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Abstract

A shift from even-aged forest management to uneven-aged management practices leads to
a problem rather different from the existing straightforward practice that follows a rotation
cycle of artificial regeneration, thinning of inferior trees and a clearcut. A lack of realistic
models and methods suggesting how to manage uneven-aged stands in a way that is economi-
cally viable and ecologically sustainable creates difficulties in adopting this new management
practice. To tackle this problem, we make a two-fold contribution in this paper. The first
contribution is the proposal of an algorithm that is able to handle a realistic uneven-aged
stand management model that is otherwise computationally tedious and intractable. The
model considered in this paper is an empirically estimated size-structured ecological model
for uneven-aged spruce forests. The second contribution is on the sensitivity analysis of the
forest model with respect to a number of important parameters. The analysis provides us
an insight into the behavior of the uneven-aged forest model.

Keywords: Natural resources, Forest management, Nonlinear programing, Evolutionary
algorithms.

1. Introduction

Optimizing the use of forest resources has hundreds of years of history. The infinite hori-
zon model specified in Faustmann (1849), reintroduced by Samuelson (1976) and extended
in numerous papers like Kao and Brodie (1979) and Chen et al. (1980) served as a corner-
stone both in research and in practical forestry applications. In its generic form the model
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determines optimal forest rotation, i.e., the length of optimal interval between clearcuts.
However, it is seldom noticed that since this model is most suitable for plantations (Yoshi-
moto and Shoji, 1998), it has directed research to forests that actually cover only 7% of the
total world forest land area. Our study presents major progress in the line of research that
serves developing the management of more natural forest stands that have great potential
in solving several pressing problems related to forest environment.

The alternative to plantations is to rely on native tree species, natural regeneration and
continuous forest cover, i.e., to manage forests as heterogeneous uneven-aged systems. The
rationale of this model depends on tree species, but for shade-tolerant trees the economic
outcome may become fully competitive because of natural regeneration and more accurate
targeting of cuttings to those trees that are financially mature. Additionally, managing
forest resources in more natural and heterogamous state has high potential in coping with
problems such as climate change (Field et al., 2014), loss of biodiversity and landscape
esthetics (Thompson et al., 2009). Multi-criteria decision making approaches have also been
used in the past to meet multiple objectives in forest management problems (Steuer and
Schuler, 1978; Nhantumbo et al., 2001). Interest in continuous cover forestry is increasing
in Nordic countries and UK, for e.g., in Finland it has been released from a 70 year of
legislation ban from the beginning of 2014. According to surveys a major problem among
forestry professionals is the suspense of the alternative system’s economic viability (Valkonen
and Cheng, 2014).

While the Faustmann approach describes a chain of exactly similar even-aged cohorts,
the model for more natural forests includes the internal structure of heterogeneous trees.
As shown in the seminal paper by Adams and Ek (1974) this expands model dimensions
and the development of the research has been a struggle against limitations in computing
capacity. This has led researchers to develop various simplifications with the cost of losing
economically and mathematically sound theoretical structure as already surveyed by Getz
and Haight (1989). Most studies still circumvent the problems by studying the fundamen-
tally dynamic problem in a static setup with limited scientific progress and low practical
credibility. One problem is in solving a multiple state variable infinite horizon model from
any initial stand state. A straightforward solution for this problem was given already in
Haight and Monserud (1990): lengthen the planning horizon until the approach path to-
wards a stationary state (or cycle) becomes invariant from further lengthening and consider
it as an approximation of the infinite horizon solution. Given a single tree species cases
this leads to solvable problems with e.g., 200 periods and 24 optimized variables per period;
albeit non-linearities and non-convexities require special attention. Besides dimensionality
the other problem is that the optimal solution becomes cutting stand every period which
does not make sense in the presence of fixed harvesting cost and the fact that too small yield
is commercially invaluable. Fixed harvesting cost is taken into account in even-aged mod-
els, like Tahvonen et al. (2013), with the implication that optimal number of intermediate
cuttings is between zero and five periods (25 years) depending on factors like site fertility
and interest rate. However, in the even-aged problem all rotations are similar implying that
the time horizon in computation is relatively short (40-150 years) and the number of com-
binational variables are usually six or lower. In uneven-aged models Haight and Monserud
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(1990) take this into account by allowing cuttings every 20 years only. Wikström (2000)
includes fixed harvesting cost and computes solutions using tabu search under the simpli-
fication that regeneration is fixed to 50 trees per 5 years period and that stand volume is
not allowed to decrease below a level determined by Swedish forest legislation. He does
not interpret his results on harvesting interval but it seems to vary between 5 and 20 years
without any systematic pattern. In Tahvonen (2011) the model includes fixed harvesting
cost which leads to optimal harvesting period of 15-20 years under the constraint that the
interval is constant over time.

Given these studies, the proper solution method and most general solutions for the
uneven-aged management problem are still open. This is pressing in the practically most
important cases where the initial forest state is a consequence of even-aged management and
the problem is to solve optimal path or transition to uneven-aged management. This question
has been studied in numerous works with specifications without full generality. In this paper
we make a two-fold contribution. As the first contribution we develop a computational
method for solving uneven-aged stand management problems that is a large scale mixed
integer non-linear program; and as the second contribution we provide an analysis for the
uneven-aged stand management model. The solution method for handling the problem is
based on the following:

1. A two-level approach with genetic algorithm at the upper level and continuous non-
linear programing at the lower level: The approach is faster by more than an order of
magnitude in terms of computation time as compared to branch-and-bound method.
This supports handling of large scale uneven-aged management problems.

2. Modeling the infinite time horizon uneven-aged stand management problem into a
tractable problem by assuming transition and steady states: The assumption causes
no loss of generality as the transition and steady state lengths are assumed to be en-
dogenous subject to optimization. For an earlier study on forest management practices
where the time horizon is divided into transition and steady states the readers may
refer to Salo and Tahvonen (2003).

A faster algorithm allowed us to perform a number of computational studies by varying
the parameters in the uneven-aged stand management problem. This provided us an insight
into the behavior of the uneven-aged model. These insights may play a significant role in
directing future research on uneven-aged management.

