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Abstract: 

Four biotic proxies (plant macrofossils, pollen, chironomids, and diatoms) 

are employed to quantitatively reconstruct variations in mean July air 
temperatures (Tjul) at Lake Loitsana (northern Finland) during the 
Holocene. The aim is to evaluate these temperature reconstructions and to 
compare the timing of highest Tjul in the individual reconstructions. The 
reconstructed Tjul values are evaluated in relation to local-scale/site-specific 
processes associated to the Holocene lake development at Loitsana, as 
these factors have been shown to significantly influence the fossil 
assemblages found in the Lake Loitsana sediments. While pollen-based 
temperatures follow the classical trend of gradually increasing early 
Holocene Tjul with a mid-Holocene maximum, the aquatic/wetland 
assemblages reconstruct higher than present Tjul already during the early 
Holocene, i.e. at the peak of summer insolation. The relatively low early 

Holocene July temperatures recorded by the terrestrial pollen are the result 
of site-specific factors possibly combined with a delayed response of the 
terrestrial ecosystem compared to the aquatic ecosystem. Our study shows 
that all the reconstructions are influenced at least to some extent by local 
factors, and highlights the benefit of using multi-proxy data in Holocene 
climate reconstructions. 
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Abstract 1 

Four biotic proxies (plant macrofossils, pollen, chironomids, and diatoms) are employed 2 

to quantitatively reconstruct variations in mean July air temperatures (Tjul) at Lake 3 

Loitsana (northern Finland) during the Holocene. The aim is to evaluate these 4 

temperature reconstructions and to compare the timing of highest Tjul in the individual 5 

reconstructions. The reconstructed Tjul values are evaluated in relation to local-6 

scale/site-specific processes associated to the Holocene lake development at Loitsana, 7 

as these factors have been shown to significantly influence the fossil assemblages found 8 

in the Lake Loitsana sediments. While pollen-based temperatures follow the classical 9 

trend of gradually increasing early Holocene Tjul with a mid-Holocene maximum, the 10 

aquatic/wetland assemblages reconstruct higher than present Tjul already during the 11 

early Holocene, i.e. at the peak of summer insolation. The relatively low early Holocene 12 

July temperatures recorded by the terrestrial pollen are the result of site-specific factors 13 

possibly combined with a delayed response of the terrestrial ecosystem compared to the 14 

aquatic ecosystem. Our study shows that all the reconstructions are influenced at least to 15 

some extent by local factors, and highlights the benefit of using multi-proxy data in 16 

Holocene climate reconstructions.  17 
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Introduction 1 

Reconstructing Holocene temperatures through the use of quantitative methods has 2 

received considerable attention in the past decades (e.g. Juggins, 2013). While this has 3 

allowed to explore their potential and detect strengths and weaknesses of the various 4 

quantitative reconstruction tools available (Birks et al., 2010; Juggins and Birks, 2012), 5 

more detailed studies of underlying drivers and reasons for divergent temperature 6 

reconstructions yielded from different biotic proxies are still needed. The reasons for the 7 

differences are mainly related to the transfer-function approach itself due to the complex 8 

nature of biotic response to environmental change (Anderson, 2000; Velle et al., 2010, 9 

2012; Brooks et al., 2012; Juggins, 2013). Recent studies discussing the effect of 10 

various parameters on the reconstructed temperatures, e.g. choice of calibration-set or 11 

regression method, have further emphasized the complexity and sensitivity of the 12 

transfer-function approach, suggesting that additional caution should be exercised in the 13 

interpretation of transfer-function-based climate reconstructions (Salonen et al., 2012; 14 

2013a, b; Juggins, 2013; Luoto et al., 2014). Furthermore, the classical view of low 15 

summer temperatures during the first millennia of the Holocene and a mid-Holocene 16 

maximum warming in northern Europe has recently been challenged. While this 17 

traditional view has been based mainly on pollen-inferred climate reconstructions 18 

(Seppä and Birks, 2001; Salonen et al., 2011; Renssen et al., 2012), fossil assemblages 19 

of plant macrofossils and insect remains often suggest high summer temperatures 20 

already during the earliest Holocene (Brooks and Birks, 2001; Jones et al., 2011; Paus et 21 

al., 2011; Väliranta et al., 2011b; Birks et al., 2012; Luoto et al., 2014; Väliranta et al., 22 

2015). Thus, the present study based on a multi-proxy approach can further increase our 23 

understanding in the applicability of biotic proxy-based temperature inferences 24 
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especially in the boreal bio-climate zone of Fennoscandia, where detailed records are 1 

still scarce.  2 

 In this paper, Holocene mean July air temperature (Tjul) reconstructions based on 3 

four biological assemblages (plant macrofossils, pollen, chironomids, and diatoms) are 4 

compared and evaluated in the light of local-scale and site-specific processes, as these 5 

factors have been shown to significantly influence fossil assemblages extracted from 6 

lake sediments (Velle et al., 2005; Anderson et al., 2008; Shala et al., 2014). While the 7 

plant macrofossil-based reconstructions make use of the presence of certain indicator 8 

taxa and yield a minimum Tjul only (Väliranta et al., 2015), the other three Tjul 9 

reconstructions are based on the multivariate transfer-function approach in which both 10 

the most likely past temperature and the sample-specific reconstruction error are 11 

estimated. The compositional distance between fossil samples and their closest modern 12 

analogues in the calibration-set, the temperature optima of the dominating taxa as well 13 

as the distribution of calibration sites along the temperature gradient of the calibration-14 

set are used to compare and evaluate the reconstructions.  15 

 16 

Study site  17 

The coring site is situated in the eastern part of Lake Loitsana, at Sokli, NE Finland 18 

(67°48'17"N, 29°16'56"E; 214 m a.s.l.; Fig. 1 A-B). Regional present-day vegetation 19 

consists of northern boreal forest with birch (Betula pubescens and B. pendula), pine 20 

(Pinus sylvestris) and spruce (Picea abies) as the dominating tree species. The mean 21 

annual temperature in the area is approximately -1 °C, with a January mean of -13.8 °C, 22 

and a July mean of 13.4 °C. Mean annual precipitation is approximately 550 mm (Fig. 23 

