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Abstract

The longest common extension problem is to preprocess a given string of length n into a data structure
that uses S(n) bits on top of the input and answers in T (n) time the queries LCE (i, j) computing the
length of the longest string that occurs at both positions i and j in the input. We prove that the trade-off
S(n)T (n) = Ω(n logn) holds in the non-uniform cell-probe model provided that the input string is read-only,
each letter occupies a separate memory cell, S(n) = Ω(n), and the size of the input alphabet is at least
28⌈S(n)/n⌉. It is known that this trade-off is tight.
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1. Introduction

Data structures for solving the so-called longest
common extension (LCE) problem (sometimes re-
ferred to as the longest common prefix problem)
play the central role in the wide range of string
algorithms. In this problem we must preprocess
an input string of length n so that one can answer
the queries LCE (i, j) computing the length of the
longest string that occurs at both positions i and
j in the input. Since the existing solutions to this
problem often, in practice particularly, constitute
a bottleneck either in space or in time of the al-
gorithms relying in their core on the LCE queries,
many efforts have been made in the past decades to
develop better LCE data structures.
In this paper we prove that the trade-off1

S(n)T (n) = Ω(n logn) holds for any data struc-
ture that solves the LCE problem using S(n) bits
of space (called additional space) on top of the input
and T (n) time for the LCE queries, assuming that
the input string is read-only, each letter occupies a
separate memory cell, and S(n) = Ω(n) (such space
is used in most applications of the LCE problem).
For S(n) = Ω(n), this new trade-off improves by
logn factor the trade-off S(n)T (n) = Ω(n) estab-
lished by Bille et al. [2], who used a simple reduction
to a lower bound obtained by Brodal et al. [3] for
the so-called range minimum queries problem.

1For brevity, log denotes the logarithm with base 2.

Our result is proved in the cell-probe model [12],
in which the computation is free and time is counted
as the number of cells accessed (probed) by the
query algorithm. The algorithm is also allowed
to be non-uniform, i.e., we can have different al-
gorithms for different sizes n of the input. We as-
sume that each letter of the input string is an inte-
ger located in a separate memory cell and each cell
can store any integer from the set {0, 1, . . . , n−1}.
Hence, the maximal size of the input alphabet is
n; this is a common assumption justified in, e.g.,
[4]. However, our main theorem poses a more
specific restriction: the size of the input alpha-
bet must be at least 28⌈S(n)/n⌉. For instance,
our trade-off is applicable for constant alphabets if
S(n) = Θ(n), but to apply the trade-off in the case
S(n) = Θ(n

√
logn), we have to have an alphabet

of at least 2Ω(
√
logn) size.

Overview of LCE data structures. The classical so-
lutions for the LCE problem use Θ(n logn) bits of
space and O(1) time for queries (e.g., see [5, 9]).
In [1] Bille et al. presented a RAM data struc-
ture that solves the LCE problem using O(τ) time
for queries and O(n logn

τ ) bits of additional space,
where τ is a parameter such that 1 ≤ τ ≤ n. This
result shows that our trade-off is tight and cannot
be improved. The construction time of this data
structure (in O(n logn

τ ) bits of space) is O(n2+ε),
which is unacceptably slow. In [15] Tanimura et al.
proposed a data structure with significantly better
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O(nτ) construction time within the same O(n logn
τ )

bits of additional space but with slightly subopti-
mal query time O(τ min{log τ, log n

τ }).
Denote by σ the size of the input alphabet. Re-

cently, Tanimura et al. [16] described a data struc-
ture that, for σ ≤ 2o(logn), uses o(n logn) bits of ad-
ditional space and O(1) time for LCE queries thus
“surpassing” our trade-off and showing the impor-
tance of the condition σ ≥ 28⌈S(n)/n⌉. We believe
also that our trade-off does not hold if the algorithm
can read Ω(logσ n) consecutive letters of the input
string in O(1) time packing them in one Ω(logn)-
bit machine word; this model reflects the situation
that one can often observe in practice.
All mentioned results consider applications in

which the input string is treated as read-only. In
practice, however, we usually need a data structure
that provides fast access to the string and allows us
to answer the LCE queries, but the space occupied
by the string itself can be reorganized. The data
structure of [6] using this model occupies O(n logn