The later part of the paper is structured as follows. In Section 2 we discuss the size-
structured stand model and introduce the net present value maximization problem. This is
followed by the description of the algorithm in Section 3 that is used for solving the opti-
mization problem. Thereafter, in Section 4 we present the results and provide comparisons
against the standard approaches that are used to solve uneven-aged stand management prob-
lems. Finally, the conclusions are provided in Section 5, where we also highlight the future
research directions on uneven-aged stand management. The paper includes appendices that
provides additional computational results.
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2. Size-structured Forestry model

The model being considered in this paper is a discrete infinite time horizon model that
involves two kinds of variables that are listed below:

1. Binary variables representing the harvesting stages, i.e., whether to harvest or not to
harvest at a particular time stage.

2. Continuous variables that define the state of the forest and the extent of harvests at
each time stage, among other variables.
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Figure 1: Forest management strategy on an infinite time horizon.

A forest management strategy is shown in Figure 1 that we want to optimize for maximum
net present value (NPV ) over an infinite horizon in a discrete time framework. The time
stages are represented as t = 0, 1, 2, . . . on an infinite time horizon. Harvesting stages are
represented by δt that takes values 0 or 1 with 1 denoting that harvesting is done and 0
denoting that no harvesting is done at a given time stage. The forest states and the extent
of harvests are represented with vectors xt and ht respectively. We discuss forest land of one
hectare. Larger forest areas require minor and straightforward modifications which we omit.
The size-structured forestry model defined in this section utilizes a number of symbols that
are described in the discussions. For ease of reference we have also provided these symbols
in Table 1.

Trees in the forest are subdivided into a finite number of size classes s for s = 1, 2, . . . , n
in increasing order. Let xst be the number of trees in size class s at stage t and define vector
xt = (xst). For t = 0, x0 is the given initial state of the forest. Let vector ht = (hst) denote
the level of harvesting at stage t. Component hst is the number of trees harvested in size
class s at time stage t. For all t, let δt be a binary variable indicating whether harvesting
takes place at stage t (δt = 1) or not (δt = 0). Then a logical requirement for harvesting
levels is

ht = δtht. (1)

Before stating the optimization problem we introduce a number of endogenous auxiliary
variables concerning forest dynamics and cash flow. Martin Bollands̊as et al. (2008) use
Norwegian National Forest Inventory data and estimate uneven-aged models for most com-
mon Nordic tree species. In our study we use their data for Norway spruce.
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Table 1: Notations used in the size-structured forestry model

Important symbols

s: Size class t: Time stage
xst: Trees in size class s at time stage t xt = (xst) ∀ s
hst: Harvest in size class s at time stage t ht = (xst) ∀ s
δt: Binary (0/1) harvesting decision at t ∆: Single time step in years
bs: Basal area of tree in size class s Bt: Total basal area per hectare
Bst: Total basal area in size class more than s φt: Ingrowth into size class 1 in ∆ step
µst: Mortality share of trees in size class s αst: Share of trees growing from s to s+ 1
Rt: Gross revenue Ct: Cutting and hauling cost
Cc: Logging cost function Ch: Hauling cost function
Cf : Fixed cost β: Discounting factor
v1s: Tree volume of small diameter logs in s v2s: Tree volume of saw timber in s
vs = v1s + v2s v = (vs) ∀ s

Other symbols

Ingrowth related: S1, S2, γ, ν, B0 Mortality related: m
Growth related: A1, A2, S, L Discounting related: r
Revenues related: P1, P2, C1, C2

Given basal area bs of a tree in size class s, the total basal area (per hectare) at stage t
is

Bt =
∑
s

bsxst (2)

and the total basal area (per hectare) of trees in size classes larger than s is

Bst =
∑
i>s

bixit. (3)

Ingrowth φt of trees in step ∆ into the smallest size class 1 as a function of basal area Bt is

φt =
S1(Bt +B0)−ν

1 + S2 exp(γBt)
(4)

where S1, S2 , B0, γ and ν are positive parameters. Mortality µst is the share of trees dying
in size class s in one step ∆. As a function of basal area Bt, it is given by

µst =
1

1 +Ms exp(−mBt)
(5)

where m is a positive parameter, and Ms = exp(2.492 + 0.02ds − 3.2× 10−5d2
s) depends on

tree diameter ds in each size class s. For size class s, given basal area Bt and the basal area

5



Bst of trees in size classes larger than s, the share of trees growing in one step ∆ from size
class s to s+ 1 is

αst =

{
Gs(S, L)− A1Bst − A2Bt for s < n
0 for s = n

(6)

where Gs depends on site index S and latitude L as follows

Gs(S, L) = 0.02(17.839 + 0.0476ds − 11.585× 10−5d2
s + 0.906S − 0.268L),

while A1 and A2 are positive parameters. In this notation, the share of trees remaining in
size class s is 1− µst − αst.

The gross revenue Rt at any time step t is given as

Rt =
∑
s

hst(v1sp1 + v2sp2) (7)

where v1s is the tree volume of small diameter logs in size class s, p1 is the unit price of
small diameter logs, v2s is the volume for saw timber in size class s and p2 is the unit price
for saw timber. Cutting and hauling cost Ct depend on the overall volumes in each size class
vs = v1s + v2s. Let v = (vs) be the vector of volumes, then Ct is given as follows:

Ct = Cc(ht, v) + Ch(ht, v) + δtCf (8)

where Cc is the cost function for logging cost and Ch is the cost function for hauling cost,
and fixed cost is given by Cf . If β denotes the annual discount factor per year, then the
problem is to find xt ≥ 0, ht ≥ 0, binary variables δt as well as auxiliary variables Bt, Bst,
φt, µst, αst, Rt and Ct, for all t and s, to

max
∞∑
t=0

(Rt − Ct)βt∆ (9)

subject to (1)–(8) and forest dynamics state equations

x1,t+1 = φt + (1− µ1,t − α1,t)x1,t − h1,t for all t (10)

xs+1,t+1 = αs,txs,t + (1− µs+1,t − αs+1,t)xs+1,t − hs+1,t for all t and s < n (11)

x0 = x0 (12)

The functions Cc(ht, v) and Ch(ht, v) used in the model have been defined below. The har-
vesting cost is specified following the estimation results in Nurminen et al. (2006) assuming
that in uneven-aged management cutting costs are 15% higher than in even-aged clearcut
operations (Surakka and Sirén, 2007), while hauling cost is determined as in even-aged
thinning operations (Tahvonen, 2011).

