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Abstract 19 

A method for analyzing 3H, 36Cl, 22Na, 133Ba and 134Cs from simulated groundwater 20 

(SGW) samples was introduced. Gamma emitting radionuclides 22Na, 133Ba and 134Cs 21 

were measured by using an HPGe-detector. Beta emitting 3H and 36Cl were separated 22 

from gamma emitting 22Na, 133Ba and 134Cs. AgCl precipitation was used for the 23 

separation of 36Cl from SGW samples with yields of 98 ± 2%. 3H was separated by 24 

distillation with recoveries of 97 ± 3%. This method was used for the determination of 25 

activity concentrations of 3H, 36Cl, 22Na, 133Ba and 134Cs in SGW samples collected from 26 

an in-situ through diffusion experiment (TDE). 27 
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scintillation counting 30 

Introduction 31 

The final disposal of spent nuclear fuel (SNF) from present nuclear power plants in 32 

Finland (Olkiluoto and Loviisa) is planned to take place in a crystalline granitic rock at 33 

Olkiluoto island (Eurajoki, Finland) [1]. The SNF will be protected by multiple barrier 34 

system. The fuel elements are placed into iron canisters with an outer layer of copper. 35 

The canisters are sealed and placed in vertical holes drilled in tunnels around 420 meters 36 

below ground, in Olkiluoto island. In the vertical holes, the canisters are embedded in 37 

compacted bentonite clay. The tunnels will be backfilled and the last barrier will be the 38 

bedrock itself. Behavior of radionuclides in fractured crystalline rock has been studied for 39 

the safety assessment calculations [2, 3]. The evaluation of the safety is done for 40 

hundreds of thousands of years in the final disposal site [4]. If released into the bedrock, 41 

radionuclides will be transported by advection along water conducting fractures and their 42 

retardation may occur by molecular diffusion from the fractures into the stagnant pore 43 

water and/or by sorption onto mineral surfaces in the adjacent rock matrix [5]. 44 

In-situ diffusion experiments in crystalline rock have been performed in several countries 45 

e.g. Sweden [6, 7, 8], Switzerland [9, 10] and Canada [11, 12] to demonstrate the 46 

behavior of radionuclides which might be released from the canisters into the bedrock in 47 

the disposal site of spent nuclear fuel.  In 1996, in Canada series of in-situ experiments 48 

with iodide were conducted to study diffusion in sparsely fractured rock (SFR) [11, 12]. 49 

In Switzerland, the retention of several radionuclides was studied in-situ in Grimsel 50 

granodiorite via a long-term diffusion (LTD) experiment [9, 10]. In Sweden at the Äspö 51 

Hard Rock Laboratory, a Long Term Diffusion Experiment (LTDE) studied retention of 52 

22 radionuclides in granodiorite [7, 8]. The focus in the Swedish experiment was more 53 

directed towards sorption rather than diffusion due to the relatively short experimental 54 

time of about six months. 55 
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The laboratory data of rock porosity and diffusion might be overestimated because of 56 

drilling artefacts caused by stress release and/or prehandling the rock core samples by 57 

sawing. The data that is used in safety case calculations is conservative and performed 58 

mostly in laboratory conditions. The in-situ experiments are performed to increase 59 

understanding and realism of diffusion data. This is the first time that diffusion of 60 

radionuclides is studied in-situ in Olkiluoto. In addition, this is one of the first through 61 

diffusion experiments in-situ in the world.  62 

A project “rock matrix REtention PROperties” (REPRO) at ONKALO, which is the 63 

underground rock characterization facility in Olkiluoto, Finland, consists of extensive 64 

series of in-situ sorption and diffusion experiments that are supplemented by laboratory 65 

work [13, 14]. One of these in-situ experiments is a Through Diffusion Experiment 66 

