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Abstract

Aim: Aphyllophoroid fungi are associated with plants, either using plants as a

resource (as parasites or decomposers) or as symbionts (as mycorrhizal partners). In

spite of their strong association with plants, it is unknown how much plant distribu-

tions determine their biogeographical patterns compared with environmental factors

such as climate and human land use. In this study, our aims are to (1) describe the

spatial diversity patterns of aphyllophoroid fungi in Europe and (2) identify the fac-

tors shaping these patterns.

Location: Europe, as well as the adjacent Subarctic to Arctic islands (Greenland,

Faroe Islands, Iceland, Svalbard), Palestine and the south-east coast of the Caspian

Sea.

Methods: We compiled a dataset consisting of 14,030 fruitbody occurrences of

1,491 aphyllophoroid fungal species from 39 geographical areas (17 countries)

belonging to eight biogeographical regions. We assessed the differences in fungal

species richness and overall diversity and its nestedness and turnover components

across biogeographical regions of Europe, as well as between southern and northern

Europe (based on geographical latitude of 50° as threshold). We used cluster and

ordination analyses to classify the European aphyllophoroid communities biogeo-

graphically and evaluated the importance of climate, host-tree species, topography

and human land-use intensity in explaining biogeographical variation.

DOI: 10.1111/jbi.13203

1182 | © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jbi Journal of Biogeography. 2018;45:1182–1195.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/245131466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-2904-7094
http://orcid.org/0000-0002-2904-7094
http://orcid.org/0000-0002-2904-7094
http://wileyonlinelibrary.com/journal/JBI


Results: The importance of biogeographical regions in determining European aphyl-

lophoroid fungal communities varies for different diversity components. Species

richness and nestedness are best explained by plant-based biogeographical regions,

whereas overall beta diversity and species turnover are driven mostly by variation in

climate, and nestedness mostly by tree species occupancy. Beta-diversity patterns

of aphyllophoroid fungi do not differ between southern and northern Europe.

Main conclusions: At the continental scale, aphyllophoroid fungi are less shaped by

historical legacies than vascular plant and animal communities, and trends of overall

beta diversity in southern and northern Europe are similar to patterns found for

bryophytes.
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1 | INTRODUCTION

Understanding the variation in global distribution patterns of species

has fascinated researchers for over two centuries (von Humboldt &

Bonpland, 1805; Wallace, 1876), and the classification of species

pools into geographical units, that is, biogeographical regions, is a

classic scientific discipline (Cox, Moore, & Ladle, 2016). Traditionally,

the delineation of biogeographical units relied on taxonomic opinions

about endemic taxa (Takhtajan, 1978; Wallace, 1876), whereas mod-

ern biogeographical classifications are based on replicable and quan-

titative techniques. Current multivariate methods enable a more

systematic understanding of the current and past distribution pat-

terns of species worldwide (Holt et al., 2013; Kreft & Jetz, 2010;

Linder et al., 2012) and provide important input for detecting areas

requiring special attention for biodiversity conservation (Whittaker

et al., 2005). The spatial classification of species communities also

enables the exploration of evolutionary history shaping biodiversity

on earth, including the structure of food webs (Dyer et al., 2007;

Nieberding & Olivieri, 2007).

Compared with plants and vertebrates, the biogeography of fungi

remains poorly explored (Lumbsch, Buchanan, May, & Mueller, 2008;

Mueller et al., 2007). The simplest reason is that global fungal diver-

sity is largely unknown. While c. 100,000 species of fungi are

described to date, the estimates of global species richness vary

between 0.5 and 10 million (Hawksworth & L€ucking, 2017). Most

fungi disperse by microscopic windborne spores that can travel

across continents. Consequently, scientist in the past suggested that

fungal species have cosmopolitan distributions and not be limited by

biogeographical contingencies (e.g. Moncalvo & Buchanan, 2008;

Sato, Tsujino, Kurita, Yokoyama, & Agata, 2012). It is now widely

accepted that this is not the case (Hattori, 2017; Peay, Bidartondo,

& Elizabeth Arnold, 2010; Tedersoo et al., 2014), and it has been

shown that fungi can be dispersal limited even at small scales

(Galante, Horton, & Swaney, 2011; Norros et al., 2014). Recent stud-

ies based on environmental DNA samples have provided the first

insights into global soil fungal biogeography and identified climate,

edaphic conditions and distance from the Equator to be important

predictors for explaining soil fungal richness and community compo-

sition (Tedersoo et al., 2014; Treseder et al., 2014).