Cc(ht, v) = C1

∑
s

hst
(
0.412 + 0.758vs + 0.180v2

s

)
(13)

Ch(ht, v) = C2

(
14.83δt + 2.272

∑
s

hstvs + 0.5348
(∑

s

hstvs
)0.7)

(14)
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where C1 and C2 represent the cutting cost per minute and hauling cost per minute. It is
noteworthy that the hauling cost has an inherent fixed term. For ease of discussions in a
later section we denote hauling cost as Ch(ht, v) = 14.83C2δt + Ch(ht, v)′, where the first
term is the fixed term and the second term is the variable hauling cost.

The parameter values employed in our numerical illustrations are given in Tables 2-
3. Table 2 provides the size class dependent parameters in the model, i.e basal area (bs),
diameter (ds), and tree volumes (Heinonen, 1994) of small diameter logs (v1s) and saw timber
(v1s). It also provides three different initial states of the forest that have been studied in this
paper. The three initial states x0 = x1, x2, and x3 represent an old even-aged stand, uneven-
aged stand and young even-aged stand respectively. Table 3 provides other parameters of
the model that are independent of the size class. All prices and costs are given at the level
of the year 2011. Estimated costs correspond to average costs by hectare of large enough
stands. Note also that economies of scale may be taken into account by varying the fixed
cost.

Given that dimension of cash flow Rt−Ct is e, basal areas Bt and Bst are m2, volume vs
is m3, and step size ∆ is years, parameter dimensions in Tables 2-3 are implied by (1)–(9).

Table 2: Tree data by size class s for n = 12 classes.

Initial States
s bs (m2) ds (mm) v1s (m3) v2s (m3) x0 = x1 x0 = x2 x0 = x3

1 0.0440 75 0.014 0 1750 50 190
2 0.0123 125 0.067 0 0 25 162
3 0.0241 175 0.167 0 0 10 140
4 0.0398 225 0.081 0.234 0 0 124
5 0.0594 275 0.065 0.446 0 25 75
6 0.0830 325 0.060 0.684 0 250 18
7 0.1104 375 0.050 0.963 0 25 0
8 0.1419 425 0.050 1.253 0 0 0
9 0.1772 475 0.043 1.574 0 0 0
10 0.2165 525 0.039 1.900 0 0 0
11 0.2597 575 0.033 2.214 0 0 0
12 0.3068 625 0.031 2.565 0 0 0

All the parameters and functions have been kept fixed as suggested above. However, we
have performed certain sensitivity studies by varying the parameters r, Cf and S.

3. Proposed Algorithm

Finding an optimal forest management strategy requires the optimization of binary as
well as continuous variables, which makes the problem in the previous section a mixed integer
non-linear programing problem. Mixed integer programing commonly arises in optimization
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Table 3: Data parameters independent of trees’ size class

ingrowth (4) S1 = 147.8 S2 = 0.5494 γ = 0.0180 ν = 0.157
B0 = 0.741

mortality (5) m = 0.0310
growth (6) A1 = 0.006824 A2 = 0.000480 S = 15 L = 60 (deg.)
discounting (9) β = 1/(1 + r) r = 0.03 ∆ = 5
Revenues (7) p1 = e34.07 p2 = e58.44 C1 = e2.1 C2 = e1

Cf = 300

of forest harvesting operations and researchers have used both heuristics (Weintraub et al.,
1994) and exact methods (Goycoolea et al., 2005; Constantino et al., 2008; Carvajal et al.,
2013) to handle the problems in different contexts. Both the approaches have its own
advantages and disadvantages. An exact method, in such cases, would guarantee an optimal
solution but might be computationally intractable for large scale problems. On the other
hand a heuristic might be computationally tractable, but does not guarantee optimality.

In this section, we describe a two level approach that is customized to solve uneven-
aged forest management problem. The harvesting decisions are determined (δt) at level 1
of our solution procedure that fixes the values of the binary variables at each time stage
to 0 or 1. Once the binary variables are fixed, at level 2 we determine the corresponding
optimal state of the stand (xs = (xst)) and the extent of harvests (hs = (hst)) at each time
stage. The harvesting strategies at level 1 are generated using an evolutionary algorithm
and their corresponding optimal continuous variables are determined at level 2 by solving a
non-convex optimization problem. The proposed method performs this process iteratively
with an intelligent update of the harvesting strategies and leads to a near optimal solution.
This section is divided into two parts: the first part provides a detailed description of a
customized evolutionary procedure to optimize harvesting strategy and also describes how
we convert the infinite time horizon problem into a finite time horizon problem; the second
part involves a discussion about the non-convex optimization problem being solved for each
harvesting strategy.

3.1. Level 1: Evolutionary Optimization

In this section we describe the evolutionary optimization algorithm that uses principles
from biological evolution to move towards the optimum by generating improved harvesting
strategies. It is a population based approach where each member represents a harvesting
strategy. The quality of a harvesting strategy is measured using level 2 that returns the
maximum net present value for the given strategy. We refer the net present value corre-
sponding to each harvesting strategy as the fitness of the strategy. The technique emphasizes
better harvesting strategies in the population leading to a rise in average fitness over gen-
erations (iterations). We use a genetic representation to code harvesting strategies in our
algorithm. The algorithm begins with random initialization of a population representing
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different harvesting strategies. The strategies are then improved over generations by repet-
itively applying Selection, Crossover, Mutation and Replacement that is described later in
this section. For few earlier studies where evolutionary computation techniques have been
used in the context of forest management, the readers may refer to Bayat et al. (2013), for
instance.