1C).  The underlying bedrock consists of a Palaeozoic carbonate-rich magma intrusion 24 
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(Sokli Carbonatite Massif), which is surrounded by bedrock consisting of crystalline 1 

rocks of the Precambrian Shield (Vartiainen, 1980).  2 

Lake Loitsana is situated in a former meltwater channel associated with NW-SE 3 

oriented esker chains. The lake area is 8 ha, water depth of 1–2 m, water pH c. 7.4, and 4 

autumnal total phosphorus (TP) concentration c. 19-25 µg l
-1 (Finnish Environmental 5 

Institute, 2010). The lake is currently mainly fed by groundwater inflow and by limited 6 

surficial input from a small stream in the NW part of the lake. It has also one narrow 7 

outflow. An extensive aapa mire complex borders the lake to the south (Fig. 1B).  8 

[insert Figure 1.] 9 

The general lake development history and associated processes were described and 10 

discussed in Shala et al. (2014) and general regional vegetation development in Salonen 11 

et al. (2013a). Shala et al. (2014) identified six lake stages with associated local 12 

processes, each affecting the different biological assemblages during various periods 13 

(Fig. 2). These local stages were; a deep glacial lake (Stage 1), glacial lake drainage 14 

resulting in a shallow glacial lake (Stage 2), the formation of Lake Loitsana (Stage 3) 15 

with a morphometric eutrophication (Stage 3A) and a period of stratification (Stage 3B), 16 

nearby wetland development with changes in fluvial inflow (Stage 4), a river diversion 17 

(Stage 4B), a shallowing lake with limited surficial inflow (Stage 5), and a more or less 18 

isolated groundwater-fed lake (Stage 6). A summary of the Holocene lake development 19 

as well as regional vegetation development is presented in Fig. 2. This summary is 20 

expanded in the Supplementary information, where a detailed pollen/macrofossil 21 

diagram (Supplementary Figure 1) is also included. 22 

[insert Figure 2.] 23 

 24 
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Materials and methods  1 

Fossil data 2 

Down-core fossil data were obtained from nine meters of lacustrine sediment, collected 3 

with a Russian peat corer from the ice-covered Lake Loitsana in spring 2008. The core 4 

was subsampled with a resolution of 1 cm between 0 and 735 cm consisting of organic-5 

rich sediments and at 5 cm resolution between 735 and 900 cm, where the sediment was 6 

of minerogenic origin. Fossil analyses (plant macrofossils, pollen, chironomids, and 7 

diatoms) were performed at intervals of 3–20 cm in the organic-rich sediment and 5–10 8 

cm in the underlying minerogenic unit. Details on the different analytical procedures are 9 

presented in Shala et al. (2014). 10 

 11 

Quantitative reconstructions  12 

Holocene Tjul reconstructions based on plant macrofossils (henceforth TjulM), pollen 13 

(TjulP), chironomids (TjulC), and diatoms (TjulD) were performed on fossil data obtained 14 

from the Loitsana sediment sequence.  15 

 16 

Plant macrofossils. The TjulM reconstruction method is adopted from Väliranta et al. 17 

(2015). The method is an implementation of the indicator-species method, with 18 

information on modern species distribution limits is combined with measured Tjul from 19 

the same grid cells (10x10 km) in Finland. First, the most indicative plant species is 20 

selected from the macrofossil assemblages. Next, modern species distribution 21 

observations (Lampinen et al., 2014) and a Tjul based on daily measurements (1970–22 

2000) by the Finnish Meteorological Institute (Venäläinen et al., 2005), is used to 23 

estimate current taxon-specific minimum Tjul requirement. The taxon-specific minimum 24 
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Tjul requirement is a median value calculated over 5-6 observations along the taxon´s 1 

northernmost distribution limit. Estimates of past minimum Tjul are derived as the 2 

highest modern minimum Tjul requirement among the taxa found in the fossil sample.  3 

 4 

Pollen, chironomids, and diatoms. TjulP, TjulC, and TjulD, were reconstructed using two-5 

component weighted averaging-partial least squares (WA-PLS; Ter Braak and Juggins, 6 

1993) regression calibration models. Leave-one-out cross-validations (Birks, 1995) 7 

were used to calculate model performance statistics (Table 1), and estimated standard 8 

errors of prediction (eSEPs) for each fossil sample were obtained using random re-9 

sampling (bootstrapping with 1000 iterations).  10 

 11 

Table 1. Summary of calibration-set data, applied regression methods and model 12 

performance statistics for the different proxies. Two-component WA-PLS models were 13 

chosen for the pollen-, chironomid-, and diatom-based reconstructions. RMSEP = root 14 

mean square error of prediction.  15 

Proxy Pollen Chironomids Diatoms 

No. of lakes in the calibration set 218 139 64 

No. of taxa calibration set 127 117 370 

Temperature range (°C) 9.0–17.3 7.9–17.1 7.9–15 

Regression method WA-PLS WA-PLS WA-PLS 

Cross-validation approach Jack-knifing Jack-knifing Jack-knifing 

R2   0.884 0.880 0.882 

Average bias (°C)   -0.018 0.005 0.032 

Maximum bias (°C)   1.248 1.088 2.300 

RMSEP (°C) 0.831 0.839 0.957 
 

 

 16 

The modern analogue technique (MAT; Overpeck et al., 1985; Simpson, 2012) was 17 

used to assess the reliability of the reconstructions, by calculating the compositional 18 

distance (squared-chord distance) between fossil samples and their closest modern 19 
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analogues in the calibration set (CS) used. Qualitative estimates of the fit are made by 1 

comparing down-core distances to closest modern analogues to the distances found with 2 

the most-recent fossil samples, using increasing distance values as an indication of a 3 

worsening fit. 4 

Species-response analysis was performed by using weighted averaging (WA; Birks 5 

et al., 1990) to extract the species temperature optima. As WA-PLS uses transformed 6 

species optima which are not readily assessable, we used the WA temperature optima 7 

and tolerances instead as a rough guideline to analyzing the trends and probable driving 8 

taxa in the reconstructions. All reconstructions and the analyses of compositional 9 

distances and species optima/tolerances were performed using the program C2 Data 10 

Analysis, version 1.7.2 (Juggins, 2007). 11 

 12 

Calibration sets 13 

Basic information about the three different CS‘s used in this study are summarised in 14 

Table 1.  15 

The CS for TjulP consists of 218 lakes and 127 taxa (further details in Salonen et al., 16 

