
University of Helsinki

Department of Digital Humanities

Language Technology

Master's thesis

Using POS n-grams to detect

grammatical errors in Finnish

text

Mikko Aulamo
014151453

Supervisor: Jörg Tiedemann 20.10.2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/245130701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tiedekunta/Osasto – Fakultet/Sektion – Faculty
 Humanistinen tiedekunta
Tekijä – Författare – Author
 Mikko Aulamo
Työn nimi – Arbetets titel – Title
 Using POS n-grams to detect grammatical errors in Finnish text
Oppiaine – Läroämne – Subject
Kieliteknologia
Työn laji – Arbetets art – Level
 Pro gradu

Aika – Datum – Month and
year
 10 / 2019

Sivumäärä– Sidoantal – Number of pages
 67

Tiivistelmä – Referat – Abstract

Automaattinen kieliopin tarkistus on hyödyllinen työkalu henkilöille, jotka kirjoittavat julkaistavia tekstejä.
Kieliopintarkistimista on myös hyötyä kielenoppijoille. Suomen kielelle tehdyt käytetyimmät tarkistimet
ovat sääntöpohjaisia, minkä vuoksi ne kattavat vain pienen osan kielioppivirheistä, ja sääntöjoukon
laajentaminen vaati paljon käsintehtävää työtä. Tilastollisilla menetelmillä voidaan löytää suurempi
määrä eri virheitä ilman käsinlaadittavia sääntöjä. Eräs helposti toteutettavissa oleva tilastollinen tapa on
kerätä esimerkkijoukko kieliopillisia n-grammeja, ja verrata, löytyykö tarkistettavan lauseen kaikki n-
grammit esimerkkijoukosta. Suomen kielessä on paljon taivutusmuotoja, ja uusia sanoja pystytään myös
luomaan käyttämällä johtimia. Jos n-grammien yksikköinä käytetään saneita, esimerkkijoukon tulee olla
käsittämättömän suuri, jotta se voi kuvata Suomen kieliopin kattavasti. Tämä pro gradu -työ esittää
kieliopintarkistusmetodin, joka on helppo toteuttaa, koska siinä käytetään n-grammeja yllä mainitulla
tavalla, mutta n-grammien yksikköinä käytetään part-of-speech (POS) -informaatiota saneiden sijaan,
jolloin esimerkkijoukon n-grammit on mahdollista kerätä, ja niiden määrä pysyy tarpeeksi pienenä
käsiteltäväksi. N-grammit ja niiden esiintymäkertojen lukumäärät kerätään suomenkielisestä
morfologisesti annotoidusta FinnTreeBank -korpuksesta.

Kieliopintarkistin arvioidaan 200 eri koeasetelmassa, jotka eroavat toisistaan viidellä eri tavalla. Puolet
tarkistimista koulutetaan pienellä käsinannotoidulla korpuksella ja puolet suurella automaattisesti
annotoidulla korpuksella. Puolet tarkistimista käyttää lauserajamerkintöjä n-grammeissaan ja puolet ei.
Puolissa asetelmissa valitaan yksi lauserakenteen tulkinta tarkistettavaksi, ja puolissa tarkistetaan kaikki
mahdolliset rakennetulkinnat. Jokainen tarkistimista käyttää myös yhtä viidestä esiintymäkertojen raja-
arvoista, joka n-grammien tulee ylittää, jotta ne hyväksytään kieliopillisiksi. Lisäksi jokainen tarkistimista
käyttää yhtä viidestä POS n-grammityypistä, joista jokainen sisältää eri yhdistelmän POS-informaatiota.
Kieliopintarkistin arvioidaan konekäännösjärjestelmän tuottamilla kieliopillisesti virheellisillä lauseilla sekä
niiden kieliopillisesti oikeilla vastineilla. Suurimmassa osassa koeasetelmia tarkistin merkitsee vain
vähän virheitä ja on usein väärässä, tai tarkistin merkitsee lähes kaikki lauseet, myös kieliopilliset,
virheellisiksi. Tarkkuuden kannalta parhaiten suoriutuneessa asetelmassa käytetään suurta korpusta, ei
lauserajamerkintöjä, kaikki lauserakennetulkinnat tarkistavaa metodia, pientä esiintymäkertaraja-arvoa ja
POS-informaatiota, jolla on vähiten mahdollisia esiintymämuotoja. Tässä asetelmassa tarkistin on noin
86% kerroista oikeassa merkitessään kielioppivirheitä, mutta toisaalta se löytää vain noin 27%
testiaineiston virheistä. Toteutettu metodi ei siis sellaisenaan ole toimivia Suomen kieliopin
tarkastamiseen, mutta metodia voisi parantaa lisäämällä siihen disambiguaatiokomponentin ja
käyttämällä suurempaa koulutuskorpusta.

Avainsanat – Nyckelord – Keywords
 grammar error detection, grammar checking, part of speech, n-gram
Säilytyspaikka – Förvaringställe – Where deposited
 Keskustakampuksen kirjasto
Muita tietoja – Övriga uppgifter – Additional information

Contents

1 Introduction 3

1.1 Need for grammar checkers . 3

1.2 Main approaches to grammar checking 5

1.3 My proposed work . 6

2 Theory 8

2.1 History . 9

2.2 Language models . 10

2.3 Part of speech . 12

3 Data 13

3.1 FinnTreeBank . 13

3.2 Tag types . 14

3.3 N-gram extraction . 16

3.4 Statistics . 17

4 Method 22

4.1 Morphological analysis . 22

4.2 Sentence interpretation selection 23

4.2.1 Check the most probable interpretation 23

4.2.2 Check all possible interpretations 25

4.3 Grammatical error detection 26

5 Evaluation 28

5.1 Test data . 28

5.1.1 Error types . 30

5.2 Test settings . 35

6 Results and analysis 37

6.1 Precision, recall and f-score 37

1

6.1.1 FTB1 vs FTB3 . 39

6.1.2 WB vs WoB . 39

6.1.3 CMP vs CAP . 40

6.1.4 Cuto�s . 42

6.1.5 POS-tags . 43

6.1.6 Best setups . 45

6.2 Error types . 49

6.2.1 POS-tags . 50

6.2.2 Best setups . 52

7 Conclusions 55

2

1 Introduction

Automatic grammar checking is a useful tool for anyone who writes texts that
need to be published. These texts can be anything from job applications and
business texts to organization-wide announcements and journalistic texts and
beyond. Time is usually a constraint when working with large amounts of
text, and automatic grammar checkers can drastically reduce the time spent
on ensuring proper language. The development of grammar checking tools
has mainly focused on checking the English language, although there is also
clearly a need for these tools for smaller languages, like Finnish. The purpose
of this thesis is to evaluate whether part of speech based n-grams could be
used to detect grammar errors in Finnish text.

1.1 Need for grammar checkers

Using proper language is important when writing academic texts. Correct
grammar ensures that one's ideas and thoughts come out clearly. In their
work, Cavaleri and Dianati (2016) conduct a grammar survey for 18 English
speaking students from two di�erent Australian colleges. The survey charts
the students' con�dence in their grammar skills and their experience with
Grammarly, an online writing assistant1. On a �ve grade scale (�Strongly
disagree�, �Disagree�, �Neutral�, �Agree�, �Strongly agree�), 9 of the 18 stu-
dents �agreed� with the statement �I do not always feel con�dent that I have
written correct sentences� and 7 �agree� with the statement �I am �ne with
English grammar, but I �nd it di�cult to express my ideas in writing�. Both
of these are cases where Grammarly can provide assistance. When evaluating
the usefulness of Grammarly on a scale from 0 (�Not useful at all�) to 5 (�Ex-
tremely useful�), 9 students give the rating 5 and 6 students give the rating
4. There seems to be a demand for grammar checking tools among young
academics at least for English text. Although most scienti�c publications are
written in English, it is also meaningful to be able to present one's research
and ideas to colleagues and students in one's native language, for example
Finnish, which is the language that the work in this thesis focuses on.

Grammar checking is also a useful language learning tool. Non-native lan-
guage speakers often produce text that contains grammar errors, which is a
natural part of learning a new language. It is crucial for the learner that
these errors are detected and corrected. Scanning through a text and �nding
errors by hand is time-consuming and laborious. This is where automatic

1https://www.grammarly.com

3

https://www.grammarly.com

grammar checking can prove useful. According to Soni and Thakur (2018),
there are over 600 million speakers of English as a second language or English
as a foreign language, who would bene�t from regular grammar checking of
their texts and automating this process would be the most e�cient method.
There is a similar need for grammar checking for Finnish learners, although
on a smaller scale. According to Miettinen and Helamaa (2019), the amount
of immigration in Finland has increased signi�cantly since the year 2000,
with the peak numbers being over 30000 immigrants annually during the
years 2012-2014 and 2016. Heikkilä and Peltonen (2002) concluded in their
work, that Finnish language pro�ciency is one of the key factors in immi-
grants integrating into Finnish society. Reaching employment often depends
on adequate language skills. They also mention that especially immigrants
from Russia wish to have more language training and further language teach-
ing in their �eld of profession. This indicates that there is a rising need for
more Finnish teaching, and similarly, the demand for language learning tools,
including automatic grammar checking, is on the rise.

Grammar checkers have been used in aiding machine translation. Mitamura
and Nyberg (1995) use a grammar checking tool as a �rst step of machine
translation in their KANT system. They translate from English to French,
and the role of grammar checking is to make sure that the English source
sentences are proper language. Sågvall Hein (1997) uses a similar approach
in her work on Multra, a machine translation system, that can translate
from Swedish to English and German. The development of Multra included
the development of a grammar checker, which checks all the Swedish source
sentences and generates their grammatical structures, which can then be
forwarded to other components of the machine translation system. Stymne
and Ahrenberg (2010) use grammar checking for postprocessing of statistical
machine translation (SMT) systems' output and for evaluating the sentences
translated with SMT. SMT produces often ungrammatical translations and
the authors tackle this issue by applying corrections suggested by a gram-
mar checker to the translated sentences. Stymne and Ahrenberg, also uti-
lize grammar checking in the evaluation phase and �nd that evaluating the
translations with a grammar checker gives useful information on grammati-
cal correctness when used in addition to the standard Bleu metric (Papineni
et al., 2002).

4

1.2 Main approaches to grammar checking

A text is considered to have correct grammar if the language is syntactically
correct. Grammar errors are introduced when the syntax is broken, for ex-
ample with incorrect in�ection. Spelling errors are distinct from grammar
errors, but a text containing spelling errors is also ungrammatical, as the
errors create unknown words that break the syntax.

Grammar checking is a challenging task. Language is inherently ambiguous
and many of these ambiguities can be resolved only based on the surrounding
context. Domeij et al. (2000) point out that errors caused by ambiguity are
di�cult to detect for their Swedish grammar error detector Granska, which is
based on error detection rules and probabilistic methods. Hagen et al. (2001)
list other challenging problems that they came across when building a rule-
based grammar checker for Norwegian. These problems include non-standard
in�ection, misspelled words that are homographous with valid words and
handling missing words. Similarly, Deksne and Skadin

,
² (2011) present issues

which existed in previous grammar checkers for Latvian and which led them
to work on a new checker. According to them, some of the most pressing
issues are recognizing errors over long distances, complex syntax errors and
morphological ambiguity.

Historically, there are two main approaches for grammar checking: rule-based
methods and statistical methods. The idea in rule-based methods is to �nd
a syntactical representation for an input sentence and then to apply error
detection rules to the sentence. These error rules are handwritten, which
makes it very laborious to implement a robust system that could cover most
grammar errors in a language. The advantage of rule-based systems is that
they are very good at detecting the type of errors that the rules do cover.
In statistical methods, the grammar checker is trained on language data. In
a sense, the system formulates the error rules based on the language that
it sees in the training data. This makes implementing a statistical system
easier than a rule-based one since it requires much less work by hand. On
the other hand, the training data needs to be carefully chosen to represent a
given domain, otherwise, the system could leave some error cases undetected
because the error rules are not explicitly speci�ed. Rule-based and statistical
methods are described in more detail in section 2.

There are some existing grammar checkers for Finnish but they seem to de-
tect errors in a very limited spectrum. Voikko2 is an open-source language
tool package that includes a grammar checking feature. Voikko is a rule-based

2https://voikko.puimula.org/gchelp/fi/

5

https://voikko.puimula.org/gchelp/fi/

checker that detects 18 commonly made mistakes. Over half of the rules are
tailored to �nd stylistic errors, e.g. proper punctuation and capitalization,
which can be considered to be part of grammar but they do not really evaluate
the correctness of linguistic structures. The rest detect grammatical errors in
the language itself. For example, the checker detects whether there is agree-
ment between a negative verb and the main verb and whether the main verb
is missing. Microsoft O�ce program package3 also has a grammar checking
feature for Finnish. It is unclear, what kind of methods Microsoft's checker
is based on, but in use, it functions very much like the Voikko checker. Punc-
tuation and capitalization as well as some grammatical errors, like doubled
words and extra verbs, are detected by both Microsoft and Voikko. However,
there are some errors that Voikko does recognize but Microsoft does not, e.g.
the aforementioned agreement between a negative verb and the main verb,
and a missing main verb. This indicates that Microsoft's checker is probably
also a rule-based one but equipped with a di�erent ruleset. Both of these
checkers do well when detecting errors that fall under the hand-crafted rules
but they completely ignore all other cases. Both seem to have a very limited
number of rules and writing new rules to cover most errors in Finnish would
be very laborious. To aid in this generalization task, statistical methods
could prove useful.

1.3 My proposed work

My work proposes a statistical approach to detecting grammar errors in
Finnish text. This method aims to be capable of capturing more general
grammar errors than strictly rule-based methods would, while also being
easier to implement, since one does not have to write rules for each error
case by hand. In this approach, the �rst step is to extract n-grams and their
frequencies from Finnish text. This collection of grammatically correct n-
grams will serve as the reference n-gram set. The n-grams are gathered from
FinnTreeBank (FTB) (Voutilainen et al., 2012), which is a corpus of Finnish
sentences that are annotated with morphological information. Finnish is a
morphologically complex language as described by Karlsson (2008), and using
n-grams based on actual words would require an impossibly large and varied
training corpus for it to be applicable in a grammar detection task. Instead,
pieces of morphological (or part of speech) information provided by FTB
are used as the units of the n-grams. This allows for larger grammar error
coverage but also increases the possibility of mistakes in detecting errors. The

3https://support.office.com/fi-fi/article/oikeinkirjoituksen-ja-

kieliopin-tarkistaminen-officessa-5cdeced7-d81d-47de-9096-efd0ee909227

6

https://support.office.com/fi-fi/article/oikeinkirjoituksen-ja-kieliopin-tarkistaminen-officessa-5cdeced7-d81d-47de-9096-efd0ee909227
https://support.office.com/fi-fi/article/oikeinkirjoituksen-ja-kieliopin-tarkistaminen-officessa-5cdeced7-d81d-47de-9096-efd0ee909227

actual grammar checking of a sentence consists of three main steps: �rst,
each word in the input sentence is morphologically analyzed using Omor�
(Pirinen, 2015), secondly, an interpretation for the whole sentence is chosen
and its part of speech (POS) n-grams are gathered, and �nally, the system
checks whether all these n-grams are found in the reference n-gram set with
a su�cient frequency value or not. If all of the POS n-grams are represented
in the reference n-gram set, the input sentence passes the correctness test.
Otherwise, the sentence is �agged as an error.

The grammar checker is implemented in multiple di�erent setups in order to
�nd the optimal settings and to �nd out which setups might favor precision
over recall or vice versa. Some versions of the checker might also detect di�er-
ent types of errors than others. Two reference n-gram sets are collected from
two di�erent versions of FinnTreeBank: FTB1 and FTB3. FTB1 consists of
19000 sentences and is fully annotated by hand, and FTB3 contains over 4
million sentences but it is annotated automatically. FTB1 is likely to have
fewer annotation errors and is smaller than FTB3. Thus it is likely to be
stricter than FTB3, resulting in more errors being �agged and higher recall
value. Conversely, FTB3 will pass some ungrammatical sentences as correct,
and when it does �ag an error, it will be certain of its decision, leading to
higher precision. Each of the FTB n-gram sets has two versions: one where
the sentence borders are marked with tags (WB) and one where they are not
(WoB). Essentially, having tags for borders increases the number of unique
n-grams. This should lead to the checker detecting more types of errors with
regard to how sentences can start or end. Setups using WB n-gram set are
expected to �ag more errors and to have higher recall than WoB setups,
which, in turn, are likely to have higher precision, as they �ag errors more
rarely. Two di�erent error detection algorithms are implemented: one that
checks the most probable (CMP) morphological interpretations of a sentence
and one that checks all possible (CAP) interpretations of a sentence. CMP
is a naive approach, where the POS tag for each word of an input sentence
is chosen based on what is the POS tag that occurs most frequently for that
word in the FTB1 corpus. CAP is an exhaustive method, that checks all
morphological interpretations for a sentence. The interpretations are formu-
lated by creating all possible combinations of POS tags that are provided by
Omor�. Each of the interpretations is individually checked and if an inter-
pretation without error is found, the sentence is considered grammatically
correct. There are more chances for a given sentence to be passed as gram-
matical using CAP, and thus it should have higher precision but lower recall
than CMP. The grammar errors are also detected with di�erent n-gram fre-
quency cuto� points. If a POS n-gram's frequency value in an n-gram set

7

does not reach a certain threshold, it is not considered grammatical. Lower
cuto� points allow more sentences to pass the error detection test than higher
cuto� points, which should lead to lower cuto�s having higher precision but
lower recall. Each reference n-gram set has di�erent versions of POS-tags
carrying di�erent amounts and di�erent types of morphological information.
The expectation is that the less information the tags have, the more sentences
will pass the error detection test, which leads to higher precision and lower
recall. There are twelve error types that are looked at with a special interest
focusing on two of them: a word in a sentence has the wrong grammatical
number and a word in a sentence has the wrong grammatical case. The
hypothesis is that when the POS-tags contain information on number, the
system should be able to detect number errors but not case errors. Similarly,
tags containing information on case should be able to detect case errors but
not number errors.