3.1.1. Genetic Representation

It is commonly observed in discrete-time dynamic systems that the variables go through
a transition phase and eventually stabilize into a steady state where a fixed pattern gets
repeated. Taking insights from such behavior of discrete-time dynamic systems and our prior
experience in solving forest management problems (Salo and Tahvonen, 2003), we start with
an assumption that the optimal solution to the forest management problem on an infinite
horizon consists of transition period and steady state period. During the transition period
the state and the control variables keep changing without following any regular pattern.
However, during the steady state period both the state and control variables change in a
cyclic manner. Therefore, we model an infinite time horizon with a finite set of variables
as shown in Figure 2. In the figure, the variables vary over time during the transition
phase and once the steady state begins, the harvesting decisions, quantity harvested, as well
as the states of the forest follow a repeated cycle. Such a construct allows us to explore
a limited time horizon leading to a significant reduction in the search region. Using this
representation, any harvesting strategy with transition and steady periods can be coded
with finite binary variables. Within the algorithm the solution shown in Figure 2 will have
a genetic representation as {(01000100), (10001000)}. The number of bits in the transition
period denotes the transition period length, and the number of bits in the steady state
period denotes the cycle length. The length of the transition period and steady state cycle
is automatically adapted by our algorithm.

Harvesting Decision
(Binary)

δ
t

0 1 2 3 4 5 6 7t =Time Stages
(Discrete)

0 1 0 0 0 1 0 0

1

0

0

0

1

0

0

0

SteadyTransition

Figure 2: Forest management strategy with transition and steady states.

9



3.1.2. Population Initialization

The initial population consisting of N members is generated randomly by the algorithm.
The minimum and the maximum transition length (tmin, tmax) and steady state cycle
length (smin, smax) are provided as input by the user. For a given member, the algorithm
decides the transition length (tlen) by generating a random integer between tmin and tmax.
Thereafter, it generates a genetic string of length tlen with 0 or 1 appearing at each location
with equal probabilities. A genetic string of length slen for steady state cycle is generated
in a similar manner, and then the two strings are combined to obtain a harvesting strategy
for the member. This operation is repeated for every member in the population leading to
a wide variety of harvesting strategies.

3.1.3. Fitness Assignment

Each harvesting strategy or population member generated in the algorithm has to be
evaluated in terms of the maximum net present value that can be obtained with the strat-
egy over an infinite period of time. Identifying this maximal value itself is a non-convex
optimization problem that we solve at level 2. The non-convex optimization problem is
solved with respect to variables xt and ht leading to their optimal values corresponding to
the given harvesting strategy (δt). It is noteworthy that we need to solve a non-convex
optimization task for every new harvesting strategy that we generate making the overall
task computationally demanding. The non-convex optimization is discussed in detail in
Subsection 3.2.

3.1.4. Genetic Operators

The genetic operators are used in an evolutionary algorithm to generate new members
using the existing population members. The existing members that are used to generate
new members are referred to as parents while the newly generated members are referred to
as offspring. The genetic operators consist of the steps of crossover and mutation. Crossover
involves information sharing between two or more parents while mutation is performed on
a single member and is helpful in maintaining diversity. The crossover mechanism used
in this study involves two parents that lead to two offspring. The crossover operator is
applied on the parents with a probability of pc. In case no crossover is performed between
the parents then the offspring are considered to be identical to the parents. Figure 3 shows
the crossover operation between two parents with unequal transition and steady state cycle
lengths. To perform a crossover a random crossover point is chosen on the member with a
smaller transition length. We fix this crossover point on both the members and swap the
genetic string that follows the crossover point to generate two offspring. Next, the offspring
generated using this operation undergoes mutation.

There are two kinds of mutation that we perform in this study. In type 1 mutation, we
go through each genetic bit and flip it from 0 to 1 or 1 to 0 with a probability of pm. This
introduces diversity in harvesting strategies and helps in exploring the search space that
is not reachable only by sharing of information between the parents. Type 2 mutation is
performed to explore an appropriate transition length and cycle length. Type 2 mutation
is applied first on the transition string with probability pm. Thereafter, it is applied on
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Figure 3: Crossover between two parent harvesting strategies leading to offspring strategies.

the steady state cycle string with probability pm. When this operation is applied, the
length of the transition period or steady state period increases or decreases by 1 with equal
probabilities. In case the length increases then a bit (0 or 1) is inserted at a random location.
If the length decreases then a bit is removed from a randomly chosen location. The type 1
and type 2 mutation operations have been shown in Figure 4 and 5 respectively.

3.1.5. Algorithm Description

Next, we provide a step-by-step description of the algorithm that is used to explore the
harvesting decisions and progress towards the optimum.

S 1: Initialize N population members (Refer Section 3.1.2) representing different harvesting
strategies.

S 2: Assign fitness (Refer Section 3.1.3) to each member by solving a non-convex optimiza-
tion problem at level 2.

S 3: Initialize a generation counter: g ← 0.

S 4: Increment the generation counter by 1: g ← g + 1.

S 5: Choose two parents from the population using tournament selection (Miller and Gold-
berg, 1995).
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Figure 4: Type 1 Mutation: Mutation of the offspring strategies by flipping the bits based on mutation
probability.
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Figure 5: Type 2 Mutation: Mutation of the transition period length and the steady state cycle length.

S 6: Perform genetic operations (Refer Section 3.1.4) to produce the final offspring.

S 7: Evaluate each offspring by solving a non-convex optimization problem at level 2.

S 8: Choose λ random members from the population, and pool them with the offspring.

S 9: Find the best λ members from the pool based on the fitness values and update the
population by replacing the chosen members in the previous step with the best λ
members.

S 10: If the generation counter (g) is less than the maximum number of allowed generations
(gmax) then go to Step 4; otherwise terminate.

3.1.6. Parameters

The optimization task at level 1 requires two kinds of parameters. The first set of param-
eters are the evolutionary parameters, and the second set of parameters are the problem-
specific parameters. The parameter setting used in the experiments performed in this paper
are given in Table 4.

Table 4: Parameters used during evolutionary optimization

Genetic Parameters Problem Parameters
Population Size (N) 50 Min. Transition Length (tmin) 10
Crossover Probability (pc) 0.9 Max. Transition Length (tmax) 25
Mutation Probability (pm) 0.1 Min. Steady State Cycle Length (smin) 1
Update Parameter (λ) 2 Max. Steady State Cycle Length (smax) 10
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3.2. Level 2: Optimization for fitness evaluation

Our fitness evaluation tasks are non-convex optimization problems which need to be
solved fast. In this section we define the problem, discuss the sources of non-convexities
and finally propose an initialization procedure for optimization with good prospects for the
solver to find a global optimum.