(TDE) launched in autumn 2015 for studying the diffusion and sorption of 3H, 36Cl, 22Na, 67 
133Ba and 134Cs in the Olkiluoto bedrock. The bedrock in the experimental site is mainly 68 

veined gneiss with veins of coarse-grained pegmatitic granite. The veined gneiss shows a 69 

weak to moderate banded foliation but locally also irregular foliation [15].  70 

The radionuclides were chosen to cover different types of elements existing in the spent 71 

nuclear fuel. We decided to avoid radionuclides having several oxidation states because 72 

we wanted to “keep it simple”. 3H is a conservative tracer, 36Cl might show anion 73 

exclusion properties of rocks.  3H (HTO) and 36Cl are not assumed to have chemical 74 

reaction on the mineral surfaces in granitic rock. The scoping calculations done before 75 

the experiment showed that 3H and 36Cl could have a breakthrough from the injection 76 

borehole into the observation boreholes in a few years’ time during the in-situ experiment 77 

and possible anion exclusion could be seen as well [16].  For the sorbing tracers, it is 78 

likely that only slightly sorbing 22Na could be seen from the observation boreholes in 79 

reasonable timescales. Distribution coefficient of 22Na varied between 1×10-4 and 1×10-2 80 

m3/kg in the granitic rock and its main minerals [14, 17]. 22Na is often used in in-situ 81 

experiments because it can be measured with online gamma measurements contrary to 82 

the beta emitters 3H and 36Cl. Besides these above mentioned three radionuclides, 83 

strongly sorbing elements 133Ba and 134Cs were added. Both cesium and barium are 84 

known to sorb by ion exchange mechanism having distribution coefficients between 85 
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1×10-1 m3/kg and 1×10-3 m3/kg [3, 18-21]. 134Cs was chosen as an analogue for another 86 

cesium isotope, 135Cs, which is one of the most important radionuclides after 100 000 87 

years of deposition and might found its way into the biosphere [22]. 133Ba is a chemical 88 

analogue of 226Ra which is safety relevant radionuclide in the spent fuel deposition 89 

because of the ingrowth of 226Ra from uranium [23]. 90 

In TDE, concentrated mixture of non-sorbing and sorbing radionuclides 3H, 36Cl, 22Na, 91 
133Ba and 134Cs was injected to a meter long packed-off section of a drill hole filled with 92 

simulated groundwater (SGW) at a depth of 11–12 m from the niche wall. Some of the 93 

tracers used in the TDE experiment occur naturally in trace amounts in the groundwater. 94 

For example, 1.2 Bq/L 3H has been measured [24] in the Olkiluoto groundwater. 95 
36Cl/total Cl ratio has been examined from 34 samples from the Olkiluoto groundwater 96 

taken from different depths (from ground level down to -819 m) and different locations in 97 

the Olkiluoto island, and the values of (3-123)×10-15 were found [25]. Thus it is not 98 

possible that the background level of 36Cl disturbs the measurement of it in the in-situ 99 

experiment. Concentrations of 6.8×10-9 to 8.3×10-6 mol/L of stable natural cesium and 100 

5.9×10-7 to 1.9×10-5 mol/L of stable natural barium has been measured from Olkiluoto 101 

groundwater in previous studies [26]. Breakthrough of the radionuclides is followed from 102 

the circulation SGW into two observation drill holes which are at a depth of about 10 103 

centimeters from the injection borehole. In addition, the activity variation of the 104 

radioactive tracers is followed from the injection drill hole. In this work the activity of 105 

radionuclides in the injection hole was followed for 440 days. 106 

The radionuclides 3H, 36Cl, 22Na, 133Ba and 134Cs cannot be measured straight from the 107 

TDE tracer cocktail because some of them are disturbing each other in the radioanalytical 108 

determination. 22Na, 133Ba and 134Cs are gamma emitting radionuclides, but they have 109 

also beta/electron emissions that will interfere the measurements of purely beta emitting 110 
3H and 36Cl. Therefore, to measure beta emitting 3H and 36Cl from the SGW, 22Na, 133Ba 111 

and 134Cs need to be separated from the sample. 36Cl can be separated by AgCl 112 

precipitation which is a well-known method to separate chloride from solutions [27, 28]. 113 
133Ba could be moved out from the SGW by precipitation as well and precipitation of 114 

barium as sulfates or carbonates [29, 30] is widely used procedure. 134Cs could be 115 
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separated from the SGW by ion exchange method, e.g. with cation exchange resin 116 

