1	Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella
2	
3	Karina Heck ^a , Danillo O. Alvarenga ^{a,c} , Tania K. Shishido ^b , Alessandro M. Varani ^c , Felipe A. Dörr ^d ,
4	Ernani Pinto ^d , Leo Rouhiainen ^b , Jouni Jokela ^b , Kaarina Sivonen ^b , Marli F. Fiore ^{a,*}
5	
6	^a University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
7	^b University of Helsinki, Department of Food and Environmental Sciences, Division of
8	Microbiology and Biotechnology, Helsinki, Finland
9	°São Paulo State University (UNESP), College of Agricultural and Veterinary Science, Department
10	of Technology, Jaboticabal-SP, Brazil
11	^d University of São Paulo (USP), School of Pharmaceutical Sciences, São Paulo-SP, Brazil
12	
13	*Corresponding Author
14	E-mail: fiore@cena.usp.br
15	Address: University of São Paulo, Center for Nuclear Energy in Agriculture, Av. Centenário 303,
16	13400-970, Piracicaba, SP, Brazil.
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 ABSTRACT

Microcystins (MCs) are serine/threonine phosphatase inhibitors synthesized by several members of the phylum Cyanobacteria. Mining the draft genome sequence of the nostocalean MC-producing Fischerella sp. strain CENA161 led to the identification of three contigs containing mcy genes. Subsequent PCR and Sanger sequencing allowed the assembling of its complete biosynthetic mcy gene cluster with 55,016 bases in length. The cluster encoding ten genes (mcyA-J) with a central bidirectional promoter was organized in a similar manner as found in other genera of nostocalean cyanobacteria. However, the nucleotide sequence of the mcy gene cluster of Fischerella sp. CENA161 showed significant differences from all the other MC-producing cyanobacterial genera, sharing only 85.2 to 78.2% identities. Potential MC variants produced by Fischerella sp. CENA161 were predicted by the analysis of the adenylation domain binding pockets and further investigated by LC-MS/MS analysis. To our knowledge, this study presents the first complete mcy cluster characterization from a strain of the genus Fischerella, providing new insight into the distribution and evolution of MCs in the phylum Cyanobacteria.

41 Keywords: cyanotoxins, phosphatase inhibitors, genome mining, Nostocales

51 1. Introduction

52 Microcystins (MCs) are small cyclic heptapeptides synthesized by several members of the 53 phylum Cyanobacteria with global significance due to their toxicity to humans and other animals 54 (Jochimsen et al., 1998; Sivonen and Jones, 1999). Their toxicity is exerted through inhibition of 55 members of the protein phosphatase families PP1 and PP2A (MacKintosh et al. 1990; Gulledge et 56 al., 2002). Despite best known for their acute hepatotoxicity, MCs are of interest as possible anti-57 cancer drug development targets (Niedermeyer et al., 2014; Kounnis et al., 2015). The general 58 structure of MCs can be summarized as cyclo-D-Ala¹-X²-D-MeAsp³-Z⁴-Adda⁵-D-Glu⁶-Mdha⁷ (see 59 Figure 1) (Botes et al., 1985), where X and Z are variable L-amino acids, while D-MeAsp 60 corresponds to D-erythro-β-methyl-aspartic acid, Mdha to N-methyl-α-β-dehydroalanine and Adda 61 to (2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-(4E,6E)-dienoic acid. The 62 latter is exclusive to these toxins and nodularins and contributes to the molecule toxicity (Gulledge 63 et al., 2002; Kounnis et al., 2015).

64 MCs are synthesized through enzymatic modification of short precursor peptides in the 65 nonribosomal pathway. This process is driven by a multifunctional modular enzyme complex 66 consisted of a combination of nonribosomal peptide synthetases (NRPS), type I polyketide 67 synthases (PKS-I), hybrid NRPS/PKS-I and tailoring enzymes (Nishizawa et al., 2000; Tillett et al., 68 2000; Christiansen et al., 2003; Rouhiainen et al., 2004; Fewer et al., 2013). The microcystin gene 69 cluster (mcy) is composed of nine to ten genes depending on taxa and the involvement of several 70 mcy genes in MC biosynthesis was established by gene inactivation studies (Dittmann et al., 1997; 71 Pearson et al., 2004; Christiansen et al., 2008; Fewer et al., 2008). The closely related nodularin 72 (nda) synthetase gene cluster from Nodularia was also elucidated, indicating that it derived from 73 MC synthetase genes through a deletion event and a change in substrate specificity (Moffitt and 74 Neilan, 2004; Rantala et al., 2004). The biological role of cyanobacterial MC is not currently 75 understood, but several hypotheses have been suggested such as contributing in photosynthesis, renvironmental adaptation, protection against oxidative stress, nutrient metabolism and storage, quorum sensing, colony formation, defense against zooplanktonic grazers, iron uptake or transfer and allelopathy (Omidi et al., 2017). These authors stated that conflicting results, unstandardized experimental design, strain-specific behavior and differences between conditions in laboratory and nature hinder generalizations on microcystin functions.

81 Despite several MC-producing strains have been found in the genera Microcystis, Anabaena, 82 Nostoc, Fischerella, Hapalosiphon, Oscillatoria/Planktothrix, and Phormidium (Bishop et al., 83 1959; Botes et al., 1984; Krishnamurthy et al., 1986; Eriksson et al., 1988; Meriluoto et al., 1989; 84 Sivonen et al., 1990; Harada et al., 1991; Prinsep et al., 1992; Izaguirre et al., 2007; Fiore et al., 85 2009), the MC biosynthetic pathway was only characterized in few strains of the genera 86 Microcystis, Anabaena, Planktothrix and Nostoc (Tillett et al., 2000; Christiansen et al., 2003; 87 Rouhiainen et al., 2004; Rounge et al., 2009; Fewer et al., 2013). The mcy gene clusters of these 88 distantly related cyanobacterial genera have revealed a highly conserved set of multidomain 89 proteins depicting the same basic reaction steps. Differences among these clusters have been 90 observed in gene arrangements, localization and orientation of promoter regions, and in genes 91 coding for tailoring enzymes. Interestingly, a cyanobacterium containing one mcy gene cluster can 92 produce more than one MC variant mainly due to the relaxed specificity of adenylation (A) domains 93 of McyB-A₁ and McyC-A (amino acid positions 2 and 4, Figure 1). Therefore, the description of 94 novel MC gene clusters from different cyanobacterial taxa offers high potential for isolating 95 variants with unique properties.

Although MC production and fragments of biosynthetic genes have already been identified in strains of the genus *Fischerella* (Fiore et al., 2009; Cirés et al., 2014) and even prediction of an incomplete gene cluster has been reported (Shih et al., 2013), the entire gene cluster remains unsolved. Here we used a genomics-based approach to characterize the complete biosynthetic gene cluster in the MC-producing strain *Fischerella* sp. CENA161. Prediction analysis based on the 101 amino acid residues lining the substrate-binding pockets in NRPS A domains were performed and 102 potential structural variants investigated by high performance liquid chromatography coupled to 103 tandem mass spectrometry (LC–MS/MS).

104

105 **2. Method**

106 2.1. Cyanobacterial strain

107 The cyanobacterium *Fischerella* sp. CENA161 was isolated from a water sample collected 108 from a small concrete dam of spring water in the municipality of Piracicaba, São Paulo state, Brazil, 109 as previously described (Fiore et al., 2009). This strain is maintained under culture in CENA/USP, 110 located in Piracicaba, SP, Brazil, in BG–11 (Allen, 1968) liquid medium without inorganic nitrogen 111 (BG–11₀), at 25±1 °C, with a 14:10 h light/dark photoperiod, and photon flux density of 40 µmol 112 photons/m²/s.

113

114 2.2. DNA extraction, PCR amplification and Sanger sequencing

115 Cells from the cyanobacterial culture were collected and processed as previously described (Heck et al., 2016). Total genomic DNA was extracted using the AxyPrepTM Bacterial Genomic 116 117 DNA Miniprep Kit (Axygen Biosciences) according to manufacturer instructions. The integrity of 118 the total genomic DNA extracted was verified using 1% agarose gel electrophoresis. The extracted DNA was purified with AxyprepTM PCR Clean-up Kit (Axygen) according to manufacturer 119 instructions. Microcystin codifying genes (mcy) were amplified by polymerase chain reaction using 120 121 a combination of primer sets previously described in literature and designed for this work (Table 1). PCR products were ligated to pGEM®-T Easy Vector Systems (Promega) and inserted into 122 123 chemically competent *Escherichia coli* DH5 α cells. Plasmids that received the PCR products were 124 extracted from cells by alkaline hydrolysis (Birnboim and Doly, 1979). Sequencing reactions were 125 performed using the BigDye Terminator Cycle Sequencing Kit (GE Healthcare), with vector

primers M13F/M13R in a Techne TC-412 thermocycler (Bibby Scientific Limited) for 25 cycles at 95 °C for 20 s, 52 °C for 15 s, and 60 °C for 1 min. Purified reactions were analyzed in an ABI PRISM 3500 genetic analyzer (Life Technologies). The sequenced reads had their base quality analyzed and consensus sequences were generated with the Phred/Phrap/Consed software package (Ewing and Green, 1998; Ewing et al., 1998; Gordon et al., 1998). Sequences were aligned and compared to other sequences available in NCBI GenBank (http://www.ncbi.nlm.nih.gov/) using BLASTn (Altschul et al., 1997).

133

134 2.3. Whole genome sequencing and assembly

135 Genomic DNA extracted from the cells was quantified using Oubit dsDNA Broad BR Assay kit 136 and Oubit[®]2.0 Fluorometer (Thermo Fisher Scientific). Paired-ends libraries were prepared with the 137 Nextera XT Sample Prep Kit (Illumina), which were sequenced in the MiSeq (Illumina) platform using the MiSeq 600 cycle Reagent Kit v3 (Illumina) according to manufacturer instructions. The 138 139 quality of the raw Illumina sequence reads were initially assessed using FastQC v0.10.1 (Andrews, 140 2010). Bases with quality indices lower than Phred 20 and sequences shorter than 50 bp were 141 removed using the program SeqyClean 1.8.10 (Zhbannikov et al., 2015). Overlapping read pairs were merged with PEAR 0.9.6 (Zhang et al., 2014) and genome assembly was performed using 142 143 SPAdes 3.1.1 (Bankevich et al., 2012).

144 The complete nucleotide sequence of the *mcy* gene cluster of *Fischerella* sp. CENA161 was145 deposited in GenBank under accession number KX891213.

146

147 2.4. Microcystin gene cluster annotation and phylogenetic analysis

The MC synthetase gene cluster was identified by using BLASTn alignments between the 10 *mcy* gene sequences obtained in Sanger sequencing and the assembled genome file. Manual annotation was performed using Artemis 15.1.10 (Rutherford et al., 2000). The identification of motifs and adenylation domains was performed using NRPS Predictor2 (Rausch et al., 2005; Röttig et al., 2011). Amino acid sequences from the McyB₂ and McyC adenylation domains and for the 10 genes found in complete microcystin gene clusters available in the NCBI GenBank database were independently aligned with MUSCLE 3.8.31 (Edgar, 2004) and evolutionary models were estimated with ProtTest 3.2 (Darriba et al., 2011). Phylogenetic trees were reconstructed from alignments by Bayesian inference with MrBayes 3.2.5 (Ronquist and Huelsenbeck, 2003) using 5,000,000 generations, four chains and two independent runs.

158

159 2.5. Liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS)

160 The intracellular content of 60 mg of freeze-dried cells from the culture sample was extracted 161 with MeOH:H₂O 70/30 (v/v) at ultrasound probe (Sonic Ruptor 400, Omni) during 1 min on ice. 162 The supernatant was collected after centrifugation $(10.000 \times g \text{ for } 10 \text{ min})$ and the extract diluted to 163 10% MeOH with ultrapure water. The sample was applied to a solid phase extraction cartridge (Sep-Pak 500 mg, Waters Corp.), previously conditioned by the sequential passage of 5 ml of 164 165 MeOH and 5 ml of MeOH:H₂O 10/90 (v/v). After a washing step with 5 ml of MeOH:H₂O 10/90 166 (v/v), elution proceeded with 5 ml of MeOH:H₂O 90/10 (v/v). The solvent was evaporated under a 167 stream of nitrogen and the concentrate reconstituted in 500 µl of MeOH:H₂O 50/50 (v/v), filtered 168 (0.45 µm, PVDF, Millipore) and transferred to appropriate vials. Chromatography was performed in a Prominence HPLC (Shimadzu) employing a Fusion-RP column (150 x 2 mm, 4 µm; 169 170 Phenomenex) with a gradient of (A) 2 mM ammonium formate containing 0.1% formic acid and 171 (B) acetonitrile:water 90/10 (v/v) with the same additives, at a flow rate of 0.2 ml/min. Gradient 172 elution proceeded as follows: 35 to 60% B in 10 min; 60 to 100% B in 6 min; 100% B in 2 min; 100 173 to 35% B in 0.5 min and finally kept in 25% B for 6.5 min. Collision-induced dissociation 174 experiments for MC detection and characterization were performed in an Esquire HCT ion trap 175 mass spectrometer (Bruker Daltonics) equipped with an electrospray ion source.

176 UPLC-OTOF analyses were performed with Acquity I-Class UPLC - Synapt G2-Si HDMS 177 (Waters Corp.) system. Two µl filtered cyanobacterial methanol extract were injected into a Kinetex 178 C8 column (50 x 2.1 mm, 1.7 µm, Phenomenex) which was eluted at 40 °C with a flow rate of 0.3 179 ml/min using (A) 0.1% formic acid and (B) acetonitrile/isopropanol 50/50 (v/v) containing 0.1% 180 formic acid. Gradient elution proceeded as follows: 25 to 65% B in 5 min; 65 to 100% B in 0.01 181 min; 100% B in 1.99 min; 100 to 20% B in 0.5 min and finally kept in 25% B for 2.5 min. The mass 182 spectrometer was calibrated with sodium formate giving a calibrated mass range from m/z 91.055 to 183 1921.759. Leucine enkephalin was used at 10 s interval as a lock mass reference compound. Mass 184 spectral data was accumulated in positive electrospray ionization at a scan range from m/z 50 to 185 2000.

186

187 3. Results and Discussion

The search for conserved regions from *mcy* genes in the *Fischerella* sp. CENA161 genomic DNA by PCR amplification and Sanger sequencing returned positive for all 10 genes. Highthroughput sequencing with Illumina MiSeq resulted in approximately 24 million raw reads. The raw data was assembled into 443 contigs, which constituted a draft genome size of 7,210,502 bp with ca. 220× coverage and GC content at 40.18%. Both genome size and GC content were in agreement with other recently sequenced cyanobacterial members of the genus *Fischerella* (Dagan et al., 2012; Shih et al., 2013; Hirose et al., 2016).

With the draft genome data in hand, we searched for contig(s) that coharbor *mcy* genes using the *mcy* PCR fragments as *in silico* probes. This effort led to the identification of three contigs (45,504 bp, 5,557 bp and 2,626 bp). Bioinformatics analyses identified that the two gaps separating the three contigs were located within the *mcyB* and *mcyC* genes, which were closed using PCR amplification and Sanger sequencing. The three contigs were assembled into a 55,137 kb contiguous region that contained the 55,016 bp *mcy* gene cluster. 201 The CENA161 mcy gene cluster encompasses ten genes (mcyA-J) with a central bidirectional promoter (Figure 2, Table 2). The genes encoding the McyG, D, E, A, B and C enzymes are 202 203 responsible for the stepwise assembly and cyclization of peptide intermediates to form MC, while 204 McyF, I and J are tailoring enzymes and McyH is an ABC transporter hypothetically involved in the 205 efflux of the toxin (Tillett et al., 2000; Christiansen et al., 2003; Rouhiainen et al., 2004; Fewer et 206 al., 2013). MC biosynthesis by Fischerella sp. CENA161 follows the collinearity rule, i.e., the order 207 of genes is the same as the order of the single enzymatic steps (Marahiel et al., 1997; von Döhren et 208 al., 1997) as occurs in other nostocalean cyanobacteria, such as Anabaena sp. 90 and Nostoc sp. 209 152, and NOD in Nodularia spumigena NSOR10. In these cyanobacteria, MC assembly is believed 210 to initiate with the A-PCP domains of the hybrid NRPS/PKS-I enzyme McyG loading phenyllactate 211 (Hicks et al., 2006). Then, the four PKS-I modules of McyG, D and E complete the formation of the 212 Adda skeleton, and the O-methyltransferase McvJ (Christiansen et al., 2003) and the 213 aminotransferase domain of McyE (Tillett et al., 2000) incorporate Adda side chain modifications. 214 The NRPS modules of McyG, A, B, and C incorporate the six remaining amino acids (Tillett et al., 215 2000). The enzymes 2-hydroxy acid dehydrogenase McyI (Pearson et al., 2007) and the aspartate racemase McyF (Sielaff et al., 2003) are involved in the biosynthesis of D-erythro-\beta-methyl-216 217 aspartate. Finally, the elongated peptide is released from the enzyme complex by the thioesterase 218 domain of McvC.