In section 2, the history and theory of grammar checking methods are de-
scribed in further detail. The data used in this work, as well as the n-gram
extraction process, are described in section 3. Section 4 explains the gram-
mar error detection methods used in the grammar checker implementation of
this work. The test data and the evaluation setups for assessing the grammar
checker are described in section 5. The results of the evaluation are displayed
and their implications are analyzed in section 6. Finally, the work as a whole
is discussed and concluded in section 7.

2 Theory

There are two main approaches to grammar checking that were considered
when implementing the error detection system in this thesis: rule-based
methods and statistical methods. There are advantages and shortcomings
to both approaches. Rule-based systems can be tailored by hand to detect
very speci�c errors, but implementing a large scale grammar checker requires
a huge amount of labor. Statistical checkers are trained on existing language
material and are less labor-intensive. However, one needs to make sure that
the training corpus is suitable for the grammar checking system, and in some
cases, the language data has to be morphologically or syntactically analyzed
and tagged, which is already a task by itself.

8

2.1 History

Using rule-based methods for grammar checking started in the 1980s. In
a basic approach to rule-based checking, the sentence to be checked is �rst
transformed to a parsed representation and error rules are then applied to
this presentation to see whether the sentence is grammatical. Macdonald
(1983) describes some early tools designed to help in writing texts. These
tools include grammar checking programs that are based on handwritten er-
ror rules, e.g. checking for correct punctuation and �nding doubled words.
Other programs shown in the paper help with stylistic features and spell
checking. Heidorn et al. (1982) introduce EPISTLE, a text critiquing sys-
tem, which includes a rule-based grammar checking feature. EPISTLE gram-
mar checker parses an input text using approximately 250 rules. The rules
are tailored to �nd the most frequently mentioned errors in English usage
literature and the most commonly made errors in business correspondences.
Such errors include subject-verb disagreement, using the wrong pronoun case
and noun-modi�er disagreement. Another early rule-based grammar checker
system is CRITIQUE (Richardson and Braden-Harder, 1988), which is an
extension of EPISTLE. Like EPISTLE, CRITIQUE parses text according to
grammar rules, but the software is better optimized and it runs on multiple
processors. CRITIQUE's grammar rules are gathered from an o�ce corre-
spondence database and from over 3000 pages of text submitted by users in
the feedback phase. A more recent example of a rule-based checker is by
Singh et al. (2016). They admit that a major drawback in using rule-based
methods is that there will inevitably be errors which the checker cannot de-
tect. A checker that covers all possible errors in a language would require
handwritten rules for all error cases, which is unfeasible.

Statistical methods for grammar checking are easier to implement than rule-
based methods. One does not have to write each error rule by hand. Instead,
the checker is trained on language data and the checker decides whether a
structure is grammatically wrong based on what it has seen in the training
data. This also means that the checker can be suited for di�erent language
domains depending on what kind of material the checker is trained on. One
of the earliest works in statistical grammar checking is by Atwell (1987),
whose CLAWS grammar checker for English is based on a constituent like-
lihood grammar, which gives information on how likely di�erent language
structures are to appear after one another. CLAWS uses a simple Marko-
vian model for word-tagging, which is much more e�cient than parsing whole
multi-level constituent-structure trees. Nazar and Renau (2012) present their
grammar checker for Spanish, in which they utilize the Google Books N-gram

9

Corpus, which consists of n-grams up to length �ve and their frequencies in
books published mostly after the year 1970. The basic principle of their work
is that if the n-grams of an input sentence occur frequently enough in the cor-
pus, the input sentence is grammatically correct. Using n-grams consisting
of plain words can cause issues in this method since the reference corpus can-
not contain all possible n-grams with all possible word combinations. Nazar
and Renau use word n-grams and handle the missing word cases by ignoring
the n-gram sequences which contain words not found in the corpus. Addi-
tionally, the Google Books N-gram Corpus contains very extensive amounts
of Spanish data, which helps to keep the number of unknown words down.
Handling missing words in this manner is not possible if the grammar checker
determines correctness by calculating word sequence probabilities using mul-
tiplication of word frequencies. A sequence containing an unknown word,
i.e. a word with frequency 0, would always result in the whole sequence to
have the probability 0. This is the case in the checker for Bangla by Alam
et al. (2007). They resolve this issue by using n-grams consisting of POS
tags instead of words. This approach requires the addition of a POS tagger
to the checker pipeline.

2.2 Language models

Language models are the basis for grammar checking as well as many other
applications. A language model is typically a model, that assigns probabili-
ties to word sequences. There are two main types of language models: count-
based and continuous-space. Count-based models estimate probabilities by
counting n-grams and use smoothing techniques to overcome issues with un-
seen n-grams (Saul and Pereira, 1997). Count-based language models have
been used in a variety of di�erent tasks, including speech recognition (Katz,
1987; Kuhn and Mori, 1990), statistical machine translation (Koehn et al.,
2003; Chiang, 2005), POS-tagging (Weischedel et al., 1993; Merialdo, 1994),
information retrieval (Ponte and Croft, 1998; Miller et al., 1999) and gram-
mar checking (Chodorow and Leacock, 2000; Lin et al., 2011). Continuous-
space language models, or neural language models, solve the issue of data
sparsity by representing words as vectors. Semantically similar words are
represented by n-gram model vectors that are close to each other in their
vector space (Bengio et al., 2003). Neural models can be applied to the same
tasks as their count-based counterparts: speech recognition (Graves et al.,
2013; Graves and Jaitly, 2014), neural machine translation (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014), POS-tagging (Schmid, 1994; Andor
et al., 2016), information retrieval (Shu and Kak, 1999; Liu et al., 2015) and

10

grammar checking (Xie et al., 2016; Liu and Liu, 2017).

Count-based n-gram language models can be constructed to answer questions
with the following form: what is the probability of a word given a string of
preceding words. For example, what is the probability of the word �sunny�
appearing after �the weather is going to be�, which can be represented as
P(sunny|the weather is going to be). Martin and Jurafsky (2009) explain,
that a simple way to calculate this probability is to use maximum likeli-
hood estimations based on counting the number of the occurrences of the
phrase �the weather is going to be sunny� and divide it by the number of
the occurrences of the phrase �the weather is going to be� in a representative
corpus. Martin and Jurafsky continue with more sophisticated and e�cient
methods for calculating the probabilities, for example using the chain prob-
ability rule, where the probability P(it is raining) is split up as follows:
P(it)P(is|it)P(raining|it is). Realistically, the training corpus for the lan-
guage model cannot always contain all possible valid word sequences, which
causes the model to output zero probabilities for sentences that contain words
that were not encountered in training. A simple approach to tackle this issue
is to convert all unknown words to the unknown word token <UNK> and
then calculate the probabilities for <UNK> as if it was a regular word, as
described by Martin and Jurafsky.

However, we do not need to go this far as the work presented in this thesis
utilizes a simpli�ed language model, or a reference n-gram set, similar to the
one used by Nazar and Renau (2012). Their language model is the whole
Google Books N-gram corpus, and in order to determine whether sentences
contain errors or not, they only need to know if a given n-gram in an input
sentence appears in the Google Books corpus frequently enough. Bigert and
Knutsson (2002) detect context-sensitive spelling errors using reference POS
trigrams derived from an annotated corpus, and comparing the trigrams of
an input sentence to the reference trigrams. In order to avoid false positives,
rare POS tags are �rst replaced with more common representative tags, and
rare n-grams are transformed into more frequent ones. If the n-gram still
has a low frequency after the transformations, the n-gram is considered to
be erroneous. Sjöbergh (2005) introduces an approach where only a chunker
and unannotated text are needed to conduct grammar error detection. First,
an unannotated training corpus is fed through the chunker, resulting in a
collection grammatically correct phrase chunks. In the error detection phase,
an input sentence is chunked, and if the chunks do not appear frequently
enough in the correct collection of phrases, the chunk is considered to be
ungrammatical. Sjöbergh (2009) also experiments with using the internet as
a reference corpus. Bigrams from an input text are sent to a search engine,

11

and if a bigram gives no results, it is reported as an error.

2.3 Part of speech

Part of speech (POS) is a class to which a group of words with features sim-
ilar to each other can be assigned. POS category can be based on word class
(noun, adjective, verb...), number (singular, plural...), person (�rst, second,
third...), tense (past, present, future...) and case (genitive, accusative...)
among other features. Using POS-based language models is bene�cial in a
variety of tasks. Integrating POS tags to speech recognition models improve
their performance (Heeman, 1999; Collins et al., 2005). POS-based mod-
els help with the issue of long-range word reordering in statistical machine
translation (Rottmann and Vogel, 2007; Niehues and Kolss, 2009). Pla et al.
(2001) use stochastic semantic language models based on semantic units and
POS tags to construct the language understanding component of a Spanish
railway timetable query dialogue system.

Finnish has 15 case endings, which is more than most European languages
have. Finnish morphology allows extensive derivation of word endings to
form independent words. Words can have multiple word endings after each
other, e.g. derivational endings, case endings, possessive su�xes, and par-
ticles (Karlsson, 2008). Thus, Finnish text is bound to contain copious
amounts of unique word tokens. Comprising a reference set of n-grams would
require an unrealistically large and diverse training corpus. To circumvent
this, part of speech information, rather than the actual words, can be used as
units of n-grams. This generalization captures a more broad view of the lan-
guage with less training data. Brown et al. (1992) point out that some words
are close to each other in syntactical function and meaning, and by assigning
classes to groups of similar words, one can create compact language models
with capabilities to predict previously unencountered sequences. Niesler and
Woodland (1996) show that using word-category based language models al-
lows generalization of unseen word sequences and reduced sparseness of the
data when compared to word-based models. Niesler and Woodland apply
their model to a tagging task and the performance is on par with conven-
tional n-gram models. POS n-gram based grammar error detection work has
been done by Bigert and Knutsson (2002) and Alam et al. (2007).

12

3 Data

The grammar error detection system in this thesis is based on a simpli�ed
language model that is trained on an annotated corpus. In this case, training
means gathering a set of all POS n-grams ranging from length 2 to 5 and
the number of their occurrences. The language model consists of n-grams
and their frequencies in the training corpus, and the model can also be called
as the reference n-gram set. For an n-gram to be considered grammatically
correct, it has to exist in this set with a su�cient frequency value.

The �rst step in implementing the proposed grammar error detection sys-
tem is to �nd an annotated corpus and to collect the POS n-grams from it.
As suggested by previous work, the training data has to represent a wide
coverage of Finnish grammar (Alam et al., 2007; Nazar and Renau, 2012).
Wide coverage can be achieved by either using a smaller, carefully selected
linguistically varied corpus or a huge set of texts, which most likely will
contain a comprehensive set of grammatical features. The accuracy of POS
annotations in the training corpus is also an issue to be considered. Using
human-made manual annotations ensures the best probability of obtaining
accurate annotations, but annotating by hand is realistically feasible only on
a smaller corpus. Using POS taggers is more likely to produce incorrect inter-
pretations, although, within certain settings, POS taggers can reach almost
perfect results (Manning, 2011; Garrette and Baldridge, 2013). POS taggers
can be applied to large texts much faster than having humans annotate them,
which helps mitigate the problem of inaccurate annotations.

3.1 FinnTreeBank

In this work, FinnTreeBank is used as the training corpus. FinnTreeBank is
a corpus of Finnish sentences and sentence fragments that are annotated with
syntactical and morphological information. Voutilainen et al. (2012) describe
characteristics of FinnTreeBank in their manual. FinnTreeBank 1 (FTB1)
contains 19000 sentences and 160000 tokens annotated carefully by hand.
All the text examples in FTB1 are linguistic examples from a descriptive
grammar of Finnish, VISK (Hakulinen et al., 2004). VISK contains a large
variety of di�erent language structures. Thus, training a grammar checker
based on FTB1 allows the system to capture a comprehensive view of correct
Finnish grammar. FinnTreeBank 3 (FTB3) contains 4367000 sentences and
76369000 tokens annotated automatically. FTB3 consists of publicly avail-
able Finnish corpora. FTB3 is not guaranteed to contain all the grammar

13

examples of VISK, but by being much larger than FTB1, it still has the po-
tential to represent a robust picture of Finnish grammar. Having access to
both FTB1 and FTB3 allows the comparison of two versions of the system:
one trained on a small human-annotated corpus and one trained on a huge
automatically annotated corpus.

3.2 Tag types

Each token in the FinnTreeBank corpus is annotated morphologically. The
analysis contains extensive POS information, including word classes, active-
ness, mood, tense, person, number, participles, in�nitives, cases, possessives,
and clitics among other features (Voutilainen et al., 2012). The work in
this thesis is mainly focused on detecting grammar errors related to num-
ber/person and case, and the whole set of features is not required. In
FinnTreeBank, nominals have grammatical number while verbs and pro-
nouns have grammatical person, but in this work, they are both referred
to as number (or nu), as they carry a similar meaning.

The only morphological features that are looked at are word class, number,
and case because the main interest is in detecting number and case-related
errors. All word class, number and case components, that are used in the
POS-tags, are shown in table 1. FinnTreeBank also contains word class
information for auxiliary verbs and proper nouns. They are converted into
verbs and nouns respectively because they are used in similar contexts and
this helps in keeping the number unique POS-tags down. From each token
in FinnTreeBank, �ve di�erent tag combinations are extracted: POS-tag,
whole-tag, num/case-tag, num-tag, and case-tag.

Word-class-tag (wc) contains information on only the token's word class,
e.g. �A� or �N�.

Whole-tag (wt) contains information on word class, case and number, e.g.
�N Gen Pl� or �V Sg3�. If the token has no case or number, that information
is left out, e.g. �Adv�.

Num/case-tag (nc) contains information on case and number but not word
class, e.g. �Pos Gen Pl�. The word class information is always replaced by
the string �Pos� to avoid having empty strings as tags for tokens that have
no case or number information. For example, adverbs result into �Pos�.

Num-tag (nu) is similar to num/case-tag but it excludes case information,
e.g. �Pos Pl�.

14

word classes abbreviation explanation
A Adjective
Abbr Abbreviation
Adp Adposition
Adv Adverb
CC Coordinating conjunction
CS Subordination conjunction
Interj Interjection
N Noun
Num Numeral
Pron Pronoun
Pun Punctuation
Unknown Unknown
V Verb

cases
Abe Abessive
Abl Ablative
Acc Accusative
Ade Adessive
All Allative
Com Comitative
Ela Elative
Ess Essive
Gen Genitive
Ill Illative
Ine Inessive
Ins Instructive
Nom Nominative
Ptv Partitive
Tra Translative

numbers
Sg Singular (nominals)
Pl Plural (nominal)
Sg1 Singular 1st person (verbs)
Sg2 Singular 2nd person (verbs)
Sg3 Singular 3rd person (verbs)
Pl1 Plural 1st person (verbs)
Pl2 Plural 2nd person (verbs)
Pl3 Plural 3rd person (verbs)

Table 1: All word classes, cases and numbers that appear in POS-tags

15

Case-tag (ca) is similar to num/case-tag but it excludes number informa-
tion, e.g. �Pos Gen�.

As an example, the tags for the sentence �Koira on iloinen .� are shown in
table 2.

�Koira� �on� �iloinen� �.�
Word-class-tag (wc) N V A Punct
Whole-tag (wt) N Nom Sg V Sg3 A Nom Sg Punct
Num/case-tag (nc) Pos Nom Sg Pos Sg3 Pos Nom Sg Pos
Num-tag (nu) Pos Sg Pos Sg3 Pos Sg Pos
Case-tag (ca) Pos Nom Pos Pos Nom Pos

Table 2: Example tags for �Koira on iloinen.�

3.3 N-gram extraction

N-gram extraction is conducted for FTB1 and FTB3 corpora, and the result-
ing n-gram sets are kept separate so they can be compared to one another.
For both corpora, additional n-gram sets with sentence border tags are cre-
ated. This allows us to examine how the inclusion of border tags a�ects the
performance of the grammar checker. In total, there are four kinds of main
sets: FTB1, FTB3, FTB1 with border tags and FTB3 with border tags.
Each main set has �ve n-gram sets, one for each tag type.