2013a). The lakes are distributed along a latitudinal gradient from the Arctic Ocean 17 

coast to Lithuania and have a Tjul gradient of 9.0–17.3 °C. 18 

The CS for TjulC consists of 139 lakes and 117 taxa (Luoto et al., 2014). The lakes 19 

are situated in northern Finland and distributed along a temperature gradient of 7.9-17.1 20 

°C. 21 

The CS for TjulD consists of 64 lakes and 370 taxa. The lakes are distributed along a 22 

temperature gradient of 7.9–14.9 °C in NW Finnish Lapland (Weckström and Korhola, 23 

2001).  24 
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Results 1 

Plant macrofossil-based reconstructions 2 

The minimum TjulM estimations are based on the local presence of aquatic and wetland 3 

plants; Glyceria lithuanica (≥ 15.7 °C), and Typha seeds (≥ 15.7 °C), Callitriche 4 

hermaphroditica seeds (≥ 14.0 °C), Callitriche cophocarpa seeds (≥ 13.7 °C) and 5 

narrow-leaved Potamogeton species (≥ 13.6 °C).  The results suggest that high TjulM (> 6 

present day values) prevailed already during the earliest part of the Holocene and 7 

temperatures at least as warm as today are indicated also for the rest of the Holocene 8 

(Fig. 3). After 10 100 cal. yrs BP no plant macrofossil remains indicating similarly high 9 

temperatures were found and this is reflected as a decline in TjulM. 10 

[insert Figure 3.] 11 

 12 

Transfer function-based reconstructions and modern analogues  13 

Pollen-based reconstructions. Zone I (c. 10 800-10 570 cal. yrs BP) is characterized by 14 

rather low reconstructed TjulP values (c. 11.5 °C), which prevail throughout Zone II 15 

(10570-10200 cal a. BP). In Zone III, from c. 9000 cal. yrs BP onwards TjulP values 16 

gradually increase until c. 7000 cal. yrs BP, where it remains at ~14 °C (Fig. 3). 17 

Temperatures higher than present day (i.e. 13.4 °C) prevailed since then (Zones III and 18 

IV). The best fit between the fossil samples and modern analogues was recorded in 19 

Zone IV. In general, the fit is decreasing with increasing age. Cross-validation statistics 20 

for the pollen-based calibration model are good (Table 1). Furthermore, scattered 21 

occurrences of Typha latifolia and Nymphaceae pollen, which are currently distributed 22 

in the boreal zone of Finland, were noted until c. 6500 cal. yrs BP (Supplementary 23 
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Figure 1).  1 

 2 

Chironomid-based reconstructions. During the earliest Holocene TjulC is c.12 °C (Fig. 3 

4). Since c. 10 700 cal. yrs BP (Stage 1), TjulC values rapidly increase up to c.15 °C, 4 

where it remains throughout Stage 2 and 3A, until c. 9700 cal. yrs BP. This period is 5 

followed by a decline in TjulC (Stage 3B) with values below present day (13.4 °C) 6 

between c. 8700–6800 cal. yrs BP (Stage 4) and 6000–4300 cal. yrs BP (Stage 5). From 7 

c. 4300 cal. yrs BP (Stage 6) TjulC values were higher than present-day temperatures, 8 

with an increasing trend towards present. In general, the squared-chord distances of 9 

fossil samples to the closest modern analogue suggest a good fit. However, there 10 

appears to be a somewhat tendency to decreasing fit with increasing age (Fig. 4). Cross-11 

validation statistics suggest that the model is strong, with similar performance compared 12 

to the TjulP model (Table 1). 13 

[insert Figure 4.] 14 

 15 

Diatom-based reconstructions. The reconstructed TjulD values are below the present-day 16 

temperature throughout the Holocene (Fig. 5). The TjulD temperature varies between 17 

12.1–13.1 ºC with most values around 12.5 °C. The highest temperatures (around 13.1 18 

°C) were reconstructed during Stages 1-3, i.e. prior to c. 8200 cal. yrs BP. A minor dip 19 

in TjulD (to ~12.4 ºC) can be observed in Stage 3A, at c. 9500 cal a BP. During Stage 4, 20 

5 and 6, TjulD is relatively constant around 12.5 °C. The compositional fit between the 21 

fossil and modern samples is more or less constant throughout the Holocene, and there 22 

is no trend towards a deteriorating fit with increasing age. The model performance 23 
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statistics, however, are slightly weaker compared to the pollen and chironomid models 1 

(Table 1). 2 

[insert Figure 5.] 3 

 4 

Discussion 5 

Evaluation of Tjul reconstructions 6 

Plant macrofossils. The composition of plant macrofossils in sediment records is 7 

affected by factors such as water depth and distance to closest shore (e.g. Hannon and 8 

Gaillard, 1997; Väliranta 2006a, b), water chemistry and nutrient availability (e.g. 9 

Jackson and Charles, 1988), and temperature (e.g. Birks, 1991; Väliranta et al., 2015). 10 

Remains can be transported into lakes by wind, birds, inflowing streams, solifluction, 11 

and slope-wash (Birks, 2007).  12 

 In the Lake Loitsana sediment record, the presence of plant macrofossil remains 13 

appears to be mainly influenced by taphonomic factors such as distance to the shore, 14 

inflow of streaming water to the coring site and water depth (Shala et al., 2014). The 15 

near continuous presence of littoral zone species such as narrow-leaved Potamogeton, 16 

suggests that changes in water depth did not result in a marked alteration of the distance 17 

to the nearest shore, most likely due to the presence of an esker in the vicinity of the 18 

coring site with a steep side facing the lake.  19 

 In general, a high amount of terrestrial macrofossil remains in relation to littoral 20 

plant remains in sediment records reflects shallow conditions (Väliranta et al., 2006b). 21 

In Lake Loitsana, however, this relationship appears to be reflecting changes in inflow 22 

of streaming water. For example, a marked decline of terrestrial macrofossil remains, 23 

such as seeds and catkin scales from tree-type Betula, occurs at c. 6500 cal. yrs BP and 24 
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coincides with the redirection of the Soklioja rivulet (Supplementary Information). This 1 

further highlights that absence of certain species in the fossil record does not necessarily 2 

reflect its actual absence from the local vegetation (Birks, 1973; Hannon and Gaillard, 3 

1997; Väliranta, 2005). Accordingly, the apparent decline in TjulM after 10 100 cal. yrs 4 

