1 ILB 938, a valuable faba bean (Vicia faba L.) accession

- 2 H. Khazaei^{1*}, W. Link², K. Street³ and F. L. Stoddard⁴
- ³ Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- 4 ² Department of Crop Sciences, Georg-August-Universität, Göttingen, Germany
- 5 ³ International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- 6 ⁴ Department of Agricultural Sciences, Viikki Plant Science Centre, and Helsinki Sustainability
- 7 Science Centre, University of Helsinki, Helsinki, Finland

8

9 *Corresponding author. E-mail: <u>hamid.khazaei@gmail.com</u> or <u>hamid.khazaei@usask.ca</u>

10 Abstract

Here we review the potential of ILB 938 (IG 12132- doi:10.18730/60FD2), a unique faba bean 11 12 accession originating from the Andean region of Colombia and Ecuador, maintained at ICARDA - International Center for Agricultural Research in the Dry Areas, with resistance to multiple 13 biotic and abiotic stresses and carrying some useful morphological markers. It has been used as a 14 15 donor of leaf-related drought adaptation traits and chocolate spot (Botrytis fabae) resistance 16 genes in faba bean breeding programs worldwide. From generated populations of recombinant 17 inbred lines, QTLs (quantitative traits loci) associated with these useful traits have been mapped. Other markers, such as a lack of stipule-spot pigmentation and clinging pod wall, show the 18 presence of unusual changes in biochemical pathways that may have economic value in the 19 20 future.

21

22 Keywords: germplasm, faba bean, biotic stress, abiotic stress, mapping population

23 Introduction

Faba bean (Vicia faba L.) seeds are a generous source of plant protein, with a global average 24 25 protein concentration of 29% on a dry-weight basis (Feedipedia, 2018). It is one of the main sources of affordable protein for human consumption in developing countries (consumed as dry 26 27 or canned), and for livestock feed in many developed countries. The fresh pods and seeds are 28 widely used as a vegetable crop for fresh seed production. Like other legumes, it symbiotically 29 fixes atmospheric nitrogen, thus improving the soil fertility. As a non-host of many cereal 30 pathogens, faba bean is ideal as a break between grain crops in the rotation (Köpke and Nemecek, 2010). It has a mixed breeding system and is cross-pollinated at frequencies of 4-84%, 31 with the value determined by the interaction between the plant genotype, its environment, and 32 the population of pollinators (Bond and Poulsen, 1983). Its interaction with many species of bee 33 (Stoddard and Bond, 1987) makes it suitable for growing in ecological focus areas (Bues et al., 34 35 2013). It is widely adapted to cool-temperate agriculture, being grown from Mediterranean climates in southern Australia and Mediterranean basin countries to sub-boreal climates in 36 37 Finland and Canada. Nevertheless, faba bean cultivation is limited due to its susceptibility to several biotic and abiotic constraints globally (see Stoddard et al., 2006; Torres et al., 2006; 38 Khan et al., 2010). Hence, genetically diverse sources of resistance genes or genes for specific 39 40 adaptations such as to abiotic stress factors are required in pre-breeding programs worldwide. Some of these germplasm sources, called 'donors' may become prominent. 41

Faba bean is represented in germplasm collections by only the cultivated form. Both botanical and molecular data suggest that the wild ancestors of faba bean either have vanished or have not yet been discovered (Maxted, 1993; Duc *et al.*, 2010; Kosterin, 2014; Caracuta *et al.*, 2016), which highlights the importance of the accessible diversity within the cultivated