Europe is the continent with the most advanced knowledge of

fungal biodiversity, due to a long tradition of research in fungal tax-

onomy and biodiversity (Dahlberg, Genney, & Heilmann-Clausen,

2010). In the last decades, numerous national projects documenting

fungal diversity have been initiated, often involving interactive web

platforms, which has further contributed to the knowledge of Euro-

pean macrofungi (Andrew et al., 2017; Halme, Heilmann-Clausen,

R€am€a, Kosonen, & Kunttu, 2012). Thus far, recording fungal species

from reproductive structures (i.e. fruitbodies) has remained the most

popular method to inventory macrofungi, although it is also possible

to record fungi from vegetative structures (i.e. mycelia) and dormant

propagules (i.e. spores).

Aphyllophoroid fungi (non-gilled macrofungi of the Basidiomycota

phylum) are the most important agents of wood decay (Stokland,

Siitonen, & Jonsson, 2012), but also include mycorrhizal species,

plant pathogens and litter saprotrophs (Tedersoo & Smith, 2013).

Aphyllophoroid fungi are among the best-known groups of macro-

fungi both globally and in Europe (Bernicchia & Gorj�on, 2010; Ryvar-

den & Melo, 2014). From the currently described c. 120,000 species

of fungi worldwide (Hawksworth & L€ucking, 2017), aphyllophoroid

fungi comprise at least 3,000 species, out of which 1,500 have been

considered to occur in Europe (Mueller et al., 2007).

Despite some regional efforts, mainly in boreal Fennoscandia

(Kotiranta, Saarenoksa, & Kyt€ovuori, 2009; Nord�en, Penttil€a, Siito-

nen, Tomppo, & Ovaskainen, 2013), Caucasus (Ghobad-Nejhad, Hal-

lenberg, Hyv€onen, & Yurchenko, 2012) and in the beech distribution

area of temperate Europe (Abrego, B€assler, Christensen, & Heil-

mann-Clausen, 2015; Abrego, Christensen, B€assler, Ainsworth, &

Heilmann-Clausen, 2017; Heilmann-Clausen et al., 2014), knowledge

of aphyllophoroid fungal distribution patterns in Europe is limited.

The close associations to live or dead plants in many species suggest
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that vegetation types greatly influence community composition, but

it still remains unknown to which degree vegetation zones structure

aphyllophoroid fungal communities. A better understanding of how

fungal communities depend on their host communities provides the

possibility to gain insights into co-evolutionary relationships between

fungi and plants (Heilmann-Clausen et al., 2016) and how biogeo-

graphical legacies affect current distribution and host-specificity pat-

terns (Auger-Rozenberg, Torres-Leguizamon, Courtin, Rossi, &

Kerdelhu�e, 2015; Triponez, Arrigo, Esp�ındola, & Alvarez, 2015).

In Europe, there is no general congruency among taxonomic

groups regarding spatial diversity gradients (Keil et al., 2012). In

spermatophyte plants, liverworts and several animal groups, nested-

ness increases towards the north as a result of the delay in post-gla-

cial recolonization, whereas species turnover increases towards the

south, as a response to the lower impact of the Last Glacial Maxi-

mum and higher environmental heterogeneity (Hortal et al., 2011;

Svenning, Fløjgaard, & Baselga, 2011). Among bryophytes, liverworts

follow the same patterns as spermatophyte plants, whereas mosses

follow an inverse pattern, with higher nestedness in the south due

to exclusion of drought-intolerant species (Mateo et al., 2016). Yet,

regarding spatial community similarity patterns, European mammal

and plant communities show congruent cluster configurations (Heik-

inheimo et al., 2012).

In this study, we analysed the biogeographical structure of aphyl-

lophoroid fungi in Europe, including selected adjacent areas. We

compiled a dataset which covered nearly all European aphyl-

lophoroid fungi (Mueller et al., 2007). Our extensive dataset con-

sisted of 14,030 occurrences of 1,491 aphyllophoroid species

recorded from fruitbody surveys across 39 European areas in 17

countries. We first analysed patterns of fungal alpha and beta diver-

sity in relation to the plant-based biogeographical regions developed

by the European Environmental Agency (EEA, 2015) and in relation

to the areas’ location in southern versus northern Europe. Second,

we classified the areas in relation to their fungal community compo-

sition (in terms of overall beta diversity and its turnover and nested-

ness components). Finally, we modelled the fungal community

composition and species richness of the studied areas in relation to

biogeographical region, climate, host-tree distributions, topography

and land-use intensity across Europe. Given previous knowledge

about host-tree specificity of many aphyllophoroid fungi, our work-

ing hypothesis was that plant-based biogeographical regions largely

determine the distributions and diversity of European aphyllophoroid

fungi. Further, we expected species richness to decrease and nested-

ness to increase towards the north, reflecting decreasing diversity in

host-plant species.

2 | MATERIALS AND METHODS

2.1 | Fungal dataset

Fungal datasets were assembled by the approach described by Hor-

tal (2008) as “aggregating survey records,” which assumes assembling

local checklists from sites of known limits and areas of varying size.