CsTreat® (Fortum, Espoo, Finland) [31, 32]. After the above-mentioned separation 117 

procedures, 3H could be measured together with 22Na by liquid scintillation counting 118 

(LSC) because 22Na interference is known to be low; only about 3-4 % of 22Na betas are 119 

shown in the energy window of 3H [28]. The 22Na activity (after gamma measurement) 120 

was subtracted from the LSC measurement results in the previous WPDE1&2 work [14, 121 

28]. In this work, we decided to use another approach to separate 3H from the three 122 

gamma emitting radionuclides as well as from 36Cl. A distillation procedure, which is 123 

widely used for measuring 3H in natural waters, was introduced for analyzing the TDE 124 

tracers from the SGW solutions. 125 

The aim of this work was to optimize the analysis procedure of the five radionuclides in 126 

the TDE tracer mixture, and to quantify the possible losses and interferences in the 127 

chemical separations. This procedure provides then analytically accurate data for the in-128 

situ TDE experiment. 129 

Materials and methods 130 

The REPRO site 131 

Fig. 1 presents the drill holes in the Repro niche where the in-situ experiments for 132 

studying radionuclides migration in Olkiluoto bedrock are done [14, 33]. Injection drill 133 

holes ONK-PP324, ONK-PP326 and ONK-PP327 were used in the TDE. ONK-PP326 is 134 

the injection drill hole and the observation drill holes are ONK-PP324 and ONK-PP327.  135 

The experiments are conducted at a depth of about 420 m in the REPRO-niche [33]. The 136 

bedrock of Olkiluoto is crystalline rock that is mainly composed of veined gneiss, 137 

diatexite and granitic pegmatoids [15]. In the REPRO niche at the depth where long term 138 

experiments are being performed, the main rock types are veined gneiss, pegmatitic 139 

granite, quartz gneiss and diatexitic gneiss [33]. 140 
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 141 

Fig. 1 The experimental drill holes in REPRO niche Onkalo, Olkiluoto, Finland where 142 

the various in-situ experiments for studying radionuclides retention in Olkiluoto bedrock 143 

were performed. The locations of REPRO drill holes in the investigation niche ONK-144 

TKU-4219 [14, 33] 145 

Ground water 146 

Before the TDE in-situ experiment, the groundwater sample was taken from the drill hole 147 

ONK-PP319 at Repro niche and it was analysed for chemical composition in the 148 

laboratory of TVO nuclear power company at Olkiluoto island. The SGW for the TDE 149 

was made to resemble this water. 260 mL of SGW was circulated in the injection drill 150 

hole and in the two observation drill holes each for 6 months before the experiment 151 

started and the radioactive tracers were injected into the SGW circulation. Circulation 152 

pumps with PEEK material in contact with the water were used for water circulation in 153 

all the three drill holes. The pumps ran continuously with a flow rate of 2 mL/min - 4 154 

mL/min. During the 6 months equilibration period, four water samples from the 155 

circulated SGW were taken and the analysis of chemical composition were performed in 156 

Labtium Oy (Espoo, Finland). pH of the SGW was 7.9 ± 0.1 and the average chemical 157 

composition of the initial SGW and the one after the equilibration period are presented in 158 
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Table 1. It can be seen from the Table 1 that the concentrations of all components of the 159 

SGW decreased slightly during equilibration period. This is due to minor chemical 160 

processes between the elements of rock minerals and the synthetic ground water.  161 

Table 1 The chemical composition of ONK-PP319 water and that of the SGW after six 162 

months equilibration period in the TDE in-situ injection drill hole 163 

Element Concentration in 

ONK-PP319 water1 

(mg/L) 