form. The place of origin of faba bean is still unknown. A Near or Middle East centre of origin 46 has been proposed (Cubero, 1974), and the earliest identified remains of faba bean date from 47 10200 BP in a cave in Israel (Caracuta et al., 2015). Radiation followed in four directions from 48 the proposed centre: Europe, along the North Africa coast to Spain, along the Nile Valley to 49 Ethiopia, and from Mesopotamia to India and China (Lawes et al., 1983). Spanish and European 50 material was taken to South America in the 16th century (Bond, 1976). There are 43,695 faba 51 bean accessions conserved within 37 global genebanks (ex situ, FAO, 2010) as well as on-farm 52 53 conservation (in situ, Suso et al., 2005). ICARDA (International Center for Agricultural Research in the Dry Areas) hosts the largest collection of over 9,500 accessions (21% of global 54 collection, FAO, 2010). ICARDA maintains its faba bean germplasm in two classes, ILB 55 56 (International Legume Bean) accessions from different countries, and BPL (Bean Pure Line) accessions that are derived through selfing from accessions drawn from the ILB collection 57

58 (Saxena and Varma, 1985).

59 Accession ILB 938

60 ILB 938 is the result of mass selection from ILB 438 based on seed size. ILB 438 was brought to

61 ICARDA from the Andean region of Ecuador and Columbia (Robertson, 1984). ICARDA's

registered BPL derivatives of ILB 438 and ILB 938 are BPL 710 and BPL 1179, respectively.

63 ILB 938/2 is an inbred line developed at Göttingen for use in genetics and breeding studies. The

64 corresponding "IG" number for ILB 938 in the ICARDA genebank is "IG 12132" (accession doi:

65 10.18730/60FD2, see <u>https://www.genesys-pgr.org/10.18730/60FD2</u>). ILB 438 is registered as

IG 11632 in the ICARDA genebank (accession doi: 10.18730/601TB).

67 Morphological markers

In the wild-type faba bean, the extra-floral nectary on the stipule is coloured black. The presence 68 of stipule spot pigmentation was proposed as an early morphological marker indicating wild-type 69 70 'coloured' flowers (tannin-containing faba bean), where there is a black spot on each wing petal and dark vein markings on the standard petal (Picard, 1976). The absence of the pigmentation 71 72 was considered as the corresponding early morphological indicator for the white-flower, zero-73 tannin trait (Link et al., 2008). ILB 938, however, carries a rare allele (ssp1) that decouples pigmentation in flowers from that in stipules, so it has colourless stipules and coloured flowers 74 (Supplementary Figure S1, Khazaei et al., 2014a). An Australian line, AF11212, has the same 75 76 phenotype and is derived from BPL 710 (Dr. Jeff Paull, The University of Adelaide, Australia; 77 personal communication). Crossing ILB 938/2 with AF11212 (including reciprocal crosses) 78 showed in the F1 and F2 generations uniformly the combination of colourless stipule spots and spotted flowers, confirming that the same gene exists in both accessions (Miller, 2016). 79

The seed size of ILB 938 is classified as *equina* (horse bean, field bean, flattened seed; 0.6 g / seed) which is expected since it was the medium to large-seeded Mediterranean-adapted faba bean forms that were introduced to Central and South America by immigrants from Spain (Muratova, 1931; Cubero, 1974). The seed coat of ILB 938 is green in colour, which is recessive to the common beige or buff colour (Khazaei *et al.*, 2014b).

A further noticeable morphological character of ILB 938 is the clinging pod wall, where fibres from the inner epidermis of the pod cling to the surface of the seed (Supplementary Figure S2). We have not seen this trait otherwise reported in faba bean germplasm, and while it is of little importance agronomically or economically, it may indicate a difference in cell wall development that has other impacts elsewhere in the plant or in the value chain. 90 Finally, the funiculus is yellow in ILB 938, in contrast to the common green displayed by91 other accessions.