BP should not be interpreted as an indication of cooling. 5 

 6 

Pollen. One advantage of using plant macrofossils in this study is that they confirm 7 

local presence of specific taxa, and are thus highly valuable also for the evaluation of 8 

pollen-based temperature reconstructions (Salonen et al., 2013a) allowing us to identify 9 

pollen or spore types, which are likely to be locally produced and not representative of 10 

the regional vegetation. In the pollen–climate CS used, the sites were carefully chosen 11 

to avoid littoral vegetation in order to restrict the amount of local pollen in the samples. 12 

This makes the pollen-reconstruction sensitive to taphonomic differences between the 13 

datasets resulting from e.g. changes in depositional settings. This, in turn, could affect 14 

the relative representation of regionally transported and locally produced pollen from 15 

e.g. a nearby shore or wetland and might cause an over-representation of locally 16 

produced pollen. The local origin of Cyperaceae, Equisetum and Gramineae (syn. 17 

Poaceae) following deglaciation and until 9200 cal. yrs BP is confirmed by presence of 18 

macrofossil remains (Carex seed, Equisetum remains, Glyceria lithuanica) and grass 19 

phytoliths. These taxa are more common in the tundra calibration sites and have thus 20 

low temperature optima in the CS (Salonen JS, personal observation). An 21 

overrepresentation of locally produced pollen could explain the poor compositional fit 22 

observed during the early Holocene as well as cause an underestimation of the 23 

reconstructed TjulP. Since 8000 cal. yrs BP occurrences of Alnus, Filipendula and long-24 
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distance transported Corylus coincide with reconstructed temperatures above present 1 

day value (13.4 °C). Warmer temperatures (>13.4 °C) are generally driven by the 2 

occurrence of tree pollen (e.g. Tilia, Ulmus, Corylus, Carpinus, Fraxinus), which are 3 

presently only found in the southernmost part of the CS (Salonen JS, personal 4 

observation). The poor fit observed in the mid Holocene appears to be associated to 5 

high Alnus values. Alnus has a preference for moist habitats (Mossberg and Stenberg, 6 

2003) and is a strong pollen producer (Bradshaw, 1981). Its pollen can be strongly over-7 

represented when locally present (Tinsley and Smith, 1974). It is thus possible that the 8 

sharp, mid-Holocene peak in Alnus was caused by the presence of Alnus in the wetland 9 

habitat immediately surrounding the lake. This is further supported by the concurrent 10 

presence of Alnus macrofossil remains. Relatively low Picea pollen percentages are 11 

encountered since c. 4000 cal. yrs BP in comparison to other sites in Finnish Lapland 12 

(Salonen et al., 2013a). The WA-optima of Picea (15.2 °C) is 4
th

 highest among the 13 

dominating taxa in the used CS and might thus to some extent have overestimated the 14 

reconstructed Tjul values during the late Holocene, despite its underrepresentation in the 15 

fossil samples compared to other sites in Fennoscandia.  16 

Chironomids. The low temperatures reconstructed during the earliest Holocene (> 10 17 

700 cal. yrs BP), i.e. during the deep glacial lake stage, appear to be driven by the cold- 18 

and deep-water taxa Heterotrissocladius maeaeri-type and Tanytarsus lugens-type. The 19 

former is also reported to have dominated the deep waters of the late-glacial Baltic Ice 20 

Lake (Luoto et al., 2010). The high Tjul values, which are reconstructed already during 21 

the existence of the deep glacial lake (until c. 10 570 cal. yrs BP), rise during the 22 

shallow glacial lake and peak during the initiation of Lake Loitsana with morphometric 23 

eutrophication (Shala et al., 2013). The TjulC remains relatively high following the 24 
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morphometric eutrophication at c. 10 200 cal. yrs BP. At c. 10 700–10 100 cal. yrs BP, 1 

there is a clear representation of taxa preferring more nutrient-rich conditions, e.g. the 2 

eutrophic littoral taxon Polypedilum nubeculosum-type (Raunio et al., 2010). This taxon 3 

thrives under shallow lake conditions, increases in littoral vegetation and/or higher 4 

nutrient availability, and might therefore cause the overestimation of TjulC. However, as 5 

this taxon occurs in high abundances already in the deep phase of the glacial lake (prior 6 

to 10 570 cal. yrs BP), the high TjulC values appear to be primarily climatically driven. 7 

This is further supported by the generally low presence of cold-water indicators with the 8 

exception of Tanytarsus lugens-type (Brooks et al., 2007), which nevertheless also 9 

clearly decreases in abundance since 10 700 cal. yrs BP. A slight overestimation of the 10 

Tjul values cannot, however, be ruled out as littoral vegetation was closer and 11 

transported to the coring site during 10 600–10 200 cal. yrs BP. It could thus be argued 12 

that this early Holocene peak in temperature was maintained or even prolonged by the 13 

morphometric eutrophication that followed and persisted until c. 9300 cal. yrs BP by 14 

causing an increase in several taxa with warm temperature optima (Chironomus 15 

anthracinus-type, Cricotopus cylindraceus-type and Procladius) and preference to 16 

higher nutrient conditions (Luoto, 2011). This seems, however, unlikely as temperature 17 

begins to decline during this period and continuing well into Stage 3B. 18 

 The low TjulC values (<13 °C) between c. 8700–6800 cal. yrs BP and 6000–4500 19 

cal. yrs BP appear to be driven by high occurrences of Corynocera ambigua and C. 20 

oliveri-type (Fig. 4). The former has the third lowest WA temperature optimum of all 21 

dominating taxa in the CS and the latter has the lowest optimum with a value of 10.6 ± 22 

1.4 °C (Fig. 6). The modern distribution of Corynocera ambigua in Finnish lakes is 23 

related to cold oligo-mesotrophic waters, but it is known to have a complex ecology 24 
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(Brodersen and Lindegaard, 1999). In the sediment sequence of Lake Loitsana it 1 

appears to be favoured by dense macrophyte communities of e.g. Myriophyllum (Shala 2 

et al., 2014, Fig. 2). Though generally considered a cold indicator, the stenotherm 3 

Corynocera oliveri-type has also been found in warmer lakes (Palmer et al., 2002) as 4 

well as associated to higher DOC concentrations (Gajewski et al., 2005; Medeiros and 5 