Concentration in 

SGW after 

equilibration period 

of 6 months2 

(mg/L) 

Br 34 ± 0.4% 33.8 ± 1.3 

Ca 690 ± 0.3% 472 ± 6 

K 14 ± 0.7% 10.7 ± 1.1 

Sr 5.7 ± 0.6% 4.20 ± 0.04 

Mg 34 ± 0.5% 28.2 ± 0.4 

SiO2 5.4 ± 0.5% 4.9 ± 0.3 

Na 2 840 ± 0.9% 2 560 ± 20 

Cl 5 890 ± 0.3% 5 310 ± 70 
1TVO laboratory 164 

2Labtium Oy, Espoo, Finland 165 

Radionuclides 166 

The rough activities of radionuclides that were injected into the TDE injection drill hole 167 

circulation in a 10 mL volume, were 200 MBq of 3H as tritiated water (HTO), 7 MBq of 168 
36Cl as NaCl, 10 MBq of 22Na as NaCl, 1 MBq of 133Ba as BaCl2 and 1 MBq of 134Cs as 169 

CsCl [34]. Initially 11 mL of tracer solution was prepared, and 1 mL sample was saved 170 

for the accurate radioactivity analysis as well as this surplus solution was used to test the 171 

analysis methods. 172 
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Fig. 2 shows the beta/electron spectra of 3H, 36Cl, 22Na, 133Ba and 134Cs measured with 173 

LSC. As can be seen from the Fig. 2, the beta/electron emissions of 22Na, 133Ba and 134Cs 174 

are interfering with the 36Cl spectrum. They all are also interfering somewhat the 3H 175 

measurement and therefore it was decided that tritium will be separated from the sample 176 

solution by distillation [35] and measured with LSC alone. LSC measurements of 3H are 177 

sensitive to quenching effects as well as to other radionuclide’s interference. Distillation 178 

is a good method to separate 3H from other radionuclides since most of the impurities 179 

vaporize poorly at the boiling point of water [36]. Possible radionuclides that would 180 

vaporize are iodine isotopes as iodine gas and 14C as carbon dioxide but these were not 181 

used in this experiment36Cl has been separated from a weakly acidic water solution by 182 

AgCl precipitation in previous experiments [27, 35]. The same method was used also in 183 

this work.  After precipitation, the AgCl precipitate was separated from the liquid phase 184 

and dissolved to ammonia and the solution was measured by LSC. 185 
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Fig. 2 Beta/electron spectra of 3H, 36Cl, 22Na, 133Ba and 134Cs measured with Tri-Carb 188 

2910 TR liquid scintillation counter (Perkin Elmer) 189 
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The radionuclides 3H (37 MBq/g 29.7.2015) and 22Na (7.609 MBq/g 15.11.2012) were 190 

purchased from Perkin Elmer (Boston, USA). The producer gives 10% uncertainty for the 191 

product; these are not precision calibrated solutions. 36Cl (9.612 ± 0.106 MBq/g 192 

20.12.2013), 133Ba (5.00 ± 0.12 MBq/g 1.3.2008) and 134Cs (35.22 ± 0.35 MBq/g 193 

25.9.2014) were purchased from EuroStandard CZ (Prague, Czech Republic). Table 2 194 

shows the decay-modes, energy information and half-lives of the radionuclides used in 195 

this work. Activities of gamma emitting radionuclides 22Na, 133Ba and 134Cs were 196 

measured directly from the subsamples taken from the ONK-PP326 circulation water by 197 

using a HPGe-detector (Canberra XtRa; Extended Range Coaxial HPGe Detector with 198 

spectral analysis program Gamma Acquisition & Analysis Genie/Canberra). 3H and 36Cl 199 

were measured with LSC (Perkin Elmer Tri-Carb 2910 TR, spectrum analyzer 200 

SpectraWorks). Liquid scintillation cocktail used in this work was OptiPhase HiSafe 3 201 

