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Abstract. We study how artistically creative agents may learn to select
favorable collaboration partners. We consider a society of creative agents
with varying skills and aesthetic preferences able to interact with each
other by exchanging artifacts or through collaboration. The agents ex-
hibit interaction awareness by modeling their peers and make decisions
about collaboration based on the learned peer models. To test the peer
models, we devise an experimental collaboration process for evolutionary
art, where two agents create an artifact by evolving the same artifact set
in turns. In an empirical evaluation, we focus on how effective peer mod-
els are in selecting collaboration partners and compare the results to a
baseline where agents select collaboration partners randomly. We observe
that peer models guide the agents to more beneficial collaborations.

Keywords: computational social creativity, evolutionary art, collabo-
ration, learning from experience

1 Introduction

Finding good collaboration partners within a society is a multifaceted problem
for creative agents. Artistic skills and aesthetic preferences over artifacts can
be diverse across the agents, but they have a direct effect on the collaboration.
We propose different peer modeling schemes to select collaboration partners for
image production. With diverse agent societies we empirically determine how
effective learned peer models are using an experimental collaboration process.
The experiments show that peer modeling improves the collaboration outcomes.

This work draws from three fields. At large, it is situated in the context of
computational social creativity (see, e.g. Saunders and Bown [1]); we consider
a society of creative agents interacting with each other and focus on emergent
properties arising from interactions. For creativity, our agents use techniques
from the field of evolutionary art [2–4] to generate images, and their collaboration
also takes advantage of properties of evolutionary methods. Lastly, we also aim to
contribute to self-adaptivity [5] of agents, in particular, adaptivity of interaction
with others: our agents utilize machine learning to gain interaction awareness,
i.e. a capability to reflect on and control one’s interaction [6].

In (computational) creativity, collaboration is seen as invaluable social be-
havior as it can lead to artifacts which might not be created by any single agent



alone [7–9]. Creative artifacts can be evaluated by different characteristics, e.g.
value, novelty [10] and intentionality [11]. Our individual agents evaluate ar-
tifacts using computational aesthetics for value and use a memory model to
compute their novelty. Our main contributions involve how an agent can learn
to be intentional in its collaboration partner selection.

We have chosen evolutionary art as an example domain as it has been ex-
tensively studied before, and both skill modeling (using varying primitive sets)
and aesthetic preferences (using computational aesthetic measures) are readily
available. We do not claim that our single agent evolutionary art configuration
is novel, but it serves as a basis for our collaboration experiments.

Although an agent has to model its peers’ “minds” for it to distinguish favor-
able collaboration partners [12], there is a prominent lack of research directed
towards collaboration partner selection in creative societies. Surprisingly, given
how pivotal collaboration is in creativity, we are not aware of any previously
formulated collaboration process models for independent agents creating evolu-
tionary art with genetic programming.

In our experiments, we focus on a society of creative agents able to interact
with each other by exchanging evaluations of created artifacts and through col-
laboration. Our goal is to add to the understanding of how peer models are able
to capture inter-agent differences, i.e. aesthetic preferences and skills, and how
different ways of learning peer models deviate from each other. For example,
how does an altruistic approach, where an agent models who likes the artifacts it
creates, differ from selfish approaches, where an agent models either the quality
of collaboration with its peers or appreciation it has for its peers’ artifacts.

The rest of the paper is organized as follows. After a brief overview of related
work, and an overview of our agent society as a whole and individual agent
behavior, we move to our contributions. We devise a collaboration process for
agents creating evolutionary art. Further, we describe several possible schemes
for peer model learning. We then give an experimental setup designed to evaluate
both the collaboration process and the validity of the peer models learned with
each scheme. Our main contributions are in Sect. 7, where we report our findings
from our experiments. We end the paper with discussion and conclusions.

2 Related Work

We briefly cover related work on the fields of computational creativity and self-
adaptivity, and evolutionary computation and art.

Computational creativity and self-adaptivity Computational social creativity [1]
studies creative agents interacting with each other and is influenced by the sys-
tems view of creativity [13]. The collaboration process we propose is a form of
alternating co-creation [14], and our agents are related to curious design agents
[15] in how they use memory to compute novelty of observed artifacts.