The n-grams are gathered from each sentence and they do not cross sentence
boundaries. The n-grams do not need to lapse multiple sentences since the
system only detects errors from one sentence a time. The n-grams range
from length two to �ve. If a sentence is shorter than an n-gram with a given
length, that n-gram is left out. For example, the extraction of word-class-
tags for a corpus containing only two sentences, �Koira on iloinen .� and �Se
heiluttaa pitkää häntäänsä innokkaasti .�, would be conducted as follows:

First, a hashmap data structure is initialized. The hashmap is used to store
the n-grams and their frequencies. To start the process, each word in the
sentences is replaced with its word class, which is found in the FinnTree-
Bank corpus in the annotation information of the word. �Koira on iloinen .�
becomes �N V A Punct� and �Se heiluttaa pitkää häntäänsä innokkaasti .�
becomes �P V A N Adv Punct�. Next, the n-gram extraction begins, starting
from bigrams working up to �vegrams. Bigrams for the �rst sentence are (N,
V), (V, A) and so on, and for the second sentence (P, V), (V, A) and so on.
Each of these n-grams is stored in the hashmap with the n-gram as the key

16

and its frequency as the value. The frequency value is one when an n-gram is
�rst encountered. Each time an n-gram, that already exists in the hashmap,
is encountered, the n-grams frequency value is incremented. Trigrams for the
�rst sentence are (N, V, A) and (V, A, Punct), and for the second sentence
(P, V, A), (V, A, N) and so on. Note that the n-grams do not cross sentence
boundaries, for example, the bigram (Punct, P) is not included in the �nal
n-gram set. The process continues like this until we reach the extraction of
�vegrams. The �rst sentence contains only four tokens, thus it produces no
�vegram. The processing of the second sentence proceeds normally and it
produces two �vegrams as it has six tokens.

The above example shows the extraction of word-class-tag n-grams. The
same process is conducted for the four other tag types: whole-tags, num/case-
tags, num-tags, and case tags. Additionally, for each n-gram set, there is an
n-gram set with sentence border tags �START� and �END�. This provides
the error detection system with additional information on how a sentence
can start or end. For example, the word-class-tags of the sentence �Koira
on iloinen .� in this format would be: �START, N, V, A, Punct, END�.
The n-gram extraction process stays exactly the same but the resulting set
of n-grams is now slightly di�erent: the bigrams of the sentence are now
(START, N) ... (Punct, END), trigrams are (START, N, V) ... (A, Punct,
END) and so on. With two tokens added, the sentence now has six tokens,
thus �vegrams can also be extracted: (START, N, V, A, Punct) and (N, V,
A, Punct, END).

3.4 Statistics

There are a total of 20 reference n-gram sets: FTB1 and FTB3, a set with
and a set without border tags for each of them, and a set for each of the
�ve tag types for all four of them. To study the nature of the n-gram sets,
frequency distributions and the �ve most frequent n-grams for each set and
for each n-gram length are analyzed. In the frequency distribution tables,
the �rst frequency intervals are 1, 2-5, 6-10 and 11-30, which correspond to
the cuto� values that are used in evaluation in section 5.

All of the frequency distribution tables indicate that the higher the n-gram
length is, the greater portion of the n-grams is distributed on low frequencies.
Naturally, when the n-gram length is higher, there are more possibilities to
arrange the components of the n-grams. Table 3 shows the e�ect for word-
class-tag n-grams in FTB1. In the case of bigrams, 16.6% of the n-grams
have frequency 10 or lower, whereas, for �vegrams, the percentage is 88.7%.

17

frequency bigrams % frequency trigrams %
1 6 4.3 1 182 16.1
2-5 8 5.8 2-5 248 22.0
6-10 9 6.5 6-10 135 12.0
11-30 17 12.2 11-30 162 14.3
31-2518 85 61.2 31-707 359 31.8
2519-5036 6 4.3 708-1414 31 2.7
5037-7554 4 2.9 1415-2122 4 0.4
7555-10072 2 1.4 2123-2829 6 0.5
10073-12590 2 1.4 2830-3537 2 0.2
total 139 100 total 1129 100
frequency fourgrams % frequency �vegrams %
1 1633 30.2 1 7509 44.5
2-5 1572 29.1 2-5 5763 34.2
6-10 651 12.0 6-10 1685 10.0
11-30 791 14.6 11-30 1444 8.6
31-193 675 12.5 31-60 324 1.9
194-386 62 1.1 61-121 113 0.7
387-579 18 0.3 122-182 18 0.1
580-772 4 0.1 183-243 7 0.0
773-965 4 0.1 244-304 3 0.0
total 5410 100 total 16866 100

Table 3: Frequency distribution for word-class-tag n-grams in FTB1

Table 4 displays the e�ect for whole-tag n-grams in FTB1. Whole-tags carry
more information than word-class-tags, and since there are more unique com-
ponents, there are also more unique n-grams. In this case, the proportion of
bigrams with frequency 10 or less is already high, 80.8%. When moving to
�vegrams the number is even more dramatic 99.8%.

Tables 3 and 4 also show that when the n-gram length is high, the most
frequent n-grams occur less number of times than short n-grams. In word-
class-tags, the most frequent bigram occurs 12590 times and the most fre-
quent �vegram occurs 304 times. This, again, happens because bigrams
have fewer unique n-grams than �vegrams. In whole-tags, the numbers are
lower, because having more unique tag components also means that there are
more unique n-grams: the most frequent bigram occurs 5090 times and the
most frequent �vegram occurs 45 times. Unsurprisingly, the total number of
unique n-grams raises as the n-gram length raises and as we move to tags

18

that carry more information. These e�ects are similar for all of the n-gram
sets.

frequency bigrams % frequency trigrams %
1 2651 37.9 1 19615 61.1
2-5 2293 32.8 2-5 8985 28.0
6-10 707 10.1 6-10 1642 5.1
11-30 715 10.2 11-30 1316 4.1
31-1018 615 8.8 31-189 493 1.5
1019-2036 12 0.2 190-378 32 0.1
2037-3054 5 0.1 379-568 9 0.0
3055-4072 0 0.0 569-757 1 0.0
4073-5090 1 0.0 758-947 1 0.0
total 6999 100 total 32094 100
frequency fourgrams % frequency �vegrams %
1 48371 77.6 1 66607 89.0
2-5 11899 19.1 2-5 7769 10.4
6-10 1314 2.1 6-10 325 0.4
11-30 643 1.0 11-30 95 0.1
31-43 71 0.1 31-33 5 0.0
44-86 44 0.1 34-36 1 0.0
87-129 8 0.0 37-40 0 0.0
130-172 2 0.0 41-43 1 0.0
173-216 1 0.0 44-45 1 0.0
total 62353 100 total 74804 100

Table 4: Frequency distribution for whole-tag n-grams in FTB1 for each
n-gram length

Although the most frequent n-grams are not too important with regard to
the actual grammar checking, because the grammar checker only looks at
whether certain n-grams appear in the n-gram set at all, they do provide
some information about the nature of the n-gram sets. Table 5 shows the
most frequent whole-tag n-grams in FTB1. FTB1 consists of linguistic exam-
ples from a descriptive Finnish grammar and it is annotated by hand. The
top �ve n-grams include examples of nouns agreeing with verbs and adjec-
tives agreeing with nouns by their number. Agreement by the grammatical
case is also shown, but the examples are not too interesting since almost all
the cases are nominative. Punctuation-conjunction-clause structures are also
represented. All in all, the examples seem to be proper language, although,

19

this is a very narrow view of the n-gram set as the vast majority of n-grams
is not visible here.

bigram frequency
N|Sg|Nom, V|Sg3 5090
V|Sg3, Adv 2914
Adv, Pun 2465
Adv, Adv 2294
N|Sg|Nom, Pun 2204
trigram frequency
N|Sg|Nom, V|Sg3, Adv 947
A|Sg|Nom, N|Sg|Nom, Pun 569
Adv, Adv, Pun 541
V|Sg3, Adv, Adv 478
N|Sg|Gen, Adp, Pun 472
fourgram frequency
Pun, CS, N|Sg|Nom, V|Sg3 216
N|Sg|Nom, V|Sg3, Adv, Adv 153
V|Sg3, A|Sg|Nom, N|Sg|Nom, Pun 134
N|Sg|Nom, V|Sg3, Adv, Pun 120
Adv, A|Sg|Nom, N|Sg|Nom, Pun 111
�vegram frequency
V|Sg3, Adv, A|Sg|Nom, N|Sg|Nom, Pun 45
Pun, CS, N|Sg|Nom, V|Sg3, Adv 43
N|Sg|Nom, V|Sg3, Adv, Adv, Pun 37
V|Sg3, Pun, CS, N|Sg|Nom, V|Sg3 37
N|Sg|Nom, V|Sg3, Adv, A|Sg|Nom, Pun 37

Table 5: Five most frequent whole-tag n-grams in FTB1 for each n-gram
length

In table 6, the most frequent whole-tag n-grams in FTB3 are displayed. FTB3
is automatically annotated and collected from various Finnish corpora, so it
could contain more �rubbish� data or incorrect examples. The only tags that
are represented in the table are Pun, Num|Sg|Nom, N|Sg|Nom and N. An
n-gram, where all the elements are Pun is included in the �ve most frequent
n-grams for all n-gram lengths. The other n-grams are alternation of punc-
tuation and some other tag. These are caused by lists of items or numbers
separated by commas, and dates appearing in the data. This indicates that
the FTB3 n-gram sets contain more ungrammatical n-grams, which means

20

that the grammar checker based on FTB3 is likely to pass ungrammatical
sentences as correct ones. This does not a�ect the error detector's capability
of passing grammatical sentences as correct, assuming that correct examples
are represented elsewhere in the data.

bigram frequency
Num|Sg|Nom, Pun 2392975
N|Sg|Nom, Pun 2209140
Pun, Num|Sg|Nom 1652323
Pun, N|Sg|Nom 1370185
Pun, Pun 1204254
trigram frequency
Pun, Num|Sg|Nom, Pun 1290344
Num|Sg|Nom, Pun, Num|Sg|Nom 932582
Pun, N|Sg|Nom, Pun 784968
Pun, Pun, Pun 420598
N|Sg|Nom, Pun, N|Sg|Nom 403842
fourgram frequency
Num|Sg|Nom, Pun, Num|Sg|Nom, Pun 716259
Pun, Num|Sg|Nom, Pun, Num|Sg|Nom 510204
N|Sg|Nom, Pun, N|Sg|Nom, Pun 238666
Pun, Pun, Pun, Pun 231253
Pun, Num|Sg|Nom, Pun, N|Sg|Nom 209534
�vegram frequency
Pun, Num|Sg|Nom, Pun, Num|Sg|Nom, Pun 451486
Num|Sg|Nom, Pun, Num|Sg|Nom, Pun, Num|Sg|Nom 333327
Pun, Pun, Pun, Pun, Pun 169293
Num|Sg|Nom, Pun, Num|Sg|Nom, Pun, N|Sg|Nom 150138
Pun, N, Num|Sg|Nom, Pun, Num|Sg|Nom 127116

Table 6: Five most frequent wholeTag-tag n-grams in FTB3 for each n-gram
length

Table 7 shows �ve randomly selected �vegrams from FTB3. The n-grams
have structures that seem to be more representative of natural language than
the �ve most frequent n-grams, which suggests that the FTB3 n-gram set
does indeed contain grammatically correct examples. Additionally, having
obscure n-grams is bene�cial if one tries to avoid over �agging of rare correct
structures as ungrammatical, but this comes with the expense of the system
also passing some ungrammatical structures as correct.

21

�vegram frequency
N|Sg|All, V|Sg3, V|Sg|Nom, A|Sg|Ill, N|Sg|Ill 2
Pun, N|Pl|Par, V, V, V|Abe 2
V|Sg3, V|Sg|Nom, Adv, N|Pl|All, A|Pl|Ess 2
V|Pl|Par, N|Pl|Par, N|Pl|Gen, N|Sg|Ill, V|Pl|Ess 1
V|Pl|Nom, A|Pl|Nom, N|Pl|Nom, A, N|Pl|Ess 1

Table 7: Random sample of whole-tag �vegrams in FTB3

4 Method

The grammar error detection method in the work of this thesis is based on
the paper by Nazar and Renau (2012), who check Spanish grammar by using
Google Books N-gram Corpus: if the n-grams of an input sentence appear
in the Google n-grams, the sentence is grammatically correct, otherwise not.
Finnish is a language with complex morphology and extensive generative
properties (Karlsson, 2008), thus plain word n-grams are not used in this
case. Instead, the error detector in my work utilizes POS n-grams, which is
similar to the approach of Alam et al. (2007), who check Bangla grammar
with POS n-grams. Using POS n-grams allows us to have a general picture
of a grammar without the set of reference n-grams growing to an unrealistic
size. The grammar checking system has three main phases when detecting
errors from an input sentence:

First, conduct morphological analysis for each word in the sentence and
produce POS-tags based on the analysis. Each word might have multiple
di�erent interpretations.

Next, select which morphological interpretations of the sentence will be
passed forward in the system.

Finally, see whether the POS n-grams of the sentence are found in the
reference set of n-grams.

4.1 Morphological analysis

The tokens of an input sentence are morphologically analyzed with Omor�
(Pirinen, 2015). Omor� gives a list of all possible analysis interpretations of
a token. Omor� provides extensive information about the morphology of a
word but we are only interested in the word class, number, and case of each

22

token, as the checker mainly aims to detect errors related to number and case
agreement. For each item in the list of interpretations, word class, number
and case are fetched, and the information from these are converted to suit
the format in the n-gram sets collected from FTB. Usually uppercasing the
�rst letter and lowercasing the rest of the letters is enough, but in some cases,
the tag has to be further altered. Additionally, proper nouns are considered
to be nouns, and auxiliary verbs are considered to be verbs, as they are in
the reference n-gram sets.

4.2 Sentence interpretation selection

Each word might have multiple di�erent interpretations. For example, the
word �multa� could mean �soil� (N Nom Sg) or �from me� (Pron Abl Sg1).
Since each word can have multiple interpretations, the whole sentence could
be interpreted in multiple di�erent ways. Two di�erent methods of formu-
lating an interpretation for a sentence are experimented with in this work.
The �rst method is to choose the most likely interpretation for each token
based on simple statistics from FinnTreeBank 1. The second method is to
use brute force and evaluate all possible sentence interpretations based on
the list of tags for each token.

4.2.1 Check the most probable interpretation

The �rst method is to check the most probable (CMP) interpretation based
on statistics from FTB1. To setup this method, a dictionary of word-class
frequencies is gathered from FTB1. The dictionary contains an entry for each
word that appears in FTB1 and the number of times the word represents each
word class. In the entries, the words are �rst converted into their base forms.
For example, the entry for �olla� is {V: 8853, N: 26, Adv: 25, A: 5}, which
indicates that �olla� is most often a verb. The dictionary can then be used
to select an interpretation for each word of an input sentence based on the
list of analyses from Omor�. The base form of the �rst word item of the
Omor� list is selected and its word class is chosen to be the word class that
has the highest frequency value in the word's entry in the dictionary. If the
word is not contained in the interpretation dictionary, the word class in the
�rst analysis of the Omor� list is used.

Table 8 shows an example of choosing the interpretation for the sentence
�Multa tuli maasta .�. First, each word is analyzed with Omor�, which
provides the possible base forms and their word classes. The �rst base form

23

in the analysis list is selected. In this case, the base forms are �multa�, �tuli�,
�maa� and �.�. Notice that this phase completely ignores the possibility for
the base form of �multa� to be �mä�, which is one of the options provided
by Omor�. Next, the base forms are used to �nd entries from the word
class frequency dictionary. From each entry, the most frequent word class is
chosen. The most frequent word classes in FTB1 for these base forms are
�N�, �V�, �N� and �Punct�. Finally, for each word, the analysis that contains
the chosen word class is selected from the list from Omor�, which results in
the �nal interpretation �N Nom Sg, V Sg3, N Ela Sg, Punct�.

input sentence �Multa� �tuli� �maasta� �.�

convert to base form �multa� �tulla� �maa� �.�

most frequent
word class

N V N Punct

interpretation
from Omor�

N Nom Sg V Sg3 N Ela Sg Punct

Table 8: Example of choosing the most probable interpretation for �Multa
tuli maasta.�

If the list of analyses from Omor� contains multiple analyses with the most
frequent word class, the method chooses the last interpretation with the
correct word class. For example, if the word is �alusta� with the correct word
class being �N� and the list of analyses is {�N Nom Sg�, �N Par Sg�, �N Ela
Sg�}, the last one of these �N Ela Sg� will be selected.