The nucleotide sequence of the *Fischerella* sp. CENA161 *mcy* gene cluster showed significant differences from clusters thus far characterized. Hits from the BLAST analyses in descending order of identity were *Anabaena* sp. 90 (coverage 95%, identity 85.2%), *Nostoc* sp. 152 (coverage 89%, identity 83.0%), *Nodularia spumigena* NSOR10 (coverage 78%, identity 80.8%), *Planktothrix rubescens* NIVA-CYA 98 (coverage 71%, identity 78.2%) and *Microcystis aeruginosa* NIES-843 (coverage 71%, identity 74.1%). Similarly, for amino acid sequences, top BLAST hits observed were with other nostocalean strains (Table 2). Comparisons of the *mcy* gene cluster from 226 Fischerella sp. CENA161 with other nostocalean genera (Anabaena, Nostoc and Nodularia) 227 revealed, in general, the same structural organization with differences in the arrangement of certain 228 genes coding for tailoring enzymes (Figure 2). On the other hand, major differences were observed 229 in comparisons with distinct cyanobacterial orders (Planktothrix and Microcystis). These results 230 reinforce previous observations that mcy gene arrangements are almost identical among 231 cyanobacteria according to their taxonomic position (Rantala et al., 2004; Jungblut and Neilan, 232 2006; Kurmayer et al., 2006). In fact, the phylogenetic tree reconstruction based on concatenated 233 amino acid sequences of all complete mcy gene clusters so far known (Figure 3) supported a 234 correlation between cyanobacterial taxonomy and MC acquisition in these strains. Taking into 235 account the still low number of available sequences, the Bayesian inference sustained the 236 hypothesis that mcy genes might have evolved from a common ancestor and their irregular 237 distribution in phylogenetically related taxa is due to repeated loss processes rather than horizontal 238 transfer (Kurmayer et al., 2004; Rantala et al., 2004).

239 Multiple alignments of the amino acid residues surrounding the substrate-binding pockets in the 240 NRPS adenylation domains observed in the MC gene cluster of CENA161 with other cyanobacteria 241 are shown in Table 3. Adenylation domains in NRPS modules contain ten highly conserved core 242 motifs, named A1 to A10. Lining the binding pocket, ten conserved amino acid residues are 243 believed to recognize a specific substrate, allowing the prediction of the amino acid likely to be 244 selected for activation (Marahiel et al., 1997; Stachelhaus et al., 1999; Challis et al., 2000; Mikalsen 245 et al., 2003). In the case of Fischerella sp. CENA161, the amino acid sequences of the McyG and 246 McyE A domains are highly conserved, containing identical residues as observed in all the MC 247 gene clusters so far known (Table 3). These two modules are responsible for the partial formation of 248 Adda in position 5 and the incorporation of glutamic acid in position 6 of the MC molecule, 249 respectively. In a similar way, the McyA- A_1 and McyA- A_2 modules, responsible for the 250 incorporation of amino acids in positions 7 (serine/MdhA) and 1 (alanine), respectively, are highly

251 conserved. Likewise, McvB-A₂ binding pocket, responsible for the incorporation of amino acids in 252 position 3 (MeAsp), was shown be conserved. On the other hand, McyB-A₁ and McyC-A sequences 253 showed high diversity in the strain analyzed. These two modules are responsible for incorporating amino acids into positions X^2 and Z^4 , respectively. Indeed, it is well known that positions X^2 and Z^4 254 255 show the highest degree of structural variation when compared to other positions in the molecule 256 (Fewer at al., 2007). Such fluctuations in McyB-A₁ and McyC-A sequences are the major 257 contributors for the diversity in MC biosynthesis in different species. Currently, over a hundred MC 258 structural variants are known, differing in the type of amino acids incorporated or modifications to 259 the peptide backbone (Dittmann et al., 2015).

260 The LC-MS/MS analysis of the strain CENA161 cell extract allowed the identification of seven 261 MC variants: MC-LR (m/z 995, [M+H]⁺), MC-FR (m/z 1029), MC-LA (m/z 910), MC-LAba (m/z 262 923), MC-LM (m/z 970), MC-LV (m/z 938) and MC-LL (m/z 952) (Supplementary Information 263 Figures S1 and S2). The identification of MC m/z 938 was challenging as the product ion spectrum 264 of m/z 938 can be well fitted to three isobaric variants. After thorough comparison of the product 265 ion assignments and intensities it seems that variant MC-LV best explained the high resolution 266 spectrum data (Supplementary Table S1). Exact ion masses, accuracies and intensities of MC 267 isoforms are presented in Supplementary Table S2. MC-LR, MC-LV and MC-LL were found to be 268 the major variants produced by strain CENA161, while the remaining variants were produced in 269 trace amounts. The most studied and common variant MC-LR has been previously reported in the 270 extract of Fischerella sp. CENA161 (Fiore et al., 2009) and Fischerella sp. NQAIF311 (Cirés et al., 271 2014), whereas the latter also produces the MC-LA and MC-FR variants. The other four variants 272 were previously found in Microcystis strains (Craig et al., 1993; Sivonen and Jones, 1999; Diehnelt 273 et al., 2006).

The origin of MC diversity within species has been attributed to recombination events in the mcy genes, to the activity of specific tailoring enzymes and to the low substrate specificity of NRPS 276 modules McyB₁ and McyC (Kurmayer and Gumpenberger, 2006; Fewer et al., 2007; Fewer et al., 277 2008; Tooming-Klunderud et al., 2008; Kaasalainen et al., 2012; Fewer et al., 2013; Calteau et al., 278 2014). As a consequence of this relaxed substrate specificity, different amino acids can be incorporated in positions X^2 and Z^4 , allowing a cyanobacterial strain to simultaneously produce 279 several microcystin variants. In this regard, amino acid availability has been associated to the 280 281 production of different MCs (Tonk et al., 2008; Van de Waal, 2010; Liu et al., 2016). These authors 282 suggested that environmental factors affect the intracellular free amino acid levels which, 283 ultimately, result in changes in the biosynthesis of MCs. Whether such correlations apply to the 284 nitrogen-fixing strain CENA161 remains to be further investigated. Nevertheless, the MC 285 production profile of CENA161 cultivated without inorganic nitrogen was dominated by 286 hydrophobic variants with high C:N ratios. Considering the frequencies of amino acids incorporated in position X^2 , leucine was found in six of the seven variants described. These results are in line 287 288 with the substrate prediction for McyB-A₁ (Table 3). However, McyC-A demonstrated a greater flexibility in terms of substrate selection, loading distantly related amino acids in position Z^4 , from 289 290 hydrophilic arginine (MC-LR and MC-FR) to hydrophobic leucine (MC-LL).

291 The toxicity of MCs can be associated with the hydrophobicity of their constitutional amino 292 acids. This probably occurs due to the increased ability of hydrophobic variants to get into cells by 293 OATP-mediated transport or due to membrane interactions (Vesterkvist and Meriluoto, 2003; 294 Feurstein et al., 2009; Faassen and Lürling, 2013). More toxic variants may harm cell membranes, 295 damage mitochondrial dehydrogenases, and cause lactate dehydrogenase leakage (Monks et al., 296 2007; Fischer et al., 2010; Vesterkvist et al., 2012). Therefore, new variants of MC and the 297 elucidation of their respective biosynthetic genes are considered of high interest for public health 298 and pharmaceutical development since peptide structural diversities are reflected in different 299 biological activities (Gupta et al., 2003; Zurawell et al., 2005; Monks et al., 2007; Feurstein et al., 300 2009; Fischer et al., 2010; Vesterkvist et al., 2012).

301

302 4. Conclusions

303 Identifying and annotating gene clusters responsible by the production of harmful toxic 304 molecules that also have potential pharmacological application is important to the understanding of 305 the process of their synthesis and the rules that govern their evolution, and to exploit their 306 capabilities. The finding that MCs are also produced by subaerophytic cyanobacteria and not only 307 by planktonic species may contribute to bring new insights into the cellular function of these 308 heptapeptides, and as more gene clusters from different cyanobacteria are described it will facilitate 309 the identification of amenable genus to genetic manipulation in order to advance our knowledge of 310 genetic and biology of this toxin.

311

312 Funding sources

313 This work was supported by grants from the São Paulo Research Foundation (FAPESP, 314 2013/50425-8) to MFF, the Academy of Finland (1273798) to KS and FAPESP (2014/50420-9) and 315 the National Council for Scientific and Technological Development (CNPq, 311048/2016-1) to EP. 316 KH and DOA were supported by graduate fellowships from the Brazilian Federal Agency for the 317 Support and Evaluation of Graduate Education (CAPES, 99999.008344/2014) and FAPESP 318 (2011/08092-6), respectively. MFF and AMV would also like to thank to the National Council for 319 Scientific and Technological Development (CNPq) for research fellowships (310244/2015-3 and 320 302599/2016-9, respectively). We acknowledge the Center of Functional Genomics Applied to 321 Agriculture and Agroenergy (University of São Paulo, Campus "Luiz de Queiroz") for generating 322 Illumina MiSeq data.

323

324 Conflict of Interest

325 The authors declare no conflicts of interest.

326

327 References

- Allen, M.B., 1968. Simple conditions for growth of unicellular blue-green algae on plates. J.
 Phycol. 4, 1–4.
- 330 Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J., 1997.
- Gapped BLAST and PSI BLAST: a new generation of protein database search programs.
 Nucleic Acid Res. 25, 3389–3402.
- Andrews S., 2010. FastQC: a quality control tool for high throughput sequence data.
 http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed 12 December 2016).
- 335 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M.,
- 336 Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler,
- G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: A New Genome Assembly Algorithm and
 Its Applications to Single-Cell Sequencing. J. Comput. Biol. 19, 455–477.
- Birnboim, H.C., Doly, J., 1979. A rapid alkaline extraction procedure for screening recombinant
 plasmid DNA. Nucleic Acids Res. 7, 1513–1518.
- Bishop, C.T., Anet, E.F.L.J., and Gorham, P.R., 1959. Isolation and identification of the past-death
 factor in *Microcystis aeruginosa* NRC-1. Can. J. Biochem. Physiol. 37, 453–471.
- 343 Botes, D.P., Tuinman, A.A., Wessels, P.L., Viljoen, C.C., Kruger, H., Williams, D.H., Santikarn,
- S., Smith, R.J., Hammond, S.J., 1984. The structure of cyanoginosin-LA, a cyclic
 heptapeptidetoxin from the cyanobacterium *Microcystis aeruginosa*. J. Chem. Soc., Perkin
 Trans. 1, 2311–2318.
- 347 Botes, D.P., Wessels, P.L., Kruger, H., Runnegar, M.T.C., Santikarn, S., Smith, R.J., Barna, J.C.J.,
- 348 Williams, D.H., 1985. Structural studies on cyanoginosins-LR, -YR, -YA, and -YM, peptide
- toxins from *Microcystis aeruginosa*. J. Chem. Soc., Perkin Trans. 1, 2747–2748.

- 350 Calteau, A., Fewer, D.P., Latifi, A., Coursin, T., Laurent, T., Jokela, J., Kerfeld, C.A., Sivonen, K.,
- 351 Piel, J., Gugger, M., 2014. Phylum-wide comparative genomics unravel the diversity of
 352 secondary metabolism in Cyanobacteria. BMC Genomics 15, 977.
- Challis, G.L., Ravel, J., Townsend, C.A., 2000. Predictive, structure-based model of amino acid
 recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224.
- Christiansen, G., Fastner, J., Erhard, M., Börner, T., Dittmann, E., 2003. Microcystin biosynthesis
 in *Planktothrix*: genes, evolution, and manipulation. J. Bacteriol. 185, 564–572.
- Christiansen, G., Molitor, C., Philmus, B., Kurmayer, R., 2008. Nontoxic strains of cyanobacteria
 are the result of major gene deletion events induced by a transposable element. Mol. Biol. Evol.
 25, 1695–1704.
- Cirés, S., Alvarez-Roa, C., Wood, S.A., Puddick, J., Loza, V., Heimann, K., 2014. First report of
 microcystin-producing *Fischerella* sp. (Stigonematales, Cyanobacteria) in tropical Australia.
 Toxicon 88, 62–66.
- 363 Craig, M, McCready, T.L., Luu, H.A., Smillie, M.A., Dubord, P., Holmes, C.F.B., 1993.
 364 Identification and characterization of hydrophobic microcystins in Canadian freshwater
 365 cyanobacteria. Toxicon 31, 1541–1549.
- 366 Dagan, T., Roettger, M., Stucken, K., Landan, G., Koch, R., Major, P., Gould, S.B., Goremykin, V.
- 367 V., Rippka, R., de Marsac, N.T., Gugger, M., Lockhart, P.J., Allen, J.F., Brune, I., Maus, I.,
- 368 Pühler, A., Martin, W.F., 2012. Genomes of stigonematalean Cyanobacteria (Subsection V)
- and the evolution of pxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol.
 5, 31–44.
- 371 Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2011. ProtTest 3: fast selection of best-fit
 372 models of protein evolution. Bioinformatics 27, 1164–1165.
- 373 Diehnelt, C.W., Dugan, N.R., Peterman, S.M., Budde, W.L., 2006. Identification of microcystin
- 374 toxins from a strain of *Microcystis aeruginosa* by liquid chromatography introduction into a

- 375 hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. Anal.
 376 Chem. 78, 501–512.
- Dittmann, E., Neilan, B.A., Erhard, M., von Döhren, H., Börner, T., 1997. Insertional mutagenesis
 of a peptide synthetase gene that is responsible for hepatotoxin production in the
 cyanobacterium *Microcystis aeruginosa* PCC 7806. Mol. Microbiol. 26, 779–787.
- 380 Dittmann, E., Gugger, M., Sivonen, K., Fewer, D.P., 2015. Natural product biosynthetic diversity
 381 and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652.
- Edgar, R.C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space
 complexity. BMC Bioinformatics 5, 113.
- 384 Eriksson, J.E., Meriluoto, J.A.L., Kujari, H.P., Skulberg, O.M., 1988. A comparison of toxins
- isolated from the cyanobacteria *Oscillatoria agardhii* and *Microcystis aeruginosa*. Comp.
 Biochem. Physiol. 89, 207–210.
- 387 Ewing, B., Hillier, L., Wendl, M.C., Green, P., 1998. Base-calling of automated sequencer traces
 388 using phred. I. Accuracy assessment. Genome Res. 8 (3), 175–185.
- 389 Ewing, B., Green, P., 1998. Base-calling of automated sequencer traces using Phred. II, Error
 390 probabilities. Genome Res. 8, 186–194.
- Faassen, E. J., Lürling, M., 2013. Occurrence of the microcystins MC-LW and MC-LF in Dutch
 surface waters and their contribution to total microcystin toxicity. Mar. Drugs 11, 2643-2654.
- Feurstein, D., Holst, K., Fischer, A., Dietrich D.R., 2009. Oatp-associated uptake and toxicity of
 microcystins in primary murine whole brain cells. Toxicol. Appl. Pharmacol. 234, 247–255.
- Fewer, D.P., Rouhiainen, L., Jokela, J., Wahlsten, M., Laakso, K., Wang, H., Sivonen, K., 2007.
 Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC
 Evol. Biol. 7, 183.
- 398 Fewer, D.P., Tooming-Klunderud, A., Jokela, J., Wahlsten, M., Rouhiainen, L., Kristensen, T.,
- 399 Rohrlack, T., Jakobsen, K.S., Sivonen, K., 2008. Natural occurrence of microcystin synthetase

- 400 deletion mutants capable of producing microcystins in strains of the genus *Anabaena*401 (Cyanobacteria). Microbiology 154, 1007–1014.
- 402 Fewer, D.P., Wahlsten, M., Österholm, J., Jokela, J., Rouhiainen, L., Kaasalainen, U., Rikkinen, J.,
- 403 and Sivonen, K., 2013. The genetic basis for *O*-acetylation of the microcystin toxin in
 404 Cyanobacteria. Chem. Biol. 20, 861–869.
- 405 Fiore, M.F., Genuário, D.B., Silva, C.S.P., Shishido, T.K., Moraes, L.A.B., Cantúsio-Neto, R.,
- Silva-Stenico, M.E., 2009. Microcystin production by a freshwater spring cyanobacterium of
 the genus *Fischerella*. Toxicon 53, 754–761.
- 408 Fischer, A., Hoeger, S.J., Stemmer, K., Feurstein, D.J., Knobeloch, D., Nussler, A., Dietrich, D.R.,
- 409 2010. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of
- 410 different microcystin congeners *in vitro*: A comparison of primary human hepatocytes and
- 411 OATP-transfected HEK293 cells. Toxicol. Appl. Pharmacol. 245, 9–20.
- 412 Gordon, D., Abajian, C., Green, P., 1998. Consed: A graphical tool for sequence finishing. Genome
 413 Res. 8, 195–202.
- Gulledge, B.M., Aggen, J.B., Huang, H.B., Nairn, A.C., Chamberlin, A.R., 2002. The microcystins
 and nodularins: cyclic polypeptide inhibitors of PP1 and PP2A. Curr. Med. Chem. 9, 1991–
 2003.
- Gupta, N., Pant, S.C., Vijayaraghavan, R., Rao, P.V., 2003. Comparative toxicity evaluation of
 cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology
 188, 285–296.
- Harada, K.-I., Ogawa, K., Kimura, Y., Murata, H., Suzuki, M., Thorn, P.M., Evans, W.R.,
 Carmichael, W.W., 1991. Microcystins from *Anabaena flos-aquae* NRC 525-17. Chem. Res.
 Toxicol. 4, 535–540.