Musical collaboration of computational agents has been studied in various
contexts, such as with musebots [16] and in memetic melody generation and



evolution [17]. In storytelling, Pérez y Pérez et al. [9] have studied how creative
systems with different knowledge bases may collaborate on story generation pro-
ducing stories which combine the agents’ knowledges.

Our agents model their interactions with their peers and use the learned
models to guide their actions. Lewis et al. [18] call this type of self-adaptive
behavior interaction awareness. In the context of computational creativity, self-
adaptivity is called metacreativity, an ability to be aware and in control of one’s
own creative process [6]. Metacreativity is an essential concept in creative sys-
tems enabling the system to make informed decisions about its own operation,
possibly leading to transformational creativity [10].

Creative systems modeling their interactions include, e.g. use of reinforcement
learning for curious agents to induce new creative behaviors in agents [19], and
user modeling in a recommender system where the model is used to predict
which recommendations would inspire p-creative behavior in the user [20].

Our agents utilize machine learning to acquire awareness and control over
their interactions. To this end, they relate to autonomous agents operating in
dynamic environments, where reinforcement learning methods [21] are often used
to guide an agent’s behavior. This line of research involves, for example, a study
of cooperative multi-agent systems using Q-learning [22] and, a general method
for reasoning about the behavior and related parameters of other agents [23].

Evolutionary computation and art Creating visual artifacts using evolutionary
computation has a long tradition (see, e.g. Romero and Machado (eds.) [3]).
Sims [2] created the first images using genetic programming and Machado and
Cardoso [24] studied early possibilities of computational aesthetics for images.
More recently, Vinhas et al. [25] explored opportunities to include both fitness
and novelty into a single evolutionary art system.

Our work draws from den Heijer and Eiben [4]. They cross-evaluate a set
of computational aesthetic measures for evolutionary art. We use a subset of
aesthetic measures present in their work with our independent creative agents
and contrast some of our results to theirs.

Romero et al. [26] proposed a hybrid society model for evolutionary art con-
sisting of humans, and computational creators and critics. In their model, the
interaction between various entities is orchestrated through a central element.
We study direct interaction between agents which are both creators and critics.

Lastly, our agent society and collaboration model can be seen to have rela-
tions to multi-objective evolutionary computation (see, e.g. Zhou et al. [27]) and
island models [28].

3 Agent Society and Individual Agents

At large, we consider an agent society consisting of a diverse set of artistic agents
seeking to generate creative, i.e. novel and valuable images. We are especially
interested in how agents find favorable collaboration partners. Since agents differ



Table 1. The complete set of primitives (functions and terminals) used in our experi-
ments. An individual agent knows all the terminals and basic math functions, but only
a random sample (n = 8) of the other functions.

Terminals x, y, ephemeral double ∈ [−1, 1], π, golden ratio
Basic Math plus, minus, divide, multiply, mod
Relational min, max
Various Math ln, log10, log2, sin, cos, sinh, cosh, tanh, atan, hypot, abs, sqrt abs,

parabola, avg sum, sign, abs dist
Noise & Various perlin (2D), perlin (1D), simplex (2D), plasma

in their image creating skills and aesthetic preferences, it seems beneficial that
agents model their peers in order to differentiate their collaboration potential.

The agents have limited interaction capabilities: they can only evaluate each
others’ artifacts or generate an image in pairwise collaboration. The problem
for each agent now is how to model their peers using the information from such
interactions alone.

The society is run in an iterative simulation, where at uneven time steps
agents create artifacts individually (we call these solitary artifacts) and at even
time steps they collaborate. On each solitary time step an agent creates a new
artifact, drawing inspiration from its own previous artifacts. On collaboration
time steps agents create artifacts in pairs, drawing inspiration from both collab-
orators’ previous artifacts.

After agents have created all the artifacts on a particular time step, they
send the artifacts to their peers for feedback. Depending on the learning scheme,
agents then utilize machine learning using the feedback to learn peer models.
Agents also memorize artifacts they receive from their peers if they individually
consider them good enough.