τ )
bits of additional space and answers LCE queries
in O(log∗ n(log n

τ + τ log 3/ logσ n)) time, where τ is
a parameter such that 1 ≤ τ ≤ n (however, this
result still does not break our trade-off). The con-
struction time for this structure (in O(n logn

τ ) bits)

is O(n(log∗ n + logn
τ + log τ

logσ n )). In [14] Prezza de-

scribed an “in-place” data structure2 that replaces
n⌈logσ⌉ bits occupied by the input with a data
structure that allows to retrieve any substring of
length m of the input in optimal O( m

logσ n ) time and

answers the LCE queries in O(log ℓ) time, where ℓ
is the result of the query.3 For his data structure,
Prezza presents only a randomized construction al-
gorithm working in O(n logn) expected time and
O(n logn) bits of space.
In certain applications the exact accuracy of the

LCE queries is less important than construction
time, query time, and space. For such applica-
tions, several Monte Carlo data structures were de-
veloped: their construction algorithm builds with
high probability (i.e., with probability 1 − 1

nc for
any specified constant c > 0) a valid data structure

2The data structure uses only negligible O(log2 n) bits of
space on top of the input.

3A similar result in [13] seems to be very practical, but
its correctness in the RAM model, where n tends to infinity,
relies on a questionable assumption that the natural density
of the logarithms of the Mersenne primes is non-zero (this
is required to process these primes in constant time with
Θ(logn)-bit machine words.)

answering any LCE query correctly but sometimes
can produce a faulty data structure. Prezza [14] de-
scribed a Monte Carlo version of his “in-place” data
structure that answers the LCE queries in O(log ℓ)
time and has a construction algorithm working
in O( n

logσ n ) expected time using the same mem-

ory, i.e., also “in-place”. Bille et al. [1] presented
a Monte Carlo version of their data structure for
read-only inputs that answers the LCE queries in
O(τ) time using O(n logn

τ ) bits of additional space
and has O(n log n

τ ) construction time (within the
same space), where 1 ≤ τ ≤ n. Gawrychowski and
Kociumaka [7, Th. 3.3] described a modification of
this Monte Carlo solution for read-only inputs that
has the same optimal space and query time bounds
but can be constructed in optimal O(n) time.
Recently, several LCE data structures for com-

pressed strings were developed. For a more de-
tailed discussion on this topic, we refer the reader
to [10, 16] and references therein.

2. Main Result

Preliminaries. A string s of length n over an al-
phabet Σ is a map {0, 1, . . . , n−1} 7→ Σ, where n
is referred to as the length of s, denoted by |s|.
We write s[i] for the ith letter of s. A string
s[0]s[1] · · · s[j] is a prefix of s. For any i and j,
the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is
denoted by [i..j].

Theorem. In the non-uniform cell-probe model the
trade-off S(n)T (n) = Ω(n logn) holds for any data
structure that solves the LCE problem for a read-
only string of length n using S(n) bits of space and
T (n) time for queries assuming that each input let-
ter occupies a separate cell, the size of the input
alphabet is at least 28⌈S(n)/n⌉, and S(n) = Ω(n).

Proof. Without loss of generality, assume that
T (n) ≥ 1. Suppose, for the sake of contradic-
tion, that S(n)T (n) /∈ Ω(n logn). Then, there
is an infinite set N of positive integers such

that limn∈N
S(n)T (n)
n logn = 0. Hence, we obtain

limn∈N
S(n)
n logn = 0. Therefore, there is a posi-

tive function ε(n) such that S(n) = ε(n)n logn for
n ∈ N and ε(n) tends to 0 as n → +∞.
Let us first construct a family F of inputs for

the subsequent analysis. Define σ = 28⌈ε(n) logn⌉.
The input alphabet is [1..σ]. Note that σ ≥ 28

for n > 1 and σ = 28⌈S(n)/n⌉ for n ∈ N . Since
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log σ = o(log n) and, consequently, σ < n for suf-
ficiently large n, each letter of the alphabet fits
in one memory cell. Observe that, since S(n) =
ε(n)n logn ≤ 1

8n logσ for n ∈ N , we are not able
to encode the whole string in S(n) bits and answer
the LCE queries without any access to the string.