- Heck, K., Machineski, G.S., Alvarenga, D.O., Vaz, M.G.M.V., Varani, A.M., Fiore, M.F., 2016.
 Evaluating methods for purifying cyanobacterial cultures by qPCR and high-throughput
 Illumina sequencing. J. Microbiol. Meth. 129, 55-60.
- 426 Hicks, L.M., Moffitt, M.C., Beer, L.L., Moore, B.S., Kelleher, N.L., 2006. Structural
 427 characterization of in vitro and in vivo intermediates on the loading module of microcystin
 428 synthetase. ACS Chem. Biol. 1, 93–102.
- 429 Hirose, Y., Fujisawa, T., Ohtsubo, Y., Katayama, M., Misawa, N., Wakazuki, S., Shimura, Y.,
- 431 sequence of cyanobacterium *Fischerella* sp. NIES-3754, providing thermoresistant optogenetic

Nakamura, Y., Kawachi, M., Yoshikawa, H., Eki, T., Kanesaki, Y., 2016. Complete genome

432 tools. J. Biotechnol. 220, 45–46.

430

- Izaguirre, G., Jungblut, A.D., Neilan, B.A., 2007. Benthic cyanobacteria (Oscillatoriaceae) that
 produce microcystin-LR, isolated from four reservoirs in southern California. Water Res. 41,
 435 492–498.
- 436 Jochimsen, E.M., Carmichael, W.W., An, J., Cardo, D., Cookson, S.T., Holmes, C.E.M., Antunes,
- 437 M.B.C., Melo Filho, D.A., Lyra, T.M., Barreto, V., Azevedo, S.M.F.O., Jarvis, W.R., 1998.
- 438 Liver failure and death following exposure to microcystin toxins at a hemodialysis center in
- 439 Brazil. N. Engl. J. Med. 13, 873–878.
- Jungblut, A.D., Neilan, B.A., 2006. Molecular identification and evolution of the cyclic peptide
 hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria.
 Arch. Microbiol. 185, 107–114.
- Kaasalainen, U., Fewer, D.P., Jokela, J., Wahlsten, M., Sivonen, K., Rikkinen, J., 2012.
 Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl.
 Acad. Sci. USA 109, 5886–5891.
- 446 Kounnis, V., Chondrogiannis, G., Mantzaris, M.D., Tzakos, A.G., Fokas, D., Papanikolaou, N.A.,
- 447 Galani, V., Sainis, I., Briasoulis, E., 2015. Microcystin LR shows cytotoxic activity against

- 448 pancreatic cancer cells expressing the membrane OATP1B1 and OATP1B3 transporters.
 449 Anticancer Res. 35, 5857–5865.
- Krishnamurthy, T., Carmichael, W.W., Sarver, E.W., 1986. Investigation of freshwater
 cyanobacteria (blue-green algae) toxic peptide. I. Isolation, purification and characterization of
 peptides from *Microcystis aeruginosa* and *Anabaena flos-aquae*. Toxicon 24, 865–873.
- Kurmayer, R., Christiansen, G., Fastner, J., Börner, T., 2004. Abundance of active and inactive
 microcystin genotypes in populations of the toxic cyanobacterium *Planktothrix* spp. Environ.
 Microbiol. 6, 831–841.
- Kurmayer, R., Christiansen, G., Gumpenberger, M., Fastner, J., 2005. Genetic identification of
 microcystin ecotypes in toxic cyanobacteria of the genus *Planktothrix*. Microbiology 151,
 1525-1533.
- Kurmayer, R., Gumpenberger, M., 2006. Diversity of microcystin genotypes among populations of
 the filamentous cyanobacteria *Planktothrix rubescens* and *Planktothrix agardhii*. Mol. Ecol. 15,
 3849–3861.
- Liu, J., Van Oosterhout, E., Faassen, E.J., Lürling, M., Helmsing, N.R., Van de Waal, D.B., 2016.
 Elevated *p*CO₂ causes a shift towards more toxic microcystin variants in nitrogen-limited *Microcystis aeruginosa*. FEMS Microbiol. Ecol. 92, fiv159.
- MacKintosh, C., Beattie, K.A., Klumpp, S., Cohen, P., Codd, G.A., 1990. Cyanobacterial
 microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both
 mammals and higher plants. FEBS Lett. 264, 187–192.
- Marahiel, M.A., Stachelhaus, T., Mootz, H.D., 1997. Modular peptide synthetases involved in
 nonribosomal peptide synthesis. Chem. Rev. 97, 2651–2674.
- 470 Meriluoto, J.A.O., Sandstrom, A., Eriksson, J.E., Remaud, G., Craig, A.G., Chattopadhyaya, J.,
- 471 1989. Structure and toxicity of a peptide hepatotoxin from the cyanobacterium *Oscillatoria*
- 472 *agardhii*. Toxicon 27, 1021–1034.

- Mikalsen, B., Boison, G., Skulberg, O.M., Fastner, J., Davies, W., Gabrielsen, T.M., Rudi, K.
 Jakobsen, K.S., 2003. Natural variation in the microcystin synthetase operon mcyABC and
 impact on microcystin production in *Microcystis* strains. J. Bacteriol. 185, 2774–2785.
- Moffitt, M.C., Neilan, B.A., 2004. Characterization of the nodularin synthetase gene cluster and
 proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70,
 6353–6362.
- Monks, N.R., Liu, S., Xu, Y., Yu, H., Bendelow, A.S., Moscow, J.A., 2007. Potent cytotoxicity of
 the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and
 OATP1B3-expressing HeLa cells. Mol. Cancer Ther. 6, 587–598.
- 482 Niedermeyer, T.H.J., Daily, A., Swiatecka-Hagenbruch, M., Moscow, J.A., 2014. Selectivity and
- 483 potency of microcystin congeners against OATP1B1 and OATP1B3 expressing cancer cells.
 484 PLoS ONE 9(3), e91476.
- Nishizawa, T., Ueda, A., Asayama, M., Fujii, K., Harada, K., Ochi, K., Shirai, M., 2000. Polyketide
 synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the
 cyclic heptapeptide microcystin. J. Biochem. 127, 779–789.
- Omidi, A., Esterhuizen-Londt, M., Pflugmacher, S., 2017. Still challenging: the ecological function
 of the cyanobacterial toxin microcystin what we know so far. Toxin Reviews,
 http://dx.doi.org/10.1080/15569543.2017.1326059.
- 491 Pearson, L.A., Hisbergues, M., Börner, T., Dittmann, E., Neilan, B.A., 2004. Inactivation of an
 492 ABC transporter gene, *mcyH*, results in loss of microcystin production in the cyanobacterium
 493 *Microcystis aeruginosa* PCC 7806. Appl. Environ. Microbiol. 70, 6370–6378.
- 494 Pearson, L.A., Barrow, K.D., Neilan, B.A., 2007. Characterization of the 2-hydroxy-acid
 495 dehydrogenase McyI, encoded within the microcystin biosynthesis gene cluster of *Microcystis*496 *aeruginosa* PCC7806. J. Biol. Chem. 282, 4681–4692.

- 497 Prinsep, M.R., Caplan, F.R., Moore, R.E., Patterson, G.M.L., Honkanen, R.E., Boynton, A.L.,
- 498 1992. Microcystin-LA from a blue-green alga belonging to the Stigonematales. Phytochemistry
 499 31, 1247–1248.
- Rantala, A., Fewer, D.P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T., Sivonen, K.,
 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad.
 Sci. USA 101, 568–573.
- Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W., Hudson, D.H., 2005. Specificity prediction
 of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive
 support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808.
- Ronquist, F., Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed
 models. Bioinformatics 19, 1572–1574.
- Röttig, M., Medema, M.H., Bin, K., Weber, T., Rausch, C., Kohbacher, O., 2011. NRPSpredictor2
 a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, 362–367.
- Rouhiainen, L., Vakkilainen, T., Lumbye-Siemer, B., Buikema, W., Haselkorn, R., Sivonen, K.,
 2004. Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium *Anabaena* strain 90. Appl. Environ. Microbiol. 70, 686–692.
- Rounge, T.B., Rohrlack, T., Nederbragt, A.J., Kristensen, T., Jakobsen, K.S., 2009. A genome-wide
 analysis of nonribosomal peptide synthetase gene clusters and their peptides in a *Planktothrix rubescens* strain. BMC Genomics 10, 396.
- Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A., Barrell, B., 2000.
 Artemis: sequence visualization and annotation. Bioinformatics 16(10), 944–945.
- 519 Shih, P.M., Wu, D., Latifid, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., De Marsac,
- 520 N.T., Rippka, R., Herdman, M., Sivonen, K., Coursin, T., Laurent, T., Goodwin, L., Nolan, M.,
- 521 Davenport, K.W., Han, C.S., Rubin, E.M., Eisen, J.A., Woyke, T., Gugger, M., Kerfeld, C.A.,

- 522 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome
 523 sequencing. Proc. Natl. Acad. Sci. USA 110, 1053–1058.
- 524 Sielaff, H., Dittmann, E., de Marsac, N.T., Bouchier, C., von Döhren, H., Börner, T., Schwecke, T.,
- 525 2003. The *mcyF* gene of the microcystin biosynthetic gene cluster from *Microcystis aeruginosa*526 encodes an aspartate racemase. Biochem. J. 373, 909–916.
- 527 Sivonen, K., Carmichael, W.W., Namikoshi, M., Rinehart, K.L., Dahlem, A.M., Niemela, S.I.,
- 528 1990. Isolation and characterization of hepatotoxic microcystin homologs from the filamentous
 529 freshwater cyanobacterium *Nostoc* sp. strain 152. Appl. Environ. Microbiol. 56, 2650–2657.
- 530 Sivonen, K., Jones, G., 1999. Cyanobacterial toxins, in: Chorus, I., Bartram, J. (Eds.). Toxic
- 531 cyanobacteria in water: a guide to their public health significance, monitoring and management.
- 532 E & FN Spon, London, pp. 41–111.
- 533 Stachelhaus, T., Mootz, H.D., Marahiel, M.A., 1999. The specificity-conferring code of adenylation
 534 domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505.
- Tillett, D., Dittman, E., Erhard, M., von Döhren, H., Borner, T., Neilan, B., 2000. Structural
 organization of microcystin biosynthesis in *Microcystis aeruginosa* PCC 7806: as integrated
 peptide-polyketide synthetase system. Chem. Biol. 7, 753–764.
- Tonk, L., Van de Waal, D.B., Slot, P., Huisman, J., Matthijs, H.C.P., Visser, P.M., 2008. Amino
 acid availability determines the ratio of microcystin variants in the cyanobacterium *Planktothrix agardhii*. FEMS Microbiol. Ecol. 65, 383–390.
- 541 Tooming-Klunderud, A., Mikalsen, B., Kristensen, T., Jakobsen, K.S., 2008. The mosaic structure
 542 of the *mcyABC* operon in *Microcystis*. Microbiology 154, 1886–1899.
- 543 Vesterkvist, P.S.M. Meriluoto, J.A.O., 2003. Interaction between microcystins of different
- hydrophobicities and lipid monolayers. Toxicon 41, 349–355.

- 545 Vesterkvist, P.S.M., Misiorek, J.O., Spoof, L.E.M., Toivola, D.M., Meriluoto, J.A.O., 2012.
 546 Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells.
 547 Toxins 4, 1008–1023.
- 548 Van de Waal, D.B., Ferreruela, G., Tonk, L., Van Donk, E., Huisman, J., Visser, P.M., Matthijs,

549 H.C.P., 2010. Pulsed nitrogen supply induces dynamic changes in the amino acid composition

- and microcystin production of the harmful cyanobacterium *Planktothrix agardhii*. FEMS
 Microbiol. Ecol. 74, 430-438.
- von Döhren, H., Keller, U., Vater, J., Zocher, R., 1997. Multifunctional peptide synthetases. Chem.
 Rev. 29, 2675–2706.
- Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., 2014. PEAR: a fast and accurate Illumina PairedEnd reAd mergeR. Bioinformatics 30(5), 614–620.
- Zhbannikov, I.Y., Hunter, S.S., Foster, J., Settles, M.L., 2015. SeqyClean: a Software Tool for
 Comprehensive Preprocessing of Sequence Data. https://github.com/ibest/seqyclean (accessed
 15 February 2017).
- 559 Zurawell, R.W., Chen, H., Burke, J.M., Prepas, B.R., 2005. Hepatotoxic cyanobacteria: A review of
- 560 the biological importance of microcystins in freshwater environment. J. Toxicol. Environ.
- 561 Health B 8, 1–37.

Gene	Program	Primers	Reference
mcyA	94 °C/4 min; 30x 94°C/20 s; 55 °C/30 s; 72 °C/1 min; 72 °C/7 min	OMET-F, OMET-R MSF, MSR	Tillet et al., <mark>2000</mark>
mcyB	95 °C/3 min; 30x 94 °C/30 s; 52 °C/30 s; 72°C/1 min; 72°C/10 min	PB3F, pB9R	Fewer et al., 2007
mcyB (gap)	95 °C/3 min; 30x 94°C/30 s; 52 °C/30 s; 72 °C/1 min; 72 °C/10 min		This work
mcyC	95 °C/3 min; 30x 94 °C/30 s; 52 °C/30 s; 72 °C/1 min; 72 °C/10 min	pC1F, pC13R	Fewer et al., 2007
mcyC (gap)	95 °C/3 min; 30x 94 °C/30 s; 52 °C/30 s; 72 °C/1 min; 72 °C/10 min		This work
mcyD	95 °C/3 min; 30x 94 °C/30 s; 56 °C/30 s; 72 °C/1 min; 72 °C/10 min	mcyDF, mcyDR	Rantala et al., 2004
mcyE	95 °C/3 min; 30x 94 °C/30 s; 56 °C/30 s; 72 °C/1 min; 72 °C/10 min	mcyEF2, mcyER4	Rantala et al., 2004
mcyF	95 °C/3 min; 30x 94 °C/30 s; 50 °C/30 s; 72 °C/1 min; 72 °C/10 min	mcyFKF, mcyFKR	This work
mcyG	95 °C/3 min; 30x 94 °C/30 s; 56 °C/30 s; 72 °C/1 min; 72 °C/10 min.	mcyGF, mcyGR	Fewer et al., 2007
mcyH	95 °C/3 min; 30x 94 °C/30 s; 56°C/30 s; 72 °C/1 min; 72 °C/10 min.	mcyHKF, mcyHKR	This work
mcyI	95 °C/3 min; 30x 94 °C/30 s; 56 °C/30 s; 72 °C/1 min; 72 °C/10 min	mcyIdgenF, mcyIdgenR	Pearson et al., 2007
mcyJ	95 °C/3 min; 30x 94 °C/30 s; 56 °C/30 s; 72 °C/1 min; 72 °C/10 min	mcyJKF, mcyJKR	This work

Table 1. Thermal cycling programs used to amplify microcystin synthetase gene fragments.

