained by taxonomy, but rather by the prevalence of

the species in the data sets: The highest R2 values were obtained for

OTUs with medium‐level prevalence, that is, for the ones with the

highest potential for variation in their occurrence patterns (Support-

ing Information Figure S4).

In terms of the proportion of variance explained by the taxon-

omy of the host fungal species and sequencing depth, the three

associate communities showed very similar patterns. Of the vari-

ance explained in arthropod community structure, the order and

species of the fruiting body accounted for an average of 27% and

28%, respectively, while sequencing depth explained 22%

(Figure 3a). For the community of other fungi associated with the

focal fungal fruiting bodies, host order and species explained an

average of 29% and 25%, respectively, and sequencing depth

accounted for 7% (Figure 3b). In the case of the bacterial commu-

nity, the order and species of the fruiting body explained an aver-

age of 31% and 27%, respectively, while sequencing depth

accounted for 16% (Figure 3c).

4 | DISCUSSION

In this study, we present a new method for simple sampling of fun-

givorous communities along with their substrate—regardless of sub-

strate size. With this method, we achieved a high success rate in

inferring communities of associated taxa from fungal fruiting bodies

of complex chemical composition and highly variable mass. In evi-

dence of its efficiency in answering ecological questions, we used

the method to revisit classic concepts of specialization and general-

ism in fungus‐associated communities. Our findings suggest a low

level of host specificity and little imprint of fungal taxonomy on

community structures of arthropods, fungal associates and bacterial

taxa. Compared to previous studies, they offer relatively high esti-

mates of species richness per fungal host taxon. Below, we address

each finding in turn.

4.1 | A new method

In developing our new protocol, we aimed for a method that would

(a) consistently produce good‐quality DNA for biome characteriza-

tion, (b) be scalable across samples of vastly different size, (c) be

economically feasible (i.e., cheap), (d) require little dedicated equip-

ment and (e) present no health hazards, thus excluding methods

based on phenol extraction (California et al., 2012). To minimize the

time spent on method development, we naturally based it on previ-

ously established protocols. As a result of the above criteria, our

protocol is suitable for almost any molecular ecology laboratory, with

little investment in extra equipment.

A key innovation in the protocol—and a step of significant

importance for reducing the final cost—is the combination of classic,

affordable and easily adjustable salt–isopropanol extraction with a

more refined purification step. The decision to use chaotropic salting

procedures was based on previous work by Pilipenko, Salmela, and

Vesterinen (2012) and Vesterinen et al. (2016). However, pilot tests

with extracted fungal material showed high rates of PCR failure,

potentially due to massive contamination with impurities (such as

polysaccharides) coextracted along with the target DNA, which

inhibited any later PCR steps (Supporting Information Figure S1).

This finally led us to attempt SPRI purification. In evidence of the

purification success achieved, the current method yielded identifiable

arthropod DNA from 94% of the samples, and this high success rate

extends to DNA from other associated taxa. Disregarding the quanti-

tatively dominant DNA of the fruiting bodies themselves, 86% of

samples yielded ITS2 sequences identifiable to associated fungi. In

terms of bacteria identified based on 16S sequences, the main clades

found were consistent with those reported by Pent et al. (2017) as

being common among boreal forest mushrooms. That the method

yielded reliable, repeatable data on bacterial community structure

was also confirmed by the general similarity of communities among

the two 16S PCR replicate data sets (Supporting Information Figures

S2 and S3). In combination, these findings suggest that our method

yields DNA useful for characterizing the full fungus‐associated
microbiome.

It is important that as the protocol was designed with cost effi-

ciency in mind, it remains within the reach of even research teams

lacking expensive equipment. The current presequencing price esti-

mate is ca. 1€ per sample, as based on 0.15€ for salt extraction, 0.15

€ for SPRI purification and 0.7€ for PCR and library preparation.

Thus, the protocol is fully applicable to ecologically relevant sample

sizes.