Biotic stresses

93	The resistance of ILB 938 to chocolate spot (CS, caused by Botrytis fabae Speg.) has been
94	demonstrated in Egypt (Mohamed et al., 1981 [re-coded NEB 938]; Khalil and Nassib, 1984;
95	Robertson, 1984), Syria (Hanounik, 1982), the United Kingdom (Jellis et al., 1982), Canada
96	(Robertson, 1984), France (Tivoli et al., 1988), and Ethiopia (Beyene et al., 2016). Further, we
97	have noticed its resistance to CS in field conditions of both southern Finland and western
98	Canada.
99	The resistance of the original source of ILB 938 was confirmed in the Nile Delta after
100	crosses with the local cultivar Giza 3 (ICARDA Caravan, 1998; Zeid et al., 2009). From there it
101	was transferred to locally adapted material that was released as Giza 461 in Egypt (Bond et al.,
102	1994; Dwivedi et al., 2006; El-Komy et al., 2015).
103	The related bean pure lines BPL 710 and BPL 1179 to ILB 438 and ILB 938, respectively
104	also showed high resistance to CS across environments (Hanounik and Maliha, 1986; Hanounik
105	and Robertson, 1988; Villegas-Fernández et al., 2012). The Australian cultivar Icarus was
106	derived from BPL 710 and released as a cultivar resistant to CS and rust (Dwivedi et al., 2006).
107	ILB 938 is, furthermore, considered as a consistent source of resistance to rust (Uromyces
108	viciae-fabae (Pers.) J. Schrot.) (Rashid and Bernier, 1991; Khalil et al., 1985; Rashid and
109	Bernier, 1986). Both BPL 710 (Australian accession No. AC1269) and BPL 1179 (AC1272) are

registered as rust-resistant accessions in Australia (Ijaz *et al.*, 2018) as well as in ICARDA
(1987).

Some studies have suggested that ILB 938 may also carry resistance to crenate
broomrape, *Orobanche crenata* Forsk., an achlorophyllous, holoparasitic weed, poses a major
constraint to faba bean production in Mediterranean climates (Zeid *et al.*, 2006; 2009).

115 Abiotic stresses

116 Drought adaptation is an essential character for faba bean cultivation in arid and semiarid

regions. ILB 938 has demonstrated high water use efficiency (WUE) in several studies (e.g.,

118 Abdelmula et al., 1999; Link et al., 1999; Stoddard et al., 2006; Khan et al., 2007, 2010; Khazaei

119 et al., 2013; Khazaei et al., 2014b) mainly due to low stomatal conductance, thus minimizing

120 water loss and maintaining yield under drought conditions. Nevertheless, its reduced leaf

stomatal conductance was not associated with a highly ramified rooting system (Belachew *et al.*,

122 2018).

While ILB 938 has relatively low productivity, no yield penalty was observed when it
was exposed to drought conditions (Link *et al.*, 1999; Khan *et al.*, 2007; Khazaei *et al.*, 2014b).
It maintains a relatively high water status under water deficit conditions, demonstrating high
WUE with relatively low yield, because its stomata shut early, reducing potential photosynthesis
while limiting water loss.

The response of ILB 938/2 to ultraviolet light differs greatly from that of a contrasting cultivar, Aurora/2 that was developed at low altitudes and high latitudes where incident UV is much weaker than high in the Andes (Yan *et al.*, 2018).

131 Mapping populations

132

ILB 938/2 (along with its reciprocal) at the University of Helsinki (Khazaei et al., 2014a). This 133 population has been mapped for traits related to drought adaptation (Khazaei et al., 2014b), 134 vicine-convicine concentration (v-c, Khazaei et al., 2015), and stipule spot pigmentation 135 136 (Khazaei et al., 2014a). QTLs (quantitative traits loci) for seed size, seed coat colour, clinging 137 pod wall and yellow funiculus have also been located. ILB 938 and Mélodie differed at two loci 138 affecting stomatal activity at opposite ends of Chromosome II, with each parent contributing a canopy-cooling allele (Khazaei et al., 2014b). The progenies of this population facilitated the 139 development of a reliable molecular marker for v-c in this crop (Khazaei et al., 2017). This 140 population is being phenotyped for salinity response in a collaboration with Egypt and 141 collaborative studies on other traits are in progress. Near-isogenic lines have been derived from 142 143 heterozygous F5 individuals at Göttingen (Tacke and Link, 2017). Another RIL population, ILB $938/2 \times Disco/2$ (Khazaei *et al.*, 2014a), is suitable for CS 144 145 genetic studies. Disco (low in both tannin and v-c) has been shown to be very sensitive to CS

A population of recombinant inbred lines (RILs) was developed from the cross of Mélodie/2 ×

(Villegas-Fernández *et al.*, 2012; Khazaei, Personal observation). A RIL population from ILB
938/2 × Aurora/2 (Khazaei *et al.*, 2014a) will be useful for analyzing the basis of the difference
in ultraviolet response of these two lines.