Quinlan, 2011). In the sediment record of Lake Loitsana it seem to be driven by 6 

increased DOC contents. The low TjulC from c. 8700 until 4500 cal. yrs BP, might thus 7 

to be an artefact caused by locally driven changes (e.g. river diversion). With the 8 

exception of Corynocera ambigua, which had high abundances throughout 6290-6790 9 

cal. yrs BP, oligotrophic/cold-indicating taxa clearly decline or are completely absent 10 

while meso/eutrophic taxa such as Dicrotendipes pulsus-type and Procladius, with a 11 

WA-optima above 13 °C, clearly increase. 12 

 The gradually increasing and higher than present-day TjulC from c. 4500 cal. yrs BP 13 

until present is associated with declining abundances of cold-indicating Corynocera 14 

ambigua and Paratanytarsus. The most recent rise in TjulC values from c. 1800 cal. yrs 15 

BP to present, however, appears to be driven by increased abundances of warm-16 

indicating Cladotanytarsus mancus-type and Tanytarsus mendax-type (Eggermont and 17 

Heiri, 2012), which also have a preference for shallow waters and nutrient-rich 18 

conditions (Brooks et al., 2007; Luoto, 2011). The TjulC of c. 15 ºC is therefore probably 19 

unrealistically high and driven by the further shallowing of the lake (e.g. Nyman et al., 20 

2008).  21 

[insert Figure 6.] 22 

 23 
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Diatoms. The diatom record at Lake Loitsana is characterized by mass-occurring 1 

Fragilariaceae (Staurosira venter, S. construens, Pseudostaurosira brevistriata, 2 

Staurosirella lapponica, Staurosira binodis and Staurosirella pinnata) throughout the 3 

Holocene (Fig. 5), comprising 55- 96% of each diatom assemblage. These taxa are 4 

generally considered as opportunistic and pioneering due to their wide range of 5 

ecological preferences and they often dominate lakes with disturbed conditions, for 6 

example, alpine proglacial lakes or recently deglaciated lakes (e.g. Lotter et al., 1999; 7 

Seppä and Weckström, 1999; Bigler et al., 2003; Schmidt et al., 2004). At lake Loitsana 8 

they seem to be favoured by the alkaline water and disturbances caused by 9 

fluvial/minerogenic influx as well as groundwater inflow from the nearby esker. WA-10 

optima of the dominating Fragilariaceae taxa (Fig. 6) shows a clear pattern with 11 

generally low TjulD optima (~11.5–12.5 ºC), most likely resulting from the uneven 12 

distribution of CS sites along the temperature gradient. The low TjulD values throughout 13 

the Holocene appear to be an artefact of the mass-occurrence of Fragilariaceae and the 14 

distributional bias of the CS lakes towards the cold end of the temperature gradient. The 15 

high distance to the closest modern analogue, although rather constant throughout the 16 

Holocene, suggests that the similarities between the fossil samples and CS are low.  17 

Diatoms have been shown to capture Holocene climate variability (e.g. Pienitz et al., 18 

1995; Korhola et al., 2000; Bigler, 2001; Weckström et al., 2006), although their 19 

sensitivity to other variables (e.g. pH, trophic state) complicates temperature 20 

reconstructions especially during time periods when the other variables are not constant 21 

(Anderson, 2000; Battarbee, 2000; Bigler and Hall, 2003; Laroque and Bigler, 2004). 22 

The general trend of the reconstruction, with higher temperatures during the early 23 

Holocene, and limited variation during the mid- and late-Holocene, is most likely to 24 
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some degree reflecting regional climate development, as diatoms depend on water-1 

temperature for various processes (e.g. Pienitz et al., 1995 and references therein). 2 

However, the complex relationship between diatoms and environmental variables makes 3 

it difficult to disentangle the climate signal from the site-specific processes (e.g. pH, 4 

substrate, turbidity and trophic state) that have affected species distribution at Lake 5 

Loitsana (Shala et al., 2014).  6 

 7 

Comparison of the Tjul reconstructions  8 

A comparison of the reconstructed Tjul deviations from the present day value reveals 9 

that not only the absolute values but also the general trend differs considerably between 10 

the different proxies. While the pollen-based reconstruction displays low early 11 

Holocene (prior to 8200 cal. yrs BP) Tjul (~2 ºC below present day) and temperatures 12 

higher than present only after c. 8000 cal. yrs BP, the plant macrofossils and 13 

chironomids suggest high Tjul already in the early Holocene (prior to 8200 cal. yrs BP) 14 

with temperatures of at least 2 °C higher than present day prior to 10 500 cal. yrs BP 15 

(Fig. 7). Diatoms mirror this trend with higher temperature throughout the early 16 

Holocene, but with considerably lower values (around 12.8 °C). 17 

[insert Figure 7.] 18 

Local presence of plants is generally inferred from plant macrofossils although in some 19 

cases, also pollen from aquatic and wetland plants can be indicative of local presence 20 

(Birks and Birks, 2000). For example, Typha latifolia has been found to have a highly 21 

localized pollen dispersal (Krattinger, 1975; Ahee et al., 2015). In Lake Loitsana, 22 

scattered pollen occurrences of Typha latifolia and aquatic plants such as 23 

Nymphaeaceae were noted until c. 6500 cal. yrs BP and could be considered to indicate 24 
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local presence like plant macrofossil remains. This would suggest that temperatures 1 

were at least 15.6 °C, which is slightly higher than the reconstructed TjulP, although this 2 

falls within the margin of the sample specific errors. Also TjulC displays a trend with 3 

rising temperatures around 6500 cal. yrs BP, although the values are, in similarity with 4 

TjulD, below present day temperature throughout middle Holocene (8200-4200 cal. yrs 5 

BP).  6 

While plant macrofossils suggest at least comparable Tjul throughout the late Holocene 7 

(4200 cal. yrs BP to present), TjulP and TjulC reconstructions indicate higher than present 8 

Tjul temperatures (Fig. 7).  9 

 The somewhat different Tjul reconstructions based on different biological proxies 10 

revealed that local processes seem to have a strong impact on the results. While the 11 

macrofossil minimum Tjul reconstruction is mainly limited by taphonomic factors such 12 

as distance to the shore, water depth and inflow of streaming water to the coring site, 13 

the pollen record is clearly hampered by taphonomic differences between the modern 14 

and fossil data (Salonen et al., 2013a). Chironomid Tjul instead seem to be affected by 15 

macrophyte abundance, nutrient dynamics, and the general infilling of the lake, whereas 16 

the diatom Tjul is hampered by poor analogue situation due the mass occurrence of 17 