This method is very simple to implement but it has major shortcomings.
The choosing of the base form is quite arbitrary as only the �rst option in
the list of analysis from Omor� is considered. Even in a case where the base
form is selected correctly, but the entry in the word class dictionary contains
a very even distribution, for example, {V: 501, N: 499}, the most frequent
option, �V�, is always chosen, even though �N� would be the correct option
in almost half of the cases. Thus, this method is likely to pass an incorrect
interpretation forward to the grammar checking phase, which would result
in grammatically correct sentences being �agged as ungrammatical. This
method is expected to be outperformed by the all possible interpretations
method, which is described in section 4.2.2.

24

4.2.2 Check all possible interpretations

The second interpretation selection method checks all possible (CAP) inter-
pretations of the input sentence. This covers the possibility that sentences
might have multiple di�erent morphological interpretations. This brute force
natured method creates all possible interpretations for the input sentence
based on the list of analyses for each token from Omor�. Each of the inter-
pretations is sent forward to the grammar error detection phase, and if any
of them passes the checking, the input sentence is considered to be grammat-
ically correct.

Let's say we process the sentence �Multa tuli maasta .� with this method.
First, each of the tokens is analyzed with Omor�. The words �multa� and
�tuli� both have a list with two di�erent interpretations, and �maasta� and
�.� both have a list with one interpretation. Next, all possible interpre-
tations, even nonsensical ones, are formed based on the tags, as shown in
table 9. In this case, the sentence has four di�erent interpretations, each of
which is checked for correct grammar one by one. Let's assume that the two
�rst interpretations do not pass the checking phase, but the third one does.
The whole sentence is then determined to be grammatically correct, and
the fourth interpretation does not need to be sent to the grammar checking
phase.

�Multa� �tuli� �maasta� �.�
Pron Abl Sg1 V Sg3 N Ela Sg Punct
Pron Abl Sg1 N Nom Sg N Ela Sg Punct
N Nom Sg V Sg3 N Ela Sg Punct
N Nom Sg N Nom Sg N Ela Sg Punct

Table 9: Example interpretations of sentence �Multa tuli maasta.�

If the input sentence is long and it has ambiguous tokens with multiple
di�erent interpretations, the processing can take a large amount of time.
For example, the word �voi� has 8 unique interpretations in Omor�. In an
extreme case, the input sentence might be the word �voi� ten times. The
number of interpretations would be 810 = 1073741824, which is unreasonable
to start to process. However, there is a backup method. If the formulation of
all interpretations takes more than one second, the processing is interrupted
and a backup method is activated. The original input sentence is now split
into �vegrams, which are then checked separately. For example, the sentence
(with indexes for clari�cation) �voi1 voi2 voi3 voi4 voi5 voi6 voi7 voi8 voi9

25

voi10� would be split to six new sentences:

�voi1 voi2 voi3 voi4 voi5�
�voi2 voi3 voi4 voi5 voi6�
�voi3 voi4 voi5 voi6 voi7�
�voi4 voi5 voi6 voi7 voi8�
�voi5 voi6 voi7 voi8 voi9�
�voi6 voi7 voi8 voi9 voi10�

Each of these sentences is sent back and processed again with the all possible
interpretations method. If all of the sentences pass the process, i.e. if all of
the sentences have at least one interpretation that passes the grammar error
detection phase, the original input sentence is considered to be grammatically
correct. The intuition is, that since the �vegrams are the longest n-grams
that are looked at in the grammar detection phase, and since the �vegrams
of the split sentence overlap with each other, the grammar checker should be
able to detect more or less the same errors in a split sentence, as it would in
a non-split sentence. Now, the total number of interpretations is reduced to
6 ∗ 85 = 196608, which means that there are approximately 5000 times fewer
options to be checked.

This method is still quite simple to implement, but it requires more process-
ing time than the previously described most probable interpretation method,
even with the attempt to reduce the amount of computing with the backup
method. However, the all possible interpretations method is more likely to
�nd the correct interpretation of the sentence. It is also more likely to pass
sentences as grammatically correct in general, because it sends even obscure
interpretations to the grammar detection phase. This might not be unde-
sired behavior, as a grammar checker, that �ags errors in sentences that in
reality have no errors, seems more useless, than a grammar checker that some
times leaves grammatically incorrect sentences un�agged, but every time a
sentence is �agged, the sentence does actually contain grammar errors.

4.3 Grammatical error detection

Once a morphological analysis is received from the interpretation formulation
phase, the POS n-grams from the input sentence are compared to the set of
grammatically correct POS n-grams collected from FinnTreeBank. If all POS
n-grams from the input sentence are found in the set of correct POS n-grams,
the input sentence is considered to be grammatically correct. A cuto� value

26

can also be assigned to the grammar checker. This value sets a frequency
threshold that the n-grams have to cross in order to be considered correct.
The cuto� value is compared to the frequency value that is paired with each
n-gram in the reference n-gram sets.

The POS n-gram checker determines the correctness of the input sentence
by checking whether each of its n-grams is presented in the set of correct
POS n-grams enough number of times based on the cuto� value. First, all
n-grams from length two to �ve (in that order) are checked starting from the
�rst word. If no errors are found, the algorithm moves to the next word and
conducts the process starting from the second word. This procedure repeats
until an error is found, or until all n-grams are checked. If an error is found,
i.e. an n-gram is not found in the set of correct n-grams with a su�cient
frequency value, the iteration stops, and the location of the erroneous n-
gram is returned. Because the processing ends at the �rst error found, the
system only reports the �rst grammar error in the sentence. The location
of the error is a pair of values which represent the positions of the �rst
and the last POS-tags of the error n-gram in the sentence. When the error
detection is done using the most probable interpretation method, the location
of the erroneous n-gram is directly the location of the error in the sentence,
because there is only one interpretation that needs to be checked. However,
when using all interpretations method, the location of the error can only
be estimated, because the input sentence is considered to be erroneous only
if an error is found in all of its interpretations. In this case, the errors in
each interpretation are not likely to have the exact same location value, thus
it is not clear what is the exact location of the error in the sentence as a
whole. To estimate where the error is, the location is chosen to be one that
is represented the most times in the interpretations. For each interpretation,
the location of the erroneous n-gram is recorded in a list. After processing
all the interpretations, the location that occurs the most times in the list is
reported to be the location of the error in the input sentence. If there are
multiple location values that appear the same number of times and more
times than the others, the �rst one of those values is chosen. The error
location selection for the all interpretations method is somewhat arbitrary
and the check all possible interpretations method is not able to exactly locate
the error. However, it is able to determine if there is an error somewhere in
the sentence, and whether the sentence as a whole is grammatically correct
or not.

27

5 Evaluation

In the evaluation phase, the aim is to assess how using di�erent reference
n-gram sets, error detection methods, cuto� points and tag types in the
grammar error detection system perform against one another. The test data
used in the evaluation is gathered from machine-translated sentences. Each
grammar error in the data set is labeled with an error type. The data is
further described in section 5.1. The evaluation is conducted using multi-
ple di�erent grammar checker setups in multiple di�erent settings. This is
explained in section 5.2.

5.1 Test data

A test data set, that consists of Finnish sentences with grammar errors
marked, is required to evaluate the grammar error detection system. Ad-
ditionally, each error in the data set should be labeled with an error type,
which allows the data to be used to measure error type detection perfor-
mance. Such a data set seems to not exist for Finnish, thus one is created
within the scope of this thesis.

Ideally, the test data would consist of authentic text in order to assess how the
system performs in a real-world setting, as suggested by Tschichold (1994).
However, as such data is not found for Finnish, the test data for evaluation
is constructed using Finnish text produced by a machine translation system.
More speci�cally, data from Helsinki phrase-based English to Finnish ma-
chine translator4 submitted to Statmt (Koehn, 2005) newstest2015 is used.
Using sentences produced by a phrase-based statistical translator is bene-
�cial because it is likely to produce actual grammatical errors, where lan-
guage structures are clearly ungrammatical. The following translations from
the 2015 statistical phrase-based translator have clear examples of incorrect
grammar; the �rst sentence has a verb in in�nitive form when it should be a
participle, and in the second one, an adjective is singular nominative and it
modi�es a noun that is plural partitive:

Tuntuu, että kaikki on hakkeroida, hän kirjoittaa mukaan.

Fiksu tapoja säästää oppikirjoja

4http://matrix.statmt.org/systems/show/2498

28

http://matrix.statmt.org/systems/show/2498

In contrast, neural network based machine translation systems are often able
to produce proper grammar while the translation might have other issues.
The following examples from Helsinki English to Finnish neural machine
translation submission for newstest20185 are grammatically correct but have
unusual semantics:

Patsaan merkitys on täysin käsitys kulmasta.

Katossa oleva ämpäri toimii latteana.

Additionally, observing the sentences produced by the two translation sys-
tems mentioned above shows that the phrase-based translator creates more
errors in general, which is helpful when creating a grammar error data set.

The data from Statmt newstest2015 Helsinki phrase-based system for English
to Finnish consists of English input sentences, Finnish output translations,
and Finnish reference sentences, that represent the correct translations. The
Finnish output translations are likely to contain grammar errors, thus 764
sentences, that are manually veri�ed to contain grammar errors, are selected
from this set to represent grammar error examples in the test data. An error
can be located in one word, or it can span multiple words or an entire phrase.
Additionally, each error has been labeled with an error type by hand. The
error types are described in section 5.1.1. An example of an entry in the test
data might look like this:

Juankoski liitetään Kuopion kaupungin vuoden 2017 alussa .
((wrong case)) # ((3, 3))

In the above sentence, the error can be pinpointed to the fourth word. The
word is in the genitive case while it should be in illative in order to be
grammatically correct. The error type label is placed after the example
sentence. The location information is the last item in the entry. It contains
two values which indicate the locations of the �rst token and the last tokens
of the error.

In order to have grammatically correct examples in the test data, 764 sen-
tences are chosen from the set of Finnish reference sentences. Each of these
sentences is a correct reference sentence for one of the 764 previously selected
grammar error examples. In its entirety, the test data consists of 1528 sen-

5http://matrix.statmt.org/systems/show/3360

29

http://matrix.statmt.org/systems/show/3360

tences: 764 sentences with grammar errors marked and labeled with an error
type, and a grammatically correct version for each of these sentences.

There is also a second version of the test data, where foreign proper names,
that are not recognized by Omor� (Pirinen, 2015), are replaced by Finnish
names to decrease the number of unknown words. The no-unknown-names
(NUN) version of the test data was created by checking each word in the
data with Omor�. If the word is labeled �unknown� by Omor�, the word is
further manually evaluated. If the word is recognized to be a foreign name,
it is replaced by a Finnish name. This procedure is done for each sentence
in the test data, and the resulting sentences are stored in the NUN version
of the data. The original test data has 1137 words unrecognized by Omor�,
while the same number for the NUN version is 346. The NUN test data was
created because having a test set full of words unknown to the morphological
analyzer hinders the grammar checkers overall performance. In a real-world
setting, the checker should, of course, be able to handle any kind of foreign
name usage, but at this stage, it is interesting to see how the grammar
checker would perform if it had a robust named entity recognition system in
its pipeline.

The NUN test data has the exact same number of errors and exactly the
same error types as the original test data set. This is ensured by the fact
that the error marking and labeling as well as the foreign name replacements
are both conducted manually. If a name is replaced outside a grammar
error, there are naturally no new errors introduced into the sentence. If the
replacement happens within an error that is already labeled, the location of
the error and the error type are preserved. If a word is labeled as an error in
the manual error labeling phase because it is an unknown word, there is no
possibility for it to be replaced by a Finnish name in the name replacement
phase, because the manual interpretation of it not being a foreign name is
same in both phases. When checking the sentences in the test data, the fact
that foreign names are replaced allows Omor� to recognize more tokens, and
fewer �unknown� tags are sent to the grammar error detection process.

5.1.1 Error types

To evaluate what kind of grammar errors each checker setup is able to detect,
the errors in the test sentences are labeled with an error type, which is
selected from 12 options. The error types and the number of their occurrences
in the test data are shown in table 10.

30

Error type Occurrences
extra structure 34
foreign word 48
missing predicate 90
missing structure 42
unknown word 57
wrong case 191
wrong case and number 8
wrong number 16
wrong person 14
wrong structure 253
wrong word class 8
wrong word order 3

Table 10: Distribution of error types

The error types were chosen while examining the grammar errors in the trans-
lations from the phrase-based machine translation system. The selected error
types are the most distinct ones appearing in the translations. The types are
described using examples with annotations containing case and number in-
formation in the following:

Extra structure:

An error labeled with an extra structure adds invalid structure to the sen-
tence, which causes grammatical errors. The added structure can be punc-
tuation, a word or multiple words.

kuva , ja on sittemmin poistettu
picture
+sg+nom

extra-
comma

extra-
conjunction

be+sg3 since
remove
+sg

the picture extra-comma extra-conjunction has since been removed

Foreign word:

Foreign word indicates that a sentence contains a word that is identi�ed by
the author to be in a di�erent language than Finnish.

31

Vielä appetite for koteja on ollut siunaus ...

Still foreign foreign
home

+pl+par
be+3sg be+sg blessing

Still foreign foreign homes has been a blessing...

Missing predicate:

Missing predicate means that the sentence is missing a verb that acts as the
predicate, which makes the example ungrammatical.

Luettelon pikahuutokaupasta ensi viikolla
Catalogue+gen fast-auction+sg+ela next week+sg+ade

A catalogue from a fast auction next week

Missing structure:

Missing structure indicates that something essential for the sentence's gram-
matical correctness is missing. The missing part can be for example an ad-
position, a conjunction, a subject or an object or it can span multiple words.
Missing predicate has its own label, because it is a more common error than
other missing components.

The example sentence is missing a conjunction or a sentence boundary be-
tween �alussa� and �tapahtuma�.

... joka on juuri
saa-
punut

alussa
tapah-
tuma

voi olla

which
be
+sg3

just
arrive
+sg

begin-
ning

+sg+ine

event
+sg+nom

can
+sg3

be

... which has just arrived in the beginning the event can be ...

Unknown word:

Unknown words are tokens that are not recognized by the author to be
Finnish or any other language. There is a possibility that some errors that
should be labeled as foreign words were instead labeled as unknown because
the language was not recognized.

32

Eli vitsaiiia usein hänet vielä vaikeuksiin
So unknown often he+acc still trouble+pl+ill

So unknown often him still into trouble

Wrong case or wrong number:

Wrong case or wrong number means that a word has the wrong grammat-
ical case or number in relation to the surrounding words. A speci�c case
and number are required to satisfy word agreement. Additionally, certain
structures, e.g. adpositions, might require a certain case or number. There
are three labels related to these errors: wrong case, wrong number and
wrong case and number.

In this example sentence, �lisäkaudet� should be singular and in adessive,
�lisäkaudelle�, and the error would be labeled as wrong case and number.

Ehdo-
tukseen

sisältyy myös optio kahdelle lisäkaudet

proposal
+sg+ill

include
+sg3

also
option

+sg+nom
two+sg+ade

additional-
season
+pl+nom

The proposal also includes an option for two additional seasons

Wrong person:

Wrong person is closely related to wrong number. The di�erence is that
grammatical number refers to nominals, which can be either singular or plu-
ral, while grammatical person refers to verbs, which, in addition to being
either singular or plural, are also in �rst, second or third person.

In this example, �jotka� is plural, and �kommentoi� should be in third plural,
�kommentoivat�, instead of third singular.

jotka kommentoi
who+pl comment+sg3

who commentates

33

Wrong structure:

Wrong structure means that a linguistic structure is erroneous, but it is very
di�cult to pinpoint the exact reason why. The structure is usually completely
incoherent and contains multiple errors that are di�cult to separate.

This example has multiple errors, and it is di�cult to �nd the exact location
of the error. �vetooikeuksia� is missing a hyphen between the two �o�s and
its conjugation does not match to the surroundings. �vahtikoiraryhmä� is
in wrong grammatical case in relation to its surroundings. �teki virallisen
valituksen vasemmalle� is a grammatically correct structure, but it does not
match to its surrounding. The sentence requires multiple large edits to make
it grammatical.

Että
vetooi-
keuksia

teki virallisen valituksen
vasem-
malle

vahtikoira-
ryhmä

that
veto

+pl+par
make
+sg3

o�cial
+sg+gen

complaint
+sg+gen

left
watch-

dog-group
+sg+nom

That at vetos made an o�cial complaint to the left watch dog group

Wrong word class:

Wrong word class means that a word has the correct root, but it is derived
to be in the wrong class.