A multi-parent population [(Disco/2 × ILB 938/2) × (IG 114476 × IG 132238)] has been prepared for use in genomic studies (Khazaei *et al.*, 2018). This population is at F4 generation at the time of writing this paper and kept at the University of Reading, UK.

152 **DNA fingerprinting**

153 ILB 938/2 was genotyped using 875 SNP (single nucleotide polymorphism) markers developed

by Webb *et al.* (2016). The results showed a high level of homozygosity (99.6%, Webb *et al.*,

155 2016). The genotyping calls on ILB 938/2 are presented in Supplementary Table S1.

156 Conclusions

157 The presence of unusual traits in this material is intriguing, because the crop has been grown in

158 South America for only about 500 of its 10 000 years of domestication. It may be attributable to

several causes, including widespread genetic variation introduced by the European settlers,

160 adaptation to extremely varied environments within short distances due to altitude, frequent gene

161 exchanges by pollinators and movement of peoples, and natural selection (Bond *et al.*, 1994), or

162 UV-induced mutation. Recently, several new accessions from Spain, Ecuador, Colombia and

163 Peru with high level of resistance to CS were identified (Maalouf *et al.*, 2016).

164 Acknowledgments

165 We thank Dr. Jeff Paull (The University of Adelaide, Australia) for providing the seeds of

AF11212. ILB 938 (IG 12132) is also acknowledged for its generous offering. FLS dedicates this
paper to the memory of faba bean breeder extraordinaire Dr. David Bond (1929-2017), who was

168 a kind mentor and teacher.

References

170	Abdelmula AA, Link W, von Kittlitz E and Stelling D (1999) Heterosis and inheritance of
171	drought tolerance in faba bean, Vicia faba L. Plant Breeding 118: 458-490.
172	Belachew KY, Nagel KA, Fiorani F and Stoddard FL (2018) Diversity in root growth responses
173	to moisture deficit in young faba bean (Vicia faba L.) plants. PeerJ 6: e4401.
174	Beyene AT, John D, Sibiya J and Fikre A (2016) Gene action determining grain yield and
175	chocolate spot (Botrytis fabae) resistance in a faba bean. Euphytica 207: 293–304.
176	Bond DA (1976) Field bean: Vicia faba (Leguminosae-Papilionatae). In: Simmonds NW (ed.)
177	Evolution of Crop Plants. Longman, London, UK. pp. 179–182.
178	Bond DA, Jellis GJ, Rowland GG, Le Guen J, Robertson LD, Khalil SA and Li-Juan L (1994)
179	Present status and future strategy in breeding faba beans (Vicia faba L.) for resistance to
180	biotic and abiotic stresses. <i>Euphytica</i> 73: 151–166.
181	Bond DA and Poulsen MH (1983) Pollination. In: Hebblethwaite PD (ed.) The Faba Bean (Vicia
182	faba L.). Butterworths, London, UK. pp. 77–101.
183	Bues A, Preissel S, Reckling M, Zander P, Kuhlman T, Topp K, Watson CA, Lindström K,
184	Stoddard FL and Murphy-Bokern D. (2013). The environmental role of protein crops in
185	the new Common Agricultural Policy. European Parliament, Directorate General for
186	Internal Policies, Policy Department B: Structural and Cohesion Policies, Agricultural
187	and Rural Development IP/B/AGRI/IC/2012-067.112 pp.
188	http://www.europarl.europa.eu/studies. ISBN 978-92-823-4521-4, doi: 10.2861/27627.

