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SIGNIFICANCE STATEMENT  

Diabetic kidney disease (DKD) is a devastating microvascular complication of both type 1 and 

type 2 diabetes. It has been shown to have a heritable component, but prior searches for the 

genetic determinants of this condition have had limited success. In this study, a new international 

genomics consortium (the Diabetic Nephropathy Collaborative Research Initiative, funded by the 

JDRF) has coalesced to assemble nearly 20,000 samples from participants with type 1 diabetes, 

with and without kidney disease. We report 16 new signals at genome-wide significance and begin 

to describe the genetic architecture of this globally relevant phenotype.  Our top signal centers on 

a protective missense coding variant at COL4A3, which encodes an integral component of the 

glomerular basement membrane that when mutated causes Alport syndrome.  

 

ABSTRACT  

Background: Diabetic kidney disease (DKD) is a heritable but poorly understood complication of 

diabetes. Methods: To identify genetic variants predisposing to DKD, we performed genome-

wide association analyses in 19,406 individuals with type 1 diabetes (T1D) using a spectrum of 

DKD definitions based on albuminuria and renal function. Results: We identified 16 genome-wide 

significant loci. The variant with the strongest association (rs55703767) is a common missense 

mutation in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural 

component of the glomerular basement membrane (GBM) implicated in heritable nephropathies. 

The rs55703767 minor allele (Asp326Tyr) is protective against several definitions of DKD, 

including albuminuria and end-stage renal disease. Three other loci are in or near genes with 

known or suggestive involvement in DKD (BMP7) or renal biology (COLEC11 and DDR1). 

Conclusion: The 16 DKD-associated loci provide novel insights into the pathogenesis of DKD, 

identifying potential biological targets for prevention and treatment. 
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INTRODUCTION 

The devastating diabetic complication of diabetic kidney disease (DKD) is the major cause of end-

stage renal disease (ESRD) worldwide1,2. Current treatment strategies at best slow the 

progression of DKD, and do not halt or reverse the disease. Although improved glycemic control 

influences the rate of diabetic complications, a large portion of the variation in DKD susceptibility 

remains unexplained: one third of people with type 1 diabetes (T1D) develop DKD despite 

adequate glycemic control, while others maintain normal renal function despite long-term severe 

chronic hyperglycemia3.  

Though DKD demonstrates both familial clustering4-6 and single nucleotide polymorphism (SNP) 

heritability7, the specific genetic factors influencing DKD risk remain largely unknown. Recent 

genome-wide association studies (GWAS) have only identified a handful of loci for DKD, 

albuminuria, or estimated glomerular filtration rate (eGFR) in individuals with diabetes7-13. 

Potential reasons for the limited success include small sample sizes, modest genetic effects, and 

lack of consistency of phenotype definitions and statistical analyses across studies. Through 

collaboration within the JDRF Diabetes Nephropathy Collaborative Research Initiative (DNCRI), 

we adopted three approaches to improve our ability to find new genetic risk factors for DKD: 1) 

assembling a large collection of T1D cohorts with harmonized DKD phenotypes, 2) creating a 

comprehensive set of detailed DKD definitions, and 3) augmenting genotype data with low 

frequency and exome array variants.  

 

METHODS  

Cohorts and Phenotype Definitions. The GWAS meta-analysis included up to 19,406 patients 

with T1D of European origin from 17 cohorts (for study list and details see Table S1). All 

participants gave informed consent and all studies were approved by ethics committees from 



 

participating institutions.  We defined a total of 10 different case-control outcomes to cover the 

different aspects of renal complications, using both albuminuria and eGFR (Figure 1). Five 

comparisons (“All vs. ctrl”, “Micro”, “DN”, “Macro”, and “ESRD vs. macro”) were based on 

albuminuria, measured by albumin excretion rate (AER) from overnight or 24-h urine collection, 

or by albumin creatinine ratio (ACR). Two out of three consecutive collections were required 

(when available) to classify the renal status of subjects as either normoalbuminuria, 

microalbuminuria, macroalbuminuria, or ESRD; for detailed thresholds, see Table S9. Controls 

with normal AER were required to have a minimum diabetes duration of 15 years; subjects with 

microalbuminuria/macroalbuminuria/ESRD were required to have minimum diabetes duration of 

5/10/10 years, respectively, to exclude renal complications of non-diabetic origins. Two 

comparisons (“ESRD vs. ctrl” and “ESRD vs. non-ESRD”) were based on presence of ESRD as 

defined by eGFR<15 mL/min or dialysis or renal transplant. Two phenotypes (“CKD” and “CKD 

extreme”) were defined based on eGFR estimated by the CKD-EPI formula: controls had eGFR 

≥60ml/min/1.73m2 for both phenotypes, and ≥15 years of diabetes duration; cases had eGFR 

<60ml/min/1.73m2 for the “CKD” phenotype, and eGFR <15 ml/min/1.73m2 or dialysis or renal 

transplant for the “CKD extreme” phenotype, and ≥10 years of diabetes duration. For the “CKD-

DN” phenotype that combined both albuminuria and eGFR data, controls were required to have 

both eGFR ≥60ml/min/1.73m2 and normoalbuminuria; cases had both eGFR <45ml/min/1.73m2 

and micro- or macroalbuminuria, or ESRD.  

GWAS Genotyping, Quality Control and Imputation. All study samples underwent genotyping, 

quality control (QC) and imputation centrally at the University of Virginia. In brief, samples were 

genotyped on the HumanCore BeadChip array (Illumina, San Diego, CA, USA), which contains 

~250,000 genome-wide tag SNPs and over 200,000 exome-focused variants. All samples were 

passed through a stringent QC protocol. Following initial genotype calling with Illumina software, 

all samples were re-called with zCall, a calling algorithm specifically designed for rare SNPs from 



 

arrays. Variant orientation and position were aligned to hg19 (Genome Reference Consortium 

Human Build 37, GRCh37). Variant names were updated using 1000 Genomes as a reference. 

The data were then filtered for low quality variants (e.g. call rates <95% and excessive deviation 

from Hardy-Weinberg equilibrium) and samples (e.g. call rates <98%, gender mismatch, extreme 

heterozygosity). Principal Component Analysis (PCA) was performed separately for each cohort 

in order to empirically detect and exclude outliers with evidence of non-European ancestry (see 

supplement for full QC details, and Figure S1 for trait specific Manhattan and QQ plots). 

Genotypes were expanded to a total of approximately 49 million by imputation, using the minimac 

imputation tool14,15 and 1,000 Genomes Project (phase 3v5) as a reference. 

GWAS Analysis. A genome-wide association analysis was performed for each of the case-

control definitions under an additive genetic model, adjusting for age, sex, diabetes duration, 

study site (where applicable) and principal components. We conducted a second set of analyses 

adjusting for BMI and HbA1c which we refer to as our fully adjusted covariate model. Allele 

dosages were used to account for imputation uncertainty. Inverse-variance fixed effects meta-

analysis was performed using METAL and the following filters: INFO score >0.3, minor allele 

count >10 in both cases and controls, and presence of variant in at least two cohorts (Manhattan 

and QQ plots each trait and covariate model presented in Figure S1). The X chromosome was 

similarly analyzed for males and females both separately and in a combined analysis, with the 

exception of using hard call genotypes in place of allele dosages.16 We estimated the percentage 

of variance explained for all genome-wide significant SNPs across all disease definitions using 

the McKelvey-Zavoina17 pseudo-R2 statistic predicting continuous latent variables underlying 

binary outcomes.  

Glomerular basement membrane measurement in Renin-Angiotensin System Study 

(RASS). In brief, RASS was a double-blind placebo-controlled randomized trial of enalapril and 

losartan on renal pathology among 285 normoalbuminuric, normotensive subjects with T1D and 



 

normal or increased measured glomerular filtration rate (>90 ml/min/1.73m2).18 Participants were 

followed for 5 years with percutaneous kidney biopsy completed prior to randomization and at 5 

years. Structural parameters measured by electron microscopy on biopsy included GBM width, 

measured by the electron microscopic orthogonal intercept method18. All RASS participants 

contributed DNA for genotyping.  

In silico replication in SUMMIT consortium. The SUMMIT consortium included up to 5,193 

European Ancestry subjects with type 2 diabetes (T2D), with and without kidney disease. In silico 

replication was performed on previously published GWAS on DKD with harmonized trait 

definitions for seven of our primary T1D analyses: “DN”, “Micro”, “Macro”, “ESRD”, “ESRD vs. 

non-ESRD”, “CKD”, and “CKD-DN” under an additive model, adjusting for age, gender and 

duration of diabetes.13 

RNAseq and microarray profiling of human kidney samples from the Pima cohort. Kidney 

biopsy samples from the Pima Indian cohort were manually micro-dissected into 119 glomerular 

and 100 tubule-interstitial tissues to generate gene expression profiles19. Expression profiling in 

the Pima Indian cohort kidney biopsies was carried out using Affymetrix GeneChip Human 

Genome U133 Array and U133Plus2 Array, as reported previously, and Affymetrix Human Gene 

ST Genechip 2.120,21, and on RNA-seq (Illumina). The libraries were prepared using the ClonTech 

SMARTSeq v4 Ultra Low Input polyA selection kit. Samples were sequenced on a HiSeq 4000, 

single end, 75bp. Mapping to human reference genome GRCh38.7 was performed with STAR 

2.5.2b (https://github.com/alexdobin/STAR). For annotation and quantification of mapping results 

we used cufflinks, cuffquant and cuffnorm in version 2.2.1 (https://cole-trapnell-

lab.github.io/cufflinks/). After mapping and quantification, PCA and Hierarchical Clustering was 

used to identify outliers and reiterated until no more outliers could be identified. 

RNA-sequencing and cis-eQTL analysis in human kidney samples from University of 

Pennsylvania cohort. Human kidney samples were obtained from surgical nephrectomies for a 



 

total of 455 subjects with pathological data and were manually microdissected under a 

microscope in RNAlater for glomerular and tubular compartments (433 tubule and 335 glomerulus 

samples). The local renal pathologist performed an unbiased review of the tissue section by 

scoring multiple parameters, and RNA were prepared using RNAeasy mini columns (Qiagen, 

Valencia, CA) according to manufacturer's instructions.  

Whole kidney22, tubular and glomerular23 eQTL analyses have been described previously. Tubular 

and glomerular eQTL data sets were generated by 121 samples of tubules and 119 samples of 

glomeruli, respectively23. The cis window was defined as 1 megabase up- and down-stream of 

the transcriptional start site (±1Mb). Whole kidney cis-eQTL (further just referred to as eQTL) data 

set was generated from 96 human samples obtained from The Cancer Genome Atlas (TCGA) 

through the TCGA Data portal22.  

Mouse kidney single cell RNA-sequencing. Kidneys were harvested from 4 to 8-week-old male 

mice with C57BL/6 background and dissociated into single cell suspension as described in our 

previous study24. The single cell sequencing libraries were sequenced on an Illumina HiSeq with 

2x150 paired-end kit. The sequencing reads were demultiplexed, aligned to the mouse genome 

(mm10) and processed to generate gene-cell data matrix using Cell Ranger 1.3 

(http://10xgenomics.com)24. 

Genomic features of human kidney. Human kidney-specific chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) data can be found at GEO: GSM621634, GSM670025, 

GSM621648, GSM772811, GSM621651, GSM1112806, GSM621638. Different histone markers 

were combined into chromatin states using ChromHMM25. 

Gene and gene set analysis. PASCAL and MAGMA (v1.06) gene and pathway scores were 

conducted on all 20 sets of GWAS summary statistics using default pathway libraries from 

BioCarta, REACTOME, and KEGG. MAGENTA (vs2, July 2011) pathway analysis included 4725 

pathways with a minimum of five genes within the gene set for the 10 standard adjustment models. 



 

We conducted DEPICT individually on all 20 sets of GWAS summary statistics with P<10-5 and 

additional pooled analyses using genome-wide minimum P-values from: 1) All 20 analyses (10 

phenotypes and 2 covariate models) and 2) 16 analyses of the 8 most related phenotypes which 

excluded ESRD vs Macro and Micro.  

Transcriptome-wide association study (TWAS): TWAS of kidney glomeruli and tubuli was 

performed using MetaXcan with default parameters,26 based on eQTL data for human glomerular 

and tubular cells.23 

 

RESULTS 

Phenotypic comparisons 

We investigated a broad spectrum of DKD definitions based on albuminuria and renal function 

criteria, defining a total of 10 different case-control comparisons to cover the different aspects of 

disease progression (Figure 1). Seven comparisons were based on albuminuria and/or ESRD 

(including diabetic nephropathy [DN], defined as either macroalbuminuria or ESRD); two were 

defined based on eGFR (used to classify severity of chronic kidney disease [CKD]); and one 

combined both albuminuria and eGFR data (“CKD-DN”). Each phenotypic definition was analyzed 

separately in GWAS; to account for the 10 definitions each analyzed under two covariate 

adjustment models, we estimated16 the total effectively independent tests as 7.4, allowing us to 

compute a more conservative study-wide significance threshold (P<6.76×10-9), based on 

genome-wide significance (P<5×10-8) and Bonferroni correction for 7.4 effective tests. 

Top genome-wide association results highlight COL4A3 

GWAS meta-analysis included association results for up to 19,406 individuals with T1D of 

European descent from 17 cohorts for the 10 case-control definitions (Table S1). We identified 

16 novel independent loci that achieved genome-wide significance (P<5×10-8) in either the 

minimal or fully adjusted models, in which four lead SNPs also surpassed our more conservative 



 

study-wide significance threshold (Table 1; Figure 2, Manhattan plot; Figures S2a-p, regional 

association and forest plots). None of the loci reaching genome-wide significance have been 

previously identified in GWAS or candidate gene studies for DKD or closely related traits. All SNPs 

with minor allele frequency greater than 1% explain 2.5% and 3.0% of the total variance 

(McKelvey-Zavoina17 pseudo-R2) of DN after adjusting for covariates in the minimal and full 

covariate models, respectively (Table S12).  

The strongest signal was rs55703767 (minor allele frequency [MAF]=0.21), a common missense 

variant (G>T; Asp326Tyr) in exon 17 of COL4A3. This SNP was associated with protection from 

DN (odds ratio [OR]=0.79, P=5.34×10-12), any albuminuria (OR=0.84, P=3.88×10-10), the 

combined CKD-DN phenotype (OR =0.77, P=5.30×10-9), and macroalbuminuria (OR=0.79, 

P=9.28×10-9). Interestingly, we found that rs55703767 in COL4A3 was more strongly associated 

in men (OR=0.73, P=1.29×10-11) than in women (OR=0.85, P=1.39×10-3; Phet=1.58×10-2). 

COL4A3 encodes the alpha 3 chain of collagen type IV, a major structural component of the 

GBM27.  