In the example, the adverb �humalassa� should be replaced with the adjective
�humalainen�

Olen humalassa demokraatti Texasissa
be+1sg drunk democrate+sg+ine Texas+sg+ine

I am drunk democrate in Texas

Wrong word order:

Wrong word order means that the words being in the wrong order makes
the sentence erroneous. Even though the word order in Finnish is quite free
compared to many other languages, there are cases where the wrong order
can create an error.

34

In the following example, �Klubin� should be placed before �pelaaja�. A
structure where something, that is owned, is placed before the owner is very
rarely used and it is considered to be an error.

mutta tilalle tuli pelaaja Klubin
but to-replace come+sg3 player+sg+nom Klubi+sg+nom

but to replace him came a player Klubi's

5.2 Test settings

The evaluation is conducted to multiple grammar checker setups based on
di�erent selections of reference n-gram sets, error detection methods, cuto�
points, and tag types. There is a total of 200 setups that combine the afore-
mentioned features as shown in table 11. Precision, recall, and f-score values
are used to evaluate each of the test setups, as per usual when evaluating
grammar checkers (Lin et al., 2011; Nazar and Renau, 2012; Silva and Fin-
ger, 2013). Recall is the number of correctly �agged errors divided by the
total number of errors in the test data. Precision is the number of correctly
�agged errors divided by the number of correctly and incorrectly �agged
errors. F-score is calculated as 2/(precision−1 + recall−1). Precision and
recall provide interesting information on how the grammar checker is tuned
to behave. Usually, a grammar checker with high precision is favored over a
checker with high recall. Tschichold (1994) and Tschichold et al. (1997) state
that an over�agging grammar checker is confusing and misleading, especially
for non-native speakers. A user satisfaction evaluation conducted by Deksne
and Skadin

,
² (2011) also shows, that users generally prefer checkers with high

precision rather than high recall.

There are �ve comparisons that are made by measuring precision, recall and
f-score values:

• comparing FTB1 and FTB3

• comparing WB and WoB

• comparing CMP and CAP

• comparing cuto� thresholds 0, 1, 5, 10 and 30

• comparing di�erent POS-tag n-grams

35

These comparisons are conducted using the average scores across all grammar
checker setups that use a speci�c feature. For example, when examining the
precision between FTB1 and FTB3, the average precision value of all setups
that use FTB1 is compared to the average precision value of all setups that
use FTB3. The cuto� point selections (0, 1, 5, 10 and 30) were guided
by the n-gram set statistics which were described previously in section 3.4.
The thresholds were chosen to be very low as a low value already removes
a signi�cant portion of the reference n-grams. For example, cutting of the
n-grams that appear only once in the FTB1 whole-tag n-gram reference set
removes 89% of the reference n-grams in that set.

Data set Border tags Method Cuto� point POS-tag

FTB1
FTB3

WB
WoB

CMP
CAP

0
1
5
10
30

Word-class-tag
Whole-tag

Number/case
Number
Case

Table 11: Di�erent test setups. Each of the setups uses one option from each
category. In total, there are 200 di�erent grammar checker setups.

Further, the grammar checker setups are evaluated by their ability to detect
di�erent error types. This measure is taken by calculating the proportion
of each error type labeled correctly by the system. Special focus is put on
analyzing how di�erent POS-tag based reference n-gram sets perform in this
regard. The measurements are, again, reported as the average error type
detection proportion values of all setups that use a speci�c POS-tag.

Each of the 200 setups is run through the two versions of the test data: the
original test set and the NUN version of the test set. Additionally, each setup
is evaluated in two di�erent settings: setting 1, where the grammar checker
has to �ag the location of the error in a sentence, and setting 2, a relaxed
setting, where the checker only has to decide whether the whole sentence is
grammatically correct. For each test set and setting, the grammar checker
setups that have the best precision, recall, f-score, and error type detection
accuracy are reported.

In setting 1, if the actual location of the error overlaps even partially with
the location reported by the checker, the location is considered to be correct.
Although ideally, it would be desirable for the location detection to be perfect,
expecting the current version of the grammar checker system to report the

36

locations exactly correctly would be very strict. The error locations in the
test set are marked by hand and it would be unreasonable to think that the
error locations emerging from the reference n-gram sets would have the exact
same intuition as a human.

Each example error sentence can contain multiple grammar errors, and the
total number of individual grammar errors in the test data sums up to 1226.
However, as the grammar checker is only able to detect the �rst error of
a sentence, only the total number of �rst errors, which is the same as the
number of error example sentences: 764, is used in recall calculations.

6 Results and analysis

In this section, the results of the evaluation are presented and analyzed.
The precision, recall and f-score performances are reported in section 6.1.
First, the average values for all the test setups in each of the four settings
are reported. The four test settings are normal test set in setting 1, normal
test set in setting 2, NUN test set in setting 1 and NUN test set in setting
2, where normal test set is the original set, NUN set is the test set with
unknown foreign proper names removed, setting 1 requires detection of the
location of the error and setting 2 only requires the whole sentence to be
�agged as erroneous. Next, the average values are reported in all four test
settings for each of the following comparisons: FTB1 against FTB3, WB
against WoB, CMP against CAP, di�erent cuto� points against each other,
and di�erent POS-tags against each other. Finally, the individual grammar
checker setups, that performed the best with regard to precision, recall, and
f-score, are reported.

The error type detection performances are reported in section 6.2. The pro-
portions of correctly labeled errors are measured for both test sets, but only
in setting 1, as it is not meaningful to consider the checker to detect error
types correctly when whole sentences are marked erroneous. The perfor-
mance comparison is reported only for POS-tags, as the other comparisons
yield uninteresting results. Further, the best individual grammar checker
setups in detecting each error type are reported.

6.1 Precision, recall and f-score

Table 12 shows the average precision, recall, and f-score of all the 200 gram-
mar checker setups in all four settings. In setting 1, where the checker has

37

to locate the error in a sentence, the average performance is very poor with
regard to both precision and recall. The checker �nds few errors from the
total set, and even when it does �ag an error, the �agged item is not actually
an error in most cases. The reason, why the error detection performs poorly,
is that most of the checker setups are very strict and they falsely �ag errors
right at the start of most sentences, which causes the checker to not reach
the locations of the true errors. The restrictiveness of the grammar detection
setups is explained further in the following comparison sections.

Setting 1
Normal test set

Setting 2
Normal test set

Setting 1
NUN test set

Setting 2
NUN test set

precision 0.241 0.538 0.307 0.618
recall 0.317 0.718 0.286 0.609
f-score 0.267 0.599 0.266 0.552

Table 12: Overall average precision, recall and f-score

All three values are higher in setting 2, where the checker marks whole sen-
tences as erroneous, compared to setting 1. This was to be expected as the
error detection system has a better chance of �nding an error in setting 2.
However, it is trivial to achieve a high recall score in setting 2. If the checker
is very strict and it �ags every sentence as erroneous, the recall value raises
to 1.000. Additionally, in this data set where half of the sentences contain
errors, if all sentences are �agged as erroneous, a precision score of 0.500 is
automatically achieved.

In NUN test set, where foreign proper names have been manually replaced
with Finnish names, the average precision is higher and the recall is lower
than in the original test set. The checker is less likely to �nd unknown
words in the morphological analysis phase, and proper POS n-grams are
sent forward to the error detection phase. POS n-grams, that contain no
unknown tags, have a better chance of being represented in the reference
n-gram set than n-grams, that do contain them. This explains why the
precision is higher, as the checker will not �ag structures where the error
would be caused by a foreign name being an unknown word. This is also the
reason why fewer errors are �agged in general and the recall is lower. The
overall performance is poorer in NUN test set compared to the original test
set according to the average f-score values.

38

6.1.1 FTB1 vs FTB3

The test setups that use FTB1 as their reference n-gram set are compared
to the setups that use FTB3. FTB1 consists of 19000 sentences that are
linguistic examples from Finnish grammar and it is manually annotated.
FTB3 contains 4367000 sentences, which are collected from publicly available
Finnish corpora and it is automatically annotated.

Normal
test set

Setting 1 FTB1 FTB3
precision 0.232 0.251
recall 0.352 0.281
f-score 0.275 0.258

Setting 2 FTB1 FTB3
precision 0.520 0.557
recall 0.802 0.634
f-score 0.620 0.578

NUN
test set

Setting 1 FTB1 FTB3
precision 0.261 0.351
recall 0.337 0.235
f-score 0.279 0.252

Setting 2 FTB1 FTB3
precision 0.548 0.687
recall 0.729 0.488
f-score 0.592 0.511

Table 13: The average scores of test setups using FTB1 and FTB3

FTB1 has higher recall and lower precision than FTB3 in both settings and
both data sets as seen in table 13. Even though FTB1 consists of a variety
of linguistic examples, it is a much smaller corpus, and it seems to be more
restrictive than the much larger FTB3. FTB3 is likely to contain more rarely
used or obscure language and, for example, idioms that might require speci�c
grammatical cases. Thus, when using FTB1, more language structures are
�agged as errors even though they might actually be just rare phrases, which
is re�ected in the precision and recall scores. Recall is higher since more
sentences are �agged as erroneous in general, but simultaneously this hinders
precision. However, the FTB1 setups perform better than FTB3 when taking
into account both precision and recall according to the f-score value.

6.1.2 WB vs WoB

The test setups that use n-gram sets with sentence border tags added (WB)
are compared with the setups that do not use border tags (WoB). When
the grammar checker uses a set with border tags, the sentence boundaries
are also marked in the input sentence before following through with the
grammar error detection process. Utilizing border tags provides the system
with information on how phrases can start and end.

39

Normal
test set

Setting 1 WB WoB
precision 0.211 0.271
recall 0.287 0.346
f-score 0.237 0.296

Setting 2 WB WoB
precision 0.538 0.540
recall 0.723 0.712
f-score 0.600 0.597

NUN
test set

Setting 1 WB WoB
precision 0.246 0.369
recall 0.254 0.318
f-score 0.226 0.305

Setting 2 WB WoB
precision 0.615 0.621
recall 0.616 0.602
f-score 0.554 0.549

Table 14: The average scores of test setups using WB and WoB

In setting 1, not using sentence borders outperforms using them in both
precision and recall, as shown in table 14. When border tags are utilized, the
reference POS n-gram set contains more unique n-grams: all the n-grams of
the set without borders and additional n-grams of length two to �ve, which
contain the sentence start and end border tags, for each sentence in FTB.
In a sense, the WB version conducts the grammar checking for all the same
n-grams as WoB, but it runs an additional error detection process for the
beginnings and endings of each test sentence. Thus, WB �ags errors more in
the beginnings of sentences where the process stops, while the actual errors
might be somewhere further down the sentence, which causes incorrect error
location detection leading to low recall and precision.

In setting 2, the di�erences between WB and WoB are minuscule, but WoB
does have slightly higher precision and WB has slightly higher recall and f-
score. The error location issue described above does not have as strong of an
e�ect in this setting, where whole sentences are �agged erroneous: in cases
where a WB system determines the error to be at the border of a sentence,
but the actual error is somewhere in the middle, the system is still considered
to the detect the error correctly, because the error is found in an erroneous
sentence. WB having higher recall than WoB is caused by WB being slightly
more restrictive and �agging errors in a handful more sentences. However,
WB has lower precision, because some of those additional �agged sentences
are not always actually erroneous.

6.1.3 CMP vs CAP

All the error detection systems, that choose the most probable (CMP) inter-
pretation of an input sentence, are compared to the systems that choose all

40

possible (CAP) interpretations. The CMP interpretation selection method
is based on naive statistics, while CAP exhaustively checks all di�erent com-
binations of an input sentence's POS-tags, even obscure ones.

Normal
test set

Setting 1 CMP CAP
precision 0.239 0.243
recall 0.345 0.288
f-score 0.276 0.256

Setting 2 CMP CAP
precision 0.532 0.546
recall 0.777 0.658
f-score 0.618 0.580

NUN
test set

Setting 1 CMP CAP
precision 0.289 0.326
recall 0.321 0.250
f-score 0.280 0.251

Setting 2 CMP CAP
precision 0.589 0.647
recall 0.686 0.532
f-score 0.585 0.518

Table 15: The average scores of test setups using CMP and CAP

Table 15 shows that CMP has higher recall and f-score but lower precision
than CAP in both settings and both test sets. CAP tries to detect errors in all
possible interpretations of the input sentence, and if any one of them does not
contain errors, the original input sentence is considered to be grammatically
correct. CMP is much more restrictive, as it chooses only one interpretation
to be checked for errors, and the interpretation itself has the possibility of
being wrong. Thus, CMP �ags more errors in general leading to higher recall.
CAP allows obscure, and sometimes even wrong, interpretation to pass the
error detection and it also passes grammatical structures as correct more
often than CMP, which causes higher precision.

In normal test set, the precision is only slightly higher for CAP. Normal
test set contains a higher amount of unknown words because it includes
foreign proper names that Omor� (Pirinen, 2015) cannot interpret. Both
CMP and CAP interpretation selection methods are based on Omor�, which
tags the foreign names always as �unknown�. As a result, the interpretation
produced by CMP and all the interpretations produced by CAP will contain
an �unknown� tag in the same position. POS n-grams that contain �unknown�
tags are not represented in the reference n-gram sets. Thus, both CMP and
CAP will �ag an error where the �unknown� tag is, both in the same location,
leading to similar precision scores. In NUN test set, the foreign names are
replaced by Finnish ones and they are not �agged as �unknown�, which allows
the checkers to move on to �nd other errors, which in turn creates more of
a di�erence in precision between normal and NUN test sets. The recall

41

di�erence is similar in both normal and NUN test sets as CMP �ags more
errors in general outside of the foreign name cases.

6.1.4 Cuto�s

The checker is evaluated using di�erent n-gram frequency cuto� values. In
the grammar checking phase, if an n-gram from the input sentence is found
in the reference n-gram set, but the reference n-gram's frequency value is not
higher or equal to the threshold speci�ed in the cuto� value, the input n-
gram is considered ungrammatical. The cuto� points used in the evaluation
are 0, 1, 5, 10 and 30. These values were chosen based on statistics displayed
in section 3.4.

Normal
test set

Setting 1 0 1 5 10 30
precision 0.249 0.247 0.242 0.237 0.232
recall 0.303 0.301 0.318 0.324 0.337
f-score 0.266 0.265 0.267 0.267 0.267

Normal
test set

Setting 2 0 1 5 10 30
precision 0.547 0.547 0.538 0.534 0.527
recall 0.672 0.672 0.720 0.742 0.782
f-score 0.587 0.587 0.600 0.605 0.615

NUN
test set

Setting 1 0 1 5 10 30
precision 0.333 0.330 0.306 0.292 0.277
recall 0.265 0.263 0.288 0.297 0.317
f-score 0.264 0.262 0.266 0.266 0.269

NUN
test set

Setting 2 0 1 5 10 30
precision 0.649 0.649 0.615 0.599 0.578
recall 0.544 0.544 0.612 0.644 0.700
f-score 0.531 0.531 0.553 0.563 0.580

Table 16: The average scores of test setups using cuto� values 0, 1, 5, 10 and
30

Table 16 shows the results for all cuto� points. In both test sets and both
settings, the precision is highest on low cuto� values, and recall and f-score
are highest on high cuto� values. When the cuto� value is high, n-grams with
low frequency values are considered ungrammatical and the error detection

42

system allows fewer n-grams to pass as grammatically correct, leading to
more cases being �agged as errors and to a higher recall score. At the same
time, more language structures, that are rarer but actually grammatical, are
�agged as errors resulting in lower precision.

In setting 2 for both test sets, there is no di�erence in precision, recall or
f-score between cuto�s 0 and 1, which means that they both �ag the same
sentences as erroneous. This does not happen in setting 1 because having
to locate the error correctly within a sentence creates enough of a di�er-
ence between cuto�s 0 and 1. Additionally, the f-score raises only slightly
when moving towards higher cuto� values in setting 1. In setting 2, the f-
score raises more dramatically because of the aggressive ascend in the recall.
When the cuto� value is higher, more n-grams in general are considered un-
grammatical leading to more language structures being �agged as errors. The
error can be anywhere in the sentence for the error �agging to be considered
correct and more sentences are �agged correctly in setting 2. However, the
error location within a sentence has to be correct in setting 1, and raising the
cuto� values makes it more likely for the checker to �ag an error early in the
sentence before an actual error. This is not enough for the error detection to
be considered correct, and thus, the rise in the recall is milder in setting 1.

6.1.5 POS-tags

The performance of each of the setups using di�erent POS-tags in their n-
gram sets are compared to each other. There are �ve POS-tags each of
which consisting of di�erent variations of three pieces of linguistic informa-
tion: word class, grammatical number, and grammatical case. Word-class-
tag (wc) contains only word class, whole-tag (wt) has all three components,
number/case-tag (nc) consists of number and case, number-tag (nu) has only
number and case-tag (ca) has only case.

Table 17 shows the average scores for setups using each of the POS-tags. In
both settings and both test sets, number-tag achieves the best precision and
whole-tag has the highest recall and f-score except in setting 1 using normal
test set, where number/case-tag has the highest f-score.