3.2.1. The problem

Let t0 = tlen denote the end of transition (beginning of first cycle) and t1 = tlen + slen
the end of first cycle (beginning of second cycle). Given t0, t1 and δt, for all t < t1, the
fitness evaluation problem is to find xt ≥ 0, for all t ≤ t1, ht ≥ 0 and the auxiliary variables,
for all t < t1, to

max
∑

0≤t<t0
βt∆ct +

1

1− β(t1−t0)∆

∑
t0≤t<t1

βt∆ct (15)

subject to (1)–(8), (10)–(14), for t < t1, and

yt0 = yt1 . (16)

Here (16) is the steady state condition for state variables. In the objective function (15),
the first term accounts for the transition phase and the second term accounts for the steady
phase. The multiplier in front of the summation in the second term accounts for a geometric
series of discounted steady state cash flows.

3.2.2. Non-convexities

If harvesting takes place at stage t, then the variable cutting and hauling cost (e) in
(8) is Cc(ht, v) + Ch(ht, v) where vector v is given in Table 3. The graph of such concave
cost function in Figure 6 (left inset) with respect to ht is almost linear. In (4), ingrowth of
trees into size class 1 as a function of basal area Bt (m2/ha) is φt = (S1(Bt + B0)−ν)/[1 +
S2 exp(γBt)] where S1, S2, γ and ν are given in Table 3. Figure 6 (right inset) illustrates
the ingrowth function for Bt ∈ [0, 20] m2; for Bt > 10 m2 the function is mildly non-linear.

In (5), mortality fraction of trees dying in size class s is given by µst = 1/[1+Ms exp(−mBt)]
where m is given in Table 3. Mortality µst is a convex function for relevant domain of Bt.
In the forest state equations (10)–(11) the reduction in the number of trees is µstxst, where
xst is the number of trees in size class s. Figure 7 shows such reduction for three size classes
s, s = 1, 5, 10, as a function of Bt and xst. Note that possible cases are those for which
Bt ≥ bsxst, where bs is the basal area of a single tree in size class s. For such region, the
mortality functions are almost linear.

For size class s < 12, given basal area Bt and the basal area Bst of trees in size classes
above s, the fraction of trees that grows in five years from size class s to s + 1 is αst =
Gs−A1Bst−A2Bt where Gs, A1 and A2 are given in Table 3. In (10)–(11) of the optimization
problem the transition in terms of number of trees is αstxst, which involves a bi-linear
function. Figure 8 shows such transitions for three size classes s, s = 1, 5, 10, as a function
of Bst and xst at Bt = 6. Possible cases are those for which 0 ≤ Bst ≤ Bt− bsxst and in such
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Figure 6: Variable hauling cost as a function of volume vt in m3 (left) and ingrowth as a function of basal
area bt in m2 (right).

Figure 7: Mortality (number of trees) in size classes s = 1 (left), s = 5 (middle) and s = 10 (right) as a
function of basal area Bt in m2 (left axis) and number of trees xti (right axis).

region again the functions are almost linear. Given small values of ρ we may term the non-
convexities as relatively mild. We further confirm this (refer to Section 3.2.3 and Appendix
A) by solving the non-convex optimization procedure with different random initialization
schemes i.e., choosing the starting point for the solver.

3.2.3. Random initialization for solver

In Appendix A we test seven alternative versions of random initialization (starting point
selection) for the solver Knitro (Byrd et al., 2006) to find a local optimum for the problem
(15). All seven procedures performed quite well with a high chance for Knitro to end up
with a global optimal solution. Thereby, we chose a randomized starting point for the solver
as described in the following. Let s denote a size class such that harvesting only applies
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Figure 8: Transition of trees in five years from size class s to s+ 1 as a function of the number of trees xst
and Bst. Cases s = 1 (left), s = 5 (middle) and s = 11 (right) are depicted for basal area Bt = 6.

for size classes i > s. With s = 5 exogenously given, let ηit denote the share of trees that
are not harvested in size class i at stage t. Then ηit = 1 for i ≤ s; otherwise ηi+1,t = εitηit
where εit is drawn from uniform distribution U(0, 1). Thus the share of trees harvested in
size class i at stage t is (1 − ηit) and it increases in random proportions with i, for i > s.
Shares εit are drawn independently for each time stage t and size class i > s. The number
of trees harvested is hit = δt(1 − ηit)xit for which we need the forest state vector xt unless
δt = 0. Initially, x0 = x0 is given and we obtain hi0 = δ0(1− ηi0)xi0 as well as cash flow Ct
from (7)–(8). Thereafter, auxiliary variables in (2)–(6) and state equations (10)–(11) yield
x1. Similarly, in forward recursion we obtain values xt, ht, Ct and the auxiliary variables for
all t. In this random initialization procedure we neglect the steady state condition xt0 = xt1 .

Let p denote the probability that a random initialization procedure for the solver ends
up with a suboptimal solution. If the problem is initiated independently k times, then the
probability of not finding the global optimum is 1 − pk. In our tests reported in Appendix
A, p appears to be small (of the order of 0.1 %). Hence, 1 − pk is very close to 1 even for
k = 1. This observation may be explained by relatively mild non-convexities in our valuation
problems; see nonlinear function illustrations in Figures 6-8.

4. Results

In this section, the proposed algorithm has been applied on an empirically estimated
size-structured ecological model for uneven-aged Norway spruce forests (Martin Bollands̊as
et al., 2008). We have considered three different initial states of the forest, as stated in
Table 2. The first initial state (x0 = x1) is a young even-aged stand, the second (x0 = x2)
is an uneven-aged stand, and the third (x0 = x3) is an old even-aged stand. All the forest
parameters and functions in our study are fixed as given in Tables 2 and 3. Sensitivity
studies have been performed by varying the parameters: interest rate (r), fixed cost (Cf )
and site index (S). The different values of these parameters considered are given in Table 4.
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Table 5: Different values of the parameters studied in the paper corresponding to 3 different initial states
of the forest

r (%) Cf (e) S

Cases studied 1,2,3,4 100,300,500 13,15,17
Base Case 3 300 15

It was observed from our runs that the optimal steady state harvesting interval and
size distribution is independent of the initial stand state of the forest. Steady state results
corresponding to the three initial states and different values of parameters r and Cf are
shown in Table 6. Site index, S, was kept fixed at 15 in this study. Some of the important
observations drawn from these runs have been outlined below:

1. The optimal solution converges to the steady state harvesting interval within 120 years
(24 intervals) or sooner (Table 6).