Species lists from 39 European areas including adjacent southern

geographical areas (Palestine and the south-east coast of the Caspian

Sea) and Subarctic to Arctic islands (Greenland, Faroe Islands, Ice-

land, Svalbard) were compiled into a presence–absence data matrix

(Appendix S1.1). In most cases, the areas were defined by adminis-

trative boundaries and correspond to governmental districts, regions,

federal states, or in the case of small countries, to the whole coun-

tries. The size of the areas ranged from 48 to 102,000 km2. Areas

were selected to represent the biogeographical regions of the Euro-

pean Environment Agency system (EEA, 2015) as equally as possible.

To ensure comparability, only areas and data generated from 1994

onwards were considered. By this time, most of the still current

important continental-scale identification key books had been pub-

lished (Hjortstam, Larsson, Ryvarden, & Eriksson, 1988; Ryvarden &

Gilbertson, 1994). Authors of this study provided species lists for 16

areas, and the rest were obtained from literature or web sources

(Appendix S1.2). Detailed information on the selected areas is pro-

vided in Appendix S2, and their locations are shown in Figure 1. All

species names were updated according to the database Index

Fungorum (2015).

We pooled all environmental data for administrative units, by

assuming homogeneity on the environmental conditions within

these, and thus comparable size and effort in fungal diversity explo-

ration. In the statistical analyses, this was further handled by resam-

pling techniques (permutations, bootstraps) and cross-examining the

robustness of the results by applying various methods (see Sec-

tion 2.3).

To study the variation of diversity in latitudinal gradient, we split

our dataset into areas representing northern and southern Europe,

using the geographical latitude of 50° as threshold, in line with the

studies of Baselga (2010), Freijeiro and Baselga (2016) and Mateo

et al. (2016). This resulted in 15 and 24 areas representing northern

and southern European bands, respectively. The two datasets were

thoroughly compared in terms of diversity, using resampling methods

described in Section 2.3.2.

2.2 | Selected environmental variables

Apart from the classification of each of the areas into biogeographi-

cal regions following EAA (2015), we obtained data on several vari-

ables potentially driving species composition using QGis 2.10

software (http://www.qgis.org/). Climatic data were extracted from

the WorldClim 1.4 database (Hijmans, Cameron, Parra, Jones, & Jar-

vis, 2005). We selected climatic variables which were not strongly

correlated (Pearson’s r < .7), and so we retained annual mean tem-

perature (BIO1), total precipitation (BIO12), seasonal variation of

these two parameters (BIO4 and BIO15, respectively) and mean

temperature of the wettest quarter (BIO8).

The distribution data of the 15 most common European tree

genera/species (taxonomic resolution varied in the original dataset)

were obtained from Brus et al. (2012). We calculated the relative

occupancy of each tree taxon (further referred to as tree species) in

each area in two steps: first, we summed the proportions of the land
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area covered by each tree species in all 1 9 1 km quadrats within

the areas. Second, the obtained values were divided by the total

number of the quadrats in the area to account for the non-forested

areas. For the 16 areas that were not covered either by Brus et al.

(2012), we generated relative occupancies as the average values per

biogeographical region to which the given area belongs (mean substi-

tution in terminology of Hill & Lewicki, 2006). For the south-east

coast of the Caspian Sea in Iran, the mean values for the whole

dataset were applied. We used the Human Footprint score (mean

value for area) as an integrated measure of land-use intensity (San-

derson et al., 2002; WCS & CIESIN, 2005).

Finally, we calculated topographical variables of area size,

perimeter, mean altitude, and geographical coordinates of the areas’

centroids.

2.3 | Statistical analyses

2.3.1 | Gamma diversity and local species richness

All statistical analyses were carried out using R 3.3.2 (R Core Team,

2016). Gamma diversity (i.e. the total species richness of aphyl-

lophoroid fungi in Europe) was assessed in two ways: by

constructing a sample-based accumulation curve (each area was con-

sidered a sample unit) and by applying several species richness esti-

mators (Chao 2, Jacknife 1, Jacknife 2 and Bootstrap). All

calculations were performed by applying 100 permutations at each

step and ordering the areas randomly without replacement with the

“speccacum” function of the “vegan” package (Oksanen, Blanchet,

Kindt, Legendre, & O’Hara, 2016).