If possible, the reproducibility of our results should be confirmed

by positive controls with known concentrations of known species

(De Barba et al., 2014), and we recommend that such initiatives be

implemented in near future. At the same time, we should acknowl-

edge the practical limitations of such validation. As long as we are

dealing with communities as poorly known and described as fungus‐
associated bacteria and fungus‐associated fungi, it will be logically

impossible to formulate complete, appropriate positive controls—as

we simply do not know the full set of organisms which are there to

detect. This is something of a Catch‐22 (Heller, 1961) for anyone

trying to establish the validity of a system in which new taxa may be

detected. We suggest that it is best resolved by the iterative

approach of first identifying the set of component phyla, as in the

current study, and then verifying their detectability in future work.

4.2 | Host specificity revisited

How the identity and properties of a living resource structure its

associated community remains a question at the core of modern

KOSKINEN ET AL. | 7



(a)

(b)

(c)

F IGURE 3 Amount of variance explained by the joint species distribution model for each of the (a) arthropod, (b) fungal associate and (c)
bacterial taxa. The species have been sorted according to the total amount of variance explained by the models. The amount of variance
explained by fungal host species, fungal host order and sequencing depth is indicated by different colours on the bars (see legend). The
numbers in legends show the average variation explained as the proportion of total variance explained. Bar colours below the x‐axes in (a) and
(b) indicate the taxonomic group that each associate species belongs to (see legend)
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community ecology (Lamit et al., 2015). Where host phylogeny has

often been assumed to leave a strong imprint on associated com-

munities (Cadotte, Albert, & Walker, 2013; Gerhold, Cahill, Winter,

Bartish, & Prinzing, 2015; Mouquet et al., 2012), we found little

trace of such effects among communities associated with soft‐bod-
ied, ephemeral fungi. This inference was consistently supported by

major overlap in feeding links between arthropods and different

fungi (Figure 1), by extensive overlap in the arthropod, and fungal

and bacterial associated communities of different fungi (Figure 2),

and by the generally low fraction of variation in community struc-

ture attributable to host identity and taxonomy (Figure 3). As a

technical reminder, we note that the relatively high R2 values

observed for bacterial communities reflect a general association

between incidence and variance explained (Supporting Information

Figure S4). From the bacterial data, the rarest and therefore most

unpredictable species were explicitly removed from the analyses,

resulting in elevated R2 values.

The observed lack of specialization among all organism groups

associated with all the soft mushrooms studied here is consistent

with the ephemeral and patchy nature of fungal resources, which

should promote generalist associations and polyphagy (Hanski,

1989). What is still worth emphasizing is that the faunas and floras

examined here represent a mix of presumptively more and much less

obligate fungus‐associated taxa. Thus, the general pattern reported

does not preclude the existence of some specialists. Indeed, previous

rearing‐based work has described variable degrees of host specializa-

tion among fungivorous arthropods (Hackman & Meinander, 1979;

Komonen, 2003; Krivosheina, 2008; Polevoi, Jakovlev, & Zaitzev,

2006; Schigel, 2012). Such variation may reflect different patterns of

specialization to different types of fungi. Fungivore specialization

among bracket fungi—which usually develop long‐lived and harder

fruiting bodies than do the mushroom‐producing fungi examined

here—has been found to vary with the morphological, chemical and

phenological properties of the host species (Epps & Arnold, 2010;

Orledge & Reynolds, 2005). Estimating some general level of host

specificity among all fungivores may then—per definition—be a

futile task. Much rather, we might focus our efforts on resolving

variation in host specificity and the ecological correlates thereof. As

a special case, among fungivores inhabiting the ephemeral, soft fruit-

ing bodies of fungi examined by us, several species of Pegomya flies

have been previously proposed to specialize on the basidiomes of

the Boletales clade (Ståhls et al., 1989). In our data set, we found

three identified Pegomya species, none of which showed a particular

association with boletes. The common species P. geniculata proved

present in both gilled fungi and boletes, thus contradicting the tradi-

tional perception of the high specificity of Pegomya to boletes (Hack-

man & Meinander, 1979).

Of late, Põldmaa et al. (2015) found differences in communities

associated with saprotrophic vs. ectomycorrhizal fungi and suggested

that host phylogenetic richness will be positively linked with the

richness of mycetophilid fungus gnats (Sciaroidea s.l.). Thus, while

our current study points to generalist associations as a common pat-

tern among fungus‐associated taxa, further work will be needed to

dissect associations between fungi of different characteristics on the

one hand, and associated organisms with different life cycles and

traits on the other hand. For such work, the protocol presented here

offers the ideal instrument.