Fragilariaceae and the biased distribution of the CS lakes towards the cold end of the 18 

temperature gradient (Fig. 6).   19 

 20 

Timing of the regional highest Tjul reconstructions  21 

Early-Holocene warming suggested by chironomids and aquatic/wetland plant 22 

macrofossils and low Tjul suggested by pollen-based models has been observed at 23 

several locations in northern Fennoscandia (Väliranta et al., 2011b; Paus, 2013; Luoto et 24 
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al., 2014; Väliranta et al., 2015) and NE European Russia (Jones et al., 2011; Salonen et 1 

al., 2011; Väliranta et al., 2015). In contrast, pollen and macrofossil evidence of an early 2 

Holocene warming in NE Canada, where have been presented by Ritchie et al. (1983) 3 

who concluded that maximum summer temperatures prevailed at c. 10 000 a BP 4 

(uncalibrated). In central Norway, chironomid-based reconstructions show an early-5 

Holocene warming with Tjul higher than present day values prior to 9000 cal. yrs BP 6 

(Paus et al., 2011), while in western Norway and northern Norway TjulC higher than 7 

present-day was observed prior to 10 000 cal. yrs BP (Brooks and Birks, 2001; Birks et 8 

al., 2012). Pine stomata preserved in the late glacial sediments and the presence of pine 9 

megafossils dated to 9500–9700 cal. yrs BP further support an early-Holocene warming 10 

(Paus et al., 2011). In NE European Russia, the chironomid record of Lake Kharinei 11 

also suggests high Tjul during the early Holocene and is contrasting with the TjulP (Fig. 12 

7), while the presence of aquatic macrofossils such as Elatine hydropiper and 13 

Potamogeton spp reflect warm conditions during the early Holocene (Jones et al., 14 

2011).  15 

 The high TjulM and TjulC values coincide with the early-Holocene high summer 16 

insolation level. In contrast to higher-than-present summer insolation, the early 17 

Holocene winter insolation was approximately 28% lower (~5 W/m
2
) than present day 18 

(Berger and Loutre, 1991). The seasonal insolation deviation where the summer 19 

insolation was 10% higher and winter 28% lower than today around c. 11 000 cal. yrs 20 

BP, supported by the chironomid-inferred continentality-index (Self et al., 2011; Engels 21 

et al., 2014), suggests increased seasonality and more continental early Holocene 22 

conditions (Fig. 7). The early Holocene warming is also consistent with increased sun 23 
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spot activity (Solanski et al., 2004) as well as high summer sea-surface temperatures 1 

(SST) from the Barents Sea (Fig. 7). 2 

 To summarise, despite a relatively poor fit of the chironomid fossil samples to the 3 

closest modern analogue, the early-Holocene July warming appears to be significant and 4 

is supported by the independent macrofossil-based minimum Tjul estimates. The 5 

observed inconsistencies between TjulP and the chironomid/macrofossil-inferred Tjul 6 

appear to be mainly related to the overrepresentation of locally dispersed pollen types 7 

during the early Holocene, which have low modelled temperature optima due to their 8 

common occurrence in the NE European tundra region, but which also occur as 9 

elements of wetland habitats in a range of climates. In the sediment record of Lake 10 

Loitsana these cold-indicator pollen taxa are more likely associated with a wetland 11 

habitat immediately surrounding the lake. This inference is supported by the abundant 12 

preservation of plant macrofossils representing the same taxa. As the higher 13 

temperatures (i.e. > present day value) are driven mainly by the occurrence of tree 14 

pollen (e.g. Tilia, Ulmus, Corylus, Carpinus, Quercus, Pinus), the increasing TjulP values 15 

during the mid-Holocene might well be the result of a delayed response of the terrestrial 16 

vegetation due to e.g. soil maturation processes (Väliranta et al., 2011a, 2015).  17 

 18 

Conclusions  19 

Holocene July air temperature history of a northern boreal Lake Loitsana, Finland was 20 

reconstructed using multiple proxies (plant macrofossils, pollen, chironomids, and 21 

diatoms).  The comparison between the different reconstructed temperature histories 22 

revealed that not only the absolute values, but also the general trend differs considerably 23 

between the different proxy-based reconstructions. While pollen-based temperatures 24 
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follow the classical trend of gradually increasing early Holocene temperatures with a 1 

mid-Holocene maximum, the aquatic/wetland assemblages reconstruct higher than 2 

present temperatures already during the early Holocene, i.e. at the peak of summer 3 

insolation. Both the aquatic/wetland macrofossils and chironomids suggest Tjul about 2 4 

°C higher than present-day, whereas TjulP is approximately 2 °C lower than present-day 5 

and TjulD remains below present-day value, throughout the Holocene.  6 

 Since all the used proxies have some shortcomings regarding their use in 7 

palaeolimnological research it is essential to acknowledge them and carefully evaluate 8 

their impact on the final results. We show that during specific time windows all the 9 

climate reconstructions are substantially influenced at by local factors in addition to the 10 

underlying trend in regional climate. However, our study also highlights the 11 

considerable promise and benefits of multi-proxy datasets in palaeoclimate 12 

reconstruction, e.g. to identify outlier reconstructions and to exploit the most robust 13 

climate proxies in each time window.  14 
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Figure caption 1 

Figure 1. Map of the study site showing A. the location of the study site in Finland; B. 2 

the location of Lake Loitsana, coring point and geomorphology of the area (modified 3 

from Johansson (1995)), and C. climatogram showing mean monthly precipitation and 4 

temperature for the time period of 1971-2000 for Savukoski (67°17'N, 28°10'E, 193 m 5 

a.s.l.). Data were obtained from the Finnish meteorological institute.  6 

 7 

Figure 2. A summary of the terrestrial vegetation development (Salonen et al., 2013a) 8 

and local development of Lake Loitsana (Shala et al., 2014). The carbon content (Corg) 9 

of the sediments, C/N ratio and selected local elements are included. Macrofossil 10 

remains (black silhouette) are presented as bars showing concentrations (amount/10cm
3
) 11 

or as relative abundances; + = rare, ++ = occurring, +++ = abundant, ++++ = dominant, 12 