We calculated the local species richness of aphyllophoroid fungi

in the European areas by summing their presences in each area. To

study the relationship between species richness and environmental

variables, we fitted generalized linear models (GLM) of the negative

binomial family with log link function, using the “glm.nb” function

from the “MASS” package (Venables & Ripley, 2002). We identified

the best predictor variables by a forward selection procedure based

on Akaike information criterion (AIC), using the function “stepAIC” of

the basic “stats” package. Variable selection was carried out sepa-

rately for each group of predictors (climatic variables, tree species,

topography and land-use intensity). In each case, variables were

introduced into the model in descending order reflecting their inde-

pendent contribution (from greatest to least) for explaining unad-

justed deviance in the response variable (Appendix S3.1). Unadjusted

deviance (D2) was retrieved from the fitted models with the

F IGURE 1 Map of Europe showing the locations of the areas included in the study, and their assignment to the biogeographical regions.
The full names of the areas are provided in Appendix S1
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“Dsquared” function of the “modEvA” package (Barbosa, Brown,

Jimenez-Valverde, & Real, 2016), and is a direct analogue of the R2

in the least squares linear regression. We included only significant

variables from each group (climatic, tree occupancies and land-use

intensity) to select the most parsimonious models, and topographical

variables (area size, longitude and latitude) were always added,

regardless of significance, to account for the differences in areas’

size and location. To study directly the effect of the areas’ biogeo-

graphical classification on the species richness, we built models

including plant-based biogeographical classification of the areas

(EAA, 2015), topography and land-use intensity (hereinafter called

main models). We also built alternative models where areas assign-

ment to biogeographical regions was replaced by the climatic vari-

ables and tree species occupancies.

The significance of the most parsimonious models was tested

with the sequential likelihood ratio tests provided by “anova.negbin”

function from the “MASS” package. The overall goodness-of-fit of

the final models was assessed with a chi-squared test based on the

residual deviance and degrees of freedom, models’ AIC values, and

D2 (Appendix S3.2).

2.3.2 | Beta diversity

To evaluate differences in species composition across Europe, we

applied the analytical framework of Baselga (2010), which decom-

poses beta diversity into the species turnover and nestedness com-

ponents. For measuring beta diversity overall, we calculated multiple-

site generalization of the Sørensen dissimilarity and derived from it

multiple-site dissimilarity measures of turnover and nestedness (Base-

lga, 2010), using “beta.multi” and “beta.sample” functions of the “be-

tapart” package (Baselga & Orme, 2012). In this context, turnover is

defined as the dissimilarity caused by substitution, of some species

by others from one sampling unit to another, controlling for species

richness differences. Nestedness is defined as a structured case of

species richness difference, reaching the highest values when species

in given species poor area are a perfect subset of species occurring in

more species-rich areas (Baselga & Leprieur, 2015).

To assess the variation of beta diversity across Europe, we com-

pared multiple-site dissimilarity measures of Sørensen, turnover and

nestedness between northern and southern Europe, with the permu-

tation test, using “sample” function of the basic “base” package

(Appendices S3.3 and S3.4). To obtain an equal sampling effort in

the two sectors, we resampled randomly and with replacement 10

areas within each of the datasets 1,000 times. For each iteration, we

pooled the community data from the two European sectors together

(10 + 10 = 20 areas). We then calculated multiple-site beta diversity

for northern and southern European areas. We subtracted the lower

multiple-site dissimilarity value from the higher value and generated

the distribution of the dissimilarity differences under null hypothesis.

We estimated the significance in the differences using a permutation

tests (Collingridge, 2013).

To assess pairwise differences in the species compositions

between areas, we calculated Sørensen (1948) pairwise dissimilarity

index, as well as its two components: pairwise dissimilarity index of

Simpson (1943) which evaluates turnover, and the nestedness index

developed by Baselga (2010). All three pairwise indices were calcu-

lated and automatically arranged into three symmetric matrices

(hereinafter called Sørensen, turnover and nestedness matrices) with

the “beta.pair” function of the “betapart” package (Baselga & Orme,

2012).

We further assessed whether the pairwise Sørensen, turnover

and nestedness-resultant dissimilarities increase with a different rate

along the spatial distance between northern and southern Europe

(Appendices S3.5 and S3.6). We first correlated (Pearson r) commu-

nity dissimilarities to the spatial distances between areas and verified

the significance of correlations with the Mantel test using “vegan”

package. For each beta-diversity component, we compared correla-

tions with the distance by means of permutation test using “sample”

function of the basic “base” package. To generate parameter distri-

bution under null hypothesis, we first pooled equal number of data

from southern and northern Europe (100 bound beta dissimilarity/

spatial distance values in each case, selected with replacement),

repeating this procedure 1,000 times. For each iteration, we pooled

the data from the two European sectors together (100 + 100 = 200

rows). We then classified the areas as northern or southern areas,

and we calculated Pearson r for each of the groups. We estimated

the significance of differences in the r value using a permutation test

(Collingridge, 2013).

2.3.3 | Clustering based on beta diversity

To reduce the dimensionality of each of the three dissimilarity matri-

ces and identify groups of areas with similar fungal assemblages, we

applied a clustering procedure. We tested the performance of four

clustering methods (unweighted pair-group method based on arith-

metic averages [UPGMA], Ward’s, Neighbour Joining and DIANA), of

which UPGMA performed the best (see details in Appendices S3.7

and S3.8). We evaluated uncertainties in the resulting UPGMA den-

drograms using the multiscale bootstrap procedure (see details of

calculations in Appendix S3.9) with the “recluster” package (Dap-

porto et al., 2013).