(Perkin Elmer) that is capable of handling a broad range of solutes, particularly high ionic 202 

strength ones. 203 

Table 2 Radionuclides used in the TDE and their main decay-modes, energies and half-204 

lives [37] 205 

Nuclide Main decay-

mode/intensity (%) 

Energies of γ and β 

emissions used in 

analyses (keV) 

Half-life (years) 

3H β- /100 β 18.591 ± 0.003 12.32 ± 0.02 
22Na β+/90.38 ± 0.03 γ 1 274.537 ± 0.007 2.602 ± 0.002 
36Cl β- /98.10 ± 0.14 β 709.55 ± 0.05 301 000 ± 2 000 
133Ba ɛ /100% γ 356.0129 ± 0.0007 10.551 ± 0.011 
134Cs β-  /99.9997 ± 0.0001 γ 604.721 ± 0.002 2.0652 ± 0.0004 

 206 

AgCl precipitation for 36Cl measurement and 3H distillation were tested with two sets of 207 

samples. One set (four samples) included only radioactive 36Cl (1 400-2 400 Bq) in 5 mL 208 

of SGW for testing AgCl precipitation. Another set (ten samples) included only 3H (240 – 209 

36 000 Bq) in 10 mL SGW for testing of the distillation. The three gamma emitting 210 
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radionuclides were not included into the test samples because by this way the recoveries 211 

of beta emitting radionuclides could be determined accurately without interferences. 212 

AgCl precipitation tests 213 

The testing of the separation of 36Cl by AgCl precipitation was performed adding 0.5 mL 214 

of 2 mol/L AgNO3 to 5 mL SGW which chloride concentration was about 5 g/L. SGW 215 

contains 5310 mg/L of chloride (see Table 1) and no additional carrier for 36Cl was 216 

needed because in 5 mL of SGW there is 26.55 mg of chloride which is equivalent for 217 

0.15 mol/L and thus the AgNO3 concentration (0.0005 L×2 mol/L/0.005 L = 0.2 mol/L) 218 

was sufficient to precipitate all chloride from the solution. After mixing the solutions 219 

together, the mixture was stirred vigorously to ensure precipitation of all 36Cl. AgCl 220 

precipitate was separated from supernatant by centrifugation (4500 rpm for 15 minutes, 221 

Sigma centrifuge 3-16KL, Rotor 1180). Then the precipitate was washed twice with 5 222 

mL of 18Ω MilliQ-H2O and dissolved into 5 mL of 17% NH3 solution. The dissolved 223 

precipitate was first measured with HPGe detector to check if there is any leak of 224 

gamma-emitting nuclides into the precipitate.  After that, the dissolved chloride solution 225 

was mixed with 15 mL of liquid scintillation cocktail and beta activity of 36Cl was 226 

measured by LSC. The quenching curve for 36Cl was determined with 800 Bq 36Cl in 5 227 

mL of SGW, 15 mL OptiPhase HiSafe 3 liquid scintillation cocktail and CCl4 as a 228 

quenching substance. 229 

Distillation tests for separating 3H 230 

In the distillation procedure for determining 3H, the 10 mL SGW samples with known 231 

amount of 3H was heated with thermophore and the vapor was condensed in the water 232 

circulation condenser. The distillate that contained 3H as tritiated water was collected into 233 

a round-bottomed glass flask. These samples were distilled to near dryness to ensure 234 

good recovery for 3H. After that 5 mL aliquots were taken from the distillates (Fig. 3 step 235 

3.2) and the 3H activity was measured with LSC. The quenching curve for 3H was 236 

determined with 3H internal standard capsules (Perkin Elmer, Boston, USA) with activity 237 

of 3 100 ± 40 Bq dissolved in 5 mL of SGW, 15 mL OptiPhase HiSafe 3 and CCl4 as a 238 

quenching substance. 239 
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 Final procedure for water sample analysis 240 