An agent creates images using evolutionary programming and evaluates them
using computational aesthetics for value and memory for novelty. In this sense,
an individual agent is related to evolutionary art methods utilizing both fitness
and novelty in their artifact evaluation (see, e.g. Vinhas et al. (2016)) as well
as to curiosity based agents [15]. Distinguishable in the proposed agent model
is how an agent taps into its memory to initialize the population on consecutive
evolutionary engine’s executions. This allows an agent to continue working on
earlier artifacts, potentially developing itself a niche in the creative space.

Next, we describe configurations of different components of agents.

Evolutionary engine An agent’s evolutionary engine uses genetic programming
to evolve expression trees [2] consisting of terminals (leafs) and functions (inner
nodes), together called primitives. An expression tree accepts two arguments x
and y. An image is produced by evaluating the function tree for every (x, y)
pair in the image to define the value of each pixel. The created images are then
evaluated using a fitness function.

The terminal and function types available to an agent are shown in Table 1.
Each agent knows all terminals and basic math functions. In our experiments,



Table 2. Evolutionary engine’s parameters for a single agent’s solitary images.

Parameter Value

Representation Expression tree (max depth 8), see Table 1.
Initialization Up to half of the population mutated from the agent’s

memory, the rest with ramped half-and-half (depth ∈ [2, 6])
Selection Double tournament (size 3), Elitist (best 1)
Mutation Subtree mutation; rate = 0.25
Crossover Subtree crossover; rate = 0.75
Fitness Function Utilizes memory and aesthetics, see text.
Population size 20
Generations 10
Image properties 64x64, 8-bit greyscale

to simulate different skills of agents, each of the agents knows only a subset
of all other functions. For each agent, we sample 8 functions using uniform
distribution at agent’s initialization time, i.e. an agent’s skills do not change
during its lifetime.

Largely, our agents have typical parameter settings for their evolutionary art
engine (see Table 2). The most notable difference is the restricted population
size as the execution time of the whole agent society is heavily affected by it.

Aesthetic measures The aesthetic measures in our experiments are a subset of
aesthetics present in den Heijer and Eiben [4]: Benford’s law (BLW), entropy
(ENT), fractal dimension (FRD), global contrast factor (GCF) and symmetry
(SYM) (representative images are seen in Fig. 1). Each individual agent is ran-
domly assigned one aesthetic measure, which it uses to compute the value of
artifacts it generates or observes. The aesthetic does not change during the sim-
ulation. We have selected this set of computational aesthetics as it has been
studied before, and provides reasonably divergent measures to investigate their
connections in collaboration.

Benford’s law and entropy both measure distributional features from images.
Fractal dimension and global contrast factor measure structural properties from
image’s layout. Symmetry combines image’s observed vertical, horizontal and
diagonal symmetries. The detailed description of each aesthetic measure is out
of scope for this work, thus we guide the reader to den Heijer and Eiben [4] for
exact formulations.

Memory model Each agent has a limited memory (n = 500) where it can store
artifacts it observes. The memory is used to evaluate each observed artifact’s
novelty, and to initialize a population for each evolutionary engine’s execution.
If a new artifact is memorized when the memory is full, the oldest artifact is
erased. The novelty with respect to an agent’s current memory is computed
similarly to Vinhas et al. [25], i.e. novelty(I) = ed(I,m), where I is the artifact
in question, m is the most similar artifact in the agent’s memory, and ed(·) is
the normalized Euclidean distance between the created greyscale images.



Fig. 1. Typical images generated by agents with different aesthetic measures. From
left: Benford’s law, entropy, fractal dimension, global contrast factor and symmetry.

Fitness An individual agent computes the fitness of an image using its aesthetic
measure for value, and its memory for novelty, using the following formula:

fitness(I) =

{
1
2value(I) + 1

2novelty(I), if PNG compress ratio ≥ 8%

0, otherwise

where I is the artifact, value(·) is the aesthetic measure function, novelty(·) is
computed using the memory as described above, and PNG compress ratio is the
relative file size of PNG image over original image. The PNG compress ratio is
used to filter out too simple images as uninteresting.