Out of all of the POS-tags, number-tag has the least amount of options it
can appear as because it can consists of only a single selection from eight
di�erent pieces of grammatical number information as shown previously in
table 1 in section 3.2. This causes number-tag to be the least restrictive tag,
and it �ags the least errors in general, which is re�ected in the lowest recall
scores. When a system using number-tags actually does �ag an error, it is

43

also quite sure of its decision, at least more sure than systems using the other
tags.

Normal
test set

Setting 1 wc wt nc nu ca
precision 0.253 0.204 0.223 0.268 0.258
recall 0.288 0.386 0.351 0.265 0.294
f-score 0.264 0.267 0.270 0.263 0.269

Normal
test set

Setting 2 wc wt nc nu ca
precision 0.562 0.505 0.517 0.569 0.539
recall 0.639 0.957 0.814 0.565 0.614
f-score 0.585 0.660 0.626 0.561 0.562

NUN
test set

Setting 1 wc wt nc nu ca
precision 0.339 0.215 0.246 0.391 0.345
recall 0.244 0.399 0.339 0.202 0.246
f-score 0.259 0.279 0.277 0.252 0.261

NUN
test set

Setting 2 wc wt nc nu ca
precision 0.682 0.509 0.537 0.731 0.632
recall 0.504 0.946 0.742 0.390 0.463
f-score 0.527 0.660 0.605 0.480 0.486

Table 17: The average scores of test setups using di�erent POS-tags

Conversely, whole-tag has the most linguistic representations it can appear
as. Whole-tag can consist of one of 13 word classes, one of 15 grammatical
cases and one of 8 grammatical numbers. Taking into account that case
and number can also be empty, the total number of possible whole-tags is
in theory 13 ∗ 16 ∗ 9 = 1872. The actual number is not this high as some
combinations of word class, number and case cannot occur, for example,
nominals do not have grammatical person. In any case, systems using whole-
tags are the most restrictive, as the whole-tags in the n-grams of a given input
sentence have to match whole-tags in the reference n-gram sets. This causes
whole-tag setups to �ag the most errors in general, which in turn raises the
recall score.

In fact, the order of the highest precision scores follows the order of how
restrictive the POS-tags are based on the number of forms they can repre-
sent. Number-tag has 9 di�erent forms, word-class-tag has 13, case-tag has

44

16, number/case-tag has 144 and whole-tag has 1872. The order of high-
est precision is number-tag, word-class-tag, case-tag, number/case-tag, and
whole-tag, although case-tag has slightly higher precision than word-class-tag
in setting 1. The order of highest recall is the order of the highest precision in
reverse: whole-tag, number/case-tag, case-tag, word-class-tag, and number-
tag, although word-class-tag has higher recall than case-tag in setting 2.

6.1.6 Best setups

For each setting and each test set, the best grammar detection system setups
are reported. Each setup uses FTB1 or FTB3, WB or WoB, CMP or CAP,
one of the �ve cuto� values, and one of the �ve POS-tags. The setups that
performed the best with respect to precision, recall, and f-score are presented.
Based on the observations made in previous sections, the setups with the
highest precision should use FTB3, WoB, CAP, cuto� 0 and number-tags,
and the setups with highest recall and f-score should use FTB1, WoB in
setting 1 but WB in setting 2, CMP, cuto� 30 and whole-tags.

Setup precision recall f-score
FTB3 WoB CAP cuto�-30 nu 0.343 0.274 0.304
FTB1 WoB CMP cuto�-10 ca 0.267 0.468 0.340
FTB1 WoB CMP cuto�-10 ca 0.267 0.468 0.340

Table 18: Best setups for normal test set in setting 1

Table 18 displays the performance of the best setups for normal test set in
test setting 1. The results are somewhat higher than the overall average
results, as shown previously in section 6.1 table 12, but they are still quite
poor. Highest precision, 0.343, is achieved by a setup that uses FTB3, WoB,
CAP, and number-tag, which was expected. However, the setup uses cuto�
30, which is the opposite of what the average results suggest. For normal
test set, the di�erences in average precision values between di�erent cuto�
points are quite minor, and this setup seems to be just an outlier. The setup
that reaches the highest recall, 0.468, and simultaneously the highest f-score,
0.340, uses FTB1, WoB, CMP, cuto� 10 and case-tag. Cuto� 30 has slightly
higher recall than cuto� 10 in the average results. Case-tag performs the
third best in recall and the second best in f-score in the average results.
Otherwise, this setup uses the expected components. It is worth noting, that
the setups with the highest precision and recall have very poor recall and

45

precision values respectively, and these setups would be practically unusable
in a real-world setting.

Setup precision recall f-score
FTB3 WoB CAP cuto�-30 wc 0.598 0.475 0.530
FTB1 WB CAP cuto�-10 wt 0.501 1.000 0.668
FTB1 WB CAP cuto�-0 wt 0.505 0.990 0.668

Table 19: Best setups for normal test set in setting 2

Table 19 shows the best setups for normal test set in setting 2, where whole
sentences are tagged as erroneous. The setup with the highest precision
value, 0.598, uses FTB3, WoB, CAP, cuto� 30 and word-class-tag, which
is again almost exactly what was to be expected. Di�erent cuto� values
were previously explained to have only minor di�erences in normal test set
and word-class-tag has the second highest precision value in normal test
set in setting 2. This setup has a recall of 0.475 and an f-score of 0.530,
so the checker �nds little less than half of the errors and correctly �ags
them a little over half the time. A hypothetical grammar checker, that �ags
every second sentence as an error, would reach precision of 0.500, recall of
0.500 and f-score of 0.500 in this test set where half of the samples contain
errors and half do not. This setup performs only slightly better than the
hypothetical grammar checker and does not seem to have any actual grammar
error detection capabilities.

The setup that has the highest recall, 1.000, uses FTB1, WB, CAP, cuto�
10 and whole-tag, which was otherwise expected except for CAP. There are
multiple other setups that reached a recall of 1.000 with cuto�s 10 and 30,
all of which use whole-tag. However, this setup does not �ag every single
sentence as an error as it reached a precision value of over half: 0.501. It also
achieves the highest f-score with 0.668, but the setup, that uses FTB1, WB,
CAP, cuto� 10 and whole-tag, is chosen to represent the highest f-score, as
it has slightly di�erent, although similar, precision and recall values.

Setup precision recall f-score
FTB3 WoB CAP cuto�-0 nu 0.647 0.202 0.308
FTB1 WoB CMP cuto�-0 nc 0.266 0.488 0.344
FTB1 WoB CMP cuto�-10 ca 0.280 0.467 0.350

Table 20: Best setups for NUN test set in setting 1

46

Table 20 shows the best setups for NUN test set in setting 1. The best setups
achieve higher precision but similar recall and f-score as in the normal test
set in setting 1. In NUN test set, there are fewer words that Omor� does not
recognize, which helps the checker to avoid �agging unknown errors in places
where they should not be �agged, which in turn raises the precision. The
setup with the highest precision, 0.647, uses the components FTB3, WoB,
CAP, cuto� 0 and number-tag, which are exactly the ones that have the
highest average precision scores in the previous sections. The setup with the
highest recall, 0.488, uses FTB1, WoB, CMP, cuto� 0, and number/case-tag.
Number/case-tag reaches the second highest recall in the average measure-
ments but cuto� 0 performs the worst in this regard, so it is surprising to
see it in the setup with the highest recall. The best f-score setup uses FTB1,
WoB, CMP, cuto� 10, and case-tag. Based on the average score results,
FTB1, WoB, and CMP were expected, and cuto� 10 and case-tag are not
too surprising, as they are the second and third best components respectively
when reaching for high f-score.

Setup precision recall f-score
FTB3 WoB CAP cuto�-0 nu 0.857 0.267 0.408
FTB1 WB CMP cuto�-10 wt 0.500 1.000 0.667
FTB1 WB CAP cuto�-0 wt 0.506 0.990 0.669

Table 21: Best setups for NUN test set in setting 2

The best setups in NUN test set in setting 2 reach the highest precision,
recall and f-score out of all other setups, as shown in table 21. This was
expected because this setting has the most relaxation with unknown foreign
proper names removed and the checker having to only label whole sentences
instead of exactly locating the grammar errors. The setup with the highest
precision uses FTB3, WoB, CAP, cuto� 0 and number-tag, which correlates
with the results from the average score measurements. The precision value,
0.857, seems moderately impressive at �rst glance, but further examination
shows that the same setup has a recall value of 0.267 and an f-score of 0.408.
In other words, the setup �ags sentences as erroneous very rarely, but when it
does, it is quite sure that the sentence actually is erroneous. The setup with
the best recall, 1.000, uses FTB1 WB, CMP, cuto� 10 and whole-tag, which,
again, are the expected components, except for the cuto� value, which should
be 30 according to the average results. The setup with the highest f-score,
0.669, uses FTB1, WB, CAP, cuto� 0 and whole-tag, which is somewhat
surprising as it uses CAP instead of CMP and cuto� 0 instead of cuto� 30.

47

Both, the high recall setup and the high f-score setup, tag practically every
single sentence as an error, so they reach perfect recall and precision of about
0.500. Both also have signi�cantly higher f-score that the setup with precision
0.857, but one could argue that the high precision setup is more user-friendly
than the other two setups. Firstly, �agging everything as an error gives no
useful information to the user of the grammar checker. Secondly, favoring low
recall but high precision makes the checker less annoying in real word usage,
as it is less likely to interrupt the writing experience with falsely �agged
errors. Although, in this case, the recall of 0.267 is too low for the setup to
be considered actually useful.

All in all, the best setups have quite poor performance. Using the relaxed
NUN test set with unknown names removed helps in raising precision. In
setting 2, where the checker �ags whole sentences instead of exact locations
in a sentence, the results are overall better. Some setups reached a recall of
1.000, but at the same time, their precision is 0.500, which means that they
�ag every sentence in the test set as erroneous, and they do not show any
actual grammar error detection capabilities. These kinds of setups are also
the ones with the highest f-scores. The most interesting setup is the one that
reached a precision of 0.857 in NUN test set in setting 2. Even though it has
a very low recall value, 0.267, it has some resemblance of a grammar checker
that has been tuned to have a low recall but high precision value. Manual
observation of the results shows that there are no setups that reach a better
harmony of precision and recall than the ones that �ag every sentence, which
is also suggested by the fact that these setups have the highest f-scores. A
setup, that comes somewhat close, uses FTB1, WB, CMP, cuto� 1 and word-
class-tag in NUN test set in setting 1. It has a precision of 0.576, recall of
0.679 and f-score of 0.623, so it does not �ag every single sentence as an error,
it �nds a good majority of the errors and the precision is slightly higher than
the precision of the setups with a recall of 1.000.

There seems to not be any performance reports for Finnish grammar checkers,
that the error detection system of this thesis could be compared to. Nazar
and Renau (2012) have a similar approach to grammar checking for Spanish,
but they use Google Books N-grams as their reference corpus and plain text n-
grams instead of POS n-grams. They report their checker to achieve precision
of 0.618, recall of 0.547 and f-score of 0.581 in error detection. Some of the
setups in test setting 1 in my work have similar results, although Nazar
and Renau themselves admit that their results are quite poor. The test
setups in setting 2 cannot be compared to these results, because they �ag
whole sentences while the reported values are measured on localized errors.
Sjöbergh (2009) uses the Swedish internet as the reference n-gram corpus for

48

checking grammar errors in Swedish text. He reports a precision value of
0.913 on detecting errors in second language learner essays. Recall value is
not reported, but based on the amount of errors detected by other checkers
displayed in the paper, the recall value can be 0.689 at maximum, in which
case, f-score would be 0.785. None of the grammar checker setups in the
system presented in my work were able to achieve nearly as good results,
even in a relax test setting where whole sentences are �agged.

6.2 Error types

The average error type detection performances are reported for each setup
using one of the �ve POS-tags. Additionally, the grammar checker setups
that were best in �nding each error type are displayed. The performances
are measured as the proportion of errors with a given error type found by the
error detection system. The di�erent error types were described previously
in section 5.1.1. It is important to note that the grammar checking system
does not label the errors it �nds with an error type. Instead, the error type
detection here simply means that the system correctly �agged an error, and
the error has been labeled with a given error type in the test data. For
example, if a checker setup is reported to have 50% performance in �nding
�wrong case� errors, the setup correctly �agged 50% of the errors, which have
the label �wrong case� in the test data, while leaving 50% un�agged.

The error type performance results are reported only for each POS-tag but
not for other grammar checker components for two reasons. First, the dif-
ferent POS-tags containing varying linguistic information were speci�cally
constructed with the hopes that they would capture di�erent types of errors.
For example, number tags should have a good picture of how grammatical
number behaves and should be able to �nd more number related errors than
case tags, which, in turn, should be better in �nding grammatical case errors.
Secondly, there are no interesting di�erences between the other grammar
checker components. The only occurring phenomenon is that the checkers
that have a high recall, i.e. the checkers that use FTB1, WB, CMP, and
high cuto� threshold, perform better than checkers with high precision in
detecting di�erent error types. The checker setups with high recall naturally
�ag more language structures as errors and they are bound to �nd more er-
rors in general. Previously, the average results showed that the setups, that
use whole-tags have the highest recall values, which suggests that whole-tags
should perform the best in detecting di�erent error types in general, unless
having a speci�c set of linguistic information components in some other tag

49

overrides this.

6.2.1 POS-tags

The average error type detection proportions for all setups using one of the
�ve POS-tags are shown in table 22 for normal test set and in table 23
for NUN test set. Each of the �ve POS-tags contain di�erent variations of
linguistic information. Word-class-tag (wc) only has information on word
class; whole-tag (wt) has word class, number and case; number/case-tag (nc)
has number and case; number tag (nu) has number and case tag (ca) has
case. The intuition is that POS-tags, that carry a given type of linguistic
information, should be able to detect that type of errors. The clearest cases
in this regard are number-tags which should detect �wrong number� errors,
and case-tags which should detect �wrong case� errors.

wc wt nc nu ca
extra structure 10.1% 21.4% 13.0% 5.0% 6.8%
foreign word 46.1% 35.0% 39.1% 48.8% 47.6%
missing predicate 34.0% 60.3% 48.1% 23.7% 28.9%
missing structure 16.4% 31.7% 27.3% 12.7% 16.2%
unknown word 51.4% 35.9% 44.1% 53.9% 55.6%
wrong case 11.8% 25.5% 19.2% 10.9% 13.4%
wrong case and number 4.4% 19.7% 13.4% 2.2% 10.6%
wrong number 3.8% 8.9% 9.2% 4.2% 1.2%
wrong person 8.4% 15.2% 16.8% 10.5% 9.8%
wrong structure 40.1% 49.5% 48.0% 37.9% 41.5%
wrong word class 9.7% 18.4% 16.6% 11.2% 18.1%
wrong word order 10.0% 25.8% 16.7% 0.0% 11.7%

Table 22: The average error type detection proportions for each POS-tag in
normal test set

The �rst observation to be seen from table 22 is that whole-tag has the
best detection performances for most of the error types. However, whole-
tag performs the worst in �nding foreign word and unknown word errors,
whereas number-tag and case-tag, both of which are associated with high
precision and low recall values, �nd the largest proportion of errors with
these error types. Foreign word and unknown word errors are the easiest to
detect because, in both of these cases, Omor� tags a word with an �unknown�
label during error detection. POS n-grams that include �unknown� tags are

50

always �agged as errors since �unknown� tags do not appear in the reference
set n-grams. If a foreign word or an unknown word is further down a given
sentence, whole-tag is likely to falsely �ag an error before reaching the actual
error. Number-tags and case-tags, on the other hand, have low recall and
are less likely to �ag errors before the actual foreign word or unknown word
error, which are then reached and correctly �agged. These error types being
the easiest to detect is also re�ected by them being among the most detected
categories (foreign word: 48.8%, and unknown word: 55.6%).