	Lengths		Top BLAST Hit						
Protein	(amino acids)	Functions	Organism	Identity (%)	Accession Number				
МсуН	590	ABC transporter	Anabaena sp. 90	81.8	AAO62579				
McyI	342	putative dehydrogenase	N. spumigena NSOR10	86.1	AAO62580				
McyF	262	amino acid racemase	Nostoc sp. 152	81.6	AGZ05271				
McyE	3,511	NRPS-PKS (KS-AT-PCP-AMT-C-A-PCP-C)	Nostoc sp. 152	80.1	AGZ05272				
McyD	3,872	PKS (KS-DH-CM-KR-PCP-KS-AT-DH-KR-PCP)	Anabaena sp. 90	79.2	AAO62584				
McyG	2,639	NRPS-PKS (A-PCP-KS-AT-CM-KR-PCP)	Anabaena sp. 90	79.9	AAO62585				
McyA	2,787	NRPS (A-NMT-PCP-C-A-PCP-E)	Anabaena sp. 90	81.5	AAO62586				
McyB	2,136	NRPS (C-A-PCP-C-A-PCP)	Anabaena sp. 90	83.1	AAO62587				
McyC	1,283	NRPS (C-A-PCP-Te)	Anabaena sp. 90	83.3	AAO62588				
McyJ	313	O-acetyltransferase	N. spumigena NSOR10	84.8	AAO64406				

Table 2. Functions of proteins encoded in the microcystin biosynthetic gene cluster.

Strain/Binding pocket	McyA ₁	McyA ₂	McyB ₁	McyB ₂	McyC	McyE	McyG
Eiselen (ENAL)	DVWHISLIDK	DLFNNALTYK	DVLIFGLIYK	DARHVGIFVK	DVWFFGLVDK	DPRHSGVVGK	**LWVAASG*
Fischerella sp. CENAI61	Ser 100%	Ala 100%	Leu 70%	Tyr 60%	Ser 80%	Glu 100%	Tcl 50%
August 200			WFVD-		C	DPRHSGVVGK	**LWVAASGK
Anabaena sp. 90	Ser 100%	Ala 100%	Leu 80%	Tyr 60%	Ser 80%	Glu 100%	Tcl 60%
Nuclear at 150			-A-F		N-FI	DPRHSGVVGK	**LWVAASGK
Nostoc sp. 152	Ser 100%	Ala 100%	Leu 80%	Tyr 60%	Gln 70%	Glu 100%	Tcl 60%
		S	-A-FVD-		-P-G	DPRHSGVVGK	AILWVAASG*
Planktothrix agardhii NIVA-CYA 126/8	Ser 100%	Ala 90%	Leu 70%	Glu 60%	Gln 70%	Glu 100%	Tcl 60%
	-F-N-GMVH-		-A-FVD-	-PI-	-P-G	DPRHSGVVGK	AILWVAASG*
Planktothrix rubescens NIVA-CYA 98	Thr 100%	Ala 100%	Leu 100%	Glu 60%	Gln 70%	Glu 100%	Tcl 60%
	F		-GWTI-AVE-		TI-A		
Microcystis aeruginosa SPC777	Ser 100%	Ala 100%	Arg 90%	Tyr 60%	Arg 100%	π	π
Microcystis aeruginosa NIES-843	F		-GWTI-AVE-		TI-A	DPRHSGVVGK	**LWVAASG*
	Ser 100%	Ala 100%	Arg 90%	Tyr 60%	Arg 100%	Glu 100%	Tcl 50%
Minut in DCC 7800	F		-AWFL-NVV-		TI-A	DPRHSGVVGK	**LWVAASG*
Microcystis aeruginosa PCC 7806	Ser 100%	Ala 100%	Arg 90%	Tyr 60%	Arg 100%	Glu 100%	Tcl 50%
Mineral DIANCIII 005	F		-AWFL-NVV-		TI-A	DPRHSGVVGK	**LWVAASG*
<i>Microcystis aeruginosa</i> DIANCHI 905	Ser 100%	Ala 100%	Leu 100%	Tyr 60%	Arg 100%	Glu 100%	Tcl 50%
W	F		-AWFL-NVV-		TI-A	DPRHSGVVGK	**LWVAASG*
Microcystis aeruginosa K-139	Ser 100%	Ala 100%	Leu 100%	Tyr 60%	Arg 100%	Glu 100%	Tcl 50%
Mineral DCC7041	F		-AWFL-NVV-		TI-A	DPRHSGVVGK	**LWVAASG*
<i>Microcystis aeruginosa</i> PCC 1941	Ser 100%	Ala 100%	Leu 100%	Tyr 60%	Arg 100%	Glu 100%	Tcl 50%
Mineral BCC0907	F		-AWFL-NVV-		TI-A	DPRHSGVVGK	**LWVAASG*
<i>Microcystis aeruginosa</i> PCC9807	Ser 100%	Ala 100%	Leu 100%	Tyr 60%	Arg 90%	Glu 100%	Tcl 50%
	-F-N-GMVH-				NF	DPRHSGVVGK	LWVAASGK
Noauaria spumigena NSOK10'	Thr 100%	-	-	Tyr 60%	Glu 70%	Glu 100%	Tcl 60%

565 **Table 3.** Conservation of the seven adenylation domain binding pockets of Mcy of *Fischerella* sp. CENA161and other cyanobacteria.

566 The adenylation domain is responsible for recognition and activation of amino acids in the microcystins. The probability of incorporation for each amino acid is shown.

567 # There is no available information about that sequence; * Unknown amino acid; - There is no homologue gene; ¹ Nodularin-producing strain.

568 Figure Legends

569

570	Figure 1. Structure of MC-LR. The Fischerella sp. CENA161 MC variations encountered are
571	shown schematically according to their position. Abbreviations: Adda, (2S,3S,8S,9S)-3-amino-9-
572	methoxy-2,6,8-trimethyl-10-phenyldeca-(4E,6E)-dienoic acid; D-Glu, glutamic acid; Mdha, N-
573	methyl- α - β -dehydroalanine; Ala, alanine, Leu, leucine, Phe, phenylalanine, D-MeAsp, D-erythro- β -
574	methyl-aspartic acid, Aba, Aminoisobutyric acid, Arg, arginine, Val, valine and Met, methionine.
575	
576	Figure 2. Arrangement of gene clusters coding for the biosynthesis of microcystin in <i>Fischerella</i> sp.
577	CENA161, Nostoc (Fewer et al., 2013), Anabaena (Rouhiainen et al., 2004), Microcystis
578	(Nishizawa et al., 2000; Tillett et al., 2000), Planktothrix (Christiansen et al., 2003; Rounge et al.,
579	2009), and of nodularin in Nodularia (Moffitt and Neilan, 2004). Arrows indicate the transcriptional
580	start sites from the putative promoter regions.

581

Figure 3. Bayesian inference phylogenetic tree reconstructed from concatenated Mcy and Nda
amino acid sequences from strains presenting the microcystin gene cluster or nodularin gene cluster.
Posterior probabilities are shown in the nodes.

Biosynthesis of Microcystin Hepatotoxins in the Cyanobacterial Genus Fischerella

Karina Heck¹, Danillo O. Alvarenga¹, Tania K. Shishido², Alessandro M. Varani³, Felipe A. Dörr⁴, Ernani Pinto⁴, Leo Rouhiainen², Jouni Jokela², Kaarina Sivonen², Marli F. Fiore¹

¹University of São Paulo (USP), Center for Nuclear Energy in Agriculture, Piracicaba-SP, Brazil
 ²University of Helsinki, Department of Food and Environmental Sciences, Division of
 Microbiology and Biotechnology, Helsinki, Finland
 ³São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Department
 of Technology, Jaboticabal-SP, Brazil
 ⁴University of São Paulo (USP), School of Pharmaceutical Sciences, São Paulo-SP, Brazil

Figure S1. LC-MS representative extracted ion chromatograms for MC isoforms detected in *Fischerella* sp. CENA161 after negative mode electrospray ionization. [M-H]⁻ ions were extracted for MC-LR at m/z 993 (1); MC-FR at m/z 1027 (2); MC-LA at m/z 908 (3); MC-LAba at m/z 922 (4); MC-LM at m/z 968 (5); (6) MC-LV at m/z 936 and (7) MC-LL at m/z 950. Relative amounts of each isoform were determined by peak area.

Figure S2. Characteristic ion trap collision-induced dissociation (CID) spectra for MC isoforms identified in *Fischerella* sp. CENA161 after positive mode electrospray ionization. (1) MC-LR at m/z 995; (2) MC-FR at m/z 1029; (3) MC-LA at m/z 910; (4) MC-LAba at m/z 924; (5) MC-LM at m/z 970; (6) MC-LV at m/z 938 and (7) MC-LL at m/z 952.

Supplementary Table S1. Ion assignments, accuracies (Δ , ppm) and intensities (I, %) of UPLC-ESI-QTOF product ion spectra of protonated MCs detected in *Fischerella* sp. CENA161. Blue bars show the relative intensities of product ions. Isomeric variants MC-LV, MC-VL and [D-Asp³]MC-LL were fitted to spectral data from protonated MC ion at m/z 938 and abbreviations from the presence (or intensity) of product ions are marked with orange cells showing that ion data from m/z 938 is best explained by MC-LV structure.

Supplementary Table S1. Ion assignments, accuracies (Δ , ppm) and intensities (I, %) of UPLC-ESI-QTOF product ion spectra of protonated MCs detected in *Fischerella* sp. CENA161. Blue bars show the relative intensities of product ions. Isomeric variants MC-LV, MC-VL and [D-Asp³]MC-LL were fitted to spectral data from protonated MC ion at m/z 938 and abbreviations from the presence (or intensity) of product ions are marked with orange cells showing that ion data from m/z 938 is best explained by MC-LV structure.