189	http://www.europarl.europa.eu/RegData/etudes/etudes/join/2013/495856/IPOL-
190	AGRI_ET(2013)495856_EN.pdf
191	Caracuta V, Barzilai O, Khalaily H, Milevski I, Paz Y, Vardi J, Regev L and Boaretto E (2015)
192	The onset of faba bean farming in the southern Levant. Scientific Reports 5: 14370.
193	Caracuta V, Weinstein-Evron M, Kaufman D, Yeshurun R, Silvent J and Boaretto E (2016)
194	14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean.
195	Scientific Reports 6: 37399.
196	Cubero J (1974) On the evolution of Vicia faba L. Theoretical and Applied Genetics 45: 47–51.
197	Duc G, Bao S, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M and Zong X (2010)
198	Diversity, maintenance and use of Vicia faba L. genetic resources. Field Crops Research
199	115: 270–278.
200	Dwivedi SL, Blair MW, Upadhyaya HD, Serraj R, Balaji J, Buhariwalla HK, Ortiz R and Crouch
201	JH (2006) Using genomics to exploit grain biodiversity in crop improvement. Plant
202	Breeding Reviews 26: 171–310.
203	El-Komy MH, Saleh AA and Molan YY (2015) Resistance/susceptibility of faba bean to Botrytis
204	fabae: the causal agent of chocolate spot with respect to leaf position. International
205	Journal of Agriculture and Biology 17: 691–701.
206	FAO (2010) The second report on the state of the world's plant genetic resources for food and
207	agriculture. Rome, Italy. http://www.fao.org/docrep/013/i1500e/i1500e00.htm, accessed
208	01May 2018.

209	Feedipedia (2018) Faba bean (Vicia faba). https://www.feedipedia.org/node/4926, accessed 01
210	May 2018.
211	Hanounik SB (1982) Resistance in faba beans to chocolate spot. FABIS Newsletter 5: 24–26.
212	Hanounik SB and Maliha N (1986) Horizontal and vertical resistance in Vicia faba to chocolate
213	spot caused by Botrytis fabae. Plant Disease 70: 770–773.
214	Hanounik SB and Robertson LD (1988) New sources of resistance in Vicia faba to chocolate
215	spot caused by Botrytis fabae. Plant Disease 72: 696-698.
216	ICARDA (1987) Faba bean pathology progress report 1986–1987. In: Food Legume
217	Improvement Program, ICARDA, Aleppo, Syria.
218	ICARDA Caravan (1998) Review of agriculture in the dry areas. Issue No. 9.
219	https://apps.icarda.org/wsInternet/wsInternet.asmx/DownloadFileToLocal?filePath=Cara
220	van/Caravan9.pdf&fileName=Caravan9.pdf, accessed 01 May 2018.
221	Ijaz U, Adhikari KN, Stoddard FL and Trethowan RM (2018) Rust resistance in faba bean (Vicia
222	faba L.): status and strategies for improvement. Australasian Plant Pathology 47: 71-81.
223	Jellis GJ, Bond DA and Old J (1982) Resistance to chocolate spot (Botrytis fabae) in ICARDA
224	accessions of Vicia faba. FABIS Newsletter 4: 53–54.
225	Khalil SA and Nassib AM (1984) Identification of some sources of resistance to disease in faba
226	bean. I. Chocolate spot (Botrytis fabae Sard.). FABIS Newsletter 10: 18-21.