Number-tag and case-tag perform poorly in detecting grammatical case,
number and person related errors when compared to whole-tag and number/case-
tag. Number-tag and case-tag have low recall while whole-tag and number/case-
tag have a high recall in the average measurements, so it seems that just
�agging more errors is more advantageous than having the speci�c linguis-
tic information to detect a certain error type. However, case-tag is better
than number-tag in �nding grammatical case errors (13.4% vs 10.9%) and
number-tag is better than case-tag in �nding number errors (4.2% vs 1.2%)
and person errors (10.5% vs 9.8%). These values are quite low, but they give
some indication that proper linguistic information could matter in �nding
correct error types. Comparing number-tag and case-tag against each other
in this regard is meaningful as they have been previously shown to have sim-
ilar precision and recall values while comparing them to whole-tag is slightly
dubious because it has higher recall and lower precision.

wc wt nc nu ca
extra structure 9.2% 22.6% 14.8% 6.5% 9.9%
foreign word 46.8% 33.8% 39.9% 50.3% 49.4%
missing predicate 26.6% 61.1% 46.3% 14.6% 21.8%
missing structure 13.2% 33.0% 26.1% 7.6% 13.5%
unknown word 49.6% 36.9% 43.9% 51.3% 54.2%
wrong case 8.9% 26.8% 18.9% 6.5% 9.9%
wrong case and number 4.1% 20.3% 15.0% 3.1% 11.9%
wrong number 4.7% 11.9% 9.4% 3.6% 1.2%
wrong person 7.9% 15.9% 18.4% 13.0% 10.5%
wrong structure 32.7% 51.6% 45.1% 26.3% 32.1%
wrong word class 9.7% 18.4% 16.2% 11.6% 18.1%
wrong word order 10.0% 25.0% 15.8% 0.0% 11.7%

Table 23: The average error type detection proportions for each POS-tag in
NUN test set

51

In NUN test set, where unknown foreign names are removed, the results
are very similar to the results in normal test set as seen in table 23. The
proportions of found errors are slightly higher for most of the error types, but
the relationships between each POS-tag stay the same. As shown previously,
using di�erent POS-tags in normal test set and in NUN test set yield similar
precision and recall values, but with NUN test set having somewhat higher
precision. This explains why error type detection is slightly, but only slightly,
better in NUN test set than in normal test set for most of the error types.
Removing unknown foreign names from the test set does not dramatically
improve detecting foreign word or unknown word errors as one's �rst intuition
might be. Instead, the purpose of the NUN test set is to prevent the checker
from �agging errors where they should not be �agged and allowing the error
detection algorithm to move on in the sentence to �nd other errors.

6.2.2 Best setups

In the following, the best grammar checker setups in �nding each of the error
types are reported. Based on previous observations, most of these setups
should utilize components that achieve high recall values, i.e. FTB1, WoB,
CMP, high cuto� values and whole-tag.

Value Setup
extra structure 38.2% FTB1 WoB CAP cuto�-30 wc
foreign word 85.4% FTB3 WoB CMP cuto�-30 nu
missing predicate 72.2% FTB1 WB CMP cuto�-30 wc
missing structure 45.2% FTB1 WoB CMP cuto�-5 nc
unknown word 96.5% FTB3 WoB CMP cuto�-5 wc
wrong case 33.5% FTB1 WoB CMP cuto�-0 wt
wrong case and number 50.0% FTB1 WoB CMP cuto�-5 nc
wrong number 43.8% FTB1 WoB CMP cuto�-0 nc
wrong person 35.7% FTB1 WoB CMP cuto�-0 nc
wrong structure 63.3% FTB1 WB CMP cuto�-0 nc
wrong word class 37.5% FTB3 WoB CMP cuto�-0 wt
wrong word order 66.7% FTB1 WoB CMP cuto�-0 ca

Table 24: The best error type detection setups in normal test set

Table 24 shows the best setups in detecting each error type in normal test
set. Most of the best setups do use FTB1, WoB, and CMP as predicted,

52

but cuto� 30 is used only for �nding foreign words, missing predicates and
missing structures and the rest of the best setups use either cuto� threshold 0
or 5. Whole-tag and number/case-tag, which are associated with high recall
values, are used in �nding seven of the twelve error types. The best setup
in �nding wrong case errors (34.6%) uses wt-tags, and the best setups in
�nding wrong number (43.8%) and wrong person (42.9%) use number/case-
tag. This follows the trend shown in the average results, where tags, that
achieve high recall, also �nd the most errors of these types.

Wrong case is the most di�cult error type to �nd with 34.6%. This could
be due to the fact that Finnish has intricate morphology and extensive gen-
erative properties as explained by Karlsson (2008). In some cases, a certain
sequence of case ending is perfectly grammatical, while sometimes, the same
sequence can be incorrect depending on the choice of words, for example in
idiomatic expressions. Other di�cult to �nd error types are wrong person
with 35.7% and wrong word class with 37.5%. Most of the wrong person
errors in the test data are cases, where a verb is in a certain form of singular
while it should be in the corresponding plural, or vice versa, based on the
subject of the sentence. Sometimes the subject is a list of actors, in which
case it is easy to see why the error would not be detected. For example, the
sentence �John, Tim and Matt runs� is ungrammatical, but if the checker
only sees the last two words, �Matt runs�, the error would not be �agged.
The grammar checker system does utilize n-grams up to length �ve, but even
then the ability to detect this kind of errors depends on the existence of
appropriate examples in the training data. The di�culty of �nding wrong
word class errors can be seen for example in cases, where the word-class is
noun while it should be adjective, which is hard for the grammar checker to
detect because they behave similarly linguistically.

The easiest error types for the best grammar checker setups to detect are
unknown word with 96.5% and foreign word with 85.4%. This was expected
and the reason was described in the previous section 6.2.1. The next easiest
to �nd error is missing predicate with 72.2%. The best setup in this regard
uses word-class-tag, which is not associated with particularly high recall and
it only contains information on the word class. This indicates that the system
could in some degree be able to detect the absence of a verb in a sentence
and �ag it as an error. The good performance is also aided by missing
predicate errors spanning the section of the sentence where the predicate
could occur, which is usually multiple words. The error is considered to be
correctly detected if the error location received from the grammar checker
overlaps with the actual location of the error even partially. The next error
types, where the best setups fare well, are wrong word order with 66.7%

53

and wrong structure with 63.3%, both of which produce obscure POS n-
gram combinations which have a high likelihood of not being found in the
reference set of n-grams. However, there are only three sentences in the test
data, where the error type is wrong word order, and the checker could have
accidentally found the two of the three errors.

The results of the best setups in detecting each error type in NUN test set
are shown in table 25. There are no major di�erences between the results in
normal test set and NUN test set. The performances are slightly better for
NUN test set and the best setups for each error type use almost exactly the
same components as the best setups in normal test set. The better perfor-
mance in NUN test set can, again, be explained by the grammar detection
system being able to avoid falsely detecting unknown word errors in the be-
ginning portions of the test sentences, and being able to move on to reach
the actual errors.

Value Setup
extra structure 35.3% FTB1 WoB CAP cuto�-30 wc
foreign word 87.5% FTB3 WoB CMP cuto�-30 nu
missing predicate 74.4% FTB1 WB CMP cuto�-30 wc
missing structure 45.2% FTB1 WoB CMP cuto�-30 nc
unknown word 96.5% FTB3 WoB CMP cuto�-5 wc
wrong case 34.6% FTB1 WoB CMP cuto�-0 wt
wrong case and number 50.0% FTB1 WB CMP cuto�-0 ca
wrong number 43.8% FTB1 WoB CMP cuto�-0 nc
wrong person 42.9% FTB1 WoB CMP cuto�-0 nc
wrong structure 64.9% FTB1 WB CMP cuto�-0 nc
wrong word class 37.5% FTB3 WoB CMP cuto�-0 wt
wrong word order 66.7% FTB1 WoB CMP cuto�-0 ca

Table 25: The best error type detection setups in NUN test set

All in all, the checker performs well only in detecting errors caused by foreign
words and unknown words. This, however, is not a terribly impressive feat
as similar results could be easily achieved using only Omor�, or a robust
dictionary, to see whether a token is an actual Finnish word or not. Detect-
ing missing predicates works relatively well comparing to other error types,
which gives some indication of the system being able to detect grammar er-
rors. Using speci�c linguistic information in POS-tags to detect speci�c types
of errors did not have the intended e�ect. Case-tag is fairly poor in detecting
wrong case errors, and number-tag is similarly bad in �nding wrong num-

54

ber and wrong person errors, although case-tag is better than number-tag
in detecting wrong case errors and vice versa. Further, it is important to
remember that the error type detected by the system is to some degree dic-
tated by the error's position in a sentence. Especially for very strict setups, if
the error is located towards the end of a sentence, it is likely that the checker
falsely �ags some other error before reaching the actual error. Another fac-
tor is that some errors span long word sequences, while others are located
in a single word. For example, missing predicate errors cover the section of
the phrase where the predicate is expected to be, and the checker has a good
chance of �agging some part of the error accidentally. Conversely, wrong case
and wrong number errors are located in single words making them di�cult
to detect for the grammar checker by chance.

7 Conclusions

This work evaluates the possibility of using a POS n-gram based approach
in detecting grammar errors in Finnish text. Precision, recall and f-score
values, as well as the types of errors that the presented method is able to
detect, are examined. In this method, POS n-grams are gathered from an
annotated corpus to a set, which is used to check grammar by seeing whether
an input sentence's POS n-grams exist in that set. This method is chosen
for two main reasons: �rst, the method is simple in principle and easy to
implement, and second, it is able to capture a larger variety of errors than
a rule-based checker without having to manually write extensive amounts of
grammar rules.

The main �nding is that the proposed implementation of a POS n-gram
based grammar error detection system does not perform very well in detecting
errors in Finnish text. In a test setting, where the checker has to �nd the
location of an error within a sentence, the tested grammar checker setups
have low precision and recall values. In a relaxed test setting, where the
system �ags whole sentences as erroneous, some grammar checker setups are
able to achieve either high precision or high recall. Each setup's performance
is largely dictated on how restrictive the setup is. If the checker is very strict
and �ags every single test sentence as an erroneous one, a recall value of
1.000 is easily achieved, but precision will stay low. On the other hand, if
the checker �ags very few errors in general, the recall is kept down, but it
is able to reach a higher precision value. Additionally, setups using di�erent
POS-tags are not very e�ective in �nding speci�c error types. Whole-tags,
which are the most strict tags as they contain the most linguistic information,

55

perform the best in �nding almost all of the error types. Further, the error
type detection performance values are low for most of the categories. The
presented approach of using POS n-grams does not work very well for Finnish
text, which can be explained by the rich morphology and extensive generative
features.

In addition to the negative main results, there are two positive �ndings to
be noted. First, the grammar checker setup, that uses FTB3, WoB, CAP,
cuto� 0 and number-tag, is able to achieve a precision of 0.857, although
in a test setting, where foreign proper names are removed and the checker
only �ags whole sentences. Even though the recall value of the setup is only
0.267, reaching this high precision requires the system to have some kind of
knowledge of what a grammar error is, unlike a system that reaches perfect
recall by �agging everything as an error. Second, the fact that case-tags
are better at �nding case errors than number-tags, and that number-tags
are better at �nding number errors than case-tags, indicates that having
certain linguistic information in the POS-tags can help in �nding speci�c
types of errors. Whole-tags and number/case-tags have better success in
�nding both number and case errors, but they �ag more errors in general
which helps them in �nding all error types. Number-tags and case-tags have
similar recall scores compared to each other, although much lower than what
whole-tags or number/case-tags have, which justi�es the comparison between
number-tags and case-tags.

There are ways to improve the error detection system presented in this work.
A feature, that would be bene�cial to have in the pipeline, is named entity
recognition (NER). This would help in dealing with foreign proper names
that are abundant in the test data and that are not recognized by Omor�.
Although test setting 2 simulates including NER by having foreign proper
names replaced by Finnish ones, an actual NER system is naturally required
in a real-world grammar checking scenario in order to achieve the same ef-
fect. Work on NER systems, that could potentially work for Finnish, has
been done among others by Agerri and Rigau (2016), who introduce a ro-
bust multilingual NER system, and by Kettunen et al. (2016), who search for
named entities in Finnish historical newspapers. Including a disambiguation
component to the grammar error detection system would also help with the
grammar checking quality. Currently, the system has two very extreme ways
of handling ambiguous sentence structures: one, where only one interpreta-
tion based on simple statistics is checked, and another, where all combina-
tions of all possible POS-tags of a sentence are checked. Instead of using one
of these approaches, a disambiguator could list a certain number of the most
probable interpretations, each of which would then be checked. This kind of

56

grammar checker would not be nearly as strict as one that checks only a single
interpretation based on simple statistics. However, it would be much more
restrictive than a system that checks all possible POS-tag combinations, a
major portion of which are potentially ungrammatical or at least very rare.
Early work on disambiguation for Finnish has been done by Koskenniemi
(1990) and more recently by Robertson (2019). Omor� also includes a dis-
ambiguation feature (Pirinen, 2015). Another obvious way to improve the
system is to use a larger morphologically annotated training corpus. One
option would be the Finnish Internet parsebank corpus by Kanerva et al.
(2014) containing 1.5 billion tokens in 116 million sentences, which dwarfs
FTB3's 76 million tokens in 4 million sentences. Dealing with data of this size
naturally brings computational performance issues, and the reference n-gram
lookup would have to be conducted in a more clever way than just checking
whether an n-gram is included in the whole set of correct n-grams. Instead
of having a huge corpus to cover everything, another approach would be to
train a checker for a speci�c text domain with a certain type of training data.
However, this approach would require multiple di�erent morphologically an-
notated corpora, which are most likely not easily available. This issue can
be circumvented by including a POS-tagger in the n-gram extraction phase.

The state of the art approach to grammar checking is to use neural networks.
In most cases, the latest systems do not only detect grammar errors but cor-
rect the errors as well. The grammar error correction (GEC) task can be
treated as a machine translation task, where ungrammatical sentences are
the source language and correct sentences are the target language. An exam-
ple of such work has been done by Chollampatt and Ng (2018), who apply
a convolutional encoder-decoder architecture to grammar error correction.
However, neural network based GEC requires a large parallel corpus of un-
grammatical sentences and their correct counterparts for training. The issue
can be mitigated by producing noisy data from a clean monolingual corpus,
as described by Xie et al. (2018), who introduce beam search based data
noising methods. A GEC system for Finnish would most likely outperform
the quite simple error detection approach used in the system presented in
this work, while simultaneously producing corrections of the found errors.

The work in this thesis introduces a simple and easy to implement statis-
tical method for grammar error detection for Finnish. Although there are
some signs of error detection capabilities in relaxed test settings, the sys-
tem achieves quite poor results overall. The proposed approach could be
improved and made more robust, but a more e�ective way of trying to reach
better performance would be to adopt the state of the art methods of using
neural networks.

57

References

Rodrigo Agerri and German Rigau. Robust multilingual named entity recog-
nition with shallow semi-supervised features. Arti�cial Intelligence, 238:
63�82, 2016.

Jahangir Md. Alam, Naushad UzZaman, and Mumit Khan. N-gram based
Statistical Grammar Checker for Bangla and English. Center for Research
On Bangla Language Processing, 2007.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro
Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally
Normalized Transition-Based Neural Networks. CoRR, abs/1603.06042,
2016. URL http://arxiv.org/abs/1603.06042.

Eric Steven Atwell. How to Detect Grammatical Errors in a Text Without
Parsing It. In Proceedings of the Third Conference on European Chapter
of the Association for Computational Linguistics, EACL '87, pages 38�45,
Stroudsburg, PA, USA, 1987. Association for Computational Linguistics.
doi: 10.3115/976858.976865. URL https://doi.org/10.3115/976858.

976865.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin.
A Neural Probabilistic Language Model. Journal of Machine Learning
Research, 3:1137�1155, 2003.

Johnny Bigert and Ola Knutsson. Robust Error Detection: A Hybrid Ap-
proach Combining Unsupervised Error Detection and Linguistic Knowl-
edge. In Proceedings of Romand 2002, Robust Methods in Analysis of
Natural language Data, pages 10�19, 2002.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra,
and Jenifer C. Lai. Class-based N-gram Models of Natural Language.
Computational Linguistics, 18(4):467�479, December 1992. ISSN 0891-
2017. URL http://dl.acm.org/citation.cfm?id=176313.176316.

Michelle Cavaleri and Saib Dianati. You want me to check your grammar
again? The usefulness of an online grammar checker as perceived by stu-
dents. Journal of Academic Language and Learning, 10(1), 2016. ISSN
1835-5196. URL http://www.journal.aall.org.au/index.php/jall/

article/view/393/246.

David Chiang. A Hierarchical Phrase-based Model for Statistical Machine
Translation. In Proceedings of the 43rd Annual Meeting on Association

58

http://arxiv.org/abs/1603.06042
https://doi.org/10.3115/976858.976865
https://doi.org/10.3115/976858.976865
http://dl.acm.org/citation.cfm?id=176313.176316
http://www.journal.aall.org.au/index.php/jall/article/view/393/246
http://www.journal.aall.org.au/index.php/jall/article/view/393/246

for Computational Linguistics, ACL '05, pages 263�270, Stroudsburg, PA,
USA, 2005. Association for Computational Linguistics. doi: 10.3115/
1219840.1219873. URL https://doi.org/10.3115/1219840.1219873.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the Properties of Neural Machine Translation: Encoder-
Decoder Approaches. CoRR, abs/1409.1259, 2014. URL http://arxiv.

org/abs/1409.1259.

Martin Chodorow and Claudia Leacock. An Unsupervised Method for De-
tecting Grammatical Errors. In 1st Annual Meeting of the North American
Chapter of the Association for Computational Linguistics, 2000.

Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-
decoder neural network for grammatical error correction. In Thirty-Second
AAAI Conference on Arti�cial Intelligence, 2018.

Michael Collins, Brian Roark, and Murat Saraclar. Discriminative Syn-
tactic Language Modeling for Speech Recognition. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics,
ACL '05, pages 507�514, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. doi: 10.3115/1219840.1219903. URL https:

//doi.org/10.3115/1219840.1219903.

Daiga Deksne and Raivis Skadin
,
². CFG based grammar checker for Latvian.

In NODALIDA 2011 Conference Proceedings, pages 275�278, 2011.

Rickard Domeij, Ola Knutsson, Johan Carlberger, and Viggo Kann.
"granska�an e�cient hybrid system for swedish grammar checking". In
Proceedings of the 12th Nordic Conference of Computational Linguistics
(NODALIDA 1999), pages 49�56, Trondheim, Norway, December 2000.
Department of Linguistics, Norwegian University of Science and Technol-
ogy, Norway. URL https://www.aclweb.org/anthology/W99-1005.

Dan Garrette and Jason Baldridge. Learning a part-of-speech tagger from
two hours of annotation. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 138�147, 2013.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6645�6649, May 2013. doi:
10.1109/ICASSP.2013.6638947.

59

https://doi.org/10.3115/1219840.1219873
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.3115/1219840.1219903
https://doi.org/10.3115/1219840.1219903
https://www.aclweb.org/anthology/W99-1005

Alex Graves and Navdeep Jaitly. Towards End-to-End Speech Recognition
with Recurrent Neural Networks. In Proceedings of the 31st International
Conference on Machine Learning, 2014.

Kristin Hagen, Janne Bondi Johannessen, and Pia Lane. Some problems
related to the development of a grammar checker. In Proceedings of the
13th Nordic Conference of Computational Linguistics (NODALIDA 2001),
2001.

Auli Hakulinen, Maria Vilkuna, Riitta Korhonen, Vesa Koivisto, Tarja Ri-
itta Heinonen, and Irja Alho. Ison suomen kieliopin verkkoversio (VISK).
Suomalaisen Kirjallisuuden Seura, Helsinki, 2004. URL http://scripta.

kotus.fi/visk/. Accessed: 2019-25-06.

Peter A Heeman. POS tags and decision trees for language modeling. In
1999 Joint SIGDAT Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora, 1999.

G. E. Heidorn, K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow.
The EPISTLE Text-critiquing System. IBM Systems Journal, 21(3):305�
326, September 1982. ISSN 0018-8670. doi: 10.1147/sj.213.0305. URL
http://dx.doi.org/10.1147/sj.213.0305.

Elli Heikkilä and Selene Peltonen. Immigrants and integration in Finland.
Survey: About the Situation of Immigrants and Refugees in Six Baltic
Sea States. Developed within the framework of the European Community
Action, SOCRATES, 2002.

Nal Kalchbrenner and Phil Blunsom. Recurrent Continuous Translation
Models. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1700�1709, 2013.

Jenna Kanerva, Juhani Luotolahti, Veronika Laippala, and Filip Ginter. Syn-
tactic N-gram Collection from a Large-Scale Corpus of Internet Finnish.
In Proceedings of the Sixth International Conference Baltic HLT, 2014.

Fred Karlsson. Finnish: An Essential Grammar . Routledge, London, 2008.

Slava M. Katz. Estimation of Probabilities from Sparse Data for the Lan-
guage Model Component of a Speech Recognizer. IEEE Transactions on
Acoustics, Speech, and Signal Processing, ASSP-53:400�401, 3 1987.

Kimmo Kettunen, Eetu Mäkelä, Teemu Ruokolainen, Juha Kuokkala, and
Laura Löfberg. Old Content and Modern Tools - Searching Named Entities

60

http://scripta.kotus.fi/visk/
http://scripta.kotus.fi/visk/
http://dx.doi.org/10.1147/sj.213.0305

in a Finnish OCRed Historical Newspaper Collection 1771-1910. CoRR,
abs/1611.02839, 2016. URL http://arxiv.org/abs/1611.02839.

Philipp Koehn. Statistical Machine Translation, 2005. URL www.statmt.

org. Accessed: 2018-30-3.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-based
Translation. In Proceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics on Human
Language Technology - Volume 1, NAACL '03, pages 48�54, Stroudsburg,
PA, USA, 2003. Association for Computational Linguistics. doi: 10.3115/
1073445.1073462. URL https://doi.org/10.3115/1073445.1073462.

Kimmo Koskenniemi. Finite-state Parsing and Disambiguation. In Pro-
ceedings of the 13th Conference on Computational Linguistics - Volume
2, COLING '90, pages 229�232, Stroudsburg, PA, USA, 1990. Associa-
tion for Computational Linguistics. doi: 10.3115/997939.997979. URL
https://doi.org/10.3115/997939.997979.

Roland Kuhn and Renato De Mori. A cache-based natural language model for
speech recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 570�583, 7 1990.

Nay Yee Lin, Khin Mar Soe, and Ni Lar Thein. Developing a Chunk-based
Grammar Checker for Translated English Sentences. In Proceedings of the
25th Paci�c Asia Conference on Language, Information and Computation,
pages 245�254, 2011.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi
Wang. Representation Learning Using Multi-Task Deep Neural Networks
for Semantic Classi�cation and Information Retrieval. In Proceedings of
the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. NAACL,
May 2015. URL https://www.microsoft.com/en-us/research/

publication/representation-learning-using-multi-task-deep-

neural-networks-for-semantic-classification-and-information-

retrieval/.

Zhuo-Ran Liu and Yang Liu. "exploiting unlabeled data for neural gram-
matical error detection". Journal of Computer Science and Technology, 32
(4):758�767, Jul 2017. ISSN 1860-4749. doi: 10.1007/s11390-017-1757-4.
URL https://doi.org/10.1007/s11390-017-1757-4.

61

http://arxiv.org/abs/1611.02839
www.statmt.org
www.statmt.org
https://doi.org/10.3115/1073445.1073462
https://doi.org/10.3115/997939.997979
https://www.microsoft.com/en-us/research/publication/representation-learning-using-multi-task-deep-neural-networks-for-semantic-classification-and-information-retrieval/
https://www.microsoft.com/en-us/research/publication/representation-learning-using-multi-task-deep-neural-networks-for-semantic-classification-and-information-retrieval/
https://www.microsoft.com/en-us/research/publication/representation-learning-using-multi-task-deep-neural-networks-for-semantic-classification-and-information-retrieval/
https://www.microsoft.com/en-us/research/publication/representation-learning-using-multi-task-deep-neural-networks-for-semantic-classification-and-information-retrieval/
https://doi.org/10.1007/s11390-017-1757-4

Nina H Macdonald. Human factors and behavioral science: The UNIXTM

Writer's Workbench software: Rationale and design. Bell System Technical
Journal, 62(6):1891�1908, 1983.

Christopher D Manning. Part-of-speech tagging from 97% to 100%: is it
time for some linguistics? In International conference on intelligent text
processing and computational linguistics, pages 171�189. Springer, 2011.

James H Martin and Daniel Jurafsky. Speech and language processing: An
introduction to natural language processing, computational linguistics, and
speech recognition. Pearson/Prentice Hall Upper Saddle River, 2009.

Bernard Merialdo. Tagging English Text with a Probabilistic Model. Com-
putational Linguistics, 20(2):155�171, June 1994. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=972525.972526.

Anneli Miettinen and Tiina Helamaa. Maahanmuuttajien
määrä, 2019. URL http://www.vaestoliitto.fi/tieto_ja_

tutkimus/vaestontutkimuslaitos/tilastoja/maahanmuuttajat/

maahanmuuttajien-maara/. Accessed: 2019-18-04.

David R. H. Miller, Tim Leek, and Richard M. Schwartz. A Hidden Markov
Model Information Retrieval System. In Proceedings of the 22nd ACM
Conference on Research and Development in Information Retrieval (SI-
GIR'99), pages 214�221, 1999.

Teruko Mitamura and Eric Nyberg. Controlled English for Knowledge-Based
MT: Experience with the KANT System. In Proceedings of TMI-95, 11
1995.

Rogelio Nazar and Irene Renau. Google Books N-gram Corpus used as a
grammar checker. In Proceedings of the EACL 2012 Workshop on Compu-
tational Linguistics and Writing, pages 27�34, 2012.

Jan Niehues and Muntsin Kolss. A POS-based Model for Long-range
Reorderings in SMT. In Proceedings of the Fourth Workshop on Sta-
tistical Machine Translation, StatMT '09, pages 206�214, Stroudsburg,
PA, USA, 2009. Association for Computational Linguistics. URL http:

//dl.acm.org/citation.cfm?id=1626431.1626472.

T. R. Niesler and P. C. Woodland. A variable-length category-based n-gram
language model. In 1996 IEEE International Conference on Acoustics,
Speech, and Signal Processing Conference Proceedings, volume 1, pages
164�167 vol. 1, May 1996. doi: 10.1109/ICASSP.1996.540316.

62

http://dl.acm.org/citation.cfm?id=972525.972526
http://www.vaestoliitto.fi/tieto_ja_tutkimus/vaestontutkimuslaitos/tilastoja/maahanmuuttajat/maahanmuuttajien-maara/
http://www.vaestoliitto.fi/tieto_ja_tutkimus/vaestontutkimuslaitos/tilastoja/maahanmuuttajat/maahanmuuttajien-maara/
http://www.vaestoliitto.fi/tieto_ja_tutkimus/vaestontutkimuslaitos/tilastoja/maahanmuuttajat/maahanmuuttajien-maara/
http://dl.acm.org/citation.cfm?id=1626431.1626472
http://dl.acm.org/citation.cfm?id=1626431.1626472

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings
of the 40th annual meeting on association for computational linguistics,
pages 311�318. Association for Computational Linguistics, 2002.

Tommi A Pirinen. Omor��free and open source morphological lexical
database for �nnish. In Proceedings of the 20th Nordic Conference of Com-
putational Linguistics (NODALIDA 2015), pages 313�315, 2015.

F. Pla, A. Molina, E. Sanchis, E. Segarra, and F. García. "language under-
standing using two-level stochastic models with pos and semantic units". In
Václav Matou²ek, Pavel Mautner, Roman Mou£ek, and Karel Tau²er, ed-
itors, Text, Speech and Dialogue, pages 403�409, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-44805-1.

Jay M. Ponte and W. Bruce Croft. A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st ACM Conference on Research
and Development in Information Retrieval (SIGIR'98), 1998.

Stephen D. Richardson and Lisa C. Braden-Harder. The Experience of De-
veloping a Large-scale Natural Language Text Processing System: CRI-
TIQUE. In Proceedings of the Second Conference on Applied Natural Lan-
guage Processing, ANLC '88, pages 195�202, Stroudsburg, PA, USA, 1988.
Association for Computational Linguistics. doi: 10.3115/974235.974271.
URL https://doi.org/10.3115/974235.974271.

Frankie Robertson. A Contrastive Evaluation of Word Sense Disambiguation
Systems for Finnish. In Proceedings of the Fifth International Workshop
on Computational Linguistics for Uralic Languages, pages 42�54, 2019.

Kay Rottmann and Stephan Vogel. Word reordering in statistical machine
translation with a POS-based distortion model. In Proceedings of TMI,
pages 171�180. Citeseer, 2007.

Lawrence K. Saul and Fernando Pereira. Aggregate and mixed-order Markov
models for statistical language processing. CoRR, cmp-lg/9706007, 1997.
URL http://arxiv.org/abs/cmp-lg/9706007.

Helmut Schmid. Part-of-speech Tagging with Neural Networks. In Pro-
ceedings of the 15th Conference on Computational Linguistics - Volume
1, COLING '94, pages 172�176, Stroudsburg, PA, USA, 1994. Associa-
tion for Computational Linguistics. doi: 10.3115/991886.991915. URL
https://doi.org/10.3115/991886.991915.

63

https://doi.org/10.3115/974235.974271
http://arxiv.org/abs/cmp-lg/9706007
https://doi.org/10.3115/991886.991915

Bo Shu and Subhash Kak. A neural network-based intelligent metasearch
engine. Information Sciences, 120:1�11, 1999.

William D Colen M Silva and Marcelo Finger. Improving CoGrOO: the
Brazilian Portuguese Grammar Checker. In Proceedings of the 9th Brazil-
ian Symposium in Information and Human Language Technology, 2013.

S. P. Singh, A. Kumar, L. Singh, M. Bhargava, K. Goyal, and B. Sharma.
Frequency based spell checking and rule based grammar checking. In
2016 International Conference on Electrical, Electronics, and Optimiza-
tion Techniques (ICEEOT), pages 4435�4439, March 2016. doi: 10.1109/
ICEEOT.2016.7755557.

Jonas Sjöbergh. Chunking: an unsupervised method to �nd errors in text. In
Proceedings of the 15th Nordic Conference of Computational Linguistics,
NODALIDA 2005, 2005.

Jonas Sjöbergh. The Internet as a Normative Corpus: Grammar Checking
with a Search Engine. Techical Report, Dept. of Theoretical Computer
Science, Kungliga Tekniska Högskolan, 2009.

Madhvi Soni and Jitendra Singh Thakur. A Systematic Review of Automated
Grammar Checking in English Language. CoRR, abs/1804.00540, 2018.
URL http://arxiv.org/abs/1804.00540.

Sara Stymne and Lars Ahrenberg. Using a Grammar Checker for Evalua-
tion and Postprocessing of Statistical Machine Translation. In Nicoletta
Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias,
editors, Proceedings of the Seventh International Conference on Language
Resources and Evaluation (LREC'10), Valletta, Malta, may 2010. Euro-
pean Language Resources Association (ELRA). ISBN 2-9517408-6-7.

Anna Sågvall Hein. Language Control and Machine Translation. In Proceed-
ings of 7th International Conference on Theoretical and Methodological
Issues in Machine Translation, 10 1997.

Cornelia Tschichold. Evaluating second language grammar checkers. Revue
Tranel (Travaux neuchâtelois de linguistique), 21:195�204, 1994.

Cornelia Tschichold, Franck Bodmer, Etienne Cornu, Francois Grosjean,
Lysiane Grosjean, Natalie Kubler, Nicolas Lewy, and Corinne Tschumi.
Developing a new grammar checker for English as a second language. In

64

http://arxiv.org/abs/1804.00540

From Research to Commercial Applications: Making NLP Work in Prac-
tice, 1997.

Atro Voutilainen, Tanja Purtonen, and Kristiina Muhonen. FinnTreeBank2
Manual. University of Helsinki, Department of Modern Languages, 2012.

RalphWeischedel, Richard Schwartz, Je� Palmucci, Marie Meteer, and Lance
Ramshaw. Coping with Ambiguity and Unknown Words Through Prob-
abilistic Models. Computational Linguistics, 19(2):361�382, June 1993.
ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.

972477.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y.
Ng. Neural Language Correction with Character-Based Attention. CoRR,
abs/1603.09727, 2016. URL http://arxiv.org/abs/1603.09727.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Ng, and Dan Juraf-
sky. Noising and denoising natural language: Diverse backtranslation for
grammar correction. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pages 619�628, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics.
doi: 10.18653/v1/N18-1057. URL https://www.aclweb.org/anthology/

N18-1057.

65

http://dl.acm.org/citation.cfm?id=972470.972477
http://dl.acm.org/citation.cfm?id=972470.972477
http://arxiv.org/abs/1603.09727
https://www.aclweb.org/anthology/N18-1057
https://www.aclweb.org/anthology/N18-1057

	Introduction
	Need for grammar checkers
	Main approaches to grammar checking
	My proposed work

	Theory
	History
	Language models
	Part of speech

	Data
	FinnTreeBank
	Tag types
	N-gram extraction
	Statistics

	Method
	Morphological analysis
	Sentence interpretation selection
	Check the most probable interpretation
	Check all possible interpretations

	Grammatical error detection

	Evaluation
	Test data
	Error types

	Test settings

	Results and analysis
	Precision, recall and f-score
	FTB1 vs FTB3
	WB vs WoB
	CMP vs CAP
	Cutoffs
	POS-tags
	Best setups

	Error types
	POS-tags
	Best setups

	Conclusions
	Introduction
	Need for grammar checkers
	Main approaches to grammar checking
	My proposed work

	Theory
	History
	Language models
	Part of speech

	Data
	FinnTreeBank
	Tag types
	N-gram extraction
	Statistics

	Method
	Morphological analysis
	Sentence interpretation selection
	Check the most probable interpretation
	Check all possible interpretations

	Grammatical error detection

	Evaluation
	Test data
	Error types

	Test settings

	Results and analysis
	Precision, recall and f-score
	FTB1 vs FTB3
	WB vs WoB
	CMP vs CAP
	Cutoffs
	POS-tags
	Best setups

	Error types
	POS-tags
	Best setups

	Conclusions