Initialization and evolution of a population Each time the evolutionary engine
is executed, an agent first creates a new initial population consisting only of
artifacts produced with the skills (primitives) the agent itself possesses. The
population is partly created using the agent’s current memory: up to half of the
population are forcibly mutated artifacts previously created by the agent itself
and the rest are generated using ramped half-and-half.

After the population is initialized it goes through the normal iterations of
selection and evolution phases. Again, evolution can only use the skills the agent
itself possesses. At the end of the evolutionary engine’s execution, the agent
outputs the best artifact as the product of the agent for that execution. Each
agent memorizes all the artifacts itself produces.

4 Collaboration Process

We have devised an experimental collaboration process for two agents creating
images with genetic programming. The proposed process is a form of alternating
co-creativity [14] with the distinct characteristic that it is executed in turns by
independent creative agents. Collaboration allows agents to join their skills to
create artifacts, potentially producing outputs with characteristics from both
partners. Here we describe the collaboration process and focus on collaboration
partner selection in Sect. 5.

The collaboration consists of three consecutive phases:

Initialization phase Together, agents construct an initial population for the
collaboration.



Iterative phase Iteratively, agents pass the collaboration population between
each other and take turns in evolving it further.

Negotiation phase Together, agents negotiate for the collaboration output.

Next, we describe each collaboration phase in more detail. In the rest of
this section, let agents A and A′ be the collaborators. If not otherwise stated,
the agents use the same parameters and settings when collaborating as when
creating solitary artifacts, as described in Sect. 3.

Initialization phase First, the agents must come up with an initial population.
To facilitate mutually interesting collaboration, characteristics of artifacts from
both agents should be in the initial population. For this, both agents initial-
ize a half-sized subpopulation, using the same initialization method as when
creating solitary artifacts. To potentially improve mutual agreement on initial
population, both agents pass their newly created subpopulation to each other
for the selection. After selection, A combines the subpopulations, and performs
crossover and mutation to them to obtain population P . A evaluates P and
stores the best artifacts to a hall-of-fame, H (with a maximum capacity of c).

Both agents maintain their own hall-of-fames, H and H ′, holding the c best
artifacts they have observed during the collaboration.

Iterative phase After the initial population has first been evolved into a popula-
tion P by agent A, P is passed to A′. Then, the collaboration process executes
in an iterative manner, much like a typical evolutionary algorithm (A′ is the
currently active agent):

1. Agent A′ evaluates P and stores the best artifacts to its hall-of-fame H ′

2. Agent A′ applies its selection, crossover and mutation to P , creating P ′

3. Agent A′ evaluates P ′ and stores the best artifacts to its hall-of-fame H ′

4. Agent A′ passes P ′ to A

After A′ has finished its turn, the roles are switched and A executes steps 1-
4. The iterative process runs until some termination criterion is met. In our
experiments we have used a fixed number of iterations as a termination criteria.
After the last iteration, the last active agent passes its last population to another
agent for final evaluation.

Negotiation phase The result of our collaboration process is one jointly produced
artifact. Therefore, the agents must negotiate on the artifact to choose from the
final hall-of-fames, H and H ′. If H ∩ H ′ = ∅, then no collaboration result is
produced.

Otherwise, we call collaboration successful. Both agents rank the artifacts in
their own hall-of-fames from best to worst. The best artifact (b and b′) is assigned
rank 1, the second rank 2, etc.. After ranking, all artifacts in both of the lists are
compared to each other to find matching artifacts. For each matched artifact,
we compute a sum of ranks using both ranked lists, and choose the artifact with
the smallest sum of rank as the result of the collaboration.



5 Modeling Agent’s Peers

The problem of peer modeling in collaborative agent societies to facilitate favor-
able partner selection is the crux of this paper.

Artifact evaluations give an agent direct information of its peers’ aesthetic
preferences and possibly indirect information about their skills. In principle,
learned peer models should capture both properties to maximally benefit an
agent in its collaboration partner selection.