The activities of radionuclides in the TDE injection solution were analysed with the 241 

developed procedure.  In addition, the TDE water samples from the injection drill hole 242 

for following the variation of tracer activities were measured. Fig. 3 shows the 243 

schematics used for the accurate activity analysis of the TDE injection tracer solution (1 244 

mL) and the TDE water samples (0.2 mL). 245 

246 
Fig. 3 Analysis scheme for activity measurements of water samples taken from the 247 

injection drill hole of the TDE. Separation of 36Cl is done by AgNO3 precipitation and 3H 248 

by distillation 249 

The tracer activities of the TDE injection solution 250 

The activities of the tracers in the TDE injection solution were analysed from a 1 mL 251 

surplus tracer solution (called now-on S1) that was made at the same time as the initial 252 

tracer solution. The S1 solution had to be diluted before analysis and first it was diluted 253 

to 10 mL with SGW (called now-on S2 dilution). Secondly 0.5 mL of the S2 dilution was 254 

diluted to 100 mL with MilliQ-H2O (called now-on S3 dilution). From this S3 dilution 255 

two about 0.2 mL samples were taken for the activity analysis of 3H, 36Cl, 22Na, 133Ba and 256 
134Cs. One of these 0.2 mL samples was further diluted with SGW to 5 mL for AgCl 257 

precipitation (called now-on S4a dilution) (marked to Fig. 3 as step 2) and the other 258 
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sample was diluted to 10 mL for distillation (called now-on S4b dilution) (marked to Fig. 259 

3 as step 3). The S4a dilution has a chloride content of 25.48 mg and concentration of 260 

0.14 mol/L so the 0.2 mol/L AgNO3 concentration in the solution is sufficient for 261 

precipitate all chloride in the sample. Every dilution was weighed for the accurate 262 

calculation of injected tracer activities. Gamma activities of 22Na, 133Ba and 134Cs were 263 

first measured from the S4a dilution (Fig. 3 step 1) by using HPGe-detector with 264 

measurement time of 4.4 hours. In long measurements with Ge-detector the background 265 

activities consist mainly of daughters of 238,235U and 232Th and of 40K, from the 266 

surrounding building materials and of daughters of 222Rn.  No background gamma peaks 267 

were overlapping with the energies of gamma-emitting radionuclides analysed in this 268 

work.   269 

After gamma measurement, 0.5 mL of 2 M AgNO3 was added (Fig. 3 step 2) to the 5 mL 270 

S4a dilution sample to precipitate AgCl. The AgCl precipitate was diluted to 5 mL of 271 

17% NH3 solution and the dilution was measured with Ge-detector (5 mL measurement 272 

geometry) for any gamma-active residue that could have been left to the sample despite 273 

the washing of the precipitate. After the gamma measurement, 15 mL of liquid 274 

scintillation cocktail was added (Fig. 3 step 2.2) and the sample was measured for 36Cl 275 

activity with LSC. 276 

The 10 mL S4b dilution sample was distillated to near dryness and the distillate was 277 

measured with HPGe-detector for any gamma active residue. 15 mL of liquid scintillation 278 

cocktail was added and the 3H activity of injection tracer solution was measured from 7 279 

mL distillate sample with LSC. 280 

Analysis of the water samples from TDE injection drill hole ONK-PP326 281 

The decrease of the activities of tracers were followed by taking about 0.2 mL water 282 

samples from the injection drill hole ONK-PP326. Water samples were weighed for 283 

accurate mass. The first groundwater samples from the TDE injection drill hole was taken 284 

6 hours after the experiment started in November 2015. Groundwater samples from the 285 

drill hole ONK-PP326 were taken frequently in the first week of the experiment. In total, 286 

7 samples were collected in the first week. After that samples were taken every two 287 

weeks and after three months of the experiment samples were taken once a month. From 288 
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nine months on samples were taken once per every two months. Total amount of 23 289 

samples (until spring 2017) have been collected in 440 days. 290 

Before measurements, the 0.2 mL TDE groundwater samples were diluted to 5 mL with 291 