2.3.4 | Factors influencing beta diversity

We evaluated the effects of the environmental variables separately

for the Sørensen, turnover and nestedness matrices. For this, we

performed constrained analysis of principal coordinates (CAP) on

original dissimilarity matrices (without any transformations) using the

“capscale” function of “vegan” package. The environmental variables

were scaled to zero mean and unit variance prior to analyses (option

“standardize” in the “decostand” function of “vegan”) (Borcard, Gillet,

& Legendre, 2011; Legendre, 2014). We identified the best predictor

variables by forward selection procedure based on AIC followed by

the permutation test (100 iteration steps of dropping and adding

terms and performing 1,000 permutations), using the function “ordis-

tep” of the “vegan” package. We carried out the variables selection
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separately for each group of predictors (climatic variables, tree spe-

cies relative occupancies, topography and land-use intensity). We

included only significant variables to produce the most parsimonious

models, but added the topographical variables (area, longitude and

latitude) in all final models, to account for the differences in areas

size and location (Appendix S3.2). We tested the significance of the

most parsimonious models using a permutation test (1,000 replica-

tions) with the “anova.cca” function of “vegan” package. For the

most parsimonious models, we calculated the proportion of variation

explained uniquely by each of the predictor’s group via variation par-

titioning (“varpart” function of “vegan” package), supported by per-

mutation tests (1,000 replications; Oksanen et al., 2016).

To study directly the effect of the areas’ biogeographical classifi-

cation on the community composition, we built CAP models with sin-

gle categorical variable specifying the assignment of each area to the

European biogeographical regions (EAA, 2015) as well as topography

and land-use intensity. To disentangle the effect of biogeography on

community composition, we built also alternative CAP models where

the assignment to the biogeographical regions was replaced by the

variables characterizing climate and tree occupancies.

3 | RESULTS

3.1 | Gamma diversity and local species richness

From the 39 European areas, we assembled 14,030 records of 1,491

fungal species (Figure 2). The species accumulation curve indicated a

very thorough sampling of European aphyllophoroid species in our

data, but richness estimators indicated the total species richness to

be 142–461 species larger than observed (Figure 2b).

Among the plant-based biogeographical regions, the Arctic region

held the fewest species (52.6 on average), while the Alpine, Atlantic,

Boreal and Continental biogeographical regions all harboured at least

200 species (404.9 on average) with no significant differences
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among regions. However, there was a clear trend of decreasing spe-

cies richness towards the southern biogeographical regions (Mediter-

ranean—291.5 species, Steppic—296.5 species, and south-east coast

of the Caspian Sea—304.0 species) (Figure 2a,c).

The main model explained 84.7% of the variation in the species

richness. This result is largely due to the plant-based biogeographical

classification which solely explained 74% of the variation, while

topography and human land-use individually explained only 6.5%

and 8.6% of the variation in the species richness (Table 1,

Appendix S3.10). The alternative model explained 57% of the varia-

tion in species richness and was equally explained by climate (signifi-

cant variables of mean temperature of the wettest quarter and

annual precipitation) and tree species (significant variables Betula,

Fraxinus and Larix), which explained 20.3% and 20.5% of the varia-

tion in species richness, respectively.

3.2 | Beta diversity

The Sørensen beta-diversity value for the fungal dataset was 0.92.

The turnover component of beta diversity dominated over the nest-

edness component (bSIM = 0.84 vs. bSNE = 0.08), resulting in the pro-

portional contributions to the total beta diversity of 91% and 9%,

respectively.

Overall, Sørensen beta diversity, as well as turnover and nested-

ness, was higher in northern compared with southern Europe based

on the original datasets (Appendices S3.3 and S3.4). However, the

multiple-site dissimilarity analysis (i.e. equal-size resampled data)

revealed that the Sørensen and nestedness dissimilarities were

higher in southern Europe. Nevertheless, these differences were all

insignificant based on permutation tests.

Pairwise dissimilarities between 39 areas calculated with the

Sørensen, turnover and nestedness indices and imposed on the map

of Europe are available in Appendix S3.5. Assemblage dissimilarities

were mostly positively related to spatial distances (Pearson r

between .254 and .442, p < .01; Figure 3). The strength of relation-

ship was not different between southern and northern Europe

(Appendix S3.6).