In this section we formulate various learning schemes for peer models which
we empirically test for their ability to distinguish agents with favorable prop-
erties in the rest of the paper. An agent may have different approaches when
selecting the collaboration partners, which the learning schemes may model. The
approaches can be altruistic or selfish, or both:

Altruistic approach An altruistic approach gauges how well an agent’s ar-
tifacts are evaluated by other agents, i.e., it learns which peers appreciate
the agent’s artifacts most. When used to select collaboration partners, this
kind of model selects peers which the agent considers to appreciate most its
collaboration partnership.

Selfish approach A selfish approach gauges how well an agent evaluates its
peers’ artifacts, i.e., it learns which peers the agent itself appreciates most.
When used to select collaboration partners, a selfish approach chooses peers
which the agent gauges most favorable to itself.

Each agent uses the learned peer models to select its own preferred collabo-
ration partners. It sorts its peers into a preference order using the peer models,
and when it is asked to select a collaboration partner, it selects the first peer
which is not yet in any collaboration. The peer models enable an agent to be in-
teraction aware [6], i.e. the agent monitors and analyses its interaction (artifact
evaluations and collaboration results) with other agents and uses that informa-
tion to control its future interactions by selecting collaboration partners w.r.t.
learned models.

Q-learning Q-learning [29] is a common reinforcement learning method, that
maintains the expected utility, or Q-value, for each state-action combination
based on received reward. It fits our task well, because it can learn continuously
from the agent’s interactions and it can adapt to the changes in the agent’s
peers, caused by changes in their memories.

To model an agent’s peers, we use a simplified version of Q-learning, that
only has one state and for each peer a Q-value, Q(a), where a is the action of
selecting a specific peer as collaboration partner. This simplified version also
does not take into account possible future rewards. Q(a) is maintained with the
update rule Q(a)← Q(a) +λ(r−Q(a)) [22], where r is the received reward and
λ the learning rate. We set λ to 0.9 in all of our simulations.

We experiment with three different variations of the Q-learning model called
direct-Q, hedonic-Q and altruistic-Q. They differ from each other only in which



artifact evaluations they use for learning. In the rest of this section agent A is
the one learning to model its peer A′.

Direct-Q uses as reward the evaluation that agent A gives to the artifact
created in collaboration with agent A′. The method learns how much agent A
appreciates the artifacts produced in collaboration with agent A′, i.e. it is a
selfish approach. This is the most straightforward learning scheme in our paper,
as it directly models the collaboration results. The disadvantage of direct-Q is
that the agent can only learn from doing the actual collaboration, which in many
cases restricts the amount of information available for model learning.

To balance exploration and exploitation in direct-Q, we use the ε-greedy
strategy [21]. The ε-greedy strategy selects the best action with probability 1− ε
and a random action with probability ε. In our context the action is to select
the collaboration partner in each collaboration step. We use ε = 0.2.

Hedonic-Q learns from artifacts created by its peers alone. The reward is
the evaluation A gives to an artifact created by A′. This corresponds to learn-
ing which peer A′ creates artifacts that are valuable to A making it a selfish
approach. Even though hedonic-Q is more indirect than direct-Q, it allows the
agent to base its peer model on artifact evaluations. The agent does not have to
allocate any resources to artifact creation, which often leads to expansion in in-
formation available for learning when more agents are requesting feedback from
A than it is able to collaborate with. As hedonic-Q does not gain from ε-greedy
strategy in our experiments, it does not use it.

Altruistic-Q updates itself based on the evaluations its peers give to artifacts
created by A. In other words, altruistic-Q learns how much peers appreciate the
artifacts created by A. It has similar advantages over direct-Q as hedonic-Q, i.e.
the expansion in information available for the learning. It also does not gain
from ε-greedy strategy.

Linear regression We use linear regression [30] to investigate if an agent with
only one feature (the aesthetic measure) is able to exploit the information from
its own initial artifact population in the collaboration partner selection.

Agent A has a linear regression model for each of its peers A′
j . Each model

has a weight wj for the value of A’s aesthetic measure and a bias term bj . A
makes a prediction of A′

j ’s evaluation for an artifact with ŷj = wjx+ bj , where
x is A’s observed aesthetic value for the artifact.

The value of selecting A′
j as the collaboration partner is then the sum of

predicted evaluations of the artifacts in A’s initial population val(A′
j) =

∑
i ŷji,

where ŷji is the prediction for the ith artifact in the initial population.
This can also be formulated as val(A′) = wjX+ cbj , where X =

∑
i xi and c

is the amount of artifacts in the initial population, which is constant. From this
formulation it is evident, that the value of choosing A′

j is a weighted sum of how
much A values its initial population (X) and a constant (c).

We use gradient descent with loss function 1
2 (y − ŷ)2 to update the parame-

ters: wj ← wj−λx(ŷ−y) and bj ← bj−λ(ŷ−y), where y is the evaluation given
by agent A′

j , ŷ is the prediction made by A and λ is the learning rate, which we
set to 0.2 in all of our experiments. The parameters are updated when A receives



an evaluation of its own artifact from A′ and when A receives an artifact created
by A′ (evaluation by A′ is sent too), making it a hybrid approach as it has both
selfish and altruistic influences.

6 Experiments

The main goal in our experiments is to compare the effects of different learning
schemes for intentional collaboration partner selection. For each scheme we are
interested in the following:

1. What is the overall success ratio for the collaborations? That is, how often
did any two agents manage to jointly create a new image.

2. How do agents with different aesthetics differ in their collaboration results?
3. How agents explore the available collaboration partners and do they converge

to specific partners?
4. Are agents able to distinguish peers with different skill sets?

We compare the learning schemes to a baseline scheme where agents select
their collaboration partners randomly. For each learning scheme, we run the
same experimental setup. Each experiment consists of 30 simulation runs and
we report the simulation run averages.

The basis of our experiments is an iterative simulation S = (s1, s2, . . . , s200).
Each simulation involves 20 agents, 4 agents with each aesthetic: Benford’s law
(BLW), entropy (ENT), global contrast factor (GCF), fractal dimension (FRD)
and symmetry (SYM). While agent-specific aesthetics are constant over runs,
each agent’s skills are sampled randomly anew for each simulation (see Sect. 3).

Within a simulation run, at uneven time steps each agent creates a solitary
artifact and at even time steps agents collaborate in pairs. That is, each agent
creates exactly 100 solitary and a maximum of 100 collaborated artifacts (if all
collaborations are successful). At each time step, after all artifacts have been
created, agents send their artifacts to others for feedback, and then update their
peer models.

An agent memorizes all artifacts it has taken part in creating and may mem-
orize artifacts created by its peers. For peer artifacts, we use memorizing thresh-
olds 0.4 for novelty and 0.5 for normalized value1.

Agents determine their collaboration partners in each collaboration iteration
as follows. First, agents are arranged into a random order. The first agent then
pairs up with its favorite partner. We call agents selecting their partners as
selectors. Then the next free agent acts as a selector and pairs up with its
most preferable free agent. This is repeated iteratively until all agents are in a
collaboration.

For collaboration process, we use 10 iterations for the iterative phase (i.e.,
5 iterations per agent) so that collaborated and solitary artifacts have roughly

1 Normalized value is the value of the artifact (using the agent’s aesthetic measure)
divided by the value of the artifact the agent has valued the highest during that
simulation run (clamped to 1.0).



Table 3. Average collaboration success ratios and various average value measures for
learning schemes.

Measurement Direct-Q Hedonic-Q Altruistic-Q Linear reg. Random

Collaboration success ratio 0.834 0.936 0.864 0.803 0.763

Average value of artifacts
– Own solitary 0.632 0.634 0.636 0.635 0.634
– Selector collaboration 0.580 0.620 0.583 0.541 0.551
– Partner collaboration 0.614 0.636 0.654 0.653 0.603

Relative value of artifacts per aesthetics
– BLW own collab./random 1.062 1.139 1.120 1.060 1.000
– ENT own collab./random 1.033 1.102 1.074 1.044 1.000
– FRD own collab./random 1.058 1.139 1.120 1.101 1.000
– GCF own collab./random 1.051 1.156 1.147 1.138 1.000
– SYM own collab./random 0.962 0.894 1.014 1.019 1.000

the same amount of resources spent on them. Further, for each collaborator’s
hall-of-fame we use c = 20, i.e. it holds 20 best artifacts from the collaboration.

7 Results

In this section we report statistical results from our experiments.

Overall collaboration success and value The average collaboration success
ratio and various value measures for each scheme are shown in Table 3. We
observe from the table, that each learning scheme increases the overall success
ratio of the collaboration (first row). Hedonic-Q has the best success ratio, and
altruistic-Q has higher ratio than direct-Q. Linear regression seems to struggle
when compared to other learning schemes. On a closer look, altruistic-Q and
direct-Q are quite close to each other, which is surprising as direct-Q has 1/19
of the learning information when compared to altruistic-Q (one collaboration
per 19 peer evaluations).

The rows three and four in the Table 3 show that learning schemes are able
to produce more value (for either selector or partner, or both) in collaboration
than the baseline. Further on, there is an interesting bias in the collaboration
results. On average, selector values the collaboration results less than the selected
partner. Notably, linear regression struggles to produce value to the selector, the
selector’s average value is even lower than in random, while having high value
for the partner. The hedonic-Q gives most value to the selector, but it is still
lower than the partner’s value. We return to this general bias during discussion.
Lastly, in rows 5-9 we observe that all aesthetic measures, excluding symmetry,
are on average able to produce more value in their collaborations in any learning
scheme than in baseline scheme.

Partner exploration and convergence The collaboration partner exploration
is shown in Fig. 2 (left). Hedonic-Q and altruistic-Q are more conservative in
their exploration than other schemes. Direct-Q’s behavior in relation to random
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Fig. 2. Average number of distinct collaboration partners accumulated during the sim-
ulation run (left) and remaining in the rest of the simulation (right) for each scheme.

scheme is explained by ε-greedy strategy’s systematic exploration. The conver-
gence is shown on the right in Fig. 2. Especially hedonic-Q has only a few dis-
tinct collaboration partners towards the end of the simulation. Notably, direct-Q
quickly excludes some of its collaboration partners and its convergence towards
the end is more pronounced than altruistic-Q’s. (However, due to ε-greedy strat-
egy direct-Q does not truly converge in any point.)

The convergence of hedonic-Q is caused by agents collaborating almost exclu-
sively within the same aesthetic (Fig. 3, second from left). Altruistic-Q (Fig. 3,
second from right) seems to have converged also to less extent. Direct-Q (Fig. 3,
first on left) agents favor peers with same aesthetics, but the effect is not as
eminent. Lastly, we see that collaboration between different aesthetics is more
common in linear regression (Fig. 3, first on right).

Agent skills We move on to consider if the peer models are able to capture
different image creation skills of agents. First, we computed the average number
of different skills between each agent pair and average number of different skills
in all collaborations and collaborations with their favorite partner. However,
there was no meaningful difference between any of them.

Further on, for each individual skill, we computed the average collaboration
success ratios and collaboration counts when both collaborators, either selector
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Fig. 3. Heat maps of average collaboration counts between aesthetic pairs for all learn-
ing schemes. The aesthetic of an agent selecting the collaboration partner is shown on
left and the aesthetic of the selected partner is shown on the bottom of each heat map.
From left to right: direct-Q, hedonic-Q, altruistic-Q, and linear regression.



Fig. 4. Selected collaboration results. From left to right: ENT-BLW, FRD-SYM, GCF-
GCF, GCF-SYM and SYM-ENT.

or partner, or neither possessed the skill. We could not observe any significant
variations between the skills. We return to the possible reasons for these obser-
vations in discussion.

Collaboration process For our experimental collaboration process, we observe
from our experiments that the process typically creates images where the part-
ners’ values for the collaborated artifacts are between their values for artifacts
created by either agent alone. For example, for the collaboration pair BLW-
FRD we measure that BLW gives values (0.674, 0.510, 0.414) for its own, col-
laborated (with FRD) and FRD’s artifacts. Similarly, FRD gives values (0.580,
0.696, 0.765) to BLW’s, collaborated and its own artifacts. This trend is present
for every pair of aesthetics. Selected collaboration results are shown in Fig. 4.

8 Discussion and Conclusions

We have described an agent model for creating images with genetic program-
ming where an agent draws inspiration for new artifacts from its memory. We
have proposed an iterative collaboration model for such agents and have con-
ducted experiments for intentional collaboration partner selection in societies of
agents with diverging skills and aesthetics. From our results, we observed that
the learned peer models facilitate successful collaboration when used to select
collaboration partners, but also cause convergence to collaborate within similar
aesthetics.

Next, we discuss various points of views to and characteristics of our results.
Learning schemes Learning schemes considered in this work fall broadly

into selfish and altruistic approaches: direct-Q and hedonistic-Q are selfish, and
altruistic-Q and linear regression are altruistic. From the creativity point of view,
selfish approaches can be seen as means to enhance agent’s own p-creative behav-
ior [10], and altruistic approaches try to empower their collaboration partner’s
p-creative behavior.

The learned peer models are able to distinguish agents with same aesthetic
measures. However, especially for hedonic-Q, the strong preferences over agents
with similar aesthetics causes agents to converge to collaborate within the same
aesthetic alone. Previously, emerging communication cliques of curious agents
sharing similar preferences have been observed by Saunders and Gero [15].

In general, the high collaboration success of the hedonic-Q is not surpris-
ing. The final collaboration result is negotiated using the agents’ own fitness



functions, favoring selfish approaches. On the other hand, the linear regression’s
observed behavior is dividing. Having only one feature (the aesthetic measure),
the linear regression might not have had enough information to have any real
benefit over the simpler Q-learning schemes. Even still it was comparable to
altruistic-Q in producing value for the collaboration partner.

It can be argued that for creative agents the most auspicious collaboration
partners are not the ones with the exact same skills or preferences, but in-
stead peers with reasonably different capabilities and views [8]. However, the
preferences must be similar enough for the agents to be able to agree during the
collaboration process [7]. We envision that with more dynamic agent models, e.g.
when agent’s aesthetic preferences change over time, the convergence would not
be as eminent. Moreover, we believe that the online learning methods described
in this work would be apt to model such situations.

Aesthetic measures and skills In general, our results between different aes-
thetic measures in collaboration are in line with the results of den Heijer and
Eiben [4]. For example, Benford’s law and entropy tend to collaborate quite of-
ten in our experiments while den Heijer and Eiben show that they tend to give
high values to each others artifacts.

Peer models learned from artifact evaluations alone do not seem to be able
to distinguish between agents with different skills. We believe, that this is at
least partially caused by the used aesthetic measures. For example, entropy can
be satisfied with one skill: a function generating white noise.

To further explore properties of intentional collaboration in creative agents,
the aesthetics used should capture a wider variety of artifact properties. For
example, by combining multiple simple aesthetic functions together.

Collaboration Process Our experimental collaboration process allows agents
to combine their skills and aesthetics to produce artifacts which might not be
produced by either agent alone, similar to collaboration in storytelling by Pérez
y Pérez et al. [9]. In an ideal situation, collaboration allows an agent to be trans-
formationally creative in its creative process (with another agent) [10]. When
analyzing collaborated artifacts, we observe that they have the possibility to
preserve characteristics from both agents’ creative niches, but in many cases do
not. This may be a defect in the experimental collaboration process itself, or be
related to the complicated nature of multi-objective evolutionary art [4].

Moreover, the visible bias in collaboration artifact values between selector
and partner may be explicable by several features of the process. These include:
partner gets to select first from the combined population and to generate the
last population, and the elitist selection strategy used in our experiments.

Collaboration is desirably a (super)additive process. Together, the collabora-
tors are able to produce more value or novelty than individually. Unfortunately,
the proposed collaboration process is typically a trade-off for the agents: either
both agents see the artifact as mediocre, or only one of the collaborators values
the result.

For more productive collaboration, the agents must communicate their goals
and assumptions, and negotiate future paths for the collaboration. This calls



for more elaborate interaction capabilities and peer models. We believe that the
current work serves as an opening for such models and processes.

Overall, peer modeling is a crucial aspect in creative agent societies. With-
out peer models, there can not be truly social interaction between different
agents [12]. In future, we hope to build upon this work to define more sophisti-
cated peer models, and induce social agents with generator awareness [6] to be
used in conjunction with learned peer models for more informed collaboration
processes.
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