Denote k = ⌊ 1
2 logσ n⌋. Since log σ = o(log n),

we have k = Θ( logn
log σ ) = ω(1). Therefore, k ≥ 1

for sufficiently large n. Let s1, s2, . . . , sσk denote
all strings of length k over the alphabet [1..σ].
The family F consists of all strings of the form
s1s2 · · · sσk t, where t is a string of length n − kσk

over the alphabet [1..σ]. Since σkk ≤ √
n logn, it is

easy to verify that 1
2n ≤ n−kσk for n ≥ 28. Hence,

we obtain |F| ≥ σ
1

2
n = 2

1

2
n log σ for n ≥ 28. For

convenience, we assume hereafter that minN ≥ 28.

By the pigeonhole principle, there is a subfam-
ily I ⊆ F such that |I| ≥ |F|/2S(n) and, for
any strings s, s′ ∈ I, the encodings of s and s′ in
the S(n) bits of the considered LCE data struc-
ture are equal. Since S(n) ≤ 1

8n logσ for n ∈
N , we obtain |I| ≥ |F|/2S(n) ≥ 2

1

2
n log σ−S(n) ≥

2
1

2
n log σ− 1

8
n log σ = 2

3

8
n log σ for n ∈ N .

Let us prove that, for each s ∈ I, there is a set

of positions Ts ⊆ [0..n−1] such that |Ts| ≤ T (n)n
k

and, for any string s′ ∈ I, we have s = s′ iff
s[i] = s′[i] for every i ∈ Ts. Choose s ∈ I;
s = s1s2 · · · sσk t for a string t. Without loss
of generality, assume that |t| is a multiple of
k (the case |t| mod k 6= 0 is similar). Since
{s1, s2, . . . , sσk} is the set of all strings of length k
over the alphabet [1..σ], there must exist exactly
one sequence i1, i2, . . . , ir, where r = |t|/k, such
that t = si1si2 · · · sir and ij ∈ [1..σk] for j ∈ [1..r].
Let j ∈ [1..r]. By the definition of LCE , the query
LCE (|s1s2 · · · sij−1|, |s1s2 · · · sσksi1si2 · · · sij−1

|)
reads at most T (n) letters of the string s and
returns as an answer a number that is not less
than |sij |. Denote by T j

s the set of all positions
i ∈ [0..n−1] such that the letter s[i] was accessed
by the query. Define Ts = T 1

s ∪ T 2
s ∪ . . . ∪ T r

s . It is

easy to see that |Ts| ≤ T (n)|t|
k ≤ T (n)n

k . If a string
s′ ∈ I coincides with the string s on the positions
Ts, then, by the definition of Ts, any query
LCE (|s1s2 · · · sij−1|, |s1s2 · · · sσksi1si2 · · · sij−1

|)
on the string s′ must return the same result as
the corresponding query on the string s, i.e., the
algorithm cannot distinguish s and s′ on such
queries. Thus, the numbers computed by these
queries are not less than |sij |. Consequently, since
the algorithm is assumed to be correct and the

string s1s2 · · · sσk is a common prefix of s and s′,
the string s′ must be equal to s.
Clearly, there are at most 2n subsets Ts (as there

are at most 2n subsets of [0..n−1]). Thus, by the
pigeonhole principle, there exists a subfamily I ′ ⊆
I such that |I ′| ≥ |I|/2n and Ts = Ts′ whenever

s, s′ ∈ I ′. Since |I| ≥ 2
3

8
n log σ for n ∈ N and

log σ ≥ 8, we obtain |I ′| ≥ |I|/2n ≥ 2
3

8
n log σ−n =

2
1

4
n log σ+ 1

8
n log σ−n ≥ 2

1

4
n log σ for n ∈ N .