227	Khalil SA, Nassib AM and Mohammed HA (1985) Identification of some sources of resistance
228	to diseases in faba beans II-Rust (Uromyces fabae). FABIS Newsletter 11: 18-20.
229	Khan HR, Link W, Hocking TJH and Stoddard FL (2007) Evaluation of physiological traits for
230	improving drought tolerance in faba bean (Vicia faba L.). Plant and Soil 292: 205–217.
231	Khan HR, Paull JG, Siddique KHM and Stoddard FL (2010) Faba bean breeding for drought
232	affected environments: A physiological and agronomic perspective. Field Crops
233	Research 115: 279–286.
234	Khazaei H, O'Sullivan DM, Jones H, Pitts N, Sillanpää MJ, Pärssinen P, Manninen O and
235	Stoddard FL (2015) Flanking SNP markers for vicine-convicine concentration in faba
236	bean (Vicia faba L.). Molecular Breeding 35: 38.
237	Khazaei H, O'Sullivan DM, Sillanpää MJ and Stoddard FL (2014a) Genetic analysis reveals a
238	novel locus in Vicia faba decoupling pigmentation in the flower from that in the extra-
239	floral nectaries. Molecular Breeding 34: 1507–1513.
240	Khazaei H, O'Sullivan DM, Sillanpää MJ and Stoddard FL (2014b) Use of synteny to identify
241	candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.).
242	Theoretical and Applied Genetics 127: 2371–2385.
243	Khazaei H, Purves RW, Song M, Stonehouse R, Bett KE, Stoddard FL and Vandenberg A
244	(2017) Development and validation of a robust, breeder-friendly molecular marker for the
245	vc locus in faba bean. Molecular Breeding 37: 140.

246	Khazaei H, Purves RW, Stoddard FL and Vandenberg A (2018) A multi-parent faba bean (Vicia
247	faba L.) population for future genomic studies. Plant Genetic Resources (in press).
248	Khazaei H, Street K, Bari A, Santanen A and Stoddard FL (2013) Do faba bean (Vicia faba L.)
249	accessions from environments with contrasting seasonal moisture availabilities differ in
250	stomatal characteristics and related traits? Genetic Resources and Crop Evolution 60:
251	2343–2357.
252	Kosterin OE (2014) The lost ancestors of the broad bean (Vicia faba L.) and the origin of plant
253	cultivation in the Near East. Vavilov Journal of Genetics and Breeding 18(4/1): 831-840.
254	Köpke U and Nemecek T (2010) Ecological services of faba bean. Field Crops Research 115:
255	217–233.
256	Lawes DA, Bond DA and Poulsen MH (1983) Classification, origin, breeding methods and
257	objectives. In: Hebblethwaite PD (ed.) The Faba Bean (Vicia faba L.). Butterworths,
258	London, UK. pp. 23–76.
259	Link W, Abdelmula AA, Kittlitz E von, Bruns S, Riemer H and Stelling D (1999) Genotypic
260	variation for drought tolerance in Vicia faba. Plant Breeding 118: 477-483.
261	Link W, Hanafy M, Malenica N, Jacobsen H-J and Jelenić S (2008) Broad bean. In: Kole C and
262	Hall TC (eds) A Compendium of Transgenic Crop Plants: Transgenic Legume Grains
263	and Forages. Vol. 3. Wiley, New York, pp. 71-88.

264	Maalouf F, Ahmed S, Shaaban K, Bassam B, Nawar F, Singh M and Amri A (2016) New faba
265	bean germplasm with multiple resistances to Ascochyta blight, chocolate spot and rust
266	diseases. Euphytica 211: 157–167.
267	Maxted N (1993) A phenetic investigation of Vicia L. subgenus Vicia (Leguminosae, Vicieae).
268	Botanical Journal of the Linnean Society 111: 155–182.
269	Miller M (2016) Genetics of pigmentation in faba bean (Vicia faba L.). Undergraduate Thesis.
270	University of Saskatchewan, Canada.
271	Mohamed HA, Zeid NA and Habib WF (1981) Variation with the fungus Botrytis fabae Sard.
272	FABIS Newsletter 3: 49–50.
273	Muratova VS (1931) Common beans (Vicia faba L.). Bulletin of Applied Botany of Genetics and
274	Plant Breeding 50: 1–298.
275	Picard J (1976) Aperçu sur l'héredité du caractère absence de tannins dans les graines de
276	féverole (Vicia faba L.). Annales de l'Amélioration des Plantes 26: 101–106.
277	Rashid KY and Bernier CC (1986) Selection for slow rusting in faba bean (Vicia faba L.) to
278	Uromyces viciae-fabae. Crop Protection 5: 218–224.
279	Rashid KY and Bernier CC (1991) The effect of rust on yield of faba bean cultivars and slow
280	rusting populations. Canadian Journal of Plant Science 71: 967–972.
281	Robertson LD (1984) A Note on the I.L.B. Source of <i>Botrytis fabae</i> resistance. In: Chapman GP
282	and Tarawali SA (eds) Systems for Cytogenetic Analysis in Vicia faba L. Advances in
283	Agricultural Biotechnology. Vol 11. Springer, Dordrecht.