3.3 | Clustering based on beta diversity

Three UPGMA trees were produced based on the selected distance

matrices. The clustering based on Sørensen matrix showed generally

short distances among the dendrogram fusion levels (Figure 4a). All

Arctic areas took basal positions and aggregated into two groups

(two Norwegian Arctic areas branched out first, then three other

Arctic areas). Non-Arctic areas formed a well-supported cluster but

with biogeographical regions somewhat intermixing. The cluster with

Mediterranean areas additionally included Macedonia (continental)

and south-east coast of the Caspian Sea, and Atlantic areas were

mainly clustered with Continental areas. A pure Boreal cluster was

limited to three areas of Boreal Russia. The clustering based on the

turnover matrix resulted in the least defined hierarchical structure

with large intermixing of areas from different biogeographical regions

(Figure 4b). Finally, the clustering of the nestedness matrix revealed

three principal clusters. The cluster of five Arctic areas gained the

highest bootstrap support. The second large cluster included Alpine,

Atlantic and two species-rich Continental areas (Zealand of Denmark

and Baden-W€urttemberg of Germany). The third large cluster

included majority of Continental areas together with all Boreal,

Mediterranean, Steppic areas and south-east coast of the Caspian

Sea (Figure 4c).

3.4 | Factors influencing beta diversity

The main model explained 59.1% of variation in Sørensen distances

(Table 1, Appendix S3.10). Plant-based biogeographical classification

contributed 30.6% to the total variation, while topography con-

tributed 10.9% and land-use intensity 3.8%. The alternative model

explained 56.6% of variation in Sørensen distances. In the alternative

model, variation in Sørensen distances was significantly related to

climate, topography and land-use intensity but not to tree occupan-

cies (Figure 5a). Climatic variables contributed 14.8% to the total

variation, topographical variables 7.9% and land-use intensity 4.6%.

The main model for species turnover explained 39.2% of varia-

tion (Table 1, Appendix S3.10). Variation in species turnover was sig-

nificantly related to topography and land-use intensity but not to

plant-based biogeographical classification. Topography contributed

11.2% to the total variation, while land-use intensity 3.5%. The alter-

native model for species turnover explained 49% of variation and

showed that species turnover was significantly related to climate

and tree occupancies which explained 12.9% and 10.5% of the varia-

tion (Figure 5b). Topography was nearly significant (p = .053) and

explained 8.2% of the variation in species turnover.

Finally, the main model for nestedness explained 76.2% of the

variation (Table 1, Appendix S3.10). The very strong and the only

significant contributor to it was plant-based biogeographical classifi-

cation which explained 63.6% of variation in nestedness. The alter-

native model accounted for 50.2% of the total variation in

nestedness. Most of this variation was due to the tree occupancies,

principally due to Betula and Larix (31.1%; Figure 5c). Climate (vari-

able mean temperature of the wettest quarter) explained 6.1% of

the variation in the alternative model for nestedness.

4 | DISCUSSION

Our results show that the importance of biogeographical regions in

determining European aphyllophoroid fungal communities varies for

different diversity components. The species richness of aphyl-

lophoroid fungi is mostly explained by plant-based biogeographical

regions, with Arctic and Mediterranean regions holding fewer species

than the other regions. Biogeographical regions defined for plant

communities are equally important as variation in climate and tree

species composition for explaining overall beta diversity. Yet, biogeo-

graphical regions are most important for explaining species nested-

ness, while for species turnover, which is the main driver behind
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TABLE 1 Outputs of the most parsimonious models for aphyllophoroid fungal species richness, Sørensen dissimilarity, species turnover and
nestedness in Europe. For each of the response variables, a main model (including biogeographical regions, topography and land-use intensity)
and an alternative model (where biogeographical regions were replaced by climatic variables and tree species occupancies; topography and
land-use intensity were kept) were fitted. The outputs for species richness correspond to negative binomial generalized linear models (GLM)
run independently for each variable group. The outputs for Sørensen dissimilarity, species turnover and nestedness correspond to results of
the constrained analysis of principal coordinates (CAP) after variation partitioning, that is, unique effects of each variable groups are provided