2. The transition towards the steady state tree size distribution is shortest when the
initial stand state is already heterogeneous and longest for the young even-aged stand.

3. The length of steady state interval varies between 10 and 25 years and increases or
remains the same for higher levels of fixed cost.

4. Within the Faustmann optimal rotation framework higher interest rate implies shorter
rotation suggesting that the length of the steady state interval decreases in the interest
rate. However, this is not the case: for example, when fixed cost is equal to e100 and
interest rate is increased from 3% to 4% harvesting interval lengthens from 10 to 15
years.

5. When interest rate increases it is optimal to allocate a larger fraction of capital from
forestry to alternative sources. This is reflected in the fact that when harvesting
interval lengthens with interest rate, it becomes optimal to cut smaller size class (i.e.,
size class with average diameter equal to 225mm) and the stand volume both before
and after harvest decreases.

6. Given any fixed cost level the stand volume before and after harvest is lower or the
same with higher interest rate.

4.1. Dependence of Optimal Solution on Initial State

The optimal solution depends strongly on the initial stand state (Figure 9). Given an
initially dense stand (solid line) it is optimal to almost clearcut after 10 years and then wait
50 years until the next harvest. In contrast when the initial stand is already heterogeneous
(Table 2) the steady state harvesting interval (15 years) is optimal immediately from the
beginning even if it takes about 140 years to reach the exact steady state tree size distribution
and harvest level. Given an initial stand containing trees only in the smallest size class, it
is optimal to wait 25 years until the first harvest and it takes 80 years to reach the steady
state harvesting interval.
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Figure 9: Dependence on the initial state (r = 0.01, Cf = 300).

4.2. Dependence of Optimal Solution on Interest Rate and Fixed Costs

In Figure 10 the initial stand contains only young trees and the first cutting is postponed
to 30, 25 and 20 years when the interest rate is increased from 1 to 4%. Varying the fixed
cost level above e100 has strong effects on optimal harvest timing (Figure 11). Given an
initially young stand, interest rate equal to 3% and e100 fixed cost, there is a 45 year period
with harvest every 5 years, while with fixed cost equal to e500 it is always optimal to wait
at least 15 years before the next cut. Fixed cost must be decreased to e20 until the steady
state solution is to harvest the stand every period.

4.3. Dependence of Optimal Solution on Site Index

Site index has as strong effect on the the optimal transitioning and steady state that can
be observed in Figure 12. Given that initial stand contains trees only in the smallest size
class, the time of first harvest is at year 20, regardless of site index. The stand density at
the first harvest; however, differs between the sites; with more productive sites the overall
density of the stand is higher compared to less productive sites. Similarly with other initial
stand states, the timing of the first harvest is the same regardless of site index. However, the
timing of the second and subsequent harvests during the transition as well as in the steady
state differ between the site types. At less productive sites the harvests occur less frequently
and target smaller size classes compared to more productive sites. During transition, the
more productive sites are kept at higher densities, but in the steady state both the harvest
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Figure 10: Dependence of optimal solution on interest rate (Initial state x0 = x1, Cf = 300).

timing and size of harvested trees are the same with site indices 15 and 17. However, annual
profit and harvested volume are higher at the more productive site due to the higher growth
rate (refer to Table 7).

Table 7: Steady state results for different site indices (Initial state x0 = x1, Cf = 300, r = 0.03)

Site Interval Profit
Year

Volume
Harvest

Avg. Volume
Year Harvested trees No. of trees before

Index (years) (e) (m3) (m3) Size (mm) and after harvest

11 25 138 78 3.1 225-425 694/498
15 15 252 81 5.4 275-375 753/618
17 15 289 92 6.1 275-375 770/620

4.4. Other Results

Figure 13 shows the results for an initially uneven-aged stand (x0 = x2). We observe
that the stand develops close to the steady state values in 95 years. When steady state
harvesting interval is three periods, the steady state harvest is targeted to three oldest size
classes. However, during the transition phase with varying harvesting interval, trees are
harvested from size classes 3-5. Economic optimization tends to yield solutions where har-
vesting applies to larger trees and no smaller trees are harvested when natural regeneration
is insufficient.
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Figure 11: Dependence of optimal solution on fixed cost (Initial state x0 = x2, r = 0.03).

The economic gain from optimizing the harvesting interval against a fixed harvesting
interval was also compared for different cases. The gain was found to be remarkable when
the initial state is far from the steady state. For cases shown in Figure 10, an optimal
harvesting schedule increases the objective function value by about 10− 12%.

All the results presented in this section so far are based on the computations performed
using our proposed algorithm. The computational efficiency of the approach allowed us to
perform large number of runs for a variety of cases, that would have been difficult otherwise.
In order to gain confidence in the results achieved by our algorithm, we evaluate our approach
against the standard branch-and-bound algorithm that is commonly used to handle mixed
integer programs.

4.4.1. Comparison of Evolutionary Optimization with Branch-and-Bound

In Appendix B we demonstrate how the problem can be solved exactly using mixed in-
teger programing with branch-and-bound. In Table 8 we provide a comparative evaluation
of our heuristic evolutionary optimization algorithm (EO) against the exact branch-and-
bound approach (BB) for the base case of 3% interest rate (r) and e 300 fixed cost Cf .
Comparisons have been drawn in terms of the best objective value achieved (1000e), run
time (hours) and number of non-convex optimization calls made. The evolutionary opti-
mization algorithm was terminated when a maximum number of non-convex optimization
calls exceeded 8000, while the branch-and-bound approach was terminated either when the
maximum number of active nodes in the method exceeded 100,000 or the method exited
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Figure 12: Dependence of optimal solution on the site index (Initial state x0 = x1, Cf = 300, r = 0.03)

normally. In Table 8, termination of EO due to maximum number of non-convex optimiza-
tion calls is denoted as NCO, termination of BB due to maximum number of active nodes
is denoted as NAN, and termination of BB at confirmed optimum is denoted as NOR. For
further information about the mixed integer programing solved using branch-and-bound,
the readers may refer to Appendix B.