As a further point worth noting, our hierarchical models of fun-

gus‐associated species communities revealed a large amount of vari-

ation not attributable to host identity, taxonomy or sequencing

depth (Figure 3). The reasons for this variation remain unknown, but

could include a wide variety of effects, including—but not limited to

—habitat and microhabitat type (Jakovlev, 2011), forest management

history (Niemelä, 1997; Økland, 1994), overall variation in the sur-

rounding resource patch dynamics (Heard, 1998) and—perhaps most

crucially—variation in the age and decay stage of the sampled fruit-

ing body (Epps & Arnold, 2010; Ståhls et al., 1989). When a fruiting

body ages and starts to decompose, it changes in composition,

meaning that young and old fungi will provide different resource

patches. In line with this reasoning, in perennial polypores, specialist

insect species may tend to colonize younger fruiting bodies, while

generalists sometimes use older and dying ones (Jonsell & Nordlan-

der, 2004; Yamashita et al., 2015). While in the current study we

restricted variation in mushroom age to more effectively tackle ques-

tions related to the effect of host identity, we will next use the

methods developed here to dissect impacts of host ageing and habi-

tat characteristics on community patterns among arthropods, fungi

and bacteria associated with soft mushrooms (J. Koskinen, T. Roslin,

N. Abrego, E. Vesterinen, & T. Nyman, in prep.).

4.3 | Comparisons with previous studies

By metabarcoding a total of 312 unique fruiting bodies from 13 spe-

cies representing five genera and three orders (Table 1), we compiled

and analysed a data set of 210 arthropod species, including dipter-

ans from 25 different families. By comparison, studies using tradi-

tional methods have certainly yielded massive ecological data sets.

For example, Põldmaa et al. (2015) reared a total of 11,040 fungus

gnats from 340 fruiting bodies representing 81 species and 24 gen-

era of fungi, identifying a total of 37 fungus gnat species alone and

a total of 16 dipteran families. Hackman and Meinander (1979)

reared about 120 species of Diptera from over 1,200 fruiting bodies

representing 184 fungus species, and Ševčík (2006) detected a total

of 242 dipteran species from 248 fungal species over the period of

12 years. Yamashita et al. (2015) discovered a total of 82 coleop-

teran species from 427 fruiting bodies from 22 genera when sam-

pling tropical bracket fungi, which often produce hard and long‐lived
fruiting bodies. While these numbers could easily be translated to

simple metrics of host specificity—such as number of associated

species per host taxon—the different resolution and the different

biases associated with different methods often render direct com-

parisons between metrics of ecological interaction structure prob-

lematic (Morris, Gripenberg, Lewis, & Roslin, 2014; Pellissier et al.,

2018; Wirta et al., 2014). Simple metrics of host specialization will

namely vary with the set of host fungi included for comparison and

thus with the study design. Thus, in the current context, we content
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ourselves with stating that, on average, we detected 16 fungus‐asso-
ciated arthropods per host fungus species and of 0.68 species per

individual fruiting body.

While taken at their face value, these may appear high numbers,

and they would certainly change with a different set of fungi exam-

ined. What we emphasize is that our sampling design was explicitly

based on multiple fungal host species from each of multiple fungal

orders, that neither host species nor order offered much of an

imprint, and that this pattern was consistent among arthropods,

fungi and bacteria. Consistent with the previous section (see Host

specificity revisited), all of these considerations attest to low overall

host specificity, with little imprint of host phylogeny.

5 | CONCLUSIONS

To our knowledge, our study represents the first large‐scale analysis

of fungus‐feeding arthropod, fungal and bacterial associates of basid-

iomycete fungi based on a metabarcoding approach. We were able

to design a robust method for extracting high‐quality total DNA

from different‐sized fungal samples. This method is simple, safe and

economic enough to be applied in any basic molecular laboratory.

Most important, it allows us to revisit fundamental ideas about how

fungus‐associated communities are assembled and structured. In the

current pilot study, we have used it to define data‐driven hypotheses

about the patterning of these diverse communities. Next, the result-

ing combination of tools and concepts will allow us to dissect the

drivers of host specificity in fungus‐associated biomes, as based on

massive and purpose‐generated materials.
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