Explanatory variables for
species richness

Dispersion
parameter
theta D2 D2

adj AIC
Null
df

Null
deviance

Residual
df

Residual
deviance p

Main model 16.491 0.847 0.776 473.15 38 256.021 27 39.195 .061

Biogeographical region 9.58 0.74 0.67 486.34 38 154.248 31 40.154 .126

Topography 2.649 0.065 �0.045 530.25 38 44.414 35 41.543 .207

Land-use intensity 2.857 0.134 0.086 523.04 38 47.84 37 41.419 .284

Alternative model 5.716 0.57 0.417 510.47 38 94.111 29 40.449 .077

Climate 3.095 0.203 0.134 521.64 38 51.749 36 41.262 .251

Tree species 3.107 0.205 0.111 523.52 38 51.942 35 41.297 .215

Topography 2.649 0.065 �0.045 530.25 38 44.414 35 41.543 .207

Land-use intensity 2.857 0.134 0.086 523.04 38 47.84 37 41.419 .284

Explanatory variables for Sørensen R2 R2
adj AIC df Sum of squares Pseudo-F p

Main model .591 0.425 65.043 11 4.252 3.55 .001

Biogeographical region .306 0.223 69.132 7 2.12 2.886 .001

Topography .109 0.081 73.581 3 0.786 2.407 .001

Land-use intensity .038 0.031 75.329 1 0.274 2.519 .001

Alternative model .566 0.366 69.356 12 4.072 2.828 .001

Climate .148 0.079 70.455 5 1.064 1.774 .002

Tree species .092 0.055 75.722 3 0.664 1.845 .07

Topography .079 0.039 73.581 3 0.572 1.588 .025

Land-use intensity .046 0.041 75.329 1 0.328 2.732 .005

Explanatory variables for turnover R2 R2
adj AIC df Sum of squares Pseudo-F p

Main model .392 0.144 74.178 11 2.764 1.583 .001

Biogeographical region .158 0 80.914 7 1.112 1.001 .551

Topography .112 0.057 74.178 3 0.792 1.662 .002

Land-use intensity .035 0.017 76.717 1 0.246 1.551 .049

Alternative model .490 0.255 72.879 12 3.455 2.082 .001

Climate .129 0.064 72.805 4 0.911 1.647 .001

Tree species .105 0.034 75.873 4 0.742 1.342 .05

Topography .082 0.030 74.178 3 0.578 1.392 .053

Land-use intensity �.0002 �0.028 76.717 1 �0.002 �0.013 .959

Explanatory variables for nestedness R2 R2
adj AIC df Sum of squares Pseudo-F p

Main model .762 .665 �14.272 11 1.217 7.858 .001

Biogeographical region .636 .642 �14.272 7 1.016 10.303 .001

Topography .075 .061 — 3 0.119 2.824 .08

Land-use intensity .012 .005 13.335 1 0.02 1.414 .284

Alternative model .502 .39 �2.991 7 0.803 4.471 .004

Climate .061 .054 11.443 1 0.098 3.807 .046

Tree species .311 .322 11.481 2 0.497 9.698 .001

Topography �.037 �.095 � 3 �0.059 �0.772 .996

Land-use intensity .001 �.018 13.335 1 0.001 0.039 .762

Italics indicates the complete statistical models (main and alternative models)
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overall beta-diversity patterns, variation in climate and tree species

composition are the most influential factors.

The lowest aphyllophoroid species richness and highest nested-

ness was found in Arctic areas. Since many aphyllophoroid fungi are

associated with dead wood, this is not surprising as the diversity of

woody hosts and amounts of dead wood are very limited in Arctic

areas. Results from recent studies suggest that aphyllophoroid fungal

communities in Arctic areas are to a large extent explained by arrival

of pre-colonized driftwood which originates from non-Arctic parts of

Europe, Asia and North America (R€am€a et al., 2014; Ryvarden,

2015). Hence, the low diversity of aphyllophroid fungi in Artic

regions may also reflect dispersal limitation. Further, our analysis of

the nestedness showed that Arctic communities were strongly influ-

enced by the mean temperature of the wettest quarter. This points

to a direct climatic limitation which could reflect that fruiting of

fungi is inhibited at low temperatures (Sato et al., 2012). Interest-

ingly, we also found a trend of decreasing species richness and

increasing turnover towards southern areas (Mediterranean, Steppic

biogeoregions and south-east coast of the Caspian Sea). These

regions are the richest in plant species and also support the highest

diversity of woody hosts. Studies from other continents support the

finding that the highest aphyllophoroid fungal species richness is
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F IGURE 3 Relationship between
pairwise areas dissimilarities of
aphyllophoroid fungi (Sørensen, turnover
and nestedness) and geographical distances
in southern (a–c) and northern Europe (d–
f): Pearson correlations (r) with significance
values (P) from Mantel tests

F IGURE 4 UPGMA dendrograms based on the Sørensen dissimilarity (a), and its turnover (b) and nestedness (c) components for the
aphyllophoroid fungi in the 39 European areas included in this study. Area labels were coloured according to their assignment to the European
biogeographical regions. Each dendrogram is a 50% consensus tree obtained after 100 random re-arrangements of the matrix. The values at
the nodes indicate the branch support from ordinary bootstrapping (left) and multiscale bootstrapping from 59 increased species pool (right).
The nodes which have been identified to have consistent increase in support or no consistent increase in support during the steps of
multiscale bootstrapping are shown in black and red, respectively (see Section 2 and Appendix S3.9 for a statistical explanation). The line
charts accompanying each dendrogram show the magnitude of the node height changes during the procedure of hierarchical clustering
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found at middle latitudes and decreases towards the north and south

(Gonzalez-Avila, Luna-Vega, Garcia-Sandoval, & Contreras-Medina,

2016; Mukhin, 1993; Shiryaev, 2014), indicating that aphylloporoid

fungal diversity might generally be lower in warm and/or dry regions.