The results in Table 8 suggest that evolutionary optimization approach offers an enor-
mous computational advantage over the branch-and-bound approach. In terms of the best
objective value achieved, evolutionary optimization algorithm was found to outperform
branch-and-bound marginally for initial state x2. In this case BB was terminated by the
upper limit on the number of active nodes. For initial states, x1 and x3, the difference in the
best NPV found by EO and BB is truly insignificant. The run time results are not surprising
given that branch-and-bound performs an exhaustive search in the decision space.

5. Conclusions and Future Work

In this paper, we make a two-fold contribution to the uneven-aged forest management
literature. The first contribution is on the method side where we propose a customized
algorithm to handle mixed integer non-linear optimization problem on optimal management
of naturally regenerating uneven-aged forests. For comparison with our heuristic approach
we use branch-and-bound, which is a method for which optimality can be proven. Our
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Figure 13: Development of size distribution over time (Initial state x0 = x3, r = 0.01, Cf = 300).
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Table 8: Comparison between evolutionary optimization (EO) approach proposed in this paper against the
branch-and-bound (BB) approach for the base case of 3% interest rate and e300 fixed cost. Objective values
are in 1000e/ha

Initial
Condition

Method
Best

Objective
Achieved

Time
Required
(Hours)

Non-Convex
Optimization

Calls
Termination

x1 EO 10.5535 2.14 8,000 NCO
BB 10.5534 41.42 137,595 NAN

x2 EO 8.9632 2.21 8,000 NCO
BB 8.9448 52.61 165,047 NAN

x3 EO 15.1595 2.25 8,000 NCO
BB 15.1604 86.82 258,650 NOR

approach is able to computationally surpass branch-and-bound by more than an order of
magnitude, which would facilitate solving large scale forest management problems. A fast
algorithm enabled us to make a more significant second contribution that is building a
better insight for the uneven-aged forest model. A thorough analysis of an empirical model
for uneven-aged spruce forest stands provided the following important results contributing
towards uneven-aged management literature:

• Optimizing the harvesting interval yields up to 12% increase in net present value
income compared to a solution where the harvesting interval is fixed. The efficiency
gain is highest when interest rate and fixed cost is high and initial stand is young.

• Fixed cost was found to have major implications on the optimal solution. For a given
initial size class distribution, and interest rate, varying the fixed costs can lead to very
different optimal solutions.

• The stationary state of the stand was found to be independent of the initial stand
state.

• Stationary harvesting interval tends to be longer with higher fixed cost but may
lengthen or shorten with interest rate.

• Stationary harvesting interval is reached much sooner than stationary size class struc-
ture.

• A parametric study for the site index that denotes land fertility suggests that with
higher yields the harvesting interval is shorter.

The result on efficiency gain when compared with fixed interval harvesting could be an
important factor for making a shift towards uneven-aged forest management practices, given
that uneven-aged management also offers the advantage of biodiversity preservation. Other
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results on interest rate study, fixed cost study and site index study provided in the paper
would be useful in directing the future research on uneven-aged forest management. The
proposed method would be directly applicable for multi-species forests as well, and we intend
to study optimal management of such forests in our future work.
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Appendices
Computational tests for fitness evaluation and formulation for mixed integer
programing
In the appendices we discuss tests with alternative random initialization procedures for the
fitness evaluation problem (Equation 15) and provide mixed integer programing formulation
for the problem that has been solved using branch-and-bound algorithm (Section 4.4.1).

A. Testing random initialization procedures

For tests we considered seven versions of random initialization procedures. Each one has
some charter for solving the problem such as harvesting applies primarily to mature trees
(high size classes). For versions other than the initialization explained in Section 3.2, the
smallest size class subject to harvesting is varied, for instance, it may be randomly drawn.
Also the strategy for the shares of trees harvested varies: e.g., harvesting applies to largest
sizes classes until a target level of harvested volume is met. Such target level may be tied
to the volume growth of the forest adjusted by a random perturbation. In our tests all
such initialization procedures performed well in the sense that suboptimal solutions were
infrequently produced by the solver.

Initial forest states and harvesting schedules used for tests are illustrated in Tables 9-10
Table 9 defines two sets (A and B) of three initial states of the forest and Table 10 shows
eight alternative cases of harvesting schedules.

Table 9: Initial number of trees in size classes. Three alternatives for the initial states of the forest denoted
by e, n and o are considered in two sets A and B.

size A B
class e n o e n o

1 20 100 0 196 1750 50
2 20 100 0 162 0 25
3 20 100 0 140 0 10
4 20 100 0 124 0 0
5 20 100 0 75 0 25
6 20 0 0 18 0 250
7 20 0 0 0 0 25
8 20 0 50 0 0 0
9 20 0 50 0 0 0

10 20 0 50 0 0 0
11 20 0 50 0 0 0
12 20 0 50 0 0 0

Each of the seven methods was run with 1000 independent repetitions for each of the
2× 3× 8 = 48 test problems. Table 11 shows the best objective function value found which
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Table 10: Eight cases of harvesting schedules. Interpretation of the three character case code xyz is as
follows: x is l (s) for long (short) transition period, y is l (s) for long (short) steady state cycle, and z is d
(s) for dense (sparse) harvesting intervals. The length of transition period is t0 (steps) and s is the steady
state cycle (steps). For time stages in five year intervals, 1 indicates harvesting and 0 no harvesting.

case t0 s harvesting stages
lld 30 6 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
lls 30 6 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
lsd 30 3 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
lss 30 3 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
sld 10 6 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0
sls 10 6 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0
ssd 10 3 1 0 0 1 0 0 1 0 0 1 0 0 1
sss 10 3 0 1 0 0 0 0 0 0 1 0 0 0 1

we now call the optimum. It is interesting to note that for set B of 24 problems each of the
seven methods found the optimal solution. The same is true for set A with one exception:
for the case e-ssd the optimal value is 14.684 but three of the methods ended up with best
value of 14.680. Because the difference is only 0.03 % and given data precision, we may
regard the value 14.680 optimal as well.