		_	MC-LL	MC-LM	MC-LA	MC-Laba	MC-LV	MC-VL	[Asp ³]MC-LL
Product ion as	ssignment	Δ	I.	Δ Ι	Δ Ι	Δ Ι	Δ Ι	Δ Ι	Δ Ι
Aa ^x -Aa ^x (X = 1 - 7)	Neutral losses	ppm	(%)	ppm (%)	ppm (%)	ppm (%)	ppm (%)	ppm (%)	ppm (%)
1-2-3-4-5-6-7	H₂O	-3,2	24	-0,7 24	-3,2 24	-0,3 21	-2,8 26	-2,8 26	-2,8 26
1-2-3-4-5-6-7	NH ₃	0,9	25	5,5 22	-0,2 24	0,0 22	0,2 25	0,2 25	0,2 25
1-2-3-4	-	-2,0	19	-0.1 17	1 1 16	-10 12	-9,2 11	-9,2 11	-22 21
1-2-3-4-NH	-	-1,7	31	-3,4 37	0,7 35	-4,3 20	-4,6 32	-4,6 32	-4,6 32
1-2-3-4	CO	-2,7	15		-26,0 5	-5,1 5	-4,1 11	-4,1 11	-4,1 11
1-2-3	CO, H ₂ O	-3,6	17	0,5 14	1,2 26	-9,9 14	-5,7 19		
1-2	CO	1,0	4		6,4 5	2,9 3	-2,5 6		-2,5 6
2-3-4	-	0,6	10	2,6 9	4,6 13	-14,6 7	-2,0 12	-2,0 12	-2,0 12
2-3-4	-	-0,9	5	-5,5	76 3	-1.3 2	20 10	20 10	20 10
2-3-4	CO, H ₂ O	-2,3	8	2,3 2	1,2 26	7,4 22	2,0 110	-6,1 9	-6,1 9
2-3	-	-1,0	27	0,5 8	-2,6 5	13,8 4	-6,9 🛛	-4,9 22	-4,9 22
2-3-NH ₂	-	-2,2	15		162522			7,4 44	7,4 44
2-3	CO	-0,6	45		5,5 1		700	-3,6 50	-3,6 50
2-3	CO, H ₂ O	-1,3	32	03 17	3 2 30		-7,6 2	-1,4 1/	-1,4 1
3-4	-	-1.0	27	-3.7 19	-3.4 25	5.4 15	-4.9 22	-6.9 7	-4.9 22
3-4-NH2	-	-2,2	15	-5,4 22	1,2 27	0,1 14	7,4 44		7,4 44
3-4	CO	-0,6	45	-4,5 26	6,5 41	1,0 26	-3,6 50		-3,6 50
3-4	CO, H₂O	-1,3	9		1,3 36	26,3 5	-1,4 🛛	-7,6 2	-1,4 🛛
3	CO, H₂O	7,3	5	3,7 13	15,6 6	-15,4 🔽	-1,7 6	-1,7 6	50 47
4-5-6-7-1		-1,3	32	72 5		220	.97 9	-5,3 17	-5,3 1/
5-6-7-1-2	NHa	-1.3	14	1.7 12	9.2 14	0.9 9	-5.3 17	-2,0 24	-5.3 17
5-6-7-1	NH3	-0,4	20	-3,0 15	0) 1	1,5 10	-2,7 24	-2,7 24	-2,7 24
5-6-7-1	H ₂ O, NH ₃	1,7	2	-8,8 2		-4,6 2	-3,0 🖪	-3,0 3	-3,0 🖪
5-6-7	NH ₃	-1,4	29	-2,8 26	-2,2 31	-3,4 17	-4,4 30	-4,4 30	-4,4 30
5	-	-4,5	4	-2,6 4	0,6 5	0,6 5	-10,8 10	-10,8 10	-10,8 10
5	NH ₃	-0,7	12	-1,7 5	5,7 6	-20,5 3	-6,9 6	-6,9 6	-6,9 6
6-7-1-2-3-4	- H-O	-3.9	5	-83 5	90 6	-314	-2,0 15	-2,0 15	-216
6-7-1-2-3-4-NH	-	-2,2	2	-3,2 3	-7,0 3	5,9 2	-1,7 3	-1,7 3	-1,7 3
6-7-1-2-3-4	CO	-3,1	2		4,8 3		-6,9 2	-6,9 2	-6,9 2
6-7-1-2-3-4	CO, H ₂ O	3,0	4	0,6 🛿	-3,4 2	-2,9 4	-2,7 4	-2,7 4	-2,7 4
6-7-1-2-3	H₂O	-2,3	9		1,4 5	10,4 6	-5,6 9		
6-7-1-2	-	-1,9	60	-3,7 41	1,6 26	-4,4 23	-4,8 56		-4,8 56
6-7	-	-0,0	74	-0.4 66	1.5 81	-3.7 59	-2.5 82	-2.5 82	-2.5 82
6-7	H ₂ O	-0,6	26	-0,6 21	-2,7 33	5,5 17	-3,4 27	-3,4 27	-3,4 27
6-7	co	6,1	1	2,3 24		16,9 2	11,8 2	11,8 2	11,8 2
						MOLALA		1010	3
Production	o ignment		MC-LL	MC-LM	MC-LA	MC-Laba	MC-LV	MC-VL	[Asp ³]MC-LL
Product ion as $A_2 X_2 A_2 X_3$ (Y = 1 - 7)	ssignment	Δ	MC-LL I	MC-LM	MC-LA	MC-Laba	MC-LV	MC-VL	[Asp ³]MC-LL Δ I
Product ion a: <u>Aa^x-Aa^x (X = 1 - 7)</u>	Neutral losses	Δ ppm	MC-LL I (%)	<u>MC-LM</u> Δ I ppm (%)	MC-LA Δ I ppm (%)	MC-Laba	<u>MC-LV</u> Δ I ppm (%)	MC-VL Δ I ppm (%)	[Asp ³]MC-LL Δ I ppm (%)
Product ion as $Aa^{x}-Aa^{x}(x = 1 - 7)$ 6^{-7}	ssignment Neutral losses CO, H ₂ O CO, H ₂ O	Δ ppm 1,2 7,3	MC-LL I (%)	<u>MC-LM</u> Δ I ppm (%) 6,0 16 3.7 13	MC-LA Δ I ppm (%) 6,6 15 15.6 6	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7	MC-LV Δ I ppm (%) -0,3 16 -17 6	MC-VL Δ I ppm (%) -0,3 16 -17 6	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -17 6
Product ion a: <u>Aa^x-Aa^x (X = 1 - 7)</u> 6-7 6 7-1-2-3-4	Signment Neutral losses CO, H2O CO, H2O	Δ ppm 1,2 7,3 -2,2	MC-LL I (%) 14 5 61	MC-LM ↓ I ppm (%) 6,0 16 3,7 13 -2,0 49	MC-LA Δ I ppm (%) 6,6 15 15,6 6 1,1 51	MC-Laba A I ppm (%) -15,0 16 -15,4 7 -2,3 32	MC-LV Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62	[Asp ³]MC-LL △ I ppm (%) -0,3 16 -1,7 6 -2,9 62
Product ion a: Aa ^X -Aa ^X (X = 1 - 7) 6-7 6-7 7-1-2-3-4 7-1-2-3-4-NH ₂	SSIGNMENT Neutral losses CO, H2O CO, H2O -	Δ ppm 1,2 7,3 -2,2 -1,3	MC-LL I (%) 14 5 61 15	MC-LM Δ I ppm (%) 6,0 16 3,7 13 -2,0 49 2,9 19	MC-LA Δ I ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 21	MC-Laba Δ I ppm (%) -15,0 16 -2,3 32 6,5 8	MC-LV ▲ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18	MC-VL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18	[Asp ³]MC-LL △ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4	Signment Neutral losses CO, H ₂ O CO, H ₂ O - - CO	△ 1,2 7,3 -2,2 -1,3 -4,8	MC-LL (%) 14 5 61 15 11	MC-LM A I ppm (%) 6,0 16 3,7 13 -2,0 49 2,9 19 -5,3 4	MC-LA ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 2	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10	MC-VL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10
Product ion a: Aa ^X -Aa ^X (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4	Signment Neutral losses CO, H ₂ O CO, H ₂ O - - CO CO, H ₂ O	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 1.0	MC-LL (%) 14 5 6 61 15 11 4 4	MC-LM A I ppm (%) 6,0 16 3,7 13 -2,0 49 2,9 19 -2,3 14 -4,3 2 -2,7 49 -4,3 2	MC-LA I ppm (%) 6.6 15.6 6.6 15.1 15.6 6.6 1.1 1<	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3	ssignment Neutral losses Co, H ₂ O Co, H ₂ O - - CO CO H ₂ O - CO H ₂ O	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8	MC-LL (%) 14 5 61 15 11 4 60 8	MC-LM A I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 ¼ -4.3 2 -3.7 41 -5.1 Å	MC-LA I ppm (%) 6.6 15.6 6.6 15.1 15.6 6 1.1 1.1 5.4 6 2.1 1.6 2.1 1.6 2.1 -3.8 2 1.6 2.6 -0.7 4 2.6 2.1 1.6 2.6 -0.7 4 2.1 1.6 2.6 1.6 2.6 -0.7 4 2.1 1.6 2.6 1.6 2.6 -0.7 4 2.1 1.6 2.6 1.6 2.6 -0.7 4 2.6 2.1 1.6 2.6 -0.7 4 1.6 2.6 -0.7 4 1.6	MC-Laba A I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5	[Asp ³]MC-LL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3-4 7-1-2-3 7-1-2-3-4 7-1-2-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-1-3-3 7-	ssignment Neutral losses Со, ңо со, ңо - - со со, ңо со, ңо - со, ңо - со, ңо -	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6	MC-LL I (%) 14 5 61 15 11 14 4 60 4 17	MC-LM A I ppm (%) 6.0 16 3.7 13 -2.0 43 -2.0 19 -5.3 14 -4.3 12 -3.7 41 -5.1 18 0.5 14	MC-LA I ρpm (%) 6.6 15 15,6 6 1.1 51 -4,6 21 -3.8 2 1,6 26 -0.7 2	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 9,9 14	MC-LV Δ I -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 2 -5.7 19	MC-VL Δ I -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5	[Asp ³]MC-LL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7	ssignment Neutral losses CO, H ₂ O CO, H ₂ O - CO CO, H ₂ O - CO, H ₂ O - CO, H ₂ O -	A 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5	MC-LL I (%) 14 5 61 15 11 4 4 60 4 17 27	MC-LM 0 1 ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -5,7 14 0,5 14 3,2 23	MC-LA I ρpm (%) 6,6 15 15,6 6 1 1 6,6 15 15,6 6 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28	MC-VL Δ I ppm (%) -0,3 16 -1,7 16 -2,9 62 -0,5 18 -4,7 10 -6,8 5	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1-2 7-1 7-1 7-1 7-1	Signment Neutral losses CO, H₂O - - CO CO, H₂O - CO, H₂O - CO	A 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4	MC-LL (%) 14 5 61 15 11 14 460 44 17 27 23	MC-LM ↓ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -4.3 12 -3.7 14 -5.1 16 0.5 16 3.2 23 0.9 16	MC-LA I ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 21 - - -3,8 2 - - -0,7 8 - - -1,6 26 - - -1,3 36 0,1 33	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 3 -5.7 19 -2.3 28 -1.1 29	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1	Ssignment Neutral losses CO, H₂O - - CO CO, H₂O - CO CO, H₂O - - CO CO, H₂O - - CO NH₂O - - CO NH₂O - - - CO NI₂O - - - - CO NI₂O - - - - - - - - - - - - -	▲ 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9	MC-LL (%) 14 5 61 15 11 14 14 14 14 14 17 27 23 5	MC-LM A I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 16 -5,3 14 -4,3 2 3.7 41 -5,1 8 0,5 14 3,2 23 0,9 19 9,7 2	MC-LA I ppm (%) 6.6 15. 15.6 6 1.1 51 -4.6 21 -3.8 2 -3.8 2 1.6 26 -0.7 8 1.2 26 1.3 36 0.1 33 2.5 5 5	MC-Laba A I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.8 56 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -1.1 29 -3.7 6	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	ssignment Neutral losses CO, H₂O CO, H₂O - - CO CO, H₂O - CO, H₂O - CO, H₂O - CO, H₂O - - CO, H₂O - - U, H₂O - - - - - - - - - - - - -	△ 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9 7,3	MC-LL I (%) 13 5 61 15 11 14 4 60 44 17 223 5 5 5 5 5	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 18 -5.3 ¼ -4.3 ½ -5.7 ¼ 0.5 14 3.2 23 0.9 15 9.7 12 3.7 13 0.5 5	MC-LA Δ I ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 8 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6	MC-Laba Δ I ppm (%) -15,0 16 -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 2	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 20 -3.7 6 -1.7 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6
Product ion as $Aa^{x}-Aa^{x}(x = 1 - 7)$ 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	ssignment <u>Neutral losses</u> CO, H ₂ O CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO NH ₃ - - H ₃ - - CO NH ₃ - - - - - - - - - - - - -	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9 7,3 -0,1 -7,3	MC-LL (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 5 5	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 4 -4,3 2 -3,7 41 -5,1 8 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 6	MC-LA I Δ I (%) 6,6 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 8 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 7,7 2	MC-Laba ∆ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 4	MC-LV Δ I -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 16	MC-VL Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 16 -3.3 6 0.7 2	[Asp ³]MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	ssignment <u>Neutral losses</u> CO, H₂O CO, H₂O - - CO, H₂O - CO, H₂O - CO, H₂O - CO, H₂O - - CO, H₂O - - CO NH₀ - - H₂O - - H₂O - - H₂O - - H₂O - - H₂O - - - - - - - - - - - - -	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9 7,3 -0,1 -7,3 -0,1 -7,3 -0,1 -7,3 -2,2 -1,9 -6,8 -3,6 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,9 -6,8 -6,9 -6,8 -6,9 -6,8 -6,9 -6,9 -6,9 -6,8 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,9 -6,8 -6,9 -6,	MC-LL I (%) 14 5 61 15 15 16 17 27 23 5 5 5 5 5 5 3 4	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -4.3 12 -3.7 41 -5.1 18 0.5 16 3.2 223 0.9 193 9.7 12 3.7 13 -3.5 16	MC-LA I △ I (%) 6,6 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1.8 1	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14	MC-LV Δ I -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4	[Asp ³]MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	ssignment Neutral losses CO, H ₂ O CO, H ₂ O - CO CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O - H ₂ O - H ₂ O - H ₂ O NH ₅	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9 7,3 -0,1 -7,3 -4,4 -7,3 -4,4 -0,1 -7,3 -4,4 -7,3 -2,2 -1,9 -6,8 -3,6 -0,19 -6,8 -0,19	MC-LL (%) 14 5 61 15 11 44 60 27 23 5 5 5 5 3 4 4 7 7	MC-LM A I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -4,3 12 -3,7 41 -5,1 16 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 16	MC-LA I ppm (%) 6,6 15 15,6 6 1 1 - -4,6 21 - - 3 2 1 6 6 1 1 2 - 1,6 26 - 0,7 4 1,2 2 6 1 3 3 0,1 33 2,5 5 15,6 6 6 4,1 8 - - 7,7 2 - 1,8 1 - - 1,8 1 - <td>MC-Laba A I (%) (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14</td> <td>MC-LV a I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -4.8 56 -4.8 56 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6</td> <td>MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,3 6 -0,7 2 -4,9 6</td> <td>[Asp³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -3,3 6</td>	MC-Laba A I (%) (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14	MC-LV a I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -4.8 56 -4.8 56 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,3 6 -0,7 2 -4,9 6	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -3,3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-3-3 7-1-3-3 7-1-2	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - - CO, H ₂ O - - CO, H ₂ O - - CO NH ₃ - H ₂ O NH ₃ H ₂ O, NH ₃	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -6,8 -3,6 4,5 2,4 3,9 7,3 -0,1 -7,3 -7,3 -0,1 -7,3 -1,5 -1,9	MC-LL (%) 14 5 661 15 11 14 460 27 22 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM ↓ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 k -4.3 2 -3.7 61 -5.1 & 0.5 14 3.2 23 0.9 15 9.7 2 3.7 13 -3.5 6	MC-LA I ppm (%) 6,6 15,6 6 1,1 51 - - 4,6 21 -3,8 2 - <td>MC-Laba A I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4</td> <td>MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 15 -4.7 10 -6.8 15 -4.8 56 -8.9 18 -5.7 19 -2.3 28 -1.1 29 -1.1 29 -3.7 6 -3.3 6</td> <td>MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -1,1 29 -3,3 6 -0,7 2 -4,9 4 -4,6 2</td> <td>[Asp³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6</td>	MC-Laba A I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 15 -4.7 10 -6.8 15 -4.8 56 -8.9 18 -5.7 19 -2.3 28 -1.1 29 -1.1 29 -3.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -1,1 29 -3,3 6 -0,7 2 -4,9 4 -4,6 2	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3	Signment Neutral losses CO, H₂O - - CO CO, H₂O - CO, H₂O - CO, H₂O - CO, H₂O - CO, H₂O - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - CO, H₂O - - - - H₀S - - H₀S - - H₃O - - - H₂O - - - H₂O - - - - H₂O - - - - H₂O - - - H₂O - - - - - H₂O - - - - H₂O - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -3,6 4,5 2,4 3,9 -0,1 -7,3 -0,1 -7,3 -0,1 -7,3 -4,4 -1,5 -1,9 -2,4	MC-LL (%) 14 5 61 15 16 16 17 27 23 5 5 5 5 5 5 5 5 3 4 4 7 3 19	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 ¼ -4.3 ½ -3.7 ¥1 -5.1 ¾ 0.5 14 3.2 23 0.9 19 9.7 12 3.7 13 -3.5 6	MC-LA I ppm (%) 6,6 15,6 6 1,1 51 - - 4,6 21 -3,8 2 1,6 26 - - 7,8 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 - 7,7 2 - 1,8 1	MC-Laba Δ I ppm (%) -15,0 16 -15,0 16 -15,4 2 -6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 2 -8,9 4	MC-LV I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -3.7 10 -3.7 6 -1.1 20 -3.3 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -1.1 29 -3.3 6 -0.7 2 -4.9 4 -4.6 2 -4.6 2	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	ssignment Neutral losses CO, ӉО - - CO, ӉО - CO, ӉО - CO, ӉО - CO, ӉО - - CO, ӉО - - H ₂ O - H ₂ O - H ₂ O NH ₃ H ₂ O, NH ₃	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 2,4 3,9 7,3 -0,1 -7,3 -4,4 5,2,4 3,9 7,3 -0,1 -7,3 -4,5 -1,5 -1,5 -2,2 -2,2 -2,2 -1,3 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -2,2 -2,2 -2,2 -1,3 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3	MC-LL (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -4,3 2 -3,7 41 -5,1 8 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 6	MC-LA I ppm (%) 6.6 15 15.6 15 16 17 -3.8 2 1.6 26 -0.7 8 2 1.6 1,3 36 0,1 33 2,5 5 5 5 15,6 6 4,1 8 -7,7 2 -1,8 1	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4	MC-LV Δ I (%) (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 15 -3.3 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -0.7 2 -4.9 4 -4.0 6 -4.4 21 -5.6 3	[Asp ³]MC-LL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-4-5(?CgHq0)-6-7-1 3-(5(?CgHq0)-6-7-1 5(?CgHq0)-7-1 5(?CgHq0)-7-1	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - H ₂ O - - H ₂ O - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 2,4 3,9 7,3 -0,1 -7,3 -4,4 5,2,4 3,9 7,3 -0,1 -7,3 -4,4 -1,5 -1,5 -2,2 -2,2 -2,4 -4,5 -2,2 -2,2 -2,2 -2,2 -2,2 -2,2 -2,2 -2	MC-LL I (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 3 3 4 4 7 7 28	MC-LM ▲ I ppm (%) 6.0 ft6 3.7 ft3 -2.0 49 2.9 ft3 -5.3 #4 -4.3 2 -3.7 41 -5.1 # 3.2 23 0.9 ft3 9.7 12 3.7 ft3 -3.5 6	MC-LA I ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 -3,8 2 1,6 26 -0,7 8 1,2 26 1,3 36 0,1 33 2,5 15,6 6 4,1 8 -7,7 2 -1,8 1 -4,6 80	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14	MC-LV Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,4 21 -5,6 8 -5,3 78	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -5,3 6 -4,4 21 -5,6 8 -5,3 78
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(7C_0H_0O)-6-7-1 3-4-5(7C_0H_0O)-6-7-1 3-4-5(7C_0H_0O)-6-7-1 3-4-5(7C_0H_0O)-6-7-1 3-4-5(7C_0H_0O)-6-7-1 3-4-5(7C_0H_0O)-6-7-1 5(7C_0H_0O)-6-7-1-2-3- 5(7C_0H_0O)-6-	Signment Neutral losses CO, H ₂ O CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₅ - H ₂ O NH ₅ H ₂ O NH ₅ NH ₅ N	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 3,9 -7,3 -4,4 -1,5 -2,4 -4,4 -2,5 -2,7 -7,1	MC-LL (%) 14 5 61 15 16 17 27 28 5 5 5 5 5 5 3 3 4 7 7 28 2 2 2 2 2 2 2 2 2 2 2 2 2	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -5.7 14 -5.7 14 3.2 23 0.9 15 9.7 12 3.7 13 -3.5 6	MC-LA Δ I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -4.8 56 -4.8 56 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 16 -3.3 16	MC-VL Δ I ppm (%) -0,3 16 -1,7 16 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 16 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,0 6 -4,4 21 -5,6 8 -5,3 78 -1,2 29	Asp ³ MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -2,3 6 -1,7 6 -3,3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-5 7-1-2-3-5 7-	Signment Neutral losses CO, H ₂ O CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₅ - H ₂ O - H ₃ O - H ₂ O - H ₃ O - H ₄ O - H ₂ O - H ₅ O - H ₂ O - - H ₂ O - - - - - - - - - - - - -	Δ ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -6,8 -3,6 4,5 3,9 -7,3 -4,4 -1,5 -2,4 -4,4 -2,5 -2,7 -6,4	MC-LL (%) 14 5 61 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM ↓ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -5,1 18 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 6	MC-LA A I ppm (%) 6,6 15 15,6 6 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1	MC-Laba A I (%) (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 4	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -4.8 56 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -5.3 78 -4.7 2 -1.0 8	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -0.7 2 -4.9 4 -4.0 6 -4.6 2 -4.6 2 -5.6 8 -5.3 78 -1.2 29 -4.7 2	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -3,3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-5 7-1-2-3	Signment Neutral losses CO, H ₂ O CO, H ₂ O - CO CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O, H ₃ - H ₂ O, NH ₅ H ₂ O H ₃ O H ₄ O H ₂ O H ₄ O H ₅	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3,9 -3,7,3 -4,4 -1,5 -7,3 -4,4 -1,5 -2,7 -2,4 -4,4 -2,5 -2,7 -7,3 -2,4 -4,4 -2,5 -2,7 -2,4 -1,5 -2,4 -2,4 -2,4 -2,4 -2,4 -2,4 -2,4 -2,4	MC-LL (%) 14 5 661 15 16 17 27 22 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 k -4,3 2 -3,7 41 -5,1 & 0,5 14 3,2 23.0 0,9 19 9,7 2 3,7 13 -3,5 6 -5,8 61 -4,5 27 0,7 & 4,5 32	MC-LA I ppm (%) 6,6 15 15,6 6 1,1 51 -4,6 21 - - -3,8 2 1,6 26 -0,7 2 - 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 - - 1,8 1 -4,6 80 - - 1,1 2 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - 1,1 3 - - <td< td=""><td>MC-Laba Δ I ppm (%) -15,0 16 -15,0 16 -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -2,1 17 8,2 2 2,5 20</td><td>MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -1.7 10 -2.3 28 -1.1 29 -3.7 6 -1.7 16 -3.3 6</td><td>MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -1,7 10 -6,8 5 -3,3 6 -0,7 2 -4,9 4 -4,9 4 -5,6 3 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,4 21 -5,3 78 -1,2 29 -4,7 10 -0,2 43</td><td>[Asp³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6</td></td<>	MC-Laba Δ I ppm (%) -15,0 16 -15,0 16 -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -2,1 17 8,2 2 2,5 20	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -1.7 10 -2.3 28 -1.1 29 -3.7 6 -1.7 16 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -1,7 10 -6,8 5 -3,3 6 -0,7 2 -4,9 4 -4,9 4 -5,6 3 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,4 21 -5,3 78 -1,2 29 -4,7 10 -0,2 43	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -5,7 19 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6