This could reflect that the often long-lasting aphyllophoroid fruitbod-

ies are poorly adapted to stressful climates, which typically involve

strong fluctuations in humidity and extreme temperatures. Shift to

insect-driven wood decomposition, which is enhanced in warmer cli-

mates (e.g. M€uller et al., 2015), may be a further explanation to the

lower aphyllophoroid diversity in these regions.

A negative effect of land-use intensity was evident for species

richness but not for community composition, and geographical vari-

ables were rather weak predictors of both species richness and com-

munity composition. This contrasts with results from European

vascular plants and animals, for which the effect of non-climatic vari-

ables such as land-use intensity and geographical distance was found

to be strongest (Keil et al., 2012; Svenning, Normand, & Skov, 2008;

Svenning et al., 2011). Therefore, our results suggest that aphyl-

lophoroid fungal communities are less shaped by historical legacies

than plant and animal communities, at least at the continental scale.

Furthermore, both multiple-site and spatial beta diversity analyses

showed that the beta-diversity gradients were similar in southern and

northern Europe. Hereby, our results resemble those obtained for

bryophytes (in particular mosses), for which no differences in turnover

and nestedness between southern and northern Europe have been

detected (Mateo et al., 2016), indicating that climate and current

habitat availability to be the main drivers of community composition.

Although tree species composition was one of the main factors

influencing the turnover in aphyllophoroid communities, we expected

this variable to be even more influential. Many of our study species

are plant-associated with prominent host-specializations, and commu-

nities of aphyllophoroid fungi found in conifer forests differ strongly

from those found in deciduous forests (Hattori, 2005; Stokland et al.,

2012). However, Heilmann-Clausen et al. (2016) recently found that

major clades of aphyllophoroid fungi are less host specialist than sev-

eral other fungal lineages, especially in the Ascomycota, probably

reflecting a much stronger signal of co-evolution with hosts. It is,

hence, likely that host distribution patterns may have a stronger

impact on the biogeography of fungi in other lineages than aphyl-

lophoroid fungi, as it has been found in Lepidoptera with strong co-

evolution with their plant hosts (Auger-Rozenberg et al., 2015; Tripo-

nez et al., 2015).

We found that aphyllophoroid fungal communities followed

plant-based biogeographical regions to a large extent, but not as

clearly as animal and plants (Heikinheimo et al., 2012). The clearest

cluster in terms of community composition was formed by Arctic

areas, most likely reflecting the low aphyllophoroid species richness

in these areas. The cluster analyses also revealed that Mediterranean

areas, south-east coast of the Caspian Sea and Steppic areas hold

similar community composition. Mediterranean areas and south-east

coast of the Caspian Sea share a long history of similar climate and

vegetation and represent glacial refugia for temperate European for-

est trees (Ghobad-Nejhad et al., 2012; Magri et al., 2006). A partly

similar climate and geographical proximity of Steppic areas to

Mediterranean areas and south-east coast of the Caspian Sea may

be a reason for their high similarity in fungal community composi-

tion. The community composition of Alpine, Atlantic, Boreal and

Continental areas formed more complex cluster configurations. One

of the reasons for this might be that some of the areas are located

close to ecotones between biogeoregions and thus resemble the
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communities from neighbouring biogeoregions. For instance, the fun-

gal composition of the Navarre (northern Spain), dominated by tem-

perate beech forests, was more similar to Mediterranean areas than

to other Atlantic areas. Likewise, the Continental area of Macedonia

was closer to the Mediterranean biogeoregion than to other Conti-

nental areas. Another reason for the intermixing of biogeoregions

might fall on the sensitivity of fungi to particular climatic conditions.

For example, the Bavarian Forest, situated in area classified as Conti-

nental, held fungal community which clustered with Atlantic and Arc-

tic areas, which might be explained by the high precipitation in this

area (B€assler, M€uller, Dziock, & Brandl, 2010).

The present study provides an integrated overview of alpha- and

beta-diversity patterns for European aphyllophoroid fungi and

reveals the drivers of the diversity patterns in this important group

of organisms. In spite of the comprehensive dataset we used, we still

found ambiguities when trying to biogeographically classify the study

areas. To overcome this problem, future studies in this line of

research could use data collected by a regular-grid or with a finer

spatial resolution than in our study and include some of still largely

unexplored European areas (e.g. north-western Europe). Moreover,

comparing the spatial patterns of the species with different fruitbody

traits, ecological strategies and phylogenetic relationships would help

in gaining a more functional perspective on the diversity patterns of

European aphyllophoroid fungi (cf. Abrego, Norberg, & Ovaskainen,

2017).
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