+++++ = main constituent of the sample. Microfossils (grey silhouette) are represented 13 

by graphs; phytoliths (%, relative to diatoms), Pediastrum (%, relative to pollen 14 

landsum). 15 

 16 

Figure 3. Minimum Tjul based on presence of aquatic/wetland plants (TjulM) and pollen-17 

based Tjul reconstruction using a two-component weighted averaging-partial least 18 

squares (WA-PLS) regression. The indicator species used to infer minimum TjulM are; 1 19 

= Nymphaea (13.49 ºC), 2 = narrow-leaved Potamogeton spp such as P. filiformis 20 

(13.61 ºC), 3 = Callitriche cophocarpa (13.65 ºC), 4 = Callitriche hermaphroditica 21 

(14,0 ºC), 5 = Glyceria lithuanica (15.65 ºC) and 6 = Typha (15.69 ºC). Closest modern 22 

analogue (C.M.A.) of each fossil sample is calculated using the squared chord distance 23 

in order to assess the fit between the fossil and modern calibration set and LOESS 24 
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smoother (span 0.25, one robustifying iteration) is added to the Tjul reconstruction. Lake 1 

development (Local stages) and Pollen Zones generalized from Fig. 2, selected pollen 2 

taxa (%; grey silhouette) and macro/microfossil remains (dashed line) that confirm local 3 

presence of the plants are also included. 4 

 5 

Figure 4. Chironomid-based Tjul reconstruction (TjulC) using a two-components WA-6 

PLS regression. The fit of the fossil and calibration set is estimated using the squared 7 

chord distance to calculate the closest modern analogue (C.M.A.) of each fossil sample. 8 

LOESS smoother (span 0.25, one robustifying iteration) is added to the TjulC. Lake 9 

development (Local stages), generalized from Fig. 2, and selected chironomid taxa are 10 

included.  11 

 12 

Figure 5. Diatom-based Tjul reconstruction using a two-components WA-PLS 13 

regression. The fit of the fossil and calibration set is estimated using the squared chord 14 

distance to calculate the closest modern analogue (C.M.A) of each fossil sample. 15 

LOESS smoother (span 0.25, one robustifying iteration) is added to the TjulC. Lake 16 

development (Local stages), generalized from Fig. 2, and mass-occuring Fragilariaceae 17 

are included. 18 

 19 

Figure 6. The distribution of lakes along the sampled temperature gradients of the 20 

diatom calibration-set (7.9-15.7˚C), chironomid calibration-set (7.9-17 ˚C) and pollen 21 

calibration-set (9.0-17.3 ˚C) and mean July air temperature optima for the most 22 

common taxa occurring in the fossil data. Tjul optimum for the different taxa was 23 

calculated using the WA-approach. 24 
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 1 

Figure 7. Holocene lake proxy-based temperature reconstructions on the fossil record of 2 

Lake Loitsana. The Tjul reconstructions are here compared to the TjulP and TjulC 3 

reconstructions at Lake Kharinei (Jones et al., 2011; Salonen et al., 2011), the 60N 4 

summer and winter insolation (Berger and Loutre, 1991) and Barents Sea SST at 75N 5 

(Hald et al., 2007). Chironomid-inferred continentality index for both Lake Loitsana 6 

(Engels et al., 2014) and Lake Kharinei (Jones et al., 2011) are also included.  7 
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SUPPLEMENTARY INFORMATION to “Comparison of quantitative Holocene 1 

temperature reconstructions using multiple proxies from a northern boreal lake” 2 

Shala S, Helmens KF, Luoto TP, Salonen JS, Väliranta M, Weckström J. 3 

 4 

 5 

Holocene lake development  6 

Sedimentation in the Loitsana basin initiated prior to 10 700 cal. a BP (Shala et al., 7 

2014). The glacial lake that took form following the early Holocene deglaciation of 8 

the Sokli area was initially deep and covered extensive areas (Local Stage 1). The 9 

initiation of glacial lake drainage at c. 10 600 cal. a BP, resulting from the 10 

deglaciation of the Nuortti river canyon, caused a dramatic lowering in lake level, 11 

placing a smaller and shallowing glacial lake in a restricted catchment (Stage 2). After 12 

the final glacial lake drainage and formation of Lake Loitsana at c. 10 200 cal. a BP 13 

(beginning of Stage 3), a morphometric eutrophication (Stage 3a) occurred as a result 14 

of the decrease in lake volume and rapid infilling. This event lasted until c. 9500 cal. a 15 

BP and was followed by lake stratification starting at c. 9300 cal. a BP (Stage 3B). 16 

During its initial phase of infilling the Lake Loitsana was deep and received fluvial 17 

input from the Soklioja (Stages 3-4A). The infilling of the southern part of the 18 

Loitsana basin resulted in the redirection of the Soklioja at c. 6500 cal. a BP and 19 

wetland expansion (Stage 4B). The on-going infilling, although with reduced 20 

sedimentation rates, caused further shallowing of the lake throughout Stage 5 and 6. 21 

The lake was mainly groundwater fed from the adjacent esker from c. 4300 cal. a BP 22 

onwards (Stage 6).  23 

 The deep glacial lake was initially characterised by high influx of minerogenic 24 

sediments and a poor aquatic flora (Stage 1). As the ice-sheet retreated further away 25 
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from the coring-site, shore erosion, phytolith abundance and species diversity of 1 

diatoms, chironomids and aquatic macrophytes increased. The shallow glacial lake 2 

(Stage 2), was also characterised by occurrences of wetland/shore vegetation. 3 

Following the river diversion, in-lake vegetation seems to have become less diverse.  4 

 Organic carbon content (Corg) is generally low during the deep glacial lake (Stage 5 

1) and increases gradually during the shallowing glacial lake and initial stage of Lake 6 

Loitsana (Stages 2-3A). Only minor variations in Corg (~7–15%) are observed 7 

throughout Stages 3B-5 with the exception of Stage 4B when the redirection of the 8 

Soklioja at c. 6500 cal. a BP resulted in an increase in Corg. During Stage 6, a similar 9 

increase in Corg, (~ 17–37 %) is recorded, most probably reflecting low minerogenic 10 

input from the catchment as well as the high aquatic macrophyte abundance. 11 

 12 

Regional Holocene vegetation development  13 

A simplified pollen record from the Holocene was first published in Salonen et al. 14 