Product ion as Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-5(?CgH ₁₀ O)-6-7-1 3-5(?CgH ₁₀ O)-6-7-1-2-3- 5(?CgH ₁	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₃ - H ₂ O NH ₅ H ₂ O, NH ₅	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 4,5 2,4 -0,1 -7,3 -0,1 -7,3 -0,1 -7,3 -2,2 -1,5 -1,9 -2,4 -2,5 -2,7 -2,5 -2,7 -7,1 -2,2 -1,2 -3,6 -2,2 -3,6 -2,2 -3,6 -2,2 -3,6 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -2,2 -3,6 -2,2 -2,2 -2,2 -2,2 -2,2 -2,2 -2,2 -2	MC-LL (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -4,3 2 -3,7 41 -5,1 8 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 6 -4,5 27 0,7 14 4,5 32 5,6 5	MC-LA I ρpm (%) 6.6 15 15,6 6 15 1.1 51 -3,8 2 1.6 26 -0.7 2 -3,8 2 1.6 26 -0.7 2 1.2 26 1.3 36 0.1 33 2.5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -1,8 1 -1,8 1 -27,9 1 -5,2 41 -3,1 28 -27,9 1 -5,1 4 5,2 41 -3,1 6	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -3,1 17 8,2 2 2,5 20 -6,9 7	MC-LV A I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -1.7 6 -1.7 6 -1.7 2.2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.4 9	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -0.7 2 -4.9 4 -4.9 4 -4.6 2 -4.7 2 -1.2 29 -4.7 2 -1.2 29 -4.7 2 -1.2 29 -4.7 2 -1.2 43 -0.2 43	[Asp ³]MC-LL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -4.4 21 -5.6 3 -5.3 78 -1.2 29 -4.7 2 -1.0 4 -0.2 43 -4.4 9
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?CgH ₀ O)-6-7-1 3-4-5(?CgH ₀ O)-6-7-1 3-5(?CgH ₀ O)-6-7-1-2-3- 5(?CgH ₀ O)-6-7-1-2-3- 5(?	ssignment Neutral losses Co, ңо - - Co, ңо - Co, ңо - Co, ңо - Co, ңо - Co, ңо - - Ho NH ₃ - Ho NH ₄ - 4 Co NH ₅ - - 4 Co NH ₅ - - - - - - - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -2,2 -1,3 -2,2 -4,8 -5,9 -1,9 -3,6 4,5 2,4 4,5 2,4 -7,3 -0,1 -7,3 -0,1 -7,3 -2,2 -1,5 -2,7 -2,2 -1,5 -2,7 -2,2 -1,2 -3,6 -3,6 -2,2 -3,6 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -3,6 -2,2 -2,2 -2,3 -2,2 -2,2 -3,6 -2,2 -2,2 -2,3 -2,2 -2,3 -2,2 -2,3 -2,2 -2,3 -2,2 -2,3 -2,2 -2,2	MC-LL (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 3 3 4 4 7 7 28 2 28 2 4 4 3 3 19 19 19 19 19 19 19 19 19 19	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 15 -5.3 4 -4.3 2 -3.7 41 -5.1 8 0.5 14 3.2 23 0.9 19 9.7 12 3.7 13 -3.5 6 -4.5 27 0.7 14 4.5 32 5.6 5	MC-LA Δ I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 2 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -27,9 1 -5,1 4 5,2 41 -2,1 6 -3,1 29 -27,9 1 -5,1 4 5,2 41 -3,1 6 -14,0 1 40 7	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2	MC-LV Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,6 2 -4,4 21 -5,6 3 -5,3 78 -1,2 29 -4,4 21 -5,6 3 -1,2 29 -4,7 2 -0,2 43 -0,2 43 -4,4 6	Asp ³ MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -5.7 19 -2.3 28 -1.7 6 -3.7 6 -1.7 6 -5.3 6 -5.3 78 -1.7 29 -4.4 21 -5.6 3 -1.2 29 -4.7 2 -1.0 4 -0.2 43 -4.4 8
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-5(?C_0H_0O)-6-7-1-2-3-3 5(?C_0H_	Signment Neutral losses CO, H ₂ O CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O - - H ₂ O - - - H ₂ O - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 4,5 2,4 7,3 -0,1 -7,3 -4,4 -1,5 -1,9 -7,3 -4,4 -2,5 -1,9 -0,2 -1,3 -4,4 -2,5 -1,9 -0,2 -1,3 -4,8 -3,6 -3,6 -1,9 -1,9 -0,2 -2,2 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9 -1,9	MC-LL I (%) 14 5 61 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -5.7 14 -5.7 14 3.2 23 0.9 151 9.7 12 3.7 13 -3.5 16 -5.8 61 -4.5 27 0.7 14 5.6 5 0.9 14 -2.1 16	MC-LA A I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -4,6 80 -3,1 29 -27,9 1 -5,1 4 5,2 41 -14,0 1 -14,0 1 -19,0 7 29 4	MC-Laba A I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14 -3,1 17 8,2 2 2,5 20 -6,9 13,5 13,5 2 15,0 5	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6 -5.7 29 -4.7 2 -1.0 4 -0.7 2 -1.0 4 -0.7 2 -4.9 4	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 8 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,6 2 -4,9 4 -4,0 6 -4,4 21 -5,6 8 -5,3 78 -1,2 29 -4,7 2 -1,0 4 -0,2 43 -4,4 5	Asp ³ MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -2.3 76 -1.7 6 -3.3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-(?CgH ₁₀ O)-6-7-1-2-3- 5(?CgH ₁₀ O)-6-7-1-2-3- 5(?	Signment Neutral losses CO, H ₂ O CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₅ H ₂ O NH ₅ NH ₅ H ₂ O NH ₅ NH ₅	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -1,9 -6,8 -3,6 4,5 2,4 3,9 7,3 -0,1 -7,3 -0,1 -7,3 -0,2 -1,5 -2,2 -1,5 -2,4 -2,2 -2,4 -2,4 -2,5 -2,7 -2,4 -2,5 -2,7 -2,2 -2,7 -2,2 -2,4 -2,5 -2,7 -2,7 -2,4 -2,5 -2,7 -2,7 -2,3 -4,4 -2,5 -2,7 -2,7 -2,3 -4,4 -2,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7 -2,7 -2,3 -4,4 -1,5 -2,7	MC-LL (%) 14 5 61 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM ▲ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -5,7 14 -5,7 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 6 -4,5 27 0,7 14 -4,5 27 0,7 14 -4,5 15 0,7 14 -4,5 15 0,7 14 -4,5 16 0,7 14 -2,1 16 5,7 18	MC-LA A I (%) (%) 6.6 15 15.6 6 1,1 51 -4.6 21 -3.8 2 1,6 26 -0.7 4 1,2 26 1,3 36 0,1 33 2,5 15 15.6 6 4,1 8 -7.7 2 -1.8 1 -4.6 80 -3.1 29 -27.9 1 -5,1 4 5,2 41 -14.0 1 -19 7 2.9 4 -7.4 2	MC-Laba A I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -15,4 7 -8,9 4 -15,4 7 -8,9 4	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -5.7 10 -0.2 43 -4.7 2 -1.0 4 -0.2 43 -4.4 9 -0.7 2 -4.9 4 -4.6 2	MC-VL Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6 -0.7 2 -4.9 4 -4.0 6 -4.0 6 -5.6 8 -5.3 78 -1.0 2 -1.0 2 -1.0 2 -4.4 9	Asp ³ [MC-LL] A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?C ₉ H ₁₀ O)-6-7-1 3-4-5(?C ₉ H ₁₀ O)-6-7-1 3-5(?C ₉ H ₁₀ O)-6-7-1-2-3- 5(?C ₉ H ₁₀ O)-6	Signment Neutral losses CO, H ₂ O CO, H ₂ O - CO CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₅ - H ₂ O NH ₅ - - H ₂ O NH ₅ - - H ₂ O NH ₅ - - H ₂ O NH ₅ - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -6,8 -3,6 4,5 2,4 3,9 -6,8 4,5 2,4 3,9 -7,3 -1,9 -2,4 -1,5 -1,9 -2,4 -2,5 -2,7 -7,3 -4,4 -2,5 -2,7 -7,3 -4,4 -2,5 -2,7 -7,3 -4,5 -2,4 -7,3 -7,3 -2,4 -7,3 -7,3 -2,4 -7,3 -7,3 -2,5 -2,7 -7,3 -2,5 -2,7 -7,3 -2,4 -7,3 -7,3 -2,4 -7,3 -7,3 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -7,5 -1,9 -2,4 -1,9 -2,4 -1,9 -1,	MC-LL (%) 14 5 61 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -4,3 12 -3,7 141 -5,1 18 0,5 14 3,2 23 0,9 19 9,7 12 3,7 13 -3,5 16 -4,5 27 0,7 14 -4,5 32 5,6 15 0,9 14 -2,1 16 5,7 18	MC-LA A I ppm (%) 6,6 15 15,6 6 -4,6 21 -3,8 2 1,6 26 -0,7 & 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -4,6 80 -3,1 29 -27,9 1 -5,1 4 5,2 41 -14,0 1 -14,9 7 2,9 4 -7,4 2 0,3 20	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2 15,0 5 1,2 12	MC-LV A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -6.8 5 -4.8 56 -3.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -1.7 6 -1.7 6 -3.3 6 -1.2 29 -4.4 9 -0.2 43 -4.4 9 -0.2 43 -4.9 4 -4.0 6 -4.4 21	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -7.7 6 -1.1 29 -3.3 6 -0.7 2 -4.9 4 -4.9 4 -4.0 6 -4.6 2 -4.6 2 -4.7 12 -1.7 6 -1.7 6 -1.7 2 -1.7 2 -1.7 2 -1.0 4 -0.2 4.3 -4.7 2 -1.0 4 -0.2 4.3 -4.4 5	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-4-5(?CgH ₁₀ O)-6-7-1 3-5(?CgH ₁₀ O)-6-7-1-2-3- 5(?CgH ₁₀ O)-6-7-1-2-3- 5(?	ssignment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - - H ₂ O NH ₃ - H ₂ O, NH ₃ H ₂ O, NH ₃ H ₄ O, NH ₃ - H ₂ O, NH ₃ H ₄ O, NH ₃ - H ₄ O, NH ₃ H ₄ O, NH ₃ - H ₄ O, NH ₃ - - - - - - - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -5,9 -6,8 -3,6 4,5 -3,6 4,5 -3,6 -3,6 -7,3 -4,4 -1,9 -2,4 -4,5 -2,7 -7,1 -6,7 -2,2 -2,2 -7,3 -4,4 -1,9 -2,4 -1,9 -2,4 -1,9 -2,4 -1,9 -2,4 -2,2 -2,7 -2,19 -6,8 -3,6 -2,2 -2,19 -6,8 -3,6 -2,2 -2,19 -6,8 -3,6 -2,2 -2,19 -6,8 -3,6 -2,4 -1,9 -2,2 -2,7 -2,19 -2,2 -2,19 -6,8 -3,6 -2,4 -2,2 -2,7 -7,1 -2,2 -2,7 -2,19 -2,2 -2,2 -2,19 -2,2 -2,2 -2,19 -2,2 -2,2 -2,19 -2,4 -2,5 -2,7 -7,1 -6,4 -1,5 -2,7 -2,7 -2,19 -2,4 -1,5 -2,7 -2,19 -2,4 -1,5 -2,4 -4,4 -4,4 -1,5 -2,4 -4,4	MC-LL (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -4.3 2 -3.7 41 -5.1 14 3.2 23 0.9 15 -7.1 3.7 13 -3.7 13 -3.5 6 -4.5 22 - 5.6 5 0.7 16 - 4.5 5.6 5 0.7 16 - - 4.5 5.6 5.6 5.6 5.7 16 5.7 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7 16 5.7	MC-LA Δ I (%) 6.6 15.6 6 1.1 51 -3.8 2 1.6 26 -0.7 2 1.3 36 0.1 33 2.5 5 15.6 6 -3.1 28 -27.9 1 -5.1 4 -3.1 28 -27.9 1 -5.2 41 -3.1 6 -1.9 7 2.9 4 -7.4 2 0.3 20 2.7 4	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2 1,2 12	MC-LV A I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -2.3 28 -1.1 29 -3.7 6 -1.7 10 -3.3 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -1.7 10 -3.3 16 -1.7 10 -3.3 16 -0.7 2 -4.9 14 -4.0 6 -4.4 21 -5.6 8 -5.3 78 -1.2 29 -4.7 2 -1.2 29 -4.4 21 -5.6 8 -5.3 78 -1.2 29 -4.4 9	Asp ³ MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -4.4 21 -5.6 3 -1.2 29 -4.7 2 -1.0 4 -0.2 43 -4.4 9
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO NH ₃ - H ₂ O NH ₃ - H ₂ O - - - - - - - - - - - - - - - - - - -	A ppm 1.2 7.3 -2.2 -1.3 -4.8 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	MC-LL I (%) 14 5 61 15 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 43 2.9 15 -5.3 4 -4.3 2 -3.7 41 -5.1 8 0.5 14 3.2 23 0.9 19 9.7 12 3.7 13 -3.5 6 -4.5 27 0.7 8 4.5 32 5.6 5 0.9 14 -2.1 16 5.7 18	MC-LA A I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 2 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -27,9 1 -5,1 4 5,2 41 -2,7,9 1 -3,1 6 -14,0 1 -19 7 2,9 4 -7,4 2 0,3 20 2,7 4 6,7 4	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14 -15,4 7 -8,9 4 -2,5 20 -6,9 7 13,5 2 15,0 5 1,2 12 5,8 8	MC-LV Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 10 -3.7 16 -1.7 16 -3.3 16 -0.7 12 -4.9 14 -4.6 12 -4.9 14 -5.6 3 -5.3 78 -1.2 29 -4.4 21 -5.6 3 -1.2 29 -4.4 6	[Asp ³]MC-LL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,7 6 -3,7 6 -1,7 6 -5,6 3 -5,6 3 -1,2 29 -4,4 21 -0,2 43 -4,4 8
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₃ - H ₂ O NH ₅ - H ₂ O NH ₅ - NH ₅ - - NH ₅ - NH ₅ - - - - - - - - - - - - -	A ppm 1.2 7.3 -2.2 -1.3 -4.8 -5.9 -6.8 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6 -3.6	MC-LL (%) 14 5 61 15 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -5.7 18 0.5 14 3.2 23 0.9 19 9.7 12 3.7 13 -3.5 16 -4.5 27 0.7 13 -3.5 16 -4.5 277 0.7 13 -3.5 16 5.6 15 0.9 14 -2.1 16 5.7 18	MC-LA A I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 15 15,6 6 4,1 8 -7,7 2 -1,8 1 -4,6 80 -3,1 6 -14,0 1 -27,9 1 -5,1 4 5,2 41 -14,0 1 -19 7 2,9 4 -7,4 2 2,7 4 3,1 39	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14 -15,4 7 -8,9 14 -15,4 7 -6,9 7 13,5 2 2,5 20 -6,9 7 13,5 2 15,0 5 1,2 12 5,8 8 4,3 21	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6 -1.7 2 -1.0 4 -0.2 4.3 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,0 6 -4,4 21 -5,6 8 -5,3 78 -1,2 29 -4,4 21 -5,6 8 -5,3 78 -1,0 4 -0,2 43 -4,4 5	Asp ³ MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-4-5(?C_0H_0O)-6-7-1 3-(?C_0H_0O)-6-7-1-2-3- 5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H_0O)-6-7-1-2-3-5(?C_0H	Signment Neutral losses CO, H ₂ O CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₅ H ₂ O NH ₅ NH ₅	A ppm 1.2 7.3 -4.8 -5.9 -6.8 -3.6 -3.5 -1.9 -2.2 -7.3 -4.4 -2.5 -7.7 -7.4 -2.4 -2.5 -7.7 -7.4 -2.4 -2.7 -7.3 -4.4 -2.5 -7.7 -2.4 -2.4 -2.7 -7.3 -4.4 -2.5 -2.7 -7.4 -2.4 -2.5 -2.7 -7.4 -2.4 -2.5 -2.7 -2.4 -2.4 -2.5 -2.7 -2.4 -2.4 -2.5 -2.7 -2.4 -4.5 -2.7 -2.4 -2.4 -2.5 -2.7 -2.4 -2.4 -2.5 -2.7 -2.4 -2.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -2.4 -4.4 -2.5 -2.7 -7.1 -6.4 -4.5 -1.9 -2.4 -4.4 -2.5 -0.1 -2.4 -4.4 -2.5 -0.1 -2.4 -4.4 -2.5 -0.1 -2.4 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -0.1 -2.5 -2.5 -0.1 -2.5 -2.5 -2.7 -2.4 -4.4 -2.5 -0.7 -2.4 -4.4 -2.5 -0.7 -2.4 -4.5 -2.2 -0.7 -2.4 -4.5 -2.2 -0.7 -2.4 -4.5 -2.2 -0.7 -2.4 -4.5 -2.2 -0.7 -2.4 -4.5 -2.2 -0.7 -2.4 -4.5 -2.2 -2.5 -0.7 -2.4 -2.5 -2.	MC-LL I (%) 14 5 61 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 19 -5.3 14 -5.7 14 -5.7 14 3.2 23 0.9 15 9.7 12 3.7 13 -3.5 6 -4.5 27 0.7 12 4.5 32 5.6 5 0.9 14 -2.1 6 5.7 8 -1.0 37	MC-LA A I (%) 6.6 15 6.6 15 15.6 6 1.1 51 -4.6 21 -3.8 2 1.6 26 -0.7 4 1.2 26 1.3 366 0.1 33 2.5 5 15.6 6 4.1 8 -7.7 2 -1.8 1 -4.6 80 -27.9 1 -5.1 4 5.2 41 -7.7 2 -1.8 1 -27.9 1 -5.1 4 5.2 41 -3.1 6 -14.0 1 -1.9 7 2.9 4 -7.4 2 0.3 20 2.7 4 -3.1 39 -0.7 95 2.2 7 7 55 -1.4 -1.9 7 2.2 7 4 -3.1 39 -0.7 95 2.2 7 7 1	MC-Laba Δ I -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 15,4 7 -8,9 4 -15,4 7 -8,9 4 -15,4 7 -8,9 4 -15,4 7 -8,9 4 -15,4 7 -6,9 7 13,5 2 15,0 5 1,2 12 5,8 8 4,3 21 -0,4 61	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -8.9 4 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -1.7 6 -3.3 6 -1.7 6 -3.3 6 -1.0 4 -0.2 43 -1.0 4 -0.7 2 -4.4 9 -0.7 2 -4.6 2 -4.4 2 -3.4 4 -3.4 39 -2.9 100	MC-VL Δ I ppm (%) -0,3 66 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,0 6 -5,6 8 -5,3 78 -1,2 29 -4,4 21 -5,6 8 -5,3 78 -1,0 4 -2,9 -4,4 -3,4 9 -3,4 4 -3,4 49	[Asp ³]MC-LL A I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -2,3 6 -3,7 6 -3,3 6
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₃ - H ₂ O NH ₅ - H ₂ O NH ₅ - NH ₅ - - - - - - - - - - - - -	▲ ppm 1.2 7.3 -2.2 -1.3 -4.8 -5.9 -1.9 -6.8 -4.5 2.4 -4.5 2.4 -4.5 -2.5 -1.9 -6.8 -3.6 4.5 -2.4 -4.5 -1.9 -7.3 -7.3 -7.3 -7.3 -7.3 -7.3 -7.3 -7.4 4 -1.5 -2.2 -2.3 -7.3 -7.3 -7.4 -2.2 -2.4 -1.5 -1.9 -1.9 -2.4 -2.4 -2.4 -1.9 -1.9 -7.3 -7.3 -7.3 -7.4 -2.4 -2.4 -1.9 -7.3 -7.3 -7.3 -7.3 -7.4 -7.4 -7.5 -1.9 -7.3 -7.3 -7.3 -7.4 -7.4 -7.4 -7.5 -1.9 -7.3 -7.3 -7.3 -7.3 -7.3 -7.4 -7.4 -7.4 -7.4 -7.5 -1.9 -7.3 -7.3 -7.3 -7.3 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4	MC-LL I (%) 14 5 61 15 16 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2,0 49 -2,0 49 -2,0 49 -3,7 41 -5,1 4 -4,3 2 0,9 15 9,7 2 3,7 13 -3,5 6 -4,5 27 0,7 2 4,5 32 5,6 5 0,9 ¼ -2,1 6 5,7 8 -1,0 37 -4,3 84 -0,3 43	MC-LA Δ I ppm (%) 6.6 15 15.6 6 1.1 51 -3.8 2 1.6 26 -0.7 8 2.5 5 15.6 6 4.1 8 -7.7 2 -1.8 1 -4.6 80 -3.1 29 -27.9 1 -5.1 14 5.2 41 -3.1 6 -14.0 1 -1.9 7 2.9 4 -7.4 2 0.3 20 2.7 4 6.7 14 -3.1 39 -0.7 95 -12.3 6	MC-Laba Δ I -15,0 16 -15,0 16 -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2 15,0 5 1,2 12 5,8 8 4,3 21 -0,4 61 -2,2 35	MC-LV Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -1.1 29 -3.7 6 -1.7 6 -1.7 6 -1.7 6 -1.7 6 -1.7 6 -1.7 6 -2.2 43 -4.4 9 -0.2 43 -1.0 4 -0.7 2 -4.4 9 -3.4 4 -3.4 4 -3.4 4 -3.4 3 -3.4	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,0 6 -4,9 4 -4,0 6 -5,6 8 -5,3 78 -1,2 29 -4,7 2 -1,0 4 -0,2 43 -4,4 9	[Asp ³]MC-LL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.7 6 -1.7 6 -3.7 6 -1.7 6 -3.7 6 -1.7 6 -3.3 6 -4.4 21 -5.6 3 -6.8 3 -1.2 29 -4.7 2 -1.2 29 -4.4 21 -5.6 3 -3.4 4 -3.4 4 -3.4 4 -3.4 4 -3.4 4
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7-1	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - - CO, H ₂ O - - CO, H ₂ O - - H ₂ O, NH ₃ - H ₂ O, NH ₃ - H ₂ O, NH ₃ - H ₂ O, NH ₃ - H ₂ O, NH ₃ - - H ₂ O, NH ₃ - - NH ₃ - - NH ₅ - - NH ₅ - - - NH ₅ - - - NH ₅ - - - - NH ₅ - - - - - - - - - - - - -	▲ ppm 1.2 7.3 -2.2 -1.3 -4.8 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -3.6 -4.5 -1.9 -7.3 -0.1 -7.3 -0.1 -7.3 -1.9 -2.4 -4.5 -1.9 -2.4 -4.5 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -1.9 -2.4 -2.5 -1.9 -2.4 -4 -2.5 -1.9 -2.4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.5 -1.9 -2.4 -4 -4 -2.7 -1.9 -2.4 -4 -4 -4 -2.7 -1.9 -2.4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	MC-LL (%) 14 5 61 15 15 15 15 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2,0 49 2,9 19 -5,3 14 -4,3 2 -3,7 41 -5,1 3 9,7 12 3,7 13 -3,5 6 -4,5 22 0,7 14 -4,5 5 6,6 5 0,7 16 -4,5 5 6 5 0,7 16 -4,5 5 6,6 5 0,9 14 -2,1 16 5,7 8 -1,0 37 -4,3 18 1,4 20	MC-LA Δ I (%) 6.6 15 15.6 6 15 1.1 51 -4.6 21 -3.8 2 1.6 26 1.7 78 2 1.3 36 0.1 33 2.5 5 15.6 6 4.1 8 -7.7 2 -1.8 1 -4.6 80 -3.1 29 -27.9 1 -5.2 41 -3.1 29 -27.9 1 -5.2 41 -3.1 6 -1.9 7 -2.7.9 1 -5.2 41 -3.1 6 -3.1 6 -4.0 11 -1.9 7 2.9 4 -7.4 2 0.3 20 2.7 4 -3.1 39 -0.7 95 -2.2 57 -1.0 24 -1.0 24 -1.0 24 -1.0	MC-Laba ∆ I ppm (%) -15,0 16 -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2 1,2 12 5,8 8 4,3 21 -0,4 61 -5,4 2 -5,4 2 -1,9 16	MC-LV A I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -1.7 6 -2.2 28 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -4.7 2 -1.0 4 -0.7 2 -4.4 9 -3.0 56 -3.4 39 -2.9 100 -3.0 56	MC-VL Δ I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.7 6 -0.7 2 -4.9 4 -4.0 6 -4.9 4 -4.6 2 -4.7 2 -4.7 2 -1.2 29 -4.7 2 -1.0 2 -2.9 10 -3.4 39 -2.9 100 -3.0 56 -4.1 56	[Asp ³]MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -5.7 19 -2.3 28 -1.1 29 -3.7 6 -1.7 6 -3.3 6 -4.4 21 -5.6 3 -1.2 29 -4.7 2 -1.0 4 -0.2 43 -4.4 9 -4.4 9 -4.4 9 -4.4 9
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 7-1 3-4-5(?C ₀ H ₁₀ O)-6-7-1 3-4-5(?C ₀ H ₁₀ O)-6-7-1 3-4-5(?C ₀ H ₁₀ O)-6-7-1 3-4-5(?C ₀ H ₁₀ O)-6-7-1 3-4-5(?C ₀ H ₁₀ O)-6-7-1 4-5(?C ₀ H ₁₀ O)-6-7-1 4-5(?C ₀ H ₁₀ O)-6-7-1-2-3- 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5-7-1-2-5-7-1 5(?C ₀ H ₁₀ O)-6-7-1-2-5	ssignment <u>Neutral losses</u> CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - CO, H ₂ O - - CO, H ₂ O - - H ₂ O, NH ₃ NH ₅ H ₂ O, NH ₅ NH ₅ H ₂ O, NH ₅ NH ₅ - H ₂ O, NH ₅ - - NH ₅ - NH ₅ - - NH ₅ - - NH ₅ - - - - - - - - - - - - -	A ppm 1,2 7,3 -2,2 -1,3 -4,8 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6 -3,6	MC-LL I (%) 14 5 61 15 15 15 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2,0 49 2.9 15 -5,3 4 -4,3 2 -3,7 41 -5,1 8 0,5 14 3,2 23 0,9 18 9,7 12 3,7 13 -3,5 6 -4,5 27 0,7 18 -4,5 27 0,7 18 -2,1 16 5,7 18 -1,0 37 -4,3 14 0,9 14 -2,1 16 5,7 18	MC-LA A I (%) (%) 6,6 15 15,6 6 1,1 51 -3,8 2 1,6 26 -0,7 8 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -27,9 1 -5,1 4 5,2 41 -2,7,9 1 -1,8 1 -29 4 -2,9 4 -1,0 7 2,9 4 -7,4 2 0,3 20 2,7 4 6,7 4 -3,1 39 -0,7 95 2,2 57 -12,3 6 -1	MC-Laba Δ I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 4 -15,4 7 -8,9 4 -2,5 20 -6,9 7 13,5 2 2,5 20 -6,9 7 13,5 2 1,2 12 5,8 8 4,3 21 -0,4 61 2,2 35 -5,9 21 -6,9 22	MC-LV A I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.8 56 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -1.7 10 -3.7 16 -1.7 16 -3.7 16 -1.7 16 -3.3 16 -0.7 12 -4.9 14 -4.6 12 -4.4 12 -5.6 3 -5.3 78 -1.2 29 -4.4 12 -0.2 43 -4.7 12 -0.2 43 -0.2 43 -3.4 4 -3.0 566 -4.1 16 -9.0 44 -6.3 19	[Asp ³]MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -2.3 28 -1.7 6 -2.3 28 -1.7 6 -3.7 6 -1.7 6 -5.6 3 -1.2 29 -4.4 21 -0.2 43 -4.4 5 -1.2 29 -4.4 5 -1.2 29 -4.4 5 -2.9 100 -3.0 56 -3.4 4 -3.4 4 -9.0 44 -6.3 19
Product ion a: Aa ^x -Aa ^x (X = 1 - 7) 6-7 6 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3-4 7-1-2-3 7-1-2-3 7-1-2-3 7-1-2-7 7-1 7-1 7-1 7-1 7-1 7-1 7-1 7	Signment Neutral losses CO, H ₂ O - - CO, H ₂ O - CO, H ₂ O - H ₂ O NH ₃ H ₂ O, NH ₃ - H ₂ O NH ₄ H ₂ O, NH ₅ - H ₂ O NH ₅ H ₂ O, NH ₅ - NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ NH ₅ C ₃ H ₁₂ O, NH ₅ - NH ₅ NH	A ppm 1.2 7.3 -2.2 -1.3 -4.8 9 -1.9 -6.8 6.3 6.4 5 2.4 -7.3 -0.1 -7.3 4 -0.1 -7.3 -0.1 -7.3 -0.1 -7.3 -1.5 -2.7 -1.9 -2.4 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -2.2 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.5 -2.7 -2.7 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -1.9 -2.4 -2.5 -2.7 -7.3 -2.4 -2.5 -2.5 -2.7 -7.3 -2.4 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	MC-LL I (%) 14 5 61 15 15 15 17 27 23 5 5 5 5 5 5 5 5 5 5 5 5 5	MC-LM Δ I ppm (%) 6.0 16 3.7 13 -2.0 49 2.9 10 -5.3 4 -4.3 2 -3.7 41 -5.1 8 0.5 14 3.2 23 0.9 19 9.7 12 3.7 13 -3.5 16 -4.3 2 0.7 13 -3.5 15 -4.5 27 0.7 14 4.5 32 5.6 5 0.9 14 -2.1 15 5.7 18 -1.0 37 -4.9 84 -0.3 43 1.4 20 -2.6 14 1.5 13	MC-LA A I (%) (%) 6,6 15 15,6 6 1,1 51 -4,6 21 -3,8 2 1,6 26 -0,7 4 1,2 26 1,3 36 0,1 33 2,5 5 15,6 6 4,1 8 -7,7 2 -1,8 1 -27,9 1 -5,1 4 5,2 41 -3,1 6 -14,0 1 -19 7 2,9 4 -7,4 2 0,3 20 2,7 4 6,7 4 -3,1 39 -0,7 95 -2,2 57 -12,3 6 -1,0 22 <trd>2,3</trd>	MC-Laba A I ppm (%) -15,0 16 -15,4 7 -2,3 32 6,5 8 -2,7 5 -4,4 23 5,7 2 -9,9 14 16,1 14 0,9 16 3,9 14 -15,4 7 -8,9 14 -3,1 17 8,2 2 2,5 20 -6,9 7 13,5 2 15,0 5 1,2 12 5,8 8 4,3 21 -0,4 61 2,2 35 -5,4 2 -6,9 22 -10,2 14	MC-LV A I ppm (%) -0.3 16 -1.7 16 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -4.7 10 -2.3 28 -1.1 29 -3.7 16 -1.7 6 -3.3 6	MC-VL Δ I ppm (%) -0,3 16 -1,7 6 -2,9 62 -0,5 18 -4,7 10 -6,8 5 -2,3 28 -1,1 29 -3,7 6 -1,7 6 -3,3 6 -0,7 2 -4,9 4 -4,6 2 -4,4 21 -5,6 8 -5,6 8 -5,6 8 -5,6 8 -1,2 29 -4,4 21 -5,6 8 -1,2 29 -4,7 2 -10 4 -0,2 43 -2,9 100 -3,0 56 -4,1 5 -9,0 44 -6,3 19 -6,6	Asp ³ MC-LL A I ppm (%) -0.3 16 -1.7 6 -2.9 62 -0.5 18 -4.7 10 -6.8 5 -1.7 6 -3.7 6 -1.7 6 -3.3 6 -4.4 21 -5.6 8 -1.2 2.9 -1.0 4 -1.2 2.9 -1.4.4 21 -5.6 8 -3.4 4 -3.4 39 -2.9 100 -3.0 56 -3.0 34 -3.0 34 -3.0 34 -3.0 56 -3.0 56 -3.1 5 -6.3 20