COL4A3 variation and kidney phenotypes 

In persons with T1D and normoalbuminuria, GBM width predicts progression to proteinuria and 

ESRD independently of glycated hemoglobin (HbA1c)28. We examined the influence of the 

COL4A3 variant on GBM width in 253 RASS18 participants with T1D and normal AER, eGFR (>90 

ml/min/1.73 m2) and blood pressure, who had biopsy and genetic data (Table S2). The DKD-

protective minor T allele was associated with 19.7 nm lower GBM width (standard error (SE) 8.2 

nm, P=0.02), with the lowest mean GBM width among TT homozygotes (Figure 3; Table S3), 

after adjusting for age, sex, and diabetes duration, and without detectable interactions with T1D 

duration or mean HbA1c. Thus, the protective T allele carriers had thinner GBM prior to any renal 

complications.  



 

We did not detect any eQTL association between rs55703767 and COL4A3 expression in mouse 

glomeruli or in human tissues, and thus assume that the variant affects the COL4A3 structure 

rather than expression levels. Nevertheless in a Pima Indian cohort of 97 subjects with DKD with 

morphometric and expression data from renal biopsies, COL4A3 expression was negatively 

correlated with the GBM surface density (filtration surface density) (β=-0.27, P=0.02), which is 

associated with eGFR in DKD in both T1D and T2D29,30. Furthermore, in 335 micro-dissected 

human glomerulus samples, expression of COL4A3 was negatively correlated with 

glomerulosclerosis, potentially reflecting podocyte depletion in sclerotic glomeruli (corr=0.16, 

P=4.8×10-3; Figure S3). COL4A3 expression in glomeruli, but not in tubules, was also nominally 

correlated with eGFR (corr 0.108, P=0.047; Figure S3). 

Evidence for hyperglycemia specificity 

Hyperglylcemia promotes the development of diabetic complications. If a genetic variant exerts a 

stronger effect in the setting of hyperglycemia, 1) it might not be detected in general CKD, 2) it 

may be detected whether hyperglycemia is conferred by T1D or T2D, 3) its effect may be stronger 

at higher glycemic strata, and 4) interventions that reduce glycemia may attenuate the association 

signal. COL4A3 rs55703767 was not associated with eGFR in a general population sample of 

110,517 mainly non-diabetic participants of European ancestry31 (Table S4). However, in a 

smaller cohort of 5,190 participants with T2D and DKD phenotypes in the SUrrogate markers for 

Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) consortium, 

we detected a directionally consistent suggestive association of COL4A3 rs55703767 with DN (2-

tailed P=0.08; Table S5).  

We further stratified the association analyses by HbA1c in the Finnish Diabetic Nephropathy 

(FinnDiane) Study, a T1D cohort study with extensive longitudinal phenotypic data32. Based on 

the time-weighted mean of all available HbA1c measurements for each individual, 1,344 

individuals had mean HbA1c <7.5% (58 mmol/mol), and 2,977 with mean HbA1c ≥7.5%. COL4A3 



 

rs55703767 was nominally significant (P<0.05) only in individuals with HbA1c ≥7.5% (Figure 4, 

Table S6, Figure S4). However, the interaction between HbA1c and COL4A3 rs55703767 was 

not significant (P=0.83). Upon further examination, the genetic effect was diminished also in the 

highest HbA1c quartile (>9.3%), as the environmental effect of HbA1c seems to overwhelm any 

potential genetic effects at COL4A3 (test of heterogeneity non-significant). In a similar setting of 

individuals with T2D from the GoDARTS study (N=3226)13,33, no difference was observed for 

COL4A3 rs55703767 between HbA1c strata below or above 7.5% (Figure S5). We performed a 

similar HbA1c stratified analysis in the Diabetes Control and Complications Trial (DCCT), whose 

participants, all with T1D, continue to be followed in the Epidemiology of Diabetes Interventions 

and Complications (EDIC)34,35. In DCCT-EDIC the effect of COL4A3 rs55703767 was stronger 

among those recruited in the secondary cohort (mild retinopathy and longer diabetes duration at 

baseline) who were originally randomized to conventional treatment and therefore had higher 

HbA1c than the intensive treatment group (Table S7). Taken together, these independent lines 

of evidence strongly suggest that the COL4A3 variant effect on DKD risk is amplified by poor 

glycemic control. 

Other association signals 

A comprehensive list of all loci that achieved genome-wide significance from either the minimal 

or the fully adjusted covariate models is reported in Table 1. The fewer covariates required for the 

minimal model results in improved statistical power due to fewer subjects with missing data, 

whereas the fully adjusted model allows the identification of associations potentially mediated by 

covariates. Comparison of the adjustment models revealed strong consistency between the two 

models (Figure S6). Table 1 is stratified into two sets of loci: common and/or known kidney biology 

loci (top half, n=8) and uncommon and no known kidney biology loci (bottom half, n=8). We focus 

on loci in the top half of the table, common and/or in/near genes with relevant kidney biology.  



 

Two other genome-wide significant signals were near genes encoding proteins related to 

collagen. Variant rs12615970 (MAF=0.13), located 53 kb downstream of COLEC11, was 

associated with CKD (OR=1.31, P=9.43×10-9), and rs116772905 (MAF=0.011) in exon 14 of 

DDR1 was associated with microalbuminuria (OR=3.78, P=4.40×10-8). rs116772905 is in perfect 

linkage disequilibrium with rs118124843, the lead association with microalbuminuria for this locus 

under the full adjustment model (taking into account both BMI and HbA1c), located 29 kb 

downstream of DDR1 (OR=3.97, P=3.37×10-8). COLEC11 encodes a collectin protein containing 

both a collagen-like domain and a carbohydrate recognition domain for binding sugars, and DDR1 

encodes the discoidin domain-containing receptor 1, which binds collagens including type IV 

collagen. 

In addition to COL4A3 rs55703767, three other low-frequency variants achieved study-wide 

significance (P<6.76×10-9), each associated with microalbuminuria: rs142823282 (MAF=0.017), 

22 kb upstream of TAMM41 encoding a mitochondrial translocator assembly and maintenance 

protein36,37 (OR=6.75, P=1.13×10-11), rs144434404 (MAF=0.011), in intron 1 of BMP7 encoding 

the bone morphogenetic protein 7 previously implicated in DKD38 (OR=6.75, P=2.67×10-9), and 

rs145681168 (MAF=0.014), in intron 3 of two transcripts of HAND2 antisense RNA 1 (HAND2-

AS1; OR=5.53, P=5.40×10-9) and 50 kb upstream of HAND2, encoding a heart and neural crest 

derivatives transcription factor.  

Two additional common variants achieved genome-wide significance: rs551191707 (MAF=0.122) 

in PRNCR1 associated with ESRD when compared with macroalbuminuria (OR=1.70, 

P=4.39×10-8) and rs61983410 (MAF=0.213) in an intergenic region on chromosome 14 

associated with microalbuminuria (full model OR=0.78, P=3.06×10-8). The remaining seven 

variants associated with features of DKD had lower allele frequencies (four with 0.01≤MAF≤0.05 

and four with MAF<0.01) and did not achieve study-wide significance.  



 

As we had done for COL4A3 rs55703767, we tested whether the associations of the 15 other 

variants were amplified by hyperglycemia. None of the 15 variants were significantly associated 

with eGFR in the general population (Table S4). In the smaller SUMMIT T2D cohort13 we were 

able to interrogate seven loci with comparable trait definitions. The odds ratios were directionally 

consistent in six of them (binomial sign test: P=0.0625, Table S5). In FinnDiane seven of the 

remaining 15 loci were observed with sufficient frequency (minor allele counts >10) to allow 

subgroup analysis. Two additional SNPs (rs149641852 in SNCAIP and rs12615970 near 

COLEC11) were nominally significant (P<0.05) only in individuals with HbA1c ≥7.5%, however 

the genotype × HbA1c interaction term was non-significant (Table S6, Figure S4). 

Variants previously associated with DKD  

We investigated the effect of variants previously associated at genome-wide significance with 

renal complications in individuals with diabetes8-13,39. Across the ten sub-phenotypes in our meta-

analysis, we found evidence of association for seven of nine examined loci (P<0.05, Figure S7): 

We replicated two loci that were previously discovered without overlapping individuals with the 

current study: SCAF8/CNKSR3 rs12523822, originally associated with DKD (P=6.8×10-4 for “All 

vs ctrl”) 8; and UMOD rs77924615, originally associated with eGFR in both individuals with and 

without diabetes (P=5.2×10-4 for “CKD”)31. Associations at the AFF3, RGMA-MCTP2, and ERBB4 

loci, identified in the GEnetics of Nephropathy—an International Effort (GENIE) consortium12, 

comprised of a subset of studies included in this current effort, remained associated with DKD, 

though the associations were attenuated in this larger dataset (RGMA-MCTP2 rs12437854 

P=2.97×10-5; AFF3 rs7583877 P=5.97×10-4; ERBB4 rs7588550 P=3.53×10-5; Figure S8). 

Associations were also observed at the CDCA7/SP3 (rs4972593, P=0.020 for “CKD-DN”, 

originally for ESRD exclusively in women11) and GLRA3 (rs1564939, P=0.016 for “CKD 

extremes”, originally for AER10,39), but these analyses also include individuals that overlap with 

the original studies. Apart from the UMOD locus, none of the 63 loci associated with eGFR in the 



 

general population31 were associated with DKD after correction for multiple testing (P<7.0×10-4, 

Figure S9). 

Gene and gene set analysis 

We conducted gene-level analyses by employing two methods that aggregate SNP summary 

statistics over a gene region while accounting for linkage disequilibrium, MAGMA and 

PASCAL40,41. MAGMA identified five genes at a Bonferroni-corrected threshold (P<0.05/18,222 

genes tested = 2.74×10-6): the collagen gene COL20A1 associated with “CKD extreme” (full 

model P=5.77×10-7) and “ESRD vs. non-ESRD” (full model P=9.53×10-7), SLC46A2 associated 

with “All vs. ctrl” (P=7.38×10-7), SFXN4 associated with “Macro” (full model P=1.65×10-7), GLT6D1 

associated with “ESRD vs. macro” (P=1.49×10-6), and SNX30 associated with “All vs ctrl” 

(P=2.49×10-6) (Table S8). Although PASCAL did not identify any significant gene level 

associations, the five MAGMA-identified genes had P<5.0×10-4 in PASCAL (Table S9). Both 

SFXN4 and CBX8 have been reported to be differentially methylated in patients with diabetes 

with and without nephropathy42,43.  

Additionally, we used MAGMA, PASCAL, DEPICT, and MAGENTA to conduct gene-set analysis 

in our GWAS dataset. The four methods identified 12 significantly enriched gene sets (Table 

S10). One gene set, “negative regulators of RIG-I MDA5 signaling” was identified in two different 

pathway analyses (MAGMA and PASCAL) of our fully adjusted GWAS of ESRD vs. Macro. 

Several additional related and overlapping gene sets were identified, including “RIGI MDA5 

mediated induction of IFN alpha beta pathways”, “TRAF3 dependent IRF activation pathway”, and 

“TRAF6 mediated IRF activation” (PASCAL) and “activated TLR4 signaling” (MAGENTA). RIG-I, 

MDA5 and the toll-like receptor TLR4 are members of the innate immune response system that 

respond to both cellular injury and infection44,45 and transduce highly intertwined signaling 

cascades. These include the signaling molecules TRAF3 and TRAF6, which induce expression 

of type I interferons and proinflammatory cytokines implicated in the progression of DKD46,47. 



 

Specifically, the TLR4 receptor and several of its ligands and downstream cytokines display 

differential levels of expression in DKD renal tubules vs. normal kidneys and vs. non-diabetic 

kidney disease controls48, and TLR4 knockout mice are protected from DKD and display marked 

reductions in interstitial collagen deposition in the kidney49. Other pathways of interest include 

“other lipid, fatty acid and steroid metabolism”, “nitric oxide signaling in the cardiovascular 

system”, and “Tumor necrosis factor (TNF) family member”, with both nitric oxide and TNF-𝛼 

implicated in DKD50,51,52. 

Expression and epigenetic analyses 

We interrogated gene expression datasets in relevant tissues to determine whether our top 

signals underlie expression quantitative trait loci (eQTL). We first analyzed genotype and RNAseq 

gene expression data from 96 whole human kidney cortical samples22 and micro-dissected human 

kidney samples (121 tubule and 119 glomerular samples)23 from subjects of European descent 

without any evidence of renal disease (Figure S10). No findings in this data set achieved 

significance after correction for multiple testing. In the GTEx and eQTLgen datasets, COL4A3 

rs55703767 had a significant eQTL (P=5.63×10-38) with the MFF gene in blood, but is most likely 

due to modest LD with other nearby strong eQTLs in the region. rs118124843 near DDR1 and 

VARS2 had multiple significant eQTLs in blood besides VARS2 (P=1.71×10-5; Table S11). 

Interestingly, rs142823282 near TAMM41 was a cis-eQTL for PPARG (P=4.60×10-7), a 

transcription factor regulating adipocyte development, glucose and lipid metabolism; PPARγ 

agonists have been suggested to prevent DKD53.  

To ascertain the potential functional role of our top non-coding signals, we mined ChIP-seq data 

derived from healthy adult human kidney samples25. SNP rs142823282 near TAMM41 was 

located close to kidney histone marks H3K27ac, H3K9ac, H3K4me1, and H3K4me3, suggesting 

that this is an active regulator of TAMM41 or another nearby gene (Figure S11). Interestingly, in 



 

recent work we have shown that DNA methylation profiles in participants with T1D with/without 

kidney disease show the greatest differences in methylation sites near TAMM4154.  

To establish whether the expression of our top genes shows enrichment in a specific kidney cell 

type, we queried an expression dataset of ~50,000 single cells obtained from mouse kidneys24. 

Expression was detected for six genes in the mouse kidney atlas: three (COL4A3, SNCAIP, and 

BMP7) were almost exclusively expressed in podocytes (Figure 5), supporting the significant role 

for podocytes in DKD.  

Gene expression levels in kidneys in cases vs. controls were predicted with TWAS based on the 

GWAS summary statistics and eQTL data of kidney glomeruli and tubuli.23 While none of the 

genes survived correction for multiple testing, analysis suggested 18 genes with differential 

expression in cases and controls with P<1×10-4, including the NPNT, PRRC2C, and VPS33B 

genes (Table S12). NPNT encodes for nephronectin, an extra-cellular matrix protein on GBM. 