284	Saxena MC and Varma S (1985) Faba beans, Kabuli chickpeas, and lentils in the 1980s. An
285	international workshop. May 16–20, 1983; proceedings. International Centre for
286	Agricultural Research in the Dry Areas. Aleppo, Syria.
287	Stoddard FL and Bond DA (1987) The pollination requirements of the faba bean (Vicia faba L.).
288	Bee World 68: 144-152.
289	Stoddard FL, Balko C, Erskine W, Khan HR, Link W and Sarker A (2006) Screening techniques
290	and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:
291	167–186.
292	Suso MJ, Moreno MT and Cubero JI (1993) Variation among Spanish faba bean cultivars:
293	taxonomy and evolutionary implications. Genetic Resources and Crop Evolution 40:
294	105–111.
295	Tacke R and Link W (2017) Towards a localization of the "vc-" gene responsible for low vicine
296	and convicine content in seeds of faba bean (Vicia faba L.) and towards a low vicine and
297	convicine winter faba bean cultivar. In: 8th International Conference on Legume Genetics
298	and Genomics, September 18–22. Siófok, Hungary. p. 115.
299	Tivoli B, Berthelem P, Leguen J and Onfroy C (1988) A study of the performance of certain faba
300	bean genotypes in relation to Botrytis fabae and Ascochyta fabae in France. FABIS
301	<i>Newsletter</i> 21: 36–39.
302	Torres AM, Roman B, Avila CM, Satovic Z, Rubiales D, Sillero JC, Cubero JI and Moreno MT
303	(2006) Faba bean breeding for resistance against biotic stresses: towards applications of
304	marker technology. Euphytica 147: 67–80.

305	Villegas-Fernández AM, Sillero JC and Rubiales D (2012) Screening faba bean for chocolate
306	spot resistance: evaluation methods and effects of age of host tissue and temperature.
307	European Journal of Plant Pathology 132: 443–453.
308	Webb A, Cottage A, Wood T, Khamassi K, Hobbs D, Gostkiewicz K, White M, Khazaei H, Ali
309	M, Street D, Stoddard FL, Maalouf F, Ogbonnaya F, Link W, Thomas J and O'Sullivan
310	DM (2016) A SNP-based consensus genetic map for synteny-based trait targeting in faba
311	bean (Vicia faba L.). Plant Biotechnology Journal 14: 177–185.
312	Yan Y, Neugart S, Stoddard FL and Aphalo PJ (2018) Different responses to solar ultraviolet
313	(UV) and blue radiation in two accessions of Vicia faba over two generations. Aspects of
314	Applied Biology 138, Advances in Legume Science and Practice, pp. 63–64.
315	Zeid M, Ghazy AI and Link W (2006) Questing for Orobanche crenata resistance genes in faba
316	bean. In: New Life Sciences: Changing Lives, 26–29 April 2006, BioVision Alexandria,
317	Egypt.
318	Zeid M, Mitchell S, Link W, Carter M, Nawar A, Fulton T and Kresovich S (2009) Simple
319	sequence repeats (SSRs) in faba bean: new loci from Orobanche-resistant cultivar 'Giza
320	402'. Plant Breeding 128: 149–155.