Supplementary Table S2. Exact ion masses (Calc, m/z), accuracies (Δ , ppm) and intensities (I, %) of UPLC-ESI-QTOF product ion spectra of protonated MCs identified in *Fischerella* sp. CENA161. Blue bars show the relative intensities of the product ions of MC isoforms.

			MC-LL		MC-L	_M		MC-	-LA		MC-L	aba		MC-L	/
Product ion assignment		Calc	ΔΙ	Calc	Δ	1	Calc	Δ	1	Calc		I.	Calc	Δ	1
No Aa ^x -Aa ^x (X = 1 - 7)	Neutral losses	(<i>m</i> /z)	ppm (%)	(<i>m/z</i>)	ppm	(%)	(<i>m/z</i>)	ppm	(%)	(<i>m/z</i>)	ppm	(%)	(<i>m/z</i>)	ppm	(%)
1 1-2-3-4-5-6-7	H₂O	934,5284	-3,2 24	952,4849	-0,7	24	892,4815	-3,2	24	906,4971	-0,3	21	920,5128	-2,8 26	ò
2 1-2-3-4-5-6-7	NH ₃	935,5126	0,9 25	953,4690	5,5	22	893,4656	-0,2	24	907,4813	0,0	22	921,4969	0,2 25	5
3 1-2-3-4-5-6-7	CH ₃ OH	920,5128	-2,0 10	938,4692	###	10	878,4658	-0,3	13	892,4815	####	8	906,4971	-9,2 1	
4 1-2-3-4	-	427,2551	-1,9 19	445,2115	-0,1	17	385,2082	1,1	16	399,2238	-1,0	12	413,2395	-2,2 2	
5 1-2-3-4-NH ₂	-	444,2817	-1,7 31	462,2381	-3,4 🕻	37	402,2347	0,7	35	416,2504	-4,3	20	430,2660	-4,6 32	2
6 1-2-3-4	CO	399,2602	-2,7 15	417,2166			357,2132	###	5	371,2289	-5,1	5	385,2445	-4,1 1	
7 1-2-3	CO, H ₂ O	268,1656	-3,6 17	268,1656	0,5	14	268,1656	1,2	26	268,1656	-9,9	14	268,1656	-5,7 19	
8 1-2	CO	157,1335	1,0 4	157,1335			157,1335	6,4	5	157,1335	2,9	3	157,1335	-2,5 6	
9 2-3-4	-	356,2180	0,6 10	374,1744	2,6	Ð	314,1710	4,6	13	328,1867	####	7	342,2023	-2,0 12	2
10 2-3-4-NH ₂	-	373,2445	-0,9 12	391,2010	-5,5	15	331,1976	1,8	21	345,2132	-8,0	8	359,2289	-5,4 1	3
11 2-3-4	CO	328,2231	-3,3 5	346,1795			286,1761	7,6	3	300,1918	-1,3	2	314,2074	2,0 10)
12 2-3-4	CO, H₂O	310,2125	-2,3 8	328,1689	2,3	2	268,1656	1,2	26	282,1812	7,4	22	296,1969		
13 2-3	-	243,1339	-1,0 27	243,1339	0,5 8	3	243,1339	-2,6	5	243,1339	13,8	4	243,1339	-6,9 7	
14 2-3-NH ₂	-	260,1605	-2,2 15	260,1605			260,1605			260,1605			260,1605		
15 2-3	CO	215,1390	-0,6 45	215,1390			215,1390	5,5	1	215,1390			215,1390		
16 2-3	CO, H₂O	197,1285	-1,3 9	197,1285			197,1285	12,9	2	197,1285			197,1285	-7,6 2	
17 2	CO	86,0964	5,5 32	86,0964	-0,3	17	86,0964	3,2	30	86,0964			86,0964	-2,0 24	L
18 3-4	-	243,1339	-1,0 27	261,0904	-3,7	19	201,0870	-3,4	25	215,1026	5,4	15	229,1183	-4,9 22	2
19 3-4-NH ₂	-	260,1605	-2,2 15	278,1169	-5,4	22	218,1135	1,2	27	232,1292	0,1	14	246,1448	7,4 44	
20 3-4	CO	215,1390	-0,6 45	233,0954	-4,5	26	173,0921	6,5	41	187,1077	1,0	26	201,1234	-3,6 50)
21 3-4	CO, H₂O	197,1285	-1,3 9	215,0849	_		155,0815	1,3	36	169,0972	26,3	5	183,1128	-1,4 7	
22 "3	CO, H₂O	84,0444	7,3 5	84,0444	3,7	13	84,0444	15,6	6	84,0444	####	7	84,0444	-1,7 6	
23 4-5-6-7-1	NH3	693,3858	-1,3 14	711,3422			651,3388			665,3545			679,3701		
24 4	CO	86,0964	5,5 32	104,0528	7,2	5	44,0495		_	58,0651	-2,2	2	72,0808	-8,7 8	
25 5-6-7-1-2	NH ₃	693,3858	-1,3 14	693,3858	1,7	12	693,3858	9,2	14	693,3858	0,9	9	693,3858	-5,3 17	1
26 5-6-7-1	NH ₃	580,3017	-0,4 20	580,3017	-3,0	15	580,3017			580,3017	1,5	10	580,3017	-2,7 24	L
27 5-6-7-1	H_2O , NH_3	562,2912	1,7 2	562,2912	-8,8	2	562,2912			562,2912	-4,6	2	562,2912	-3,0 3	
28 5-6-7	NH ₃	509,2646	-1,4 29	509,2646	-2,8	26	509,2646	-2,2	31	509,2646	-3,4	17	509,2646	-4,4 30	
29.5	-	314,2115	-4,5 4	314,2115	-2,6	1	314,2115	0,6	5	314,2115	0,6	5	314,2115	### 10)
30.5	NH ₃	297,1849	-0,7 5	297,1849	-1,7		297,1849	5,7	6	297,1849	####	3	297,1849	-6,9 6	
31 6-7-1-2-3-4	-	639,3348	-0,2 13	657,2912	-0,1	10	597,2879	1,6	11	611,3035	####	11	625,3192	-2,6	b
32 6-7-1-2-3-4	H ₂ O	621,3243	-3,9 5	639,2807	-8,3		5/9,2//3	9,0	6	593,2930	-3,1	4	607,3086	-2,1 6	
33 6-7-1-2-3-4-INH2	-	050,3014	-2,2 2	6/4,31/8	-3,2 🕻	3	614,3144	-7,0	3	628,3301	5,9	Z	642,3457	-1,7 3	
34 6-7-1-2-3-4	00	611,3399	-3,1 2	629,2963	0.0		569,2930	4,8	3	583,3086	0.0	l.	597,3243	-0,9 2	
35 6-7-1-2-3-4	CO, H ₂ O	593,3293	3,0 4	611,2858	0,6 🖁	+	551,2824	-3,4		565,2980	-2,9	4	5/9,313/	-2,7 4	
30 0-7-1-2-3	H ₂ O	508,2402	-2,3 9	508,2402	07	4.4	508,2402	1,4	D C	508,2402	10,4	00	508,2402	-5,6 9	
3/ 0-/-1-2	-	351,2082	-1,9 00	391,2082	-3,7	4	351,2082	1,0	20	391,2082	-4,4	23	351,2082	-4,8 0	
30 6.7	00, Π ₂ 0	213 0970	10 74	212 0970	-0,1 4	*	212 0970	-0,7	91	212 0970	3,7	50	212 0970	-0,9 4)
40.6.7	-	105 0764	0.6 26	105 0764	-0,4	21	105 0764	2.7	22	213,0070	-3,1	17	105 0764	-2,5 64	-
41 6 7	20	195,0704	61 1	195,0704	22	24	195,0704	-2,7	00	195,0704	16.0	2	195,0704	11 9 2	-
410-7		100,0921	0,1 11	100,0921	2,5		100,0921			100,0921	10,9	2	100,0921	11,0 2	