Table 11: Best objective function values found in 7000 runs.

case A B
e n o e n o

lld 12.544 8.882 18.626 10.475 8.691 14.087
lls 12.675 8.825 18.784 10.352 7.602 14.221
lsd 12.544 8.882 18.626 10.475 8.691 14.087
lss 12.665 8.815 18.774 10.343 7.593 14.211
sld 14.749 8.838 23.824 10.488 7.820 15.022
sls 12.499 8.715 18.581 10.298 6.886 14.065
ssd 14.684 8.862 23.767 10.564 8.185 14.961
sss 12.653 8.745 18.774 10.256 6.705 14.209

In 34 out of the 48 test problems all seven methods never produced a suboptimal solution
in 1000 trials. Here suboptimal means a local optimum for which the objective function value
is less than the best found by the method in 1000 trials. Among 9 problems, frequency of
suboptimal solutions was less than 0.5 % in 1000 trials. The general observation is that
the likelihood for suboptimal solution is small. There are a few exceptions concerning set
A. First, in the case e-ssd all methods most frequently find the second best value 14.680
(which lags 0.03 % from the optimum). Second, in cases e-lld and e-lsd two of the seven
versions produce the second best value 12.537 in more than 10 % of runs; however, the
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optimum 12.544 is only 0.05 % higher. For the random initialization step in Section 3.2 no
suboptimal solution was found in 45 out of 48 test cases. In two cases suboptimal frequency
was less than 0.5 % and in the case e-ssd only the second best value 14.680 (which lags 0.03
% from the optimum) is found in 1000 trials.

Finally, we note that for any particular problem initialization by any of the seven methods
does not necessarily lead to a local optimum. Due to non-convexities, the solver code may
stop before optimality conditions are met. In such a case we try again and repeat until a
successful completion. We observed for the seven versions that in 95 % of the case problems
the average number of trials needed for success is close to one (the first trial being a success
in most cases). For the initialization in Section 3.2 the average number of trials was more
than 1.4 in three cases, the maximum average being 2.9 for n-sls.

B. MIP approach for fitness evaluation

In this section we consider mixed integer programing (MIP ) for the problem for which
the evolutionary algorithm is proposed in Sections 3.1-3.2. Let t0 and t1 denote the beginning
of the first and second cycle, respectively. A complicating feature for MIP is that both
t0 and t1 are endogenous in the model. Consequently, for the steady state requirement
xt0 = xt1 subscripts of decision vectors are endogenous. Furthermore, cash flows Ft = Rt−Ct
(refer Equation 9) are treated differently depending on whether t < t0, t0 ≤ t < t1 or
t ≥ t1. We begin this section by reformulating the problem as a MIP problem and discuss
the implementation of branch-and-bound algorithm thereafter. Computational results are
presented in Section 4.4.1, including comparison with the evolutionary algorithm.

Let T = tmax + smax be an exogenous upper limit for t1. For all t = 0, 1, . . . , T let δt, ut
and rt be binary variables such that δt = 1 if harvesting takes place at stage t and δt = 0
otherwise, ut = 1 if t = t0 and ut = 0 otherwise, and rt = 1 if t = t1 and rt = 0 otherwise.
Hence,

T∑
t=0

ut = 1 and
T∑
t=0

rt = 1, (17)

t0 =
∑
t

tut with tmin ≤ t0 ≤ tmax, (18)

t1 =
∑
t

trt, (19)

and the cycle length is
s = t1 − t0 with smin ≤ s ≤ smax, (20)

where smin and smax are exogenous bounds for cycle length, and tmin and tmax are exogenous
bounds for transient period.

The level of harvest ht (number of trees at stage t by size class) is restricted by

0 ≤ ht ≤ δtx̄ (21)
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where x̄ is an exogenous upper bound for the forest state vectors xt (number of trees at
stage t by size class). Harvests are only allowed during the period [0, t1). Hence we require

δt ≤
∑
τ>t

rτ . (22)

At the beginning of each cycle we require the state to be an endogenous vector xc. Hence
for all t ≥ tmin, we require

xt − x̄(1− ut − rt) ≤ xc ≤ xt + x̄(1− ut − rt). (23)

For all t, the cash flow Ft is split into

Ft = F 0
t + F 1

t (24)

so that Ft = F 0
t and F 1

t = 0 for the transient period t < t0, Ft = F 1
t and F 0

t = 0 for the first
cycle t0 ≤ t < t1, and F 0

t = F 1
t = 0 for t ≥ t1. This is achieved at an optimum if we require

for all t
− F̄

∑
τ>t

uτ ≤ F 0
t ≤ F̄

∑
τ>t

uτ (25)

and
− F̄

∑
τ≤t

(uτ − rτ ) ≤ F 1
t ≤ F̄

∑
τ≤t

(uτ − rτ ) (26)

where F̄ is an exogenous upper bound for cash flows.
In this notation, the mixed integer programing problem is to find length t0 of transition

period, cycle length s, forest state xt ≥ 0, harvesting levels ht ≥ 0, steady state vector xc,
cash flows Ft, F

0
t , F 1

t auxiliary variables, and binary variables δt, ut, rt , for all t, to

max
T∑
t=0

βt∆[F 0
t + F 1

t /(1− βs∆)], (27)

subject to (17)–(26), (2)–(8) and (10)–(12) for all t.
We are not aware of any software for solving this problem. Therefore, using AMPL

(Fourer et al., 1990) and MINOS (Murtagh and Saunders, 1978) as the solver, we implement
the well-known branch-and-bound procedure with two special features. First, to deal with
the large number of binary variables, ut and rt in (17)–(20), we use partitioning. For each
node of the tree, there is a range [ť, t̂] for the end t0 of the transition period, and a range
[š, ŝ] for the cycle length s. In the root node, [ť, t̂] = [tmin, tmax] and [š, ŝ] = [smin, smax].
Binary variables ut are fixed to zero for all t < ť and for all t > t̂. For ť ≤ t ≤ t̂, ut is
a continuous variable in the interval [0, 1]. Similarly, we fix binary variables rt to zero if
t < t̂+ š or if t > t̂+ ŝ; otherwise rt is a continuous variable. Second, after the choice of the
node for branching is done, if at the optimum of the relaxed problem some of the variables
uj is in the interior of [0, 1], then branching is based on partitioning the interval [ť, t̂] into
two subsets of equal (or almost equal) cardinality. If no such variable uj exists, then we
try similarly to partition [š, ŝ]. Finally, if all variables ut and rt are at levels 0 or 1, then
branching is based on one of the binary variables δt in the interior of [0, 1]; if none exists,
then stop.
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