(2013). The entire terrestrial vegetation record, complemented with macrofossil data 15 

are presented in Fig. 1. Four pollen zones were distinguished (Zones I-IV).  16 

 During the initial stages of lake formation, i.e. prior to 10 500 cal. a BP (Pollen 17 

Zone I), the vegetation surrounding Loitsana consisted mainly of shrubs (Betula nana, 18 

Ericaceae and Salix) and herbs. The latter included a variety of light demanding 19 

helophytes such as Asteraceae (Artemisia, Inula salicina), Brassicaceae (Rorippa 20 

palustris), Caryophyllaceae, Chenopodiaceae and Polygonaceae (Polygonum bistorta 21 

type, Rumex acetosella). Seeds of Carex suggest that at least part of the Cyperaceae 22 

pollen is of local origin from a nearby wetland. Similarly, Glyceria lithuanica seed 23 

and pooid phytoliths indicate that also part of the grass pollen in Zone I had a local 24 

source. The vegetation was thus rather open during Zone I with tree-type Betula 25 
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locally present as suggested by the occurrence of seeds as well as high percentages of 1 

pollen (up to 40%). Zone II pollen assemblages (c. 10 200–9200 cal. a BP) indicate 2 

the presence of birch forest in the Sokli area. Macroscopic Equisetum remains that are 3 

present throughout Zone II indicate a local wetland source same as during Zone I 4 

(Fig. 1), whereas ferns, including Athyrium, and Dryopteris types, are well 5 

represented in the pollen record during Zone II-B.  6 

 The establishment of pine-birch forest (beginning of Zone III) occurred at c. 9200 7 

cal. a BP. Zone III is further characterised by a near coninous presence of long-8 

distance transported pollen of Corylus and Ulmus. Alnus as well as the herb 9 

Filipendula are well represented during Zone III-B (c. 8000–4000 cal. a BP). An 10 

increase in Picea pollen is observed during the last c. 4000 cal. a BP (Zone IV). 11 

 12 

Figure captions 13 

Supplementary Figure 3. Pollen and macrofossil diagram for terrestrial taxa from 14 

the Holocene sediment succession of Lake Loitsana. Macrofossil remains (green) are 15 

presented as bars showing concentrations (amount/10 cm
3
) or as relative abundances; 16 

+ = rare, ++ = occurring, +++ = abundant. Microfossil (pollen and spores) abundances 17 

are shown with grey silhouette curves, single samples with percentage values < 1% 18 

are represented by dots.  19 

 20 
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Figure 1. Map of the study site showing A. the location of the study site in Finland; B. the location of Lake 
Loitsana, coring point and geomorphology of the area (modified from Johansson (1995)), and C. 

climatogram showing mean monthly precipitation and temperature for the time period of 1971-2000 for 

Savukoski (67°17'N, 28°10'E, 193 m a.s.l.). Data were obtained from the Finnish meteorological institute.  
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Figure 2. A summary of the terrestrial vegetation development (Salonen et al., 2013a) and local 
development of Lake Loitsana (Shala et al., 2014). The carbon content (Corg) of the sediments, C/N ratio and 
selected local elements are included. Macrofossil remains (black silhouette) are presented as bars showing 
concentrations (amount/10 cm3) or as relative abundances; + = rare, ++ = occurring, +++ = abundant, 

++++ = dominant, +++++ = main constituent of the sample. Microfossils (grey silhouette) are 
represented by graphs; phytoliths (%, relative to diatoms), Pediastrum (%, relative to pollen landsum).  
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Figure 3. Minimum Tjul based on presence of aquatic/wetland plants (TjulM) and pollen-based Tjul 
reconstruction using a two-component weighted averaging-partial least squares (WA-PLS) regression. The 

indicator species used to infer minimum TjulM are; 1 = Nymphaea (13.49 ºC), 2 = narrow-leaved 

Potamogeton spp such as P. filiformis (13.61 ºC), 3 = Callitriche cophocarpa (13.65 ºC), 4 = Callitriche 
hermaphroditica (14,0 ºC), 5 = Glyceria lithuanica (15.65 ºC) and 6 = Typha (15.69 ºC). Closest modern 
analogue (C.M.A.) of each fossil sample is calculated using the squared chord distance in order to assess the 
fit between the fossil and modern calibration set and LOESS smoother (span 0.25, one robustifying iteration) 
is added to the Tjul reconstruction. Lake development (Local stages) and Pollen Zones generalized from Fig. 
2, selected pollen taxa (%; grey silhouette) and macro/microfossil remains (dashed line) that confirm local 

presence of the plants are also included.  
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Figure 4. Chironomid-based Tjul reconstruction (TjulC) using a two-components WA-PLS regression. The fit of 
the fossil and calibration set is estimated using the squared chord distance to calculate the closest modern 
analogue (C.M.A.) of each fossil sample. LOESS smoother (span 0.25, one robustifying iteration) is added to 

the TjulC. Lake development (Local stages), generalized from Fig. 2, and selected chironomid taxa are 
included.  
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Figure 5. Diatom-based Tjul reconstruction using a two-components WA-PLS regression. The fit of the fossil 
and calibration set is estimated using the squared chord distance to calculate the closest modern analogue 
(C.M.A) of each fossil sample. LOESS smoother (span 0.25, one robustifying iteration) is added to the TjulD. 
Lake development (Local stages), generalized from Fig. 2, and mass-occuring Fragilariaceae are included.  
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Figure 6. The distribution of lakes along the sampled temperature gradients of the diatom calibration-set 
(7.9-15.7˚C), chironomid calibration-set (7.9-17 ˚C) and pollen calibration-set (9.0-17.3 ˚C) and mean July 
air temperature optima for the most common taxa occurring in the fossil data. Tjul optimum for the different 

taxa was calculated using the WA-approach.  
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Figure 7. Holocene lake proxy-based temperature reconstructions on the fossil record of Lake Loitsana. The 
Tjul reconstructions are here compared to the TjulP and TjulC reconstructions at Lake Kharinei (Jones et al., 

2011; Salonen et al., 2011), the 60˚N summer and winter insolation (Berger and Loutre, 1991) and Barents 
Sea SST at 75˚N (Hald et al., 2007). Chironomid-inferred continentality index for both Lake Loitsana (Engels 

et al., 2014) and Lake Kharinei (Jones et al., 2011) are also included.  
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