SGW (Fig. 3 step 1) and activities of 22Na, 133Ba and 134Cs were measured by HPGe-292 

detector. The separations of 36Cl and 3H were performed as described in Fig. 3. All 293 

samples were weighed before and after dilutions and distillations and all the results were 294 

corrected to the initial 0.2 mL sample. 295 

Results and discussion 296 

AgCl precipitation tests 297 

Table 3 shows the results of AgCl precipitation tests.  36Cl from the supernatant, 298 

precipitate dissolved in NH3 and two washing solutions was measured by LSC with a 299 

measurement efficiency of 89 ± 1%. The average yield of AgCl precipitation was 98 ± 300 

2% in the four measured test samples. 301 

When 36Cl was analyzed from the water samples with all five tracer radionuclides, no 302 

gamma emitting radionuclides were present in the AgCl precipitate.  A disturbance from 303 
3H possibly staying in sample is ruled out by setting the lower level of the 36Cl counting 304 

window to exceed the maximum energy of 3H betas. A detection limit of 0.15 Bq/g with a 305 

measurement time of 2 h was obtained for 36Cl. The yield results are in good agreement 306 

with results of Hou et al. [26] and Qian et al. [27]. 307 

Table 3 The separation of 36Cl by AgCl precipitation. Activity of 36Cl in different 308 

solutions and the yield of AgCl precipitation are given 309 

Sam

ple 

Initial 
36Cl activity 

(Bq) 

36Cl activity 

in 

supernatant 

(Bq) 

36Cl activity 

in wash 1 

(Bq) 

36Cl 

activity in 

wash 2 

(Bq) 

36Cl 

activity in 

AgCl 

precipitate 

(Bq) 

36Cl 

yield (%) 

1 1 380 ± 15 64 ± 1 0.289 ± 0.30 ± 0.01 1 340 ± 15 97 ± 1 
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0.014 

2 1 380 ± 15 63 ± 1 0.283 ± 

0.014 

0.55 ± 0.02 1 320 ± 14 96 ± 1 

3 2 380 ± 30 0.32 ± 0.01 0.309 ± 

0.014 

0.44 ± 0.02 2 390 ± 90 100 ± 4 

4 2 380 ± 30 0.47 ± 0.02 0.317 ± 

0.014 

0.37 ± 0.02 2 370 ± 90 100 ± 4 

 310 

Distillation tests for separating 3H 311 

Fig. 4 shows the quench correction curve for 3H.  The recovery of 3H was calculated by 312 

comparing the known activity concentration of the 10 mL distillation sample to the 313 

measured activity concentration in the distillate.  An average recovery of 97 ± 3 % was 314 

obtained, that is in good agreement with Atkinson et al. [38], who have reported 315 

distillation recoveries of >98% for 3H from environmental water samples. No gamma 316 

emitting radionuclides nor 36Cl were observed to leak to the distillate. Therefore 3H could 317 

be measured clean from disturbing spectral components with low detection limit of 0.4 318 

Bq/g (measurement time 2 h). 319 
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 320 

321 
Fig. 4 Quench correction curve for 3H. 5 mL SGW sample mixed with 15 mL of 322 

OptiPhase HiSafe 3 liquid scintillation cocktail. Samples measured with TriCarb 2910 323 

TR (Perkin Elmer) 324 

Activity of the TDE injection tracer solution 325 

Activity of the injection tracer solution was analysed from the S4a and S4b dilutions. 326 

Gamma emitting radionuclides 22Na, 133Ba and 134Cs were measured from the S4a 327 

dilution by Ge-detector with detection limits of 0.45 Bq/g for 22Na (1275 keV), 0.65 Bq/g 328 

for 133Ba (365 keV) and 0.50 Bq/g for 134Cs (604 keV) with a measurement time of 4.4 h. 329 