Knocking out NPNT or decreasing NPNT expression levels have been shown to induce podocyte 

injury related to GBM.55 On the contrary, TWAS predicted higher NPNT expression within DN 

cases vs. normal AER. In line with our TWAS finding, NPNT is significantly upregulated in 

glomeruli of diabetic nephropathy mouse model vs. non-diabetic mouse (p=6.4x10-4, fold change 

1.3, in top 2%, accessed through www.neproseq.org).56 Furthermore, a variant near PRRC2C 

was recently associated with albuminuria in the UK Biobank,57 and rare mutations in VPS33B 

gene cause arthrogryposis, renal dysfunction, and cholestasis-1 (ARCS1) syndrome involving 

proximal–tubular dysfunction and usually death by the age of 1.58 

 

DISCUSSION 

Our genome-wide analysis of 19,406 participants with T1D identified 16 genome-wide significant 

loci associated with DKD, four of which remained significant after a conservative correction for 

multiple testing. Four of the 16 genome-wide significant signals are in or near genes with known 

http://www.neproseq.org/


 

or suggestive biology related to renal function/collagen (COL4A3, BMP7, COLEC11, and DDR1), 

but this is the first time that naturally occurring variation (MAF > 1%) in these loci has been 

associated with DKD. Our most significant signal was a protective missense variant in COL4A3, 

rs55703767, reaching both genome-wide and study-wide significance with multiple definitions of 

DKD. Moreover, this variant demonstrated a significant association with GBM width such that 

protective allele carriers had thinner GBM before any signs of kidney disease, and its effect was 

dependent on glycemia.  

COL4A3, with COL4A4 and COL4A5, make up the so-called “novel chains” of type IV collagen59, 

which together play both structural and signaling roles in the GBM. Specifically, COL4A3 is known 

to bind a number of molecules including integrins, heparin and heparin sulfate proteoglycans, and 

other components of the GBM such as laminin and nidogen. These interactions mediate the 

contact between cells and the underlying collagen IV basement membrane, and regulate various 

processes essential to embryonic development and normal physiology including cell adhesion, 

proliferation, survival and differentiation. Dysregulation of these interactions has been implicated 

in several pathological conditions including CKD60.  

Mutations in COL4A3 are responsible for the autosomal recessive form of Alport syndrome, a 

progressive inherited nephropathy, as well as benign familial hematuria, characterized by thin (or 

variable width) GBM, and thought to be a milder form of Alport syndrome61. Furthermore, 

mutations in COL4A3 have also been identified in patients with focal segmental 

glomerulosclerosis (FSGS), often leading to proteinuria and renal failure. Some of these patients 

with FSGS presented with segmental GBM thinning.62 Of note, the common rs55703767 

(COL4A3 Asp326Tyr) variant, protecting from DKD, was also associated with thinner GBM in 

individuals with diabetes but without renal complications, a feature that seems to be beneficial in 

the context of diabetes. The rs55703767 SNP is predicted to alter the third amino acid of the 

canonical triple-helical domain sequence of Glycine (G)-X-Y (where X and Y are often proline (P) 



 

and hydroxyproline (Y), respectively) from G-E-D (D=Aspartic) to G-E-Y63, potentially impacting 

the structure of the collagen complex. In addition, a recent study64 of candidate genes involved in 

renal structure reported rs34505188 in COL4A3 (not in linkage disequilibrium with rs55703767, 

r2=0.0006) to be associated with ESRD in African Americans with T2D (MAF=2%, OR=1.55, 

P=5×10-4). Together with the trend towards association we have seen in SUMMIT and the 

glycemic interaction we have reported here, these findings suggest variation in COL4A3 may be 

associated with DKD in T2D as well. 

Given its association as a protective SNP, we can speculate that the rs55703767 variant may 

confer tensile strength or flexibility to the GBM, which may be of particular relevance in the 

glomerular hypertension associated with DKD. Alternatively, COL4A3 may regulate the rates of 

production and/or turnover of other GBM components, affecting GBM width changes in diabetes. 

How these effects might confer protection in a manner dependent on ambient glucose 

concentrations is unknown. Future mechanistic studies will be required to determine the precise 

role of this variant in DKD; elucidation of its interaction with glycemia in providing protection might 

be relevant to other molecules implicated in diabetic complications. 

In keeping with the collagen pathway, the synonymous exonic variant rs118124843, which 

reached genome-wide significance for the “Micro” phenotype, is located near DDR1, the gene 

encoding the discoidin domain-containing receptor 1. Based on chromatin conformation 

interaction data from Capture HiC Plotter (CHiCP),65 the rs118124843 containing fragment 

interacts with six gene promoter regions, including DDR1, suggesting that the variant regulates 

DDR1 expression across multiple tissues (Table S11). DDR1 is a collagen receptor66 shown to 

bind type IV collagen67, and is highly expressed in kidneys, particularly upon renal injury68. Upon 

renal injury, Ddr1-deficient mice display lower levels of collagen69, decreased proteinuria, and an 

increased survival rate compared to wild-type controls70, with Ddr1/Col4a3 double knockout mice 

displaying protection from progressive renal fibrosis and prolonged lifespan compared to Col4a3 



 

knockout mice alone69. Thus, through its role in collagen binding DDR1 has been suggested as a 

possible therapeutic target for kidney disease69.  

The association of rs12615970, an intronic variant on chromosome 2 near the COLEC11 gene, 

met genome-wide significance for the CKD phenotype, as well as nominal significance for multiple 

albuminuria-based traits. The rs12615970 containing fragment was found to interact with 

COLEC11, ALLC, and ADI1 transcription start sites in chromatin conformation data on GM12878 

cell line (Table S11)65,71. Collectin-11 is an innate immune factor synthesized by multiple cell 

types, including renal epithelial cells with a role in pattern recognition and host defense against 

invasive pathogens, through binding to fructose and mannose sugar moieties72,73. Mice with 

kidney-specific deficiency of COLEC11 are protected against ischemia-induced tubule injury due 

to reduced complement deposition74, and mutations in COLEC11 have been identified in families 

with 3MC syndrome, a series of rare autosomal recessive disorders resulting in birth defects and 

abnormal development, including kidney abnormalities75. 

The intronic variant rs144434404, associated at study-wide significance with the 

microalbuminuria phenotype, resides within the bone morphogenetic protein 7 (BMP7) gene. 

BMP7 encodes a secreted ligand of the transforming growth factor-beta superfamily of proteins. 

Developmental processes are regulated by the BMP family of glycosylated extracellular matrix 

molecules, via serine/threonine kinase receptors and canonical Smad pathway signaling. 

Coordinated regulation of both BMP and BMP-antagonist expression is essential for developing 

tissues, and changes in the levels of either BMP or BMP-antagonists can contribute to disease 

progression such as fibrosis and cancer76. BMP7 is required for renal morphogenesis, and Bmp7 

knockout mice die soon after birth due to reduced ureteric bud branching77-79. Maintenance of 

Bmp7 expression in glomerular podocytes and proximal tubules of diabetic mice prevents 

podocyte loss and reduces overall diabetic renal injury38. More recently, we have identified a 

mechanism through which BMP7 orchestrates renal protection through Akt inhibition and 



 

highlights Akt inhibitors as potential anti-fibrotic therapeutics80. It is also noteworthy that the BMP7 

antagonist grem-1 is implicated in DKD81-83 and gremlin has been implicated as a biomarker of 

kidney disease84.  

Strengths of this analysis include the large sample size, triple that of the previous largest GWAS; 

the uniform genotyping and quality control procedures; standardized imputation for all studies 

(1,000 Genomes reference panel); the inclusion of exome array content; the exploration of 

multiple standardized phenotype definitions of DKD; and supportive data from various sources of 

human kidney samples. Several of the loci identified have known correlations with kidney biology, 

suggesting that these are likely true associations with DKD. However, we acknowledge a number 

of limitations. First, nine variants have low MAF and were driven by only two cohorts, indicating 

that further validation will be required to increase confidence in these associations. Second, seven 

variants were significantly associated with microalbuminuria only, a trait shown to be less heritable 

in previous studies. We included these loci to maximize comprehensiveness in reporting novel 

DKD associations. Replication in independent samples and functional confirmation is required to 

validate all of these loci. Even though the gene-level, gene set and pathway analyses had limited 

power, these analyses identified several additional potential DKD loci and pathways, some with 

relevance to kidney biology, that require further follow-up. Finally, while we included only controls 

with a minimum diabetes duration of 15 years, we cannot fully rule out that some of the controls 

would progress to DKD in the future, as the improvements in diabetes treatment in the last 

decades have postponed the onset of complications. We also excluded cases with short diabetes 

duration to avoid renal complications that might be due to other causes. These phenotypic 

definitions were meant to overcome the limitation that in clinical practice kidney biopsies are rarely 

taken from individuals with diabetes to verify the diagnosis. As for any late onset disease, these 

challenges in phenotypic definition may have reduced our power to detect additional associations. 

We note, however, that this relatively small degree of contamination would lead to loss of power 



 

and increased type II error rather than false positive findings; therefore, it does not undermine the 

robustness of the associations reported here. 

Diabetic complications are unquestionably driven by hyperglycemia and partially prevented by 

improved glycemic control in both T1D and T2D, but there has been doubt over what contribution, 

if any, inherited factors contribute to disease risk. In line with previous genetic studies, this study 

with a markedly expanded sample size identified several loci strongly associated with DKD risk. 

These findings suggest that larger studies, aided by novel analyses and including T2D, will 

continue to enhance our understanding of the complex pathogenesis of DKD, paving the way for 

molecularly targeted preventive or therapeutic interventions. 
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TABLES  

Table 1. Loci associated with DKD at study-wide (P<6.76×10-9, bold) and genome-wide (P<5×10-8) significance.  
Common variants and/or genes with relevant kidney biology are reported in the top half of the table. Uncommon variants 

(MAF < 2%) with no known relevant kidney biology are reported in the bottom half of the table. Genes are annotated as 

follows: missense variant in the indicated gene (M); intronic, synonymous, or noncoding variant in the indicated gene (G); gene 

nearest to lead variant (N); gene has relevant kidney (B). Chr, chromosome; pos, position; EAF, effect allele frequency; OR, odds 

ratio; min, minimally adjusted covariate model; full, fully adjusted covariate model. 

 

SNP Chr:pos 
Effect 
allele 

Other 
allele 

EAF 
Notable 
gene(s) 

Phenotype ORmin P-valuemin ORfull P-valuefull 

rs55703767 2:228121101 T G 0.206 
COL4A3 
(M, B, N) 

DN 0.79 5.34×10-12 0.78 8.19×10-11 

            All vs. ctrl 0.83 3.88×10-10 0.84 9.68×10-9 

            CKD+DN 0.77 5.30×10-9 0.76 3.77×10-8 

            Macro 0.78 9.28×10-9 0.77 9.38×10-9 

rs12615970 2:3745215 G A 0.133 
COLEC11 (B) 
ALLC (N, G) 

CKD 0.76 9.43×10-9 0.77 1.60×10-7 

rs142823282 3:11910635 G A 0.011 
TAMM41 

(N, B) 
Micro 6.73 8.32×10-10 9.18 1.13×10-11 

rs145681168 4:174500806 G A 0.014 
HAND2-AS1  

(N, G, B)  
Micro 5.53 2.06×10-7 7.47 5.40×10-9 

rs118124843 6:30887465 T C 0.011 
DDR1 (B) 

VARS2 (G) 
Micro 3.79 4.42×10-8 3.99 3.37×10-8 

rs77273076 7:99728546 T C 0.008 
MBLAC1 

(N, B) 
Micro 9.16 1.04×10-8 7.10  2.28×10-7 

rs551191707 8:128100029 CA C 0.122 
PRNCR1 

(N) 
ESRD vs. 
macro 

1.70 4.39×10-8 1.71 3.15×10-6 

rs61983410 14:26004712 T C 0.213 
STXBP6 

(N) 
Micro 0.79 9.84×10-8 0.78 3.06×10-8 

rs144434404 20:55837263 T C 0.011 
BMP7 

(N, G, B) 
Micro 6.78 2.67×10-9 6.66 4.65×10-9 
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rs115061173 3:926345 A T 0.014 
LINC01266 

(N) 
ESRD vs. 

ctrl 
9.40 4.07×10-8 8.34 4.08×10-5 

rs116216059 3:36566312 A C 0.016 
STAC 
(N, G) 

ESRD vs.  
non-ESRD 

8.73 1.37×10-8 11.78 1.41×10-4 

rs191449639 4:71358776 A T 0.005 
MUC7 

(N) 
DN 32.42 1.32×10-8 32.47 2.09×10-8 

rs149641852 5:121774582 T G 0.012 
SNCAIP 
(N, G) 

CKD 
extreme 

9.01 1.37×10-8 --- --- 

rs183937294 11:16937846 G T 0.007 
PLEKHA7 

(N, G) 
Micro 17.22 1.65×10-8 23.62 2.10×10-6 

rs113554206 14:73740250 A G 0.012 
PAPLN 
(N, G) 

Macro 4.60 5.39×10-7 10.42 8.46×10-9 

rs185299109 18:1811108 T C 0.007 intergenic CKD 20.75 1.28×10-8 44.75 4.99×10-7 

 

 

 

 

 



Figure 1

Figure 1. Phenotypic analysis of DKD. Schematic diagram of outcomes 

analyzed in this study. Numbers indicate the total number of cases (darker 

gray) and controls (lighter gray) included in the meta-analyses for each 

phenotype. Microalb.: microalbuminuria; macroalb.: macroalbuminuria; 

eGFR: estimated glomerular filtration rate; ESRD: End-stage renal disease, 

defined as eGFR <15 mL/min/1.73m2 or undergoing dialysis or having renal 

transplant; CKD: chronic kidney disease.



Figure 2

Figure 2 Genome-wide association testing of all 10 phenotypic

comparisons. Multiphenotype Manhattan plot shows lowest P-value at

each marker for each of the 10 phenotypic comparisons, under the standard

and fully-adjusted model. Significance of SNPs (-log10[P-value], y axis) is

plotted against genomic location (x axis). Loci surpassing genome-wide

significance (red line) and/or study-wide significance (blue line) are colored

by phenotype.



Figure 3

Figure 3. Adjusted residuals of GBM width by rs55703767 genotype 

and sex. Box and whisker plot of residuals of mean GBM width after 

adjusting for age, sex, and diabetes duration, stratified by GG, GT, or TT 

genotype at rs55703767, with overlay of individual data points for both 

females (pink) and males (blue).



Figure 4

Figure 4. Association at rs55703767 (COL4A3) stratified by HbA1c below 

or above 7.5%, for the phenotypes reaching genome-wide significance 

in the combined meta-analysis. Analysis included 1344 individuals with 

time-weighted mean HbA1c <7.5% (58 mmol/mol), and 2977 with mean 

HbA1c ≥7.5% from the FinnDiane study; the individuals had median 19 

HbA1c measurements (range 1 – 129).  
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Figure 5. Single cell RNA-sequencing in mouse kidney shows COL4A3, 

SNCAIP, and BMP7 are specifically expressed in podocytes. Mean 

expression values of the genes were calculated in each cluster. The color 

scheme is based on z-score distribution; the map shows genes with z-

score>2. In the heatmap, each row represents one gene and each column is 

single cell type. Percentages of assigned cell types are summarized in the 

right panel. Endo, containing endothelial, vascular, and descending loop of 

Henle; Podo, podocyte; PT, proximal tubule; LOH, ascending loop of Henle; 

DCT, distal convoluted tubule; CD-PC, collecting duct principal cell; CD-IC, 

collecting duct intercalated cell; CD-Trans, collecting duct transitional cell; 

Fib, fibroblast; Macro, macrophage; Neutro, neutrophil; lymph, lymphocyte; 

NK, natural killer cell.
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SUPPLEMENTAL METHODS.  

Cohorts in GWAS. The GWAS meta-analysis included up to 19,406 patients with type 1 

diabetes and of European origin from 17 cohorts: The Austrian Diabetic Nephropathy Study 

(AusDiane); The Coronary Artery Calcification in Type 1 Diabetes (CACTI)1; the Diabetes 

Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications 

(DCCT/EDIC)2, 3; Pittsburgh Epidemiology of Diabetes Complications Study (EDC)4; The Finnish 

Diabetic Nephropathy (FinnDiane) Study5, 6; French and Belgian subjects from the Genetics of 

Diabetic Nephropathy (GENEDIAB)7 and Genesis8 studies; Genetics of Kidneys in Diabetes US 

Study (GoKinD) from George Washington University (GWU-GoKinD)9; patients from the Joslin 

Kidney Study9, 10; individuals with T1D from Italy5; The Latvian Diabetic Nephropathy Study 

(LatDiane)11; The Lithuanian Diabetic Nephropathy Study (LitDiane) [Reference pending, 

submitted]; The Romanian Diabetic Nephropathy Study (RomDiane)12; The Scottish Diabetes 

Research Network Type 1 Bioresource (SDRNT1BIO)13, 14; individuals with T1D from Steno 

Diabetes Center15; individuals with T1D from Uppsala, Sweden16, 17; UK GoKinD, Warren 3 and 

All Ireland (UK-ROI) study18; and The Wisconsin Epidemiologic Study of Diabetic Retinopathy 

(WESDR)19. All participants gave informed consent and all studies were approved by ethics 

committees from all participating institutions. 

 

GWAS Genotyping. Samples were genotyped on the HumanCore BeadChip (Illumina, San 

Diego, CA, USA), which contains 250,000 genome-wide tag SNPs (and other variants) and over 

200,000 exome-focused variants. All samples were passed through a stringent quality control 

protocol. Following initial genotype calling with Illumina software, all samples were re-called with 

zCall, a calling algorithm specifically designed for rare SNPs from arrays. Once calling was 

completed for all cohorts, our pipeline updated variant orientation and position aligned to hg19 



GWAS of DKD Supplement 

4 

(Genome Reference Consortium Human Build 37, GRCh37). Variant names were updated 

using 1000 Genomes as a reference. The data were then filtered for low quality variants (e.g. 

call rates <95% or excessive deviation from Hardy-Weinberg equilibrium) or samples (e.g. call 

rates <98%, gender mismatch, extreme heterozygosity). Principal Component Analysis (PCA) 

was performed separately for each cohort in order to empirically detect and exclude outliers with 

evidence of non-European ancestry. Genotypes were expanded to a total of approximately 49 

million by imputation, using 1,000 Genomes Project (phase 3 version 5) as a reference. 

 

GWAS Phenotype definitions. Participant renal status was evaluated on the basis of both 

albuminuria and eGFR. We defined a total of 10 different case-control outcomes to cover the 

different aspects of renal complications (Figure 1). Five comparisons (“All vs. ctrl”, “Micro”, 

“DN”, “Macro”, and “ESRD vs. macro”) were based on albuminuria, measured by albumin 

excretion rate (AER) from overnight or 24-h urine collection, or by albumin creatinine ratio 

(ACR). Two out of three consecutive collections were required (when available) to classify the 

renal status of subjects as either normoalbuminuria, microalbuminuria, macroalbuminuria, or 

ESRD; for detailed thresholds, see Table S9. Controls with normal AER were required to have a 

minimum diabetes duration of 15 years; subjects with microalbuminuria/ macroalbuminuria/ 

ESRD were required to have minimum diabetes duration of 5/ 10/ 10 years, respectively, in 

order to exclude renal complications of non-diabetic origins. Two comparisons (“ESRD vs. ctrl” 

and “ESRD vs. non-ESRD”) were based on presence of end-stage renal disease as defined by 

eGFR< 15 mL/min or dialysis or renal transplant. Two phenotypes (“CKD” and “CKD extreme”) 

were defined based on estimated glomerular filtration rate (eGFR; evaluated with the CKD-EPI 

formula): Controls had eGFR ≥ 60ml/min/1.73m2 for both phenotypes, and minimum of 15 years 

of diabetes duration; cases had eGFR <60ml/min/1.73m2 for the “CKD” phenotype, and eGFR 

<15 ml/min/1.73m2 or dialysis or renal transplant for the “CKD extreme” phenotype, and 
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minimum of 10 years of diabetes duration. For the “CKD-DN” phenotype that combined both 

albuminuria and eGFR data, controls were required to have both eGFR ≥60ml/min/1.73m2 and 

normoalbuminuria; cases had both eGFR <45ml/min/1.73m2 and micro- or macroalbuminuria, or 

ESRD.  

 

GWAS Statistical Analysis. A genome-wide association analysis of each of the case-control 

definitions was performed using logistic regression under an additive genetic model, adjusting 

for age, sex, diabetes duration, study site (where applicable) and principal components. As 

disease onset and progression is also closely related to BMI and HbA1c levels,20 we conducted 

a second set of analyses adjusting for BMI and HbA1c which we refer to as our fully adjusted 

covariate model. Allele dosages were used to account for imputation uncertainty. Inverse-

variance fixed effects meta-analysis was performed using METAL and the following filters: INFO 

score >0.3, minor allele count >10, and presence of variant in at least two cohorts. The X 

chromosome was similarly analyzed for males and females both separately and in a combined 

analysis, with the exception of using hard call genotypes in place of allele dosages. The study-

wide significance threshold (P<6.76×10-9) was calculated by applying a Bonferroni correction to 

the traditional GWAS threshold (P<5.00×10-8), based on the number of effectively independent 

tests, using methods previously described on the eigenvalues of the GWAS summary statistics 

correlation matrix21.  

 

Glomerular basement membrane measurement in Renin-Angiotensin System Study 

(RASS). RASS was a double-blind placebo-controlled randomized trial of the angiotensin 

converting enzyme inhibitor (ACEi) enalapril and the angiotensin II receptor blocker (ARB) 

losartan on renal pathology among 285 normoalbuminuric, normotensive subjects with T1D and 

had normal or increased measured glomerular filtration rate (>90 ml/min/1.73m2)22. Beginning in 
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2005, participants were recruited from three centers: University of Minnesota (Minneapolis, 

Minnesota), McGill University (Montreal, Canada) and University of Toronto (Toronto, Canada) 

and included those with 2 to 20 years of diabetes and excluded those on any antihypertensive 

medications. Written informed consent was obtained from each participant and the study was 

approved by the relevant institutional review boards. RASS study participants were followed for 

5 years with percutaneous kidney biopsy completed prior to randomization and at 5 years. 

Structural parameters measured by electron microscopy on biopsy included GBM width, 

measured by the electron microscopic orthogonal intercept method22. 

RASS study participants were followed for 5 years with percutaneous kidney biopsy completed 

prior to randomization and at 5 years. Structural parameters measured by electron microscopy 

on biopsy included GBM width, measured by the electron microscopic orthogonal intercept 

method22. 

RASS genotyping: All RASS participants contributed DNA for genotyping on the Illumina 

HumanOmni1-Quad and HumanCoreExome beadchip arrays. Genotypes were called using 

BeadStudio/Genomestudio software (Illumina®). Quality control (QC) measures included 

removing duplicate samples, samples with evidence of contamination (heterozygosity range 

0.25-0.32) and those with cryptic relatedness identity-by-state (IBS) (n=24). Principal 

component analyses were completed and 7 non-European outliers were removed. Of those 

genotyped, 1 participant was missing kidney biopsy data. 

RASS GBM width analysis: We completed linear regression of the COL4A3 variant 

(rs55703767) and within person mean GBM width (nm) from both baseline and 5 year 

measures, in additive and genotypic genetic models. Both univariate and multivariate analyses 

were run including sex, baseline age and diabetes duration, within person mean HbA1c over 5 

years, indicators for treatment group assignment and treatment center. A two-sided significance 

threshold of alpha <0.05 was applied. 
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In silico replication in SUMMIT consortium. The SUMMIT consortium included up to 5193 

subjects with type 2 diabetes, with and without kidney disease, of European ancestry. All 

studies were approved by ethics committees from relevant institutions and all participants gave 

informed consent23. Complete list of SUMMIT Consortium members provided in Table S13. 

SUMMIT genotyping and statistical analysis: SUMMIT Cohorts were genotyped on the 

Affymetrix SNP 6.0, the Illumina Omni express and the Illumina 610Quad arrays. QC measures 

included filtering out low frequency (<1% MAF) variants, filtering out low quality variants or 

samples, removal of duplicate samples, and removal of non-European samples based on 

principal component analysis.23 Genome-wide association analyses were performed for DKD 

trait definitions harmonized with seven of our primary T1D analyses: “DN”, “Micro”, “Macro”, 

“ESRD”, “ESRD vs. non-ESRD”, “CKD”, and “CKD-DN” under an additive model, adjusting for 

age, gender and duration of diabetes. 

 

RNA-sequencing and cis-eQTL analysis in human kidney samples from University of 

Pennsylvania cohort. Human kidney tissue collection was approved by the University of 

Pennsylvania Institutional Review Board. Kidney samples were obtained from surgical 

nephrectomies. Nephrectomies were de-identified, and the corresponding clinical information 

was collected through an honest broker; therefore, no consent was obtained from the subjects. 

Tubular and glomerular eQTL data sets were generated by 121 samples of tubules and 119 

samples of glomeruli, respectively. The cis window was defined as 1 megabase up- and down-

stream of the transcriptional start site (±1Mb). Whole kidney cis-eQTL (further just referred to as 

eQTL) data set was generated from 96 human samples were obtained from The Cancer 

Genome Atlas (TCGA) through the TCGA Data portal24.  
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RNA-sequencing of human kidney samples in the University of Pennsylvania cohort: Human 

kidney tissue was manually microdissected under a microscope in RNAlater for glomerular and 

tubular compartments. The local renal pathologist performed an unbiased review of the tissue 

section by scoring multiple parameters, and RNA were prepared using RNAeasy mini columns 

(Qiagen, Valencia, CA) according to manufacturer's instructions. RNA quality was assessed 

with the Agilent Bioanalyzer 2100 and RNA integrity number scores above 7 were used for 

cDNA production. The library was prepared in the DNA Sequencing Core at University of Texas 

Southwestern Medical Center. One microgram total RNA was used to isolate poly(A) purified 

mRNA using the Illumina TruSeq RNA Preparation Kit. We sequenced samples for single-end 

100bp, and the annotated RNA counts (fastq) were calculated by Illumina’s CASAVA 1.8.2. 

Illumina sequence quality was surveyed with FastQC. Adaptor and lower-quality bases were 

trimmed with Trim-galore. Trimmed reads were aligned to the Gencode human 

genome(GRCh37) with STAR-2.4.1d. The readcount of each sample was obtained using 

HTSeq-0.6.1 (htseq-count) and then normalized fragments per kilobase million values were 

used to perform association analysis with fibrosis and sclerosis using linear regression. 

Human kidney cis-eQTL analysis. Nominal p-values were calculated for each SNP-gene pair 

with FastQTL using linear regression with an additive effects model, and adjusted by six 

genotype PCs. 

RNA-sequencing of human kidney samples. Normalized fragment per kilobase million values 

were used to perform association analysis with fibrosis and sclerosis using linear regression. 

 

RNAseq and microarray profiling of human kidney samples from the Pima cohort. Kidney 

biopsy samples from the Pima Indian cohort were manually micro-dissected into 119 glomerular 

and 100 tubule-interstitial tissues to generate gene expression profiles25. Expression profiling in 

the Pima Indian cohort kidney biopsies was carried out using Affymetrix GeneChip Human 
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Genome U133 Array and U133Plus2 Array, as reported previously, and Affymetrix Human Gene 

ST Genechip 2.126, 27, and on RNA-seq (Illumina). The libraries were prepared using the 

ClonTech SMARTSeq v4 Ultra Low Input polyA selection kit. Samples were sequenced on a 

HiSeq 4000, single end, 75bp. Mapping to human reference genome GRCh38.7 was performed 

with STAR 2.5.2b (https://github.com/alexdobin/STAR). For annotation and quantification of 

mapping results we used cufflinks, cuffquant and cuffnorm in version 2.2.1 (https://cole-trapnell-

lab.github.io/cufflinks/). After mapping and quantification, PCA and Hierarchical Clustering was 

used to identify outliers and reiterated until no more outliers could be identified.  

eQTL analysis. Analysis was performed with Robust Multi-array Average quantile 

normalization28 after removing probes overlapping with variants identified by WGS. Batch 

effects between platforms were corrected using ComBat29 and unknown batch effects were also 

adjusted using singular value decomposition with first four eigenvectors. eQTL mapping was 

performed using EPACTS (https://genome.sph.umich.edu/wiki/EPACTS) software tool using 

linear mixed model accounting for hidden familial relatedness, after inverse Gaussian 

transformation of expression levels, adjusting for age and sex. 

 

Mouse kidney single cell RNA-sequencing. Animal studies were approved by the Institutional 

Animal Care and Use Committee of the University of Pennsylvania. We mated Cdh16Cre mice 

(Jackson Lab, 012237), Nphs2Cre mice (Jackson Lab, 008205) and SclCre mice (MGI number is 

3579158) with Tomato-GFP (mT/mG) mice (Jackson Lab, 007576) to generate 

Cdh16CremT/mG, SclCremT/mG and Nphs2cremT/mG mice30. 

Mouse kidney single cell RNA-sequencing: Kidneys were harvested from 4 to 8-week-old male 

mice with C57BL/6 background and dissociated into single cell suspension as described in our 

previous study31. The single cell sequencing libraries were sequenced on an Illumina HiSeq 

with 2x150 paired-end kit. The sequencing reads were demultiplexed, aligned to the mouse 
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genome (mm10) and processed to generate gene-cell data matrix using Cell Ranger 1.3 

(http://10xgenomics.com)31. 

To calculate the average expression level for each cluster, a z-score of normalized expression 

value was first obtained for every single cell. Then, we calculated the mean z-scores for 

individual cells in the same cluster, resulting in 16 values for each gene.  

 

Genomic features of human kidney. Human kidney-specific chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) data can be found at GEO: GSM621634, GSM670025, 

GSM621648, GSM772811, GSM621651, GSM1112806, GSM621638. Different histone 

markers were combined into chromatin states using ChromHMM32. 

 

Gene and gene set analysis. PASCAL gene and pathway scores were conducted on all 20 

sets of GWAS summary statistics (10 outcomes and 2 covariate models). Gene scores were 

derived using the sum option, averaging association signal across each gene using the default 

50kb window size. Pathway scores were then computed from pathway member gene scores 

where membership was defined using default pathway libraries from BioCarta, REACTOME, 

and KEGG. Using a similar approach, MAGMA (v1.06) gene and pathway scores were 

conducted on all GWAS summary statistics using both the default gene region defined by the 

transcription start and stop sites and a 5kb window definition. MAGMA pathway analysis 

included all 1077 of the PASCAL reported libraries plus an additional 252 pathways included in 

MSigDB canonical pathway set. MAGENTA (vs2, July 2011) pathway analysis included 4725 

pathways with a minimum of five genes within the gene set. Gene sets were obtained with the 

MAGENTA distribution and included Gene ontology terms, PANTHER sets (biological 

processes, molecular functions, metabolic and signaling pathways), KEGG pathways, and 
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Ingenuity pathways. DEPICT gene set enrichment uses a more comprehensive collection of 

gene sets that allows genes to have a continuous probability for gene set membership. We 

conducted DEPICT individually on all 20 sets of GWAS summary statistics with P< 1.0 × 10-5. 

We conducted two additional pooled analyses using genome-wide minimum P-values from: 1) 

All 20 analyses (10 phenotypes and 2 covariate models) and 2) Sixteen analyses of the 8 most 

related phenotypes (8 phenotypes and 2 covariate models) which excluded ESRD vs Macro and 

Micro.  

 

Data and Software Availability  

All cohorts can share genome-wide meta-analysis summary statistics. Individual level genotype 

data: due to restrictions set by study consents and by EU and national regulations, individual 

genotype data cannot be shared for all cohorts
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Table S1. Cohorts contributing to analyses.  

This table can be found in a separate excel sheet, Supplemental_table_S1.xlsx 
 

 
 

Table S2. Characteristics of RASS participants. Categorical variables display counts and percentage. Continuous values are 
mean ± standard deviation. 

 

Variables (Total N = 253) Freq(%)/Mean±SD 

Sex - Female 134 (53%) 

Age (years) 30 ± 10 

T1D duration (years) 11 ± 5 

Within-person mean HbA1c (%)            
                                               (mmol/mol) 

8.6 ± 1.4 
70 ± 15  

Mean GBMW (nm) 480 ± 88 

rs55703767 – GG 
                       GT 
                       TT 

163 (64%) 
80 (32%) 
10 (4%) 
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Table S3. Multivariate analysis of association between rs55703767 and GBM width 
 

  Variables Adjusted model 
 

Fully adjusted model* 

Effect (SE) P 
 

Effect (SE) P 

rs55703767 (T allele)
¶

 -22.8 (8.2) 0.006  
-19.7 (8.2)

¶

 0.0172 

Females (vs males) -48.4 (9.3) <.0001  -50.4 (9.3) <.0001 

Age at baseline (yrs) -2.4 (0.5) <.0001  -2.4 (0.5) <.0001 

Diabetes duration (yrs) 3.8 (1.0) 0.0002  3.8 (1.0) 0.0002 

Mean HbA1c (%) 27.2 (3.3) <.0001  27.4 (3.3) <.0001 

Treatments Placebo - -  Reference  
Enalapril - -  -6.9 (11.2) 0.538 

  Losartan - -  1.4 (10.9) 0.896 

Centres Montreal - -  Reference 

  Toronto - -  0.8 (12.8) 0.952 

  Minnesota - -  18.9 (13.7) 0.169 

* Fully adjusted model also included 3 principal components for population structure within Europeans. 
¶ 

SNP genotypes modelled as additive genetic effects. 
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Table S4: Look-up of the lead loci in GWAS on eGFR in the general population (Gorski et al., 2017).33 
 

  Meta-analysis results GWAS on eGFR (Gorski 2017) 
Nearest 
Gene SNP EA NEA EAF SE OR Pmin PFull EAF β SE P N 

COL4A3 rs55703767 T G 0.206 0.03 0.79 5.34×10-12 8.19×10-11 0.142 0.002 0.0013 0.132 110517 
COL4A3 rs55703767 T G 0.209 0.04 0.79 9.28×10-9 9.38×10-9 0.142 0.002 0.0013 0.132 110517 
COL4A3 rs55703767 T G 0.205 0.03 0.84 3.88×10-10 9.68×10-9 0.142 0.002 0.0013 0.132 110517 
COL4A3 rs55703767 T G 0.208 0.04 0.77 5.30×10-9 3.77×10-8 0.142 0.002 0.0013 0.132 110517 
PRNCR1 rs551191707 CA C 0.122 0.1 1.7 4.39×10-8 3.15×10-6      
STXBP6   rs61983410 T C 0.787 0.04 1.26 9.84×10-8 3.06×10-8 0.841 -0.001 0.0012 0.336 110516 
COLEC11 rs12615970 A G 0.867 0.05 1.31 9.43×10-9 1.60×10-7      
LINC01266 rs115061173 A T 0.014 0.41 9.39 4.07×10-8 4.08×10-5      
SNCAIP rs149641852 T G 0.012 0.39 9.03 1.37×10-8 --- 0.009 0.002 0.0042 0.643 109257 
PAPLN rs113554206 A G 0.012 0.3 4.62 5.39×10-7 8.46×10-9 0.007 -0.005 0.0064 0.408 95870 

STAC  rs116216059 A C 0.016 0.38 
8.76 

1.37×10-8 
1.41×10-4 0.006 3.00×10-4 0.0043 0.953 108165 

HAND2-AS1 rs145681168 A G 0.986 0.33 0.18 2.06×10-7 5.40×10-9 0.993 0.003 0.0067 0.612 64752 
TAMM41 rs142823282 A G 0.983 0.31 0.15 8.32×10-10 1.13×10-11      
VARS2 rs118124843 T C 0.011 0.24 3.78 4.42×10-8 3.37×10-8 0.031 0.011 0.0055 0.040 58794 
MUC7 rs191449639 A T 0.005 0.61 32.46 1.32×10-8 2.09×10-8      
MBLAC1 rs77273076 T C 0.008 0.39 9.12 1.04×10-8 2.28×10-7 0.007 0.006 0.0051 0.236 108694 
BMP7 rs144434404 T C 0.011 0.32 6.75 2.67×10-9 4.65×10-9 0.004 1.00×10-4 0.0072 0.993 91428 

PLEKHA7 rs183937294 T G 0.993 0.5 0.06 1.65×10-8 2.10×10-6 
     

 rs185299109 T C 0.007 0.53 20.7 1.28×10-8 4.99×10-7      
EA: Effect allele. Positive odds ratio indicates that EA is associated with higher risk; positive beta indicates that EA is associated with higher 

eGFR, i.e. lower renal risk.  
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Table S5: Look-up of the lead loci in GWAS in the SUMMIT consortium (van Zuydam et al., 2018).23 

 
SNP Chr:pos EA NEA EAF Notable 

gene(s) 
Phenotype N OR 

 
P-value 

rs55703767 2:228121101 T G 0.211 COL4A3  DN 5190 0.911 0.08 

    0.213  CKD+DN 2243 0.867 0.09 

rs145681168 4:174500806 G A 0.017 HAND2-AS1 Micro 3477 1.034 0.97 

rs149641852 5:121774582 T G 0.018 SNCAIP CKD 4676 1.032 0.30 

rs118124843 6:30887465 T C 0.018 DDR1, VARS2 Micro 2439 1.137 0.63 

rs77273076 7:99728546 T C 0.014 MBLAC1  Micro 3252 0.866 0.48 

rs61983410 14:26004712 T C 0.184 STXBP6 Micro 3760 0.990 0.58 

rs144434404 20:55837263 T C 0.011 BMP7  Micro 2439 1.100 0.78 

Chr, chromosome; pos, position; EA: Effect allele; EAF, effect allele frequency; OR, odds ratio.  

 
  



GWAS of DKD Supplement 

16 

Table S6: Association at lead loci stratified by HbA1c <7.5%. 
 

          ALL HbA1c < 7.5% HbA1c >= 7.5%   

Locus SNP Pheno EA NEA N MAF P INFO N (case/ctrl) P OR (95% CI) N (case/ctrl) P OR (95% CI) P_HET 

COL4A3 rs55703767 MACROESRD G T 3611 0.19 2.16E-03 1.00 1165 (499/666) 0.659 0.95 (0.76;1.19) 2495 (884/1611) 9.55E-04 0.77 (0.66;0.9) 0.132 

COL4A3 rs55703767 MACRO G T 2803 0.19 0.06 1.00 837 (164/673) 0.663 1.08 (0.78;1.49) 2006 (373/1633) 6.63E-03 0.75 (0.61;0.92) 0.068 

COL4A3 rs55703767 ALLvCTRL G T 4271 0.19 7.04E-03 1.00 1344 (692/652) 0.870 0.98 (0.8;1.2) 2977 (1391/1586) 1.76E-03 0.81 (0.71;0.92) 0.114 

COL4A3 rs55703767 CKDDN G T 3059 0.19 1.17E-02 1.00 984 (379/605) 0.973 1 (0.78;1.28) 2102 (624/1478) 7.90E-03 0.79 (0.67;0.94) 0.136 

PRNCR1 rs551191707 ESRDvMACRO C CA 1371 0.14 2.50E-03 0.81 498 (340/158) 1.92E-02 1.71 (1.09;2.67) 885 (524/361) 4.79E-02 1.38 (1;1.91) 0.453 

STXBP6   rs61983410 MICRO T C 2976 0.23 3.75E-03 0.93 863 (195/668) 1.34E-02 0.69 (0.52;0.93) 2155 (526/1629) 0.067 0.85 (0.71;1.01) 0.248 

COLEC11 rs12615970 CKD A G 4264 0.14 3.13E-03 0.82 1432 (531/901) 0.086 0.81 (0.63;1.03) 3014 (833/2181) 1.62E-02 0.8 (0.66;0.96) 0.949 

LINC01266 rs115061173 ESRD T A 3119 0.00 1.89E-02 0.36 1012 (340/672) 0.284 2.63 (0.45;15.36) 2156 (524/1632) 0.085 5.98 (0.78;45.9) 0.550 

SNCAIP rs149641852 CKDEXTREMES G T 3907 0.01 3.04E-03 0.33 1323 (415/908) 0.559 1.53 (0.37;6.35) 2765 (559/2206) 6.27E-04 10.78 (2.76;42.09) 0.052 

PAPLN rs113554206 MACRO G A 2803 0.00 0.32 0.34 837 (164/673) 0.793 0.39 (0;417.59) 2006 (373/1633) 0.114 21.87 (0.48;999.19) 0.322 

STAC  rs116216059 ESRDvALL C A 4272 0.01 0.48 0.67 1340 (340/1000) 0.867 0.88 (0.2;3.89) 2984 (524/2460) 0.453 0.67 (0.23;1.93) 0.764 

HAND2-AS1 rs145681168 MICRO A G 2976 0.01 0.50 0.48 863 (195/668) 0.509 3.48 (0.09;141.38) 2155 (526/1629) 0.395 0.61 (0.19;1.91) 0.378 

TAMM41 rs142823282 MICRO A G 2976 0.00 0.93 0.15    2155 (526/1629) 0.886 1.19 (0.11;13.33) NA 

VARS2 rs118124843 MICRO C T 2976 0.01 0.93 1.00 863 (195/668) 0.533 0.59 (0.11;3.16) 2155 (526/1629) 0.769 1.15 (0.46;2.85) 0.492 

MUC7 rs191449639 MACROESRD T A 3611 0.00 0.09 0.28 1165 (499/666) 0.487 2.17 (0.24;19.36) 2495 (884/1611) 0.246 3.58 (0.42;30.94) 0.749 

MBLAC1 rs77273076 MICRO C T 2976 0.01 1.36E-04 0.37 863 (195/668) 3.98E-03 168.26 (5.14;5507.78) 2155 (526/1629) 1.68E-03 11.25 (2.48;50.97) 0.163 

BMP7 rs144434404 MICRO C T 2976 0.01 0.57 0.67 863 (195/668) 0.407 0.49 (0.09;2.61) 2155 (526/1629) 0.911 0.94 (0.3;2.91) 0.534 

PLEKHA7 rs183937294 MICRO T G 2976 0.00 0.22 0.26    2155 (526/1629) 0.288 3.79 (0.32;44.52) NA 

18p11.32  rs185299109 CKD C T 4264 0.00 0.68 0.32 1432 (531/901) 0.147 0.12 (0.01;2.09) 3014 (833/2181) 0.956 0.96 (0.21;4.45) 0.212 

Association stratified by HbA1c in the FinnDiane study. P-values <0.05 are given with scientific notation and bold. Lines with gray text had minor allele count 
(MAC)<10 in cases and/or controls and did not contribute to the meta-analysis. 
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Table S7. Association of rs55703767 with DN in DCCT/EDIC subgroups. 
 
Cohort Treatment Group DN % MAF Last measure Time to Event 

OR (95%CI) P value HR (95%CI) P value 

Primary Prevention 
(diabetes dur 1-5 yrs) 

Intensive 3% 0.22 2.86 (0.4-22) 0.32 0.91 (0.2-4.0) 0.90 

Conventional 10% 0.21 0.67 (0.3-1.4) 0.31 0.66 (0.32-1.33) 0.24 

Secondary Intervention 
(diabetes dur 1-15 yrs) 

Intensive 5% 0.20 0.86 (0.3-2.6) 0.79 0.65 (0.22-1.9) 0.43 

Conventional 13% 0.22 0.18 (0.1-0.5) 0.003 0.30 (0.13-0.68) 0.004 

OR=Odds Ratio for last measure, HR=Hazard Ratio for time to event phenotype 
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Table S8. Significant (P<0.05/18,222 genes tested = 2.74 × 10-6) gene level associations with diabetic kidney disease in 
MAGMA. 
 

Gene Phenotype Model Window Number of SNPs Total Sample Size MAGMA P-value PASCAL P-value 

SLC46A2 All vs. ctrl Min nowindow 66 17817 6.74 × 10-7 1.57 × 10-5 

   5kbwindow 93 17832 7.38 × 10-7  

  Full nowindow 64 16821 8.13 × 10-7 6.93 × 10-5 

   5kbwindow 90 16855 1.03 × 10-6  

SFXN4 Macro Full nowindow 69 11953 3.98 × 10-7 1.45 × 10-4 

   5kbwindow 86 11857 1.65 × 10-7  

COL20A1 Ckdextreme Min nowindow 111 11165 2.47 × 10-6 7.88 × 10-5 

   5kbwindow 137 11603 2.01 × 10-6  

  Full nowindow 110 8533 6.65 × 10-7 4.47 × 10-5 

   5kbwindow 136 9044 5.77 × 10-7  

 ESRD vs. All Min nowindow 111 12063 1.34 × 10-6 3.76 × 10-5 

   5kbwindow 137 12362 1.04 × 10-6  

  Full nowindow 110 8638 1.12 × 10-6 5.81 × 10-5 

   5kbwindow 136 9045 9.53 × 10-7  

GLT6D1 ESRD vs. Macro min 5kbwindow 96 4248 1.49 × 10-6 2.15 × 10-5 

SNX30 All vs. ctrl min 5kbwindow 434 18249 2.49 × 10-6 1.05 × 10-5 

 

Table S9. Top nominally significant gene level associations (P < 1.0 x 10-5) with diabetic kidney disease in PASCAL.  
 
Gene Phenotype Model Number of 

SNPs 
PASCAL  
P-value 

INIP All vs. ctrl Min 248 1.99 × 10-6 

  Full 248 5.54 × 10-6 

LCN9 ESRD vs. macro Min 301 5.25 × 10-6 

CBX8 DN Min 119 8.47 × 10-6 
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Table S10: Significant gene set and pathway analysis results.  Significantly enriched gene sets identified from at least one of the following 

methods: MAGENTA (FDR < 0.05, MAGMA (P<0.05 empirical permutation multiple testing correction), PASCAL (P<0.05/1,078 gene sets tested = 

4.64 × 10-5), and DEPICT (FDR < 0.01). 

Gene set Gene set database Phenotype Model Method 

negative regulators of RIG I MDA5 
signaling 

REACTOME ESRD vs. Macro Full MAGMA 

Platelet aggregation plug formation REACTOME Micro Min MAGMA 

negative regulators of RIG I MDA5 
signaling 

REACTOME ESRD vs. Macro Full PASCAL 

RIG I MDA5 mediated induction of IFN 
alpha beta pathways 

REACTOME ESRD vs. Macro Full PASCAL 

TRAF3 dependent IRF activation 
pathway 

REACTOME ESRD vs. Macro Full PASCAL 

TRAF6 mediated IRF activation REACTOME ESRD vs. Macro Full PASCAL 

Nitric Oxide Signaling in the 
Cardiovascular System 

Ingenuity ESRD vs. ctrl Min MAGENTA 

Nicotinic acetylcholine receptor signaling 
pathway 

Panther ESRD vs. non-ESRD Min MAGENTA 

ACTIVATED TLR4 SIGNALLING REACTOME All vs. ctrl Min MAGENTA 

Other lipid, fatty acid and steroid 
metabolism 

PANTHER BIOLOGICAL PROCESS CKD Min MAGENTA 

DNA degradation PANTHER BIOLOGICAL PROCESS CKD Min MAGENTA 

Tumor necrosis factor family member PANTHER MOLECULAR 
FUNCTION 

CKD-extreme Min MAGENTA 

TUFM (Tu Translation Elongation Factor, 
Mitochondrial) PPI subnetwork  

InWeb protein-protein interaction 
database 

DN Min DEPICT 
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Table S11. eQTL associations and chromatin conformation interactions for the lead SNPs.  
 
SNP Chr:pos EA NEA EAF Notable 

gene(s) 
eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 

rs12615970 2:3745215 G A 0.133 COLEC11 (B); 
     

ALLC 10.42 (GM12878);  
     

ALLC (G) 
     

COLEC11, 
AC010907.2 

9.67 (GM12878);  

           
ADI1, AC142528.1 8.75 (GM12878);  

           
RP13-512J5.1 8.58 (GM12878);  

              
  

    RPS7 8.13 (GM12878);  

rs55703767 2:228121101 T G 0.206 COL4A3 (M, 
B, N) 

MFF 5.63×10-38 T blood   COL4A3, COL4A4 8.89 (GM12878);  

      
MFF 9.0×10-8 T Cells - Transformed 

fibroblasts 

 
IRS, RP11-395N3.2 9.36 (GM12878);  

            TM4SF20 2.2×10-7 T Cells - Transformed 
fibroblasts 

    
 

rs115061173 3:926345 A T 0.014 LINC01266 
(N) 

  
  

      
 

rs142823282 3:11910635 G A 0.011 TAMM41 (N, 
B) 

PPARG 4.6×10-7 G Colon - Sigmoid   TAMM41 10.65 (GM12878);  

rs116216059 3:36566312 A C 0.016 STAC (G) 
     

DCLK3 8.8 (GM12878);  

              
  

    STAC 10.87 (GM12878);  

rs191449639 4:71358776 A T 0.005 MUC7 (N)   
  

      
 

rs145681168 4:174500806 G A 0.014 HAND2-
AS1(G, B) 

  
  

    HAND2, HAND2-AS1 10.49 (GM12878);  

rs149641852 5:121774582 T G 0.012 SNCAIP (G)   
  

    SNX24 9.2 (GM12878);  
           

snoU13 8.93 (GM12878);  
           

SNCAIP, CTD-
2544H17.2 

9.69 (GM12878);  

              
  

    CTD-2280E9.1 10.81 (GM12878);  

rs118124843 6:30887465 T C 0.011 DDR1 (B);  HLA-C 1.00×10-18 C eQTLgen blood 
 
PSORS1C1 12.3 (Endothelial 

Precursors); 12.3 
(Endothelial Precursors); 
7.84 (Megacaryocytes); 
5.63 (Pancreatic islets);       

VARS2 (G) 
    

DPCR1, HCG21 11.49 (GM12878);  
      

HLA-U 3.56×10-10 T eQTLgen blood 
 
DDR1-AS1, DDR1 10.97 (GM12878);  

      
PSORS1C3 4.13×10-9 T eQTLgen blood 

 
RNU6-1133P 7.27 (Macrophages M2);  
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SNP Chr:pos EA NEA EAF Notable 
gene(s) 

eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 
      

NCR3 9.35×10-6 C eQTLgen blood 
 
RN7SL175P, DDR1, 
GTF2H4, VARS2 

7.07 (Endothelial 
Precursors); 7.07 
(Endothelial Precursors); 
6.95 (Cardiomyocytes); 
6.89 (Pancreatic islets); 
5.43 (Megacaryocytes); 
5.09 (Macrophages M1);        

HCG22 1.5×10-5 T eQTLgen blood 
 
C6orf15 6.95 (Macrophages M1); 

6.95 (Macrophages M1); 
6.18 (Macrophages M0);        

VARS2 1.71×10-5 C eQTLgen blood 
   

      
GTF2H4 9.70×10-7 T Esophagus - 

Gastroesophageal 
Junction 

   

      
POU5F1 3.3×10-5 T Esophagus - 

Gastroesophageal 
Junction 

   

      
PSORS1C3 5.6×10-5 T Esophagus - 

Gastroesophageal 
Junction 

   

            C6orf48 1×10-4 C Nerve - Tibial       

rs77273076 7:99728546 T C 0.008 MBLAC1 (N, 
B) 

CNPY4 1.17×10-7 C eQTLgen blood 
 
MBLAC1, 
AC073842.19, RP11-
506M12.1 

NA (withn the same 
fragment);  

      
AP4M1 1.04×10-5 C eQTLgen blood 

 
LAMTOR4, 
GAL3ST4, GPC2, 
C7orf43, MIR4658 

14.82 (CD34); 14.82 
(CD34); 14.56 (GM12878);  

      
ZSCAN21 1.29×10-5 C eQTLgen blood 

 
LAMTOR4 14.14 (CD34); 14.14 

(CD34); 13.1 (GM12878);             
GATS, STAG3, 
PVRIG, AC005071.1 

14.11 (CD34); 14.11 
(CD34); 13.68 (GM12878);  

           
MCM7, AP4M1 14.11 (CD34); 14.11 

(CD34); 13.68 (GM12878);             
STAG3, GPC2 13.75 (CD34); 13.75 

(CD34); 13.36 (GM12878);             
MCM7, COPS6, 
MIR93, MIR106B, 
MIR25 

13.69 (CD34); 13.69 
(CD34); 13.67 (GM12878);  

           
CNPY4, TAF6 13.37 (GM12878); 13.37 

(GM12878); 13.14 (CD34);             
ZKSCAN1 13.23 (GM12878); 13.23 

(GM12878); 11.87 (CD34);             
ZSCAN21 13.14 (GM12878);  
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SNP Chr:pos EA NEA EAF Notable 
gene(s) 

eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 
           

ZCWPW1, MEPCE 12.72 (GM12878); 12.72 
(GM12878); 11.48 (CD34);             

PILRA 12.65 (GM12878);  
           

TRIM4 12.64 (GM12878);  
           

ZCWPW1 12.61 (GM12878);  
           

SAP25, FBXO24, 
LRCH4, RP11-
44M6.3 

12.59 (GM12878);  

           
PILRB, PVRIG2P, 
STAG3L5P-
PVRIG2P-PILRB,  

12.38 (GM12878); 12.38 
(GM12878); 5.94 (Naive 
B); 5.02 (Total B);  

           
TSC22D4, NYAP1, 
AC092849.1, 
RN7SL161P, C7orf61 

12.21 (GM12878);  

           
RP11-758P17.2, 
PPP1R35, RP11-
758P17.3 

12.02 (GM12878); 12.02 
(GM12878); 11.55 (CD34);  

           
AZGP1, AZGP1P1 11.3 (Neutrophils); 11.3 

(Neutrophils); 6.07 
(Macrophages M2); 5.65 
(Total CD4 MF); 5.65 
(Total CD4 MF); 5.1 (Total 
CD4 Activated);             

BUD31, snoU13 11.03 (GM12878);  
           

ZNF3 10.83 (GM12878);  
           

ZCWPW1 8.39 (Naive B); 8.39 (Naive 
B); 5.52 (Total CD4 
Activated);             

PMS2P1 5.16 (Foetal Thymus);  

rs551191707 8:128100029 CA C 0.122 PRNCR1 ( N)  -NONE-             

rs183937294 11:16937846 G T 0.007 PLEKHA7 (G) -NONE- 
    

RNU6-585, PRP11-
466H18.1 

10.77 (cd34); 10.77 (cd34); 
9.2 (GM12878);  

           
AC116533.1, 
SNORD14B, 
SNORD14A, rps13 

10.19 (GM12878);  

           
PLEKHA7, 
OR7E14P 

9.49 (GM12878);  
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SNP Chr:pos EA NEA EAF Notable 
gene(s) 

eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 
           

SOX6, C11orf58 9.15 (GM12878);  
           

SERGEF, RP1-
59M18.2 

7.56 (GM12878);  

           
OTOG 5.89 (Total CD8);  

                      USH1C 5.07 (Naive CD8);  

rs61983410 14:26004712 T C 0.213 STXBP6 (N) -NONE-         SNORD37 10.97 (GM12878);  

rs113554206 14:73740250 A G 0.012 PAPLN (G) -NONE- 
    

RP4-647C14.3 NA (within the same 
fragment);             

NUMB 21.42 (Endotheial 
precursors); 21.42 
(Endotheial precursors); 
17.38 (Pancreatic islets); 
12.32 (Megacaryocytes); 
11.56 (CD34); 9.65 
(Neutrophils); 9.61 (Naive 
B); 9.06 (Total B); 7.55 
(cardiomyocytes); 5.33 
(Naive CD4); 5.11 (Naive 
CD8);             

PAPLN, RNU6-419P, 
RP4-647C14.2 

13.67 (CD34); 13.67 
(CD34); 13.24 (GM12878);  

           
PAPLN 13.24 (CD34); 13.24 

(CD34); 12.47 (GM12878);             
PSEN1 12.08 (GM12878); 12.08 

(GM12878); 5.4 
(cardiomyocytes);             

HEATR4 12.05 (Endotheial 
precursors); 12.05 
(Endotheial precursors); 
10.98 (Megacaryocytes); 
10.45 (GM12878); 10.37 
(CD34); 9.92 (Neutrophils); 
8.84 (Pancreatic islets); 
7.98 (Monocytes); 7.3 
(Total B); 7.02 (Naive B); 
6.6 (cardiomyocytes); 5.81 
(Erythroblasts); 5.53 (Total 
CD4 Activated);             

RP1-240K6.3 11.84 (GM12878); 11.84 
(GM12878); 11.15 (CD34); 
7.49 (Endotheial 
precursors); 5.62 
(Pancreatic islets); 5.34 
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SNP Chr:pos EA NEA EAF Notable 
gene(s) 

eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 

(Total B); 5.02 
(Megacaryocytes);  

           
DNAL1, RNU6-240P 11.07 (GM12878);  

           
PSEN1 10.96 (Endotheial 

precursors); 10.96 
(Endotheial precursors); 
10.56 (CD34);             

PNMA1 10.9 (GM12878);  
           

RP3-414A15.2 10.64 (GM12878); 10.64 
(GM12878); 7.24 
(Monocytes); 5.99 
(Neutrophils);             

ZFYVE1 10.53 (GM12878);  
           

PTGR2, Y_RNA, 
RP5-1021I20.4 

10.42 (CD34); 10.42 
(CD34); 10.16 (GM12878);  

           
RP4-693M11.3 10.33 (GM12878);  

           
RP4-687K1.2 9.96 (GM12878);  

           
HEATR4, C14orf169, 
AC005280.1 

9.52 (GM12878); 9.52 
(GM12878); 5.35 
(Pancreatic islets);             

RBM25 9.34 (GM12878);  
           

RP3-414A15.10 9.32 (GM12878);  
           

ELMSAN1 9.12 (GM12878);  
           

CCDC176 8.85 (GM12878);  
           

RBM25, RP11-
109N23.5 

8.74 (GM12878);  

           
ACOT6 8.74 (GM12878);  

           
DNAL1 8.7 (GM12878);  

                      FAM161B, RP5-
1021I20.5 

5.58 (Total CD8);  

rs185299109 18:1811108 T C 0.007   -NONE-         -NONE-   

rs144434404 20:55837263 T C 0.011 BMP7 (G, B) -NONE-         -NONE-   
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SNP Chr:pos EA NEA EAF Notable 
gene(s) 

eQTL   PC-HiC 

GENE P HIGH A Tissue Gene Score (Tissue) 

Notable Genes: based on genetic findings (G), (B), (N), (M); eQTL associations were searched from GTEX and eQTLgen (cis-eQTL) data sets. HIGH A: allele associated 
with higher gene expression levels. Promoter Capture Hi-C (PCHi-C) data: searched from www.chicp.org (date accessed: 1.12.2018; Schofield EC, Carver T, Achuthan P, 
Freire-Pritchett P, Spivakov M, Todd JA, Burren OS. CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets. 
Bioinformatics. (2016) 15:32(16):2511-3), including 16 primary blood cell types and foetal thymocytes (Javierre et al.), CD34 and GM12878 cell line (Mifsud et al.), 
pancreatic isles (Miguel-Escalada et al,), and hESC derived cardiomyocytes (Choy et al.). Score: CHiCAGO score, values >5 were considered significant and listed. 
Protein coding genes are highleghted with bold typing. 
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Table S12: Transcriptome-wide association analysis (TWAS) results with p<1×10-4 

 
              Prediction performance N SNPs 

tissue GWAS phenotype GENE Z Score Effect P-value Var_G r2 P-value Q-value used in cov in model 

tub ESRD vs macro_min ACOT8 4.02 0.76 5.80E-05 0.06 0.04 2.46E-02 2.02E-02 30 30 31 

tub DN_min AKIRIN2 4.17 0.32 3.03E-05 0.09 0.05 1.30E-02 1.19E-02 36 39 42 

tub Macro_min AKIRIN2 4.36 0.42 1.32E-05 0.09 0.05 1.30E-02 1.19E-02 36 39 42 

glom Macro_min ARL17B -4.02 -0.21 5.91E-05 0.32 0.51 1.28E-19 1.77E-18 53 54 65 

tub All vs ctrl_min CALCOCO2 3.93 0.29 8.55E-05 0.06 0.10 3.23E-04 4.93E-04 37 37 40 

glom All vs ctrl_max EXOC2 4.10 0.20 4.06E-05 0.15 0.21 1.74E-07 3.79E-07 60 60 62 

glom 
ESRD vs non-
ESRD_max FAM132B -3.95 -0.52 7.73E-05 0.06 0.07 4.84E-03 3.91E-03 33 33 35 

tub CKD extreme_min FES -3.89 -0.40 9.97E-05 0.08 0.09 7.57E-04 1.05E-03 34 34 34 

tub ESRD_min FES -3.97 -0.42 7.07E-05 0.08 0.09 7.57E-04 1.05E-03 34 34 34 

tub ESRD vs non-ESRD_min FES -4.24 -0.42 2.27E-05 0.08 0.09 7.57E-04 1.05E-03 34 34 34 

glom ESRD vs macro_min GSDMB -3.96 -0.46 7.37E-05 0.11 0.07 4.54E-03 3.71E-03 35 35 35 

glom Macro_max HOXD1 4.02 0.88 5.71E-05 0.01 0.03 5.51E-02 3.10E-02 12 12 13 

glom Macro_min HOXD1 4.13 0.83 3.70E-05 0.01 0.03 5.51E-02 3.10E-02 12 12 13 

glom DN_max ITPR3 4.30 0.21 1.74E-05 0.19 0.38 1.09E-13 6.21E-13 33 33 35 

glom DN_min ITPR3 4.00 0.17 6.26E-05 0.19 0.38 1.09E-13 6.21E-13 33 33 35 

glom Macro_max ITPR3 4.31 0.25 1.62E-05 0.19 0.38 1.09E-13 6.21E-13 33 33 35 

glom Macro_min ITPR3 4.03 0.21 5.69E-05 0.19 0.38 1.09E-13 6.21E-13 33 33 35 

glom ESRD_min MORC1 3.94 0.44 8.03E-05 0.06 0.08 1.58E-03 1.47E-03 83 87 88 

glom Macro_max NLN 4.07 0.26 4.61E-05 0.21 0.15 1.09E-05 1.71E-05 85 86 110 

glom Macro_min NLN 4.53 0.27 5.99E-06 0.21 0.15 1.09E-05 1.71E-05 85 86 110 

glom All vs ctrl_max NPNT 3.90 0.37 9.51E-05 0.08 0.16 5.26E-06 8.75E-06 2 2 4 

glom ESRD_min PRC1 4.03 0.41 5.54E-05 0.09 0.11 3.23E-04 3.59E-04 33 33 34 

tub CKD-DN_min PRRC2C 3.92 0.81 8.74E-05 0.02 0.03 4.40E-02 3.27E-02 10 10 10 

tub ESRD_min PRRC2C 3.92 0.91 8.76E-05 0.02 0.03 4.40E-02 3.27E-02 10 10 10 

tub Macro_min TENM2 3.98 0.83 6.92E-05 0.02 0.11 1.59E-04 2.64E-04 23 59 60 

glom DN_min VPS33B 4.09 0.24 4.40E-05 0.15 0.37 2.23E-13 1.19E-12 24 24 26 

glom ESRD_min VPS33B 4.20 0.35 2.69E-05 0.15 0.37 2.23E-13 1.19E-12 24 24 26 

tub CKD extreme_max VPS9D1 -4.17 -0.54 3.01E-05 0.06 0.11 2.78E-04 4.30E-04 20 20 21 

Tissue: glomeruli (glom) or tubuli (tub); Z-core, Effect and P-value: MetaXcan's association results for the gene. Var_g: variance of the gene expression, calculated 
as W' * G * W (where W is the vector of SNP weights in a gene's model, W' is its transpose, and G is the covariance matrix). Prediction performance r2, P-value 
and Q-value: r2, p-value and q-value of tissue model's correlation to gene's measured transcriptome (prediction performance). N SNPs ... used: number of snps 
from GWAS that got used in MetaXcan analysis; ... in cov: number of snps in the covariance matrix; ... in model: number of snps in the model 
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Table S13: Pseudo-R2 of all SNPs across all GWAS as calculated by the McKelvey and Zavoina method.34 Total variance 
explained is the sum of pseudo-R2 across all SNPs with minor allele frequency (MAF) greater than 5% or 1%, noting that effect size and therefore 
variance explained tend to be overestimated with rare variants. Missing values indicate SNPs that did not pass our GWAS filters for those disease 
definitions as described in the methods section. 

 
Minimally Adjusted Model 
 

SNP Minor 
allele 

frequency 

DN All vs. 
ctrl 

CKD CKD-
DN 

CKD 
extreme 

ESRD 
vs. ctrl 

ESRD 
vs. 

non-
ESRD 

ESRD 
vs. 

macro 

Macro Micro 

rs61983410 0.213 0.00% 0.09% 0.01% 0.00% 0.04% 0.01% 0.04% 0.05% 0.01% 0.54% 

rs55703767 0.206 0.57% 0.33% 0.23% 0.65% 0.34% 0.55% 0.27% 0.03% 0.60% 0.11% 

rs12615970  0.133 0.16% 0.06% 0.52% 0.48% 0.41% 0.26% 0.21% 0.08% 0.05% 0.00% 

rs551191707 0.122 0.02% 0.00% 0.14% 0.33% 0.70% 0.69% 0.75% 1.76% 0.06% 0.01% 

rs142823282 0.017 0.04% 0.58% 0.01% NA NA NA NA NA 0.11% 3.50% 

rs116216059 0.016 0.00% 0.00% 0.13% 0.23% 2.96% 1.95% 4.40% NA 0.01% 0.00% 

rs145681168 0.014 0.01% 0.15% 0.00% 0.08% 0.17% NA NA NA 0.03% 2.41% 

rs115061173 0.014 0.47% 0.24% 0.34% 1.44% 2.24% 3.96% 2.57% NA 0.12% 0.01% 

rs113554206 0.012 0.97% 0.27% 0.42% NA NA NA NA NA 1.64% NA 

rs149641852 0.012 0.12% 0.02% 0.21% 2.14% 3.39% 1.94% 1.30% NA 0.07% 0.03% 

rs144434404 0.011 0.05% 0.38% 0.12% NA NA NA NA NA NA 2.43% 

rs118124843 0.011 0.06% 0.22% 0.05% 0.09% NA NA NA NA NA 1.17% 

rs77273076 0.008 0.08% 0.30% 0.09% 0.12% NA NA NA NA NA 2.28% 

rs183937294 0.007 0.09% 0.47% NA NA NA NA NA NA NA 3.49% 

rs185299109 0.007 0.08% 0.05% 3.84% NA NA NA NA NA NA NA 

rs191449639 0.005 3.46% 0.17% NA NA NA NA NA NA NA NA 

variance explained 
(MAF>5%) 

0.75% 0.48% 0.89% 1.47% 1.49% 1.50% 1.26% 1.92% 0.73% 0.65% 

variance explained 
(MAF>1%) 

2.46% 2.34% 2.17% 5.44% 10.26% 9.36% 9.53% 1.92% 2.68% 10.21% 
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Fully Adjusted Model 
 

SNP Minor 
allele 

frequency 

DN All vs. 
ctrl 

CKD CKD-
DN 

CKD 
extreme 

ESRD 
vs. ctrl 

ESRD 
vs. 

non-
ESRD 

ESRD 
vs. 

macro 

Macro Micro 

rs61983410 0.213 0.01% 0.14% 0.02% 0.01% 0.04% 0.00% 0.02% 0.01% 0.02% 0.63% 

rs55703767 0.206 0.60% 0.31% 0.25% 0.72% 0.33% 0.51% 0.27% 0.02% 0.70% 0.11% 

rs12615970  0.133 0.17% 0.07% 0.50% 0.46% 0.34% 0.22% 0.22% 0.29% 0.04% 0.00% 

rs551191707 0.122 0.01% 0.00% 0.08% 0.23% 0.41% 0.49% 0.49% 1.88% 0.07% 0.00% 

rs142823282 0.017 0.04% 0.86% 0.01% NA NA NA NA NA 0.12% 4.65% 

rs116216059 0.016 0.00% 0.00% 0.03% NA NA NA NA NA 0.00% 0.00% 

rs145681168 0.014 0.01% 0.18% 0.00% NA NA NA NA NA NA 3.33% 

rs115061173 0.014 0.61% 0.26% 0.40% 2.53% 2.11% 3.01% 1.63% NA NA 0.00% 

rs113554206 0.012 1.12% 0.26% NA NA NA NA NA NA 3.99% NA 

rs149641852 0.012 0.27% 0.04% 0.74% 2.69% NA NA NA NA 0.01% 0.05% 

rs144434404 0.011 0.03% 0.40% 0.11% NA NA NA NA NA NA 2.38% 

rs118124843 0.011 0.12% 0.34% 0.17% NA NA NA NA NA NA 1.23% 

rs77273076 0.008 NA 0.37% 0.04% NA NA NA NA NA NA 1.80% 

rs183937294 0.007 NA 0.90% NA NA NA NA NA NA NA NA 

rs185299109 0.007 NA 0.00% NA NA NA NA NA NA NA NA 

rs191449639 0.005 3.60% 0.26% NA NA NA NA NA NA NA NA 

variance explained 
(MAF>5%) 

0.78% 0.52% 0.84% 1.41% 1.12% 1.22% 1.00% 2.20% 0.83% 0.74% 

variance explained 
(MAF>1%) 

2.98% 2.86% 2.30% 6.62% 3.23% 4.23% 2.63% 2.20% 4.95% 12.38% 

 

 

Table S14. Physicians and nurses at health care centers participating in the collection of FinnDiane patients.  
 

FinnDiane Study Centers Physicians and nurses 

Anjalankoski Health Centre  S. Koivula, T. Uggeldahl 

Central Finland Central Hospital, 
Jyväskylä 

T. Forslund, A. Halonen, A. Koistinen, P. Koskiaho, M. Laukkanen, J. Saltevo, M. 
Tiihonen 
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FinnDiane Study Centers Physicians and nurses 

Central Hospital of Åland Islands, 
Mariehamn 

M. Forsen, H. Granlund, A-C. Jonsson, B. Nyroos 

Central Hospital of Kanta-Häme, 
Hämeenlinna 

P. Kinnunen, A. Orvola, T. Salonen, A. Vähänen 

Central Hospital of Länsi-Pohja, 
Kemi 

H. Laukkanen, P. Nyländen, A. Sademies 

Central Ostrabothnian Hospital 
District, Kokkola 

S. Anderson, B. Asplund, U. Byskata, P. Liedes, M. Kuusela, T. Virkkala 

City of Espoo Health Centre  

Espoonlahti A. Nikkola, E. Ritola 

Tapiola M. Niska, H. Saarinen 

Samaria E. Oukko-Ruponen, T. Virtanen 

Viherlaakso  A. Lyytinen 

City of Helsinki Health Centre  

Puistola H. Kari, T. Simonen 

Suutarila A. Kaprio, J. Kärkkäinen, B. Rantaeskola 

Töölö P. Kääriäinen, J. Haaga, A-L. Pietiläinen 

City of Hyvinkää Health Centre S. Klemetti, T. Nyandoto, E. Rontu, S. Satuli-Autere 

City of Vantaa Health Centre  

Korso  R. Toivonen, H. Virtanen 

Länsimäki R. Ahonen, M. Ivaska-Suomela, A. Jauhiainen 

Martinlaakso M. Laine, T. Pellonpää, R. Puranen 

Myyrmäki A. Airas, J. Laakso, K. Rautavaara 

Rekola  M. Erola, E. Jatkola 

Tikkurila R. Lönnblad, A. Malm, J. Mäkelä, E. Rautamo 

Heinola Health Centre P. Hentunen, J. Lagerstam 

Helsinki University Central Hospital, 
Department of Medicine, Division of 
Nephrology 

A. Ahola, J. Fagerudd, M. Feodoroff, D. Gordin, O. Heikkilä, K Hietala, L. 
Kyllönen, J. Kytö, S. Lindh, K. Pettersson-Fernholm, M. Rosengård-Bärlund, M. 
Rönnback, A. Sandelin, A-R Salonen, L. Salovaara, L. Thorn, J. Tuomikangas, T. 
Vesisenaho, J. Wadén 

Herttoniemi Hospital, Helsinki V. Sipilä 

Hospital of Lounais-Häme, Forssa T. Kalliomäki, J. Koskelainen, R. Nikkanen, N. Savolainen, H. Sulonen, E. 
Valtonen 

Iisalmi Hospital E. Toivanen 

Jokilaakso Hospital, Jämsä A. Parta, I. Pirttiniemi 
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FinnDiane Study Centers Physicians and nurses 

Jorvi Hospital, Helsinki University 
Central Hospital 

S. Aranko, S. Ervasti, R. Kauppinen-Mäkelin, A. Kuusisto, T. Leppälä, K. Nikkilä, 
L. Pekkonen 

Jyväskylä Health Centre, Kyllö K. Nuorva, M. Tiihonen 

Kainuu Central Hospital, Kajaani S. Jokelainen, P. Kemppainen, A-M. Mankinen, M. Sankari 

Kerava Health Centre H. Stuckey, P. Suominen 

Kirkkonummi Health Centre A. Lappalainen, M. Liimatainen, J. Santaholma 

Kivelä Hospital, Helsinki A. Aimolahti, E. Huovinen 

Koskela Hospital, Helsinki V. Ilkka, M. Lehtimäki 

Kotka Heath Centre E. Pälikkö-Kontinen, A. Vanhanen 

Kouvola Health Centre E. Koskinen, T. Siitonen 

Kuopio University Hospital E. Huttunen, R. Ikäheimo, P. Karhapää, P. Kekäläinen, M. Laakso, T. Lakka, E. 
Lampainen, L. Moilanen, L. Niskanen, U. Tuovinen, I. Vauhkonen, E. Voutilainen 

Kuusamo Health Centre T. Kääriäinen, E. Isopoussu 

Kuusankoski Hospital E. Kilkki, I. Koskinen, L. Riihelä 

Laakso Hospital, Helsinki T. Meriläinen, P. Poukka, R. Savolainen, N. Uhlenius 

Lahti City Hospital A. Mäkelä, M. Tanner 

Lapland Central Hospital, 
Rovaniemi 

L. Hyvärinen, S. Severinkangas, T. Tulokas 

Lappeenranta Health Centre P. Linkola, I. Pulli 

Lohja Hospital T. Granlund, M. Saari, T. Salonen 

Loimaa Health Centre  A. Mäkelä, P. Eloranta 

Länsi-Uusimaa Hospital, 
Tammisaari 

I-M. Jousmaa, J. Rinne 

Malmi Hospital, Helsinki H. Lanki, S. Moilanen, M. Tilly-Kiesi 

Mikkeli Central Hospital A. Gynther, R. Manninen, P. Nironen, M. Salminen, T. Vänttinen 

Mänttä Regional Hospital I. Pirttiniemi, A-M. Hänninen 

North Karelian Hospital, Joensuu U-M. Henttula, P. Kekäläinen, M. Pietarinen, A. Rissanen, M. Voutilainen 

Nurmijärvi Health Centre A. Burgos, K. Urtamo 

Oulankangas Hospital, Oulainen E. Jokelainen, P-L. Jylkkä, E. Kaarlela, J. Vuolaspuro 

Oulu Health Centre L. Hiltunen, R. Häkkinen, S. Keinänen-Kiukaanniemi 

Oulu University Hospital R. Ikäheimo 

Päijät-Häme Central Hospital H. Haapamäki, A. Helanterä, S. Hämäläinen, V. Ilvesmäki, H. Miettinen 

Palokka Health Centre P. Sopanen, L. Welling 

Pieksämäki Hospital V. Javtsenko, M. Tamminen 

Pietarsaari Hospital M-L. Holmbäck, B. Isomaa, L. Sarelin 
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FinnDiane Study Centers Physicians and nurses 

Pori City Hospital P. Ahonen, P. Merensalo, K. Sävelä 

Porvoo Hospital M. Kallio, B. Rask, S. Rämö 

Raahe Hospital A. Holma, M. Honkala, A. Tuomivaara, R. Vainionpää 

Rauma Hospital K. Laine, K. Saarinen, T. Salminen 

Riihimäki Hospital P. Aalto, E. Immonen, L. Juurinen 

Salo Hospital A. Alanko, J. Lapinleimu, P. Rautio, M. Virtanen 

Satakunta Central Hospital, Pori M. Asola, M. Juhola, P. Kunelius, M-L. Lahdenmäki, P. Pääkkönen, M. 
Rautavirta 

Savonlinna Central Hospital  E. Korpi-Hyövälti, T. Latvala, E. Leijala 

South Karelia Central Hospital, 
Lappeenranta 

T. Ensala, E. Hussi, R. Härkönen, U. Nyholm, J. Toivanen 

Tampere Health Centre A. Vaden, P. Alarotu, E. Kujansuu, H. Kirkkopelto-Jokinen, M. Helin, S. 
Gummerus, L. Calonius, T. Niskanen, T. Kaitala, T. Vatanen 

Tampere University Hospital I. Ala-Houhala, T. Kuningas, P. Lampinen, M. Määttä, H. Oksala, T. Oksanen, K. 
Salonen, H. Tauriainen, S. Tulokas 

Tiirismaa Health Centre, Hollola T. Kivelä, L, Petlin, L. Savolainen 

Turku Health Centre I. Hämäläinen, H. Virtamo, M. Vähätalo 

Turku University Central Hospital K. Breitholz, R. Eskola, K. Metsärinne, U. Pietilä, P. Saarinen, R. Tuominen, S. 
Äyräpää 

Vaajakoski Health Centre K. Mäkinen, P. Sopanen 

Valkeakoski Regional Hospital S. Ojanen, E. Valtonen, H. Ylönen, M. Rautiainen, T. Immonen 

Vammala Regional Hospital  I. Isomäki, R. Kroneld, M. Tapiolinna-Mäkelä 

Vaasa Central Hospital  S. Bergkulla, U. Hautamäki, V-A. Myllyniemi, I. Rusk 
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Table S14: Members of the SUMMIT consortium.   

Partner Name Position 

1 Michael Mark Coordinator, WP6 leader 

Boehringer-Ingelheim Markus Albertini Project manager 

Ingelheim, Germany Carine Boustany Chronic Kidney Disease, Head of Lab 

  Alexander Ehlgen Transmed 

  Martin Gerl Biomarker & Bioanlysis, Groupleader 

  Jochen Huber In vivo Scientist CMDR, Head of Lab 

  Corinna Schölch Biomarker & Bioanlysis, Head of Lab 

  Heike Zimdahl-Gelling Pharmacogenomics, Head of Lab 

      

2 Leif Groop Prof. Endocrinology; Coordinator Managing entity IMI-JU; PI; WP1 and WP6 leader 

Lund University Elisabet Agardh Prof. Ophthalmology 

Clinical Research Centre Emma Ahlqvist Postdoc 

Malmö, Sweden Tord Ajanki Communication strategist 

  Nibal Al Maghrabi Research nurse 

  Peter Almgren Biostatistician 

  Jan Apelqvist Diabetologist 

  Eva Bengtsson Assis. Prof. Cardiovascular research 

  Lisa Berglund Postdoc 

  Harry Björckbacka Assis. Prof. Cardiovascular research 

  Ulrika Blom-Nilsson LUDC administrator 

  Mattias Borell Website, server management 

  Agneta Burström Research nurse 

  Corrado Cilio Assoc. Prof. Cellular autoimmunity 

  Magnus Cinthio Assist. Prof. Electrical Measurements, Lund Technical University 

  Karl Dreja Nephrologist 

  Pontus Dunér Postdoc Exp. Cardiovasc. Research 

  Daniel Engelbertsen PhD student Exp. Cardiovasc. Research 

  Joao Fadista Postdoc 

  Maria Gomez Assoc. Prof. Cardiovascular disease, WP4 co-leader 

  Isabel Goncalves Assis. Prof. Cardiovascular research 
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  Bo Hedblad Prof. Cardiovascular epidemiology 

  Anna Hultgårdh Prof. Vessel Wall Biology 

  Martin E. Johansson Pathologist 

  Cecilia Kennbäck Laboratory Engineer 

  Jasmina Kravic Database manager 

  Claes Ladenvall Genetic statistician 

  Åke Lernmark Prof. Type 1 diabetes and celiac disease 

  Eero Lindholm Physician, Researcher Diabetic Complications 

  Charlotte Ling Assist. Prof. Epigenetics 

  Holger Luthman Prof. Medical genetics 

  Olle Melander Assoc. Prof. Hypertension and cardiovascular disease 

  Malin Neptin Biomedical analyst 

  Jan Nilsson Prof. Experimental Cardiovascular research, WP3 leader 

  Peter Nilsson Prof. Internal medicine 

  Tobias Nilsson PhD student Electrical Measurements, Lund Technical University 

  Gunilla Nordin Fredriksson Prof. Cardiovascular research 

  Marju Orho-Melander Prof. Genetic epidemiology 

  Emilia Ottoson-Laakso PhD student 

  Annie Persson Research nurse 

  Margaretha Persson Laboratory Engineer 

  Mats-Åke Persson Database manager 

  Jacqueline Postma Project manager 

  Elisabeth Pranter Research nurse 

  Sara Rattik PhD student Exp. Cardiovasc. Research 

  Gunnar Sterner Chief physician Internal Medicine Research Unit 

  Lilian Tindberg Research nurse 

  Maria Wigren Postdoc Exp. Cardiovasc. Research 

  Anna Zetterqvist PhD student 

  Mikael Åkerlund Postdoc 

  Gerd Östling Laboratory Engineer 

      

3 Timo Kanninen Technical director; PI 

Biocomputing Platforms  Anni Ahonen-Bishopp Software development manager 
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(BC Platforms) Anita Eliasson Financial and administrative director 

Espoo, Finland Timo Herrala System (server) specialist 

  Päivi Tikka-Kleemola Service manager 

      

4 Anders Hamsten Prof. Cardiovascular disease; Atherosclerosis Research Unit; PI 

Karolinska Institute Christer Betsholtz Prof. Vascular biology 

Stockholm, Sweden Ami Björkholm Administrator 

  Ulf de Faire Professor emeritus Cardiovascular epidemiology 

  Fariba Foroogh Research engineer 

  Guillem Genové Scientist 

  Karl Gertow Research Assist. Prof. Cardiovascular genetics 

  Bruna Gigante Assoc. Professor Cardiovascular epidemiology 

  Bing He Postdoc 

  Karin Leander Assoc. Professor Cardiovascular epidemiology 

  Olga McLeod Postdoc 

  Maria Nastase-Mannila Postdoc 

  Jaako Patrakka Postdoc 

  Angela Silveira Assoc. Prof. Cardiovascular genetics 

  Rona Strawbridge Postdoc 

  Karl Tryggvason Prof. Medical Chemistry 

  Max Vikström Statistician 

  John Öhrvik Professor 

  Anne-May Österholm  Postdoc 

      

5 Barbara Thorand Nutritional scientist, epidemiologist 

Helmholtz Centre Christian Gieger Statistician 

Munich, Germany Harald Grallert Biologist 

  Tonia Ludwig Statistician 

  Barbara Nitz Scientist 

  Andrea Schneider Data manager 

  Rui Wang-Sattler Scientist 

  Astrid Zierer Statistician 
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6 Giuseppe Remuzzi Institute director; PI 

Mario Negri Institute for  Ariela Benigni Head of department Molecular Medicine 

Pharmacological Research Roberta Donadelli Scientist 

  Maria Domenica Lesti Researcher 

Bergamo, Italy Marina Noris Head Laboratory Immunology and genetics of transplantation and rare diseases 

  Norberto Perico Senior scientist 

  Annalisa Perna Biostatistician 

  Rossella Piras Postdoc 

  Piero Ruggenenti Head of department Renal medicine, Assist. Prof. Nephrology and dialysis 

  Erica Rurali Postdoc 

      

7 
David Dunger (att: Jane 
Horsford) Prof. Paediatrics; PI 

University of Cambridge Ludo Chassin Senior Data Manager 

UK Neil Dalton, London Clinical biochemistry 

  John Deanfield, London Paediatric cardiology 

  Jane Horsford PA to Prof. Dunger 

  Clare Rice Operations manager/financial contact 

  James Rudd Cardiovascular imaging 

  Neil Walker Head Data services 

  Karen Whitehead Technician 

  Max Wong Postdoc 

      

8 Helen Colhoun Prof. Public health and epidemiology; PI; Vice coordinator Managing entity; WP2 leader 

  Fiona Adams   

University of Dundee Tahira Akbar PA to Helen Colhoun 

Scotland Jill Belch Prof. Vasucular disease 

  Harshal Deshmukh PhD student 

  Fiona Dove   

  Angela Ellingford NHS Tayside Diabetic Retinopathy Screening Programme manager 

  Bassam Farran Statistician 

  Mike Ferguson Dean of research Biological chemistry and drug discovery 

  Gary Henderson   
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  Graeme Houston Consultant radiologist/senior lecturer 

  Faisel Khan Reader, Vascular & Inflammatory Diseases Research Unit 

  Graham Leese Consultant diabetologist/reader 

  Yiyuan Liu PhD student 

  Shona Livingstone Senior statistician 

  Helen Looker Epidemiologist 

  Margaret McCann Project assistant  

  Stuart McGurnaghan Lead data programmer 

  Andrew Morris Prof. Diabetic medicine 

  David Newton   

  Colin Palmer Prof. Pharmacogenomics 

  Ewan Pearson Consultant diabetologist/senior lecturer 

  Gillian Reekie Research Nurse 

  Natalie Smith Research Nurse 

      

9 Angela Shore Prof. Cardiovascular Science, PI 

Peninsula Medical School Kuni Aizawa Postdoc 

Exeter, UK Claire Ball Research nurse 

  Nick Bellenger Cardiologist 

  Francesco Casanova Associate Research Fellow Vascular medicine 

  Tim Frayling Prof. Genetics 

  Phil Gates Senior lecturer Cardiovascular science 

  Kim Gooding Postdoc Vascular medicine 

  Andrew Hatttersley Prof. Molecular medicine 

  Roland Ling Consultant opthalmologist 

  David Mawson Research technician 

  Robin Shandas Prof. Bioengineering (Colorado) 

  David Strain Stroke physician, clinical lecturer 

  Clare Thorn Postdoc Vascular medicine 

      

10 Ulf Smith Prof. ; PI 

University of Gothenburg Ann Hammarstedt Researcher Molecular and clinical medicine 

Sweden Hans Häring Prof. University of Tübingen 
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  Oluf Pedersen Prof. Steno Centre, Copenhagen 

  Georgio Sesti Prof. Universtiy of Catanzaro 

      

11 Per-Henrik Groop Prof. Diabetes genetics; PI 

  Emma Fagerholm MSc; PhD student, genetics 

Folkhälsan Carol Forsblom Clinical coordinator 

Helsinki, Finland Valma Harjutsalo PhD; FinnDiane Co-PI 

  Maikki Parkkonen Laboratory manager 

  Niina Sandholm DSc(PhD); GWAS and bioinformatics, FinnDiane Co-PI 

  Nina Tolonen MD PhD 

  Iiro Toppila BSc, MSc; bioinformatician 

  Erkka Valo MSc; PhD student, bioinformatician 

      

12 Veikko Salomaa Prof. Epidemiology; PI; deputy leader WP2 

The National Institute for 
Health and Welfare Aki Havulinna DSc. (tech), statistician 

Helsinki, Finland Kati Kristiansson PhD 

  Pia Okamo THL press officer 

  Tomi Peltola PhD 

  Markus Perola Professor 

  Arto Pietilä Statistician 

  Samuli Ripatti Professor, Statistics 

  Marketta Taimi Research assistant 

      

13 Seppo Ylä-Herttuala Prof.; PI; WP4 leader 

University of Eastern 
Finland Mohan Babu PhD student 

Kuopio, Finland Marike Dijkstra PhD student 

  Erika Gurzeler PhD student 

  Jenni Huusko PhD student 

  Ivana Kholová Postdoc 

  Markku Laakso Prof.  

  Mari Merentie PhD student 
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  Marja Poikolainen PA Prof Ylä-Herttuala 

      

14 Mark McCarthy 
Prof. Human type 2 diabetes; Oxford Centre for Diabetes, Endocrinology and Metabolism; 
Wellcome Trust Centre for Human Genetics; PI; deputy leader WP1 

University of Oxford Will Rayner Database manager 

UK Neil Robertson Informatics 

  Natalie van Zuydam Postdoc 

      

15 Claudio Cobelli Prof. ; PI; WP5 leader 

University of Padova Barbara Di Camillo Assist. Prof.  

Italy Francesca Finotello PhD student 

 Francesco Sambo Postdoctoral fellow 

 Gianna Toffolo Prof.  

 Emanuele Trifoglio PhD student 

   

16 Riccardo Bellazzi Prof. Bioengineering; PI; deputy leader WP5 

  Nicola Barbarini Postdoctoral fellow 

University of Pavia Mauro Bucalo Software engineer 

Italy Christiana Larizza Assist. Prof.  