By the choice of I ′, the set Ts is the same for ev-
ery s ∈ I ′. Denote this set by T . By the definition
of T , the size of the family I ′ is upper bounded
by the number σ|T | = 2|T | log σ ≤ 2T (n)n log σ/k.
If T (n) < 1

4k for arbitrarily large numbers n ∈
N , then σ|T | < 2

1

4
n log σ ≤ |I ′|, which is a con-

tradiction. Thus, we obtain T (n) ≥ 1
4k for all

sufficiently large n ∈ N and hence S(n)T (n) ≥
ε(n)n logn · 14k. Since S(n) = ε(n)n logn for n ∈ N
and S(n) = Ω(n), the function ε(n) can be chosen
so that ε(n) logn = Ω(1). Hence, k ε(n) logn =
⌊ 1
2

logn
8⌈ε(n) logn⌉⌋ε(n) logn = Θ(logn). Therefore,

we obtain lim inf
n∈N

S(n)T (n)
n logn ≥ lim inf

n∈N

ε(n)n log n· 1
4
k

n log n =

lim infn∈N
Θ(n logn)
n log n > 0, which contradicts the as-

sumption limn∈N
S(n)T (n)
n logn = 0.

Remark. The assumption S(n) = Ω(n), which
plays its role in the last lines of the proof, is cru-
cial for our construction. The simple information
theoretic argument by which we obtained the sub-
family I eliminates any dependency on the S(n)
bits of space so that the query algorithm can “dis-
tinguish” the strings of I from each other only by
probing the input cells. Since each string from the
family I must contain the common “dictionary”
prefix of length kσk, k cannot exceed logn. The
idea of the construction of the sets T j

s for a string
s ∈ I is that any algorithm using significantly less
than k cell probes (as in the case T (n) = o(k))
cannot obtain enough information to distinguish all
strings of I. Thus, since k = O(log n), the best
bound for T (n) that one can obtain in this way is
T (n) = Ω(logn). This is the main reason why it is
not immediately clear how to adapt our proof for
the case S(n) = o(n).

3. Open Problems

As it follows from the theorem, the data structure
of Bille et al. [1] is optimal when additional space
is restricted to S(n) = Ω(n) bits. Still, there is a
logn gap between the upper and lower bounds for
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the problem when S(n) = o(n). We believe that the
approach of [1] can be modified to achieve the better
S(n)T (n) = O(n log S(n)) trade-off. We conjecture
that this trade-off is optimal.

Conjecture. In the non-uniform cell-probe model
the trade-off S(n)T (n) = Ω(n logS(n)) holds for
any data structure that solves the LCE problem for
a read-only string of length n using S(n) bits of
space and T (n) time for the LCE queries.

There are several other promising directions for
further investigations of the LCE data structures.
First, it would be interesting to obtain a version

of our result for randomized LCE data structures
that answer the LCE queries with high probability.
It is an open problem to provide a tight time and

space lower bound on the LCE data structures that
use the knowledge of the alphabet size σ. Further,
it is not clear how to generalize our result to the
practically important case when σ is very small and
the algorithm can read Ω(logσ n) consecutive letters
of the input string in O(1) time packing them in one
Ω(logn)-bit machine word.
It seems that still there are many possibilities for

improvements of upper bounds for the algorithms
that solve the LCE problem. The best currently
known algorithm constructing the data structure [1]
is unacceptably slow. Tanimura et al. [15] presented
a data structure with significantly faster construc-
tion time but with slightly suboptimal query time.
Thus, the development of a new optimal LCE data
structure with optimal construction time remains
an open problem.
For applications that do not consider the input

string as read-only, it is an open problem to develop
a data structure that provides access to the string in
optimal time as in the data structure of Prezza [14]
discussed above and supports the LCE queries in
o(log ℓ) time, where ℓ is the result of the query. It
is also interesting to obtain, if possible, any non-
trivial lower bounds for this model.
In practice, randomized construction algorithms

for LCE data structures usually behave better than
deterministic ones. There is a room for improve-
ments in this direction in the algorithms presented
in [1], for read-only inputs, and [14], for editable in-
puts. It is also interesting to consider for the later
setting the development of more time or space ef-
ficient Monte Carlo LCE solutions (for read-only
inputs, this problem is exhaustively solved in [7]).
Finally, on the purely theoretical side there are

some related open problems in the line of research

on general ordered and unordered alphabets. In
this classical setting even an LCE data structure
with optimal construction time and O(1) query
time still was not described. However, there is
a strong evidence [8] that, surprisingly, such data
structure exists; see [8, 11].
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