			MC-LL		MC-L	м		MC-LA			MC-La	aba		MC-	LV	
Product ion assignment		Calc	Δ Ι	Calc	Δ	I	Calc		T	Calc		I	Calc		1	_ 1
No Aa ^X -Aa ^X (X = 1 - 7)	Neutral losses	(<i>m</i> /z)	ppm (%)	(<i>m</i> /z)	ppm	(%)	(<i>m/z</i>)	ppm	(%)	(<i>m</i> /z)	ppm	(%)	(<i>m</i> /z)	ppm	(%	
42 6-7	CO, H₂O	167,0815	1,2 14	167,0815	5 6,0 1	6	167,0815	6,6 15		167,0815	5 ###	16	167,0815	-0,3	16	
43 6	CO, H₂O	84,0444	7,3 5	84,0444	4 3,7 1	В	84,0444	15,6 6		84,0444	l ### 🕻	7	84,0444	-1,7	6	
44 7-1-2-3-4	-	510,2922	-2,2 61	528,2486	6 -2,0 4	9	468,2453	1,1 51		482,2609	-2,3	32	496,2766	-2,9	62	
45 7-1-2-3-4-NH2	-	527,3188	-1,3 15	545,2752	2 2,9 1	9	485,2718	-4,6 21		499,2875	6,5	3	513,3031	-0,5	18	
46 7-1-2-3-4	CO	482,2973	-4,8 11	500,2537	7 -5,3 4		440,2504			454,2660	-2,7	5	468,2817	-4,7	10	
47 7-1-2-3-4	CO, H ₂ O	464,2867	-5,9 4	482,2432	2 -4,3 2	2	422,2398	-3,8 2		436,2554	L .		450,2711	-6,8	5	
48 7-1-2-3	-	397,2082	-1,9 60	397,2082	2 -3,7 4	1	397,2082	1,6 26		397,2082	2 -4,4	23	397,2082	-4,8	56	
49 7-1-2-3	CO, H ₂ O	351,2027	-6,8 4	351,2027	7 -5,1 4	-	351,2027	-0,7 4		351,2027	5,7	2	351,2027	-8,9	4	
50 7-1-2	-	268,1656	-3,6 17	268,1656	6 0,5 1	4	268,1656	1,2 26		268,1656	6 -9,9	14	268,1656	-5,7	19	
51 7-1	-	155,0815	4,5 27	155,0815	5 3,2 🛛	3	155,0815	1,3 36		155,0815	5 16,1	14	155,0815	-2,3	28	
52 7-1	CO	127,0866	2,4 23	127,0866	6 0,9 1	9	127,0866	0,1 33		127,0866	6 0,9	16	127,0866	-1,1	29	
53 7-1	NH ₃	138,0550	3,9 5	138,0550	9,7 2	2	138,0550	2,5 5		138,0550	3,9	1	138,0550	-3,7	6	
54 7	-	84,0444	7,3 5	84,0444	4 3,7 1	З	84,0444	15,6 6		84,0444	l #### [7	84,0444	-1,7	6	
55 1-2-3-4-5(?C ₉ H ₁₀ O)-6	H₂O	717,4182	-0,1 5	735,3746	6 -3,5 6	5	675,3712	4,1 8		689,3869	-8,9	1	703,4025	-3,3	6	
56 3-4-5(?C9H10)-6-7-1	-	705,3818	-7,3 3	723,3382	2		663,3348	-7,7 2		677,3505	5		691,3661			
57 3-4-5(?C9H10)-6-7-1	H ₂ O	687,3712	-4,4 4	705,3276	6		645,3243	-1,8 1		659,3399)		673,3556			
58 3-4-5(?C9H10)-6-7-1	NH ₃	688,3552	-1,5 7	706,3116	5		646,3083			660,3239)		674,3396			
59 3-4-5(?C9H10)-6-7-1	H ₂ O, NH ₃	670,3447	-1,9 3	688,3011	1		628,2977			642,3134	ļ.		656,3290			
60 4-5(?C9H10)-6-7-1	NH ₃	559,3126	-2,4 19	577,2690)		517,2657			531,2813	3		545,2970			
61 4-5(?C9H10)-6-7-1	H ₂ O, NH ₃	541,3021	-4,4 3	559,2585	5		499,2551			513,2708	3		527,2864			
62 5(?C9H10)-6-7-1-2-3-4	l-	818,4658	-2,5 77	836,4223	3 -5,8 6	51	776,4189	-4,6 80		790,4345	5 -2,4	14	804,4502	-5,3	78	
63 5(?C9H10O)-6-7-1-2-3-4	H ₂ O	800,4553	-2,7 28	818,4117	7 -4,5 2	27	758,4083	-3,1 29		772,4240	.3,1	17	786,4396	-1,2	29	
64 5(?C9H10)-6-7-1-2-3-4	CO	790,4709	-7,1 2	808,4273	3		748,4240	### 1		762,4396	8,2	2	776,4553	-4,7	2	
65 5(?C9H10)-6-7-1-2-3-4	CO, H ₂ O	772,4604	-6,4 4	790,4168	3 0,7 🛿		730,4134	-5,1 4		744,4291			758,4447	-1,0	4	
66 5(?C9H10)-6-7-1-2-3-4	NH ₃	801,4393	-0,7 43	819,3957	7 4,5 3	12	759,3923	5,2 41		773,4080	2,5	20	787,4236	-0,2	43	
67 5(?C9H10)-6-7-1-2-3-4	H ₂ O, NH ₃	783,4287	-2,3 8	801,3851	1 5,6 5	5	741,3818	-3,1 6		755,3974	-6,9	7	769,4131	-4,4	9	
68 5(?C9H10)-6-7-1-2-3	-	705,3818	-7,3 3	705,3818	3		705,3818	### 1		705,3818	3 13,5	2	705,3818	-0,7	2	
69 5(?C9H10)-6-7-1-2-3	H ₂ O	687,3712	-4,4 4	687,3712	2 0,9 4	-	687,3712	-1,9 7		687,3712	2 15,0	5	687,3712	-4,9	4	
70 5(?C9H10)-6-7-1-2-3	NH ₃	688,3552	-1,5 7	688,3552	2 -2,1 6	5	688,3552	2,9 4		688,3552	2		688,3552	-4,0	6	
71 5(?C9H10)-6-7-1-2-3	H ₂ O, NH ₃	670,3447	-1,9 3	670,3447	7 5,7 3	5	670,3447	-7,4 2		670,3447	,		670,3447	-4,6	2	
72 5(?C9H10)-6-7-1-2	NH ₃	559,3126	-2,4 19	559,3126	3		559,3126	0,3 20		559,3126	5 1,2	12	559,3126	-4,4	21	
73 5(?C9H10)-6-7-1-2	H ₂ O, NH ₃	541,3021	-4,4 3	541,3021	1		541,3021	2,7 4		541,3021			541,3021	-5,6	3	
74 5(?C9H10)-6-7-1	-	463,2551	2,3 4	463,2551	1		463,2551	6,7 4		463,2551	5,8	3	463,2551	-3,4	4	
75 5(?C ₉ H ₁₀ O)-6-7-1	NH ₃	446,2286	-2,2 34	446,2286	6 -1,0 3	17	446,2286	-3,1 39		446,2286	4,3	21	446,2286	-3,4	39	
76 5(?C ₉ H ₁₀ O)-6-7	NH ₃	375,1914	-0,7 90	375,1914	4 -4,9 8	4	375,1914	-0,7 95		375,1914	-0,4	61	375,1914	-2,9	100	
77 5(?C ₉ H ₁₀ O)	NH ₃	163,1117	0,4 49	163,1117	7 -0,3 4	3	163,1117	2,2 57		163,1117	2,2	35	163,1117	-3,0	56	
78 5-6	C9H10O, H2O, NH2	274,1438	-4,6 4	274,1438	3 -4,3 3	5	274,1438	### 6		274,1438	-5,4	2	274,1438	-4,1	5	
79 5-6	C ₉ H ₁₂ O, CO ₂ , NH ₃	246,1489	-1,9 20	246,1489	9 1,4 2	20	246,1489	-1,0 24]	246,1489	-1,9	16	246,1489	-9,0	44	
80 5	CH ₃ OH	282,1852	-2,6 15	282,1852	2 -2,6 1	4	282,1852	2,3 22]	282,1852	-6,9	22	282,1852	-6,3	19	
81 5	CH ₃ OH, NH ₃	265,1587	-2,6 15	265,1587	7 1,5 1	3	265,1587	0,0 19		265,1587	####	14	265,1587	-6,6	20	
82 C ₃ H₄O	Adda	258,1852	-1,7 24	258,1852	2 2,6 2	3	258,1852	-2,5 30		258,1852	4,1	12	258,1852	-5,8	29	