Beta emitting radionuclide 36Cl was separated from S4a dilution and 3H was distilled 330 

from S4b dilution. Results of the TDE tracer solution analysis are shown in Table 4. The 331 

total amount of injected tracer activities of gamma emitting nuclides 22Na, 133Ba and 332 
134Cs as well as beta emitting radionuclides 3H and 36Cl were corrected to the injected 333 

tracer volume which was 9.7 g. 334 

Table 4 Injected tracer solution activities in TDE 335 
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Radionuclide Injected activity (MBq) 
3H 198 ± 3 
36Cl 5.5 ± 0.2 
22Na 22.4 ± 0.2 
133Ba 2.09 ± 0.04 
134Cs 1.92 ± 0.06 

 336 

Analysis of the water samples from the TDE injection drill hole ONK-PP326  337 

The variation of radionuclide activities (Bq/g of 3H, 36Cl, 22Na, 133Ba and 134Cs) in the 338 

TDE injection drill hole as a function of time are shown in Fig. 5. All activities are half-339 

life corrected to the start of the experiment (19.11.2015). The general trend in all 340 

activities is falling; 133Ba and 134Cs the most and 36Cl the least. After 440 days from the 341 

start of the experiment, about 69% of the initial 36Cl concentration and about 52% of the 342 

initial 3H concentration is still present, whereas only 3% of initial 133Ba and 0.4% of the 343 

initial 134Cs is left in the injection drill hole circulation SGW. This is explained by the 344 

non-sorbing nature of 3H and 36Cl which decrease in the system only by diffusion into the 345 

pores of surrounding rock whereas the sorbing 133Ba and 134Cs activity decrease fast in 346 

the SGW due to the chemical reactions with the mineral surfaces of the rock. 133Ba and 347 
134Cs distribution coefficients (Kd = 1×10-1–1×10-3 m3/kg) [3, 26] are found to be large on 348 

veined gneiss which is the dominant rock type in the TDE area. Approximately 47% of 349 
22Na is present in the injection drill hole circulation SGW after 440 days of the 350 

experiment. No radionuclides migration into the two observation drill holes ONK-PP324 351 

and ONK-PP327 were observed during the 440 days of the experiment. Not even the 352 

non-sorbing radionuclides 3H and 36Cl had diffused through the 10 cm distance in the 353 

rock. 354 
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355 
Fig. 5 Activities (Bq/g) of 3H (plus), 36Cl (minus), 22Na (star), 133Ba (dot) and 134Cs 356 

(squares) in the TDE injection drill hole as a function of time (in days) 357 

Conclusions 358 

Analysis method for 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic groundwater solution 359 

was introduced. It includes separation of 36Cl by AgCl precipitation and 3H separation by 360 

distillation. Gamma emitting nuclides are measured precisely from the groundwater 361 

samples without any sample treatment. The developed separation procedure for analysis 362 

of 3H, 36Cl, 133Ba, 134Cs and 22Na for the TDE in-situ experiment at ONKALO was found 363 

to be effective and simple, with detection limits for all the nuclides close to 0.5 Bq/g.  364 

The radionuclide analyses show that the activities of 3H, 36Cl, 22Na, 133Ba and 134Cs in 365 

TDE injection hole are decreasing during the observation period of 440 days. Anyhow 366 

there were anomalies in the decreasing trend. These are most probably originated from 367 

strong pressure changes in the packed off drill hole sections in the early part of the 368 

experiment.  369 
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133Ba and 134Cs have adsorbed strongly onto the rock matrix which is shown in fast 370 

decrease of their activity concentrations in the beginning of the experiment. 96% of the 371 

initial 133Ba and >99% of 134Cs has been retained to the surroundings after 440 days 372 

experiment. From the weakly sorbing 22Na and non-sorbing 3H and 36Cl app. 31-53% of 373 

the activity is retained in the rock matrix of the injection drill hole surface and its 374 

surroundings, but no activity has migrated to the observation holes at the time of this 375 

analysis. All activities in the injection drill hole are still well above the detection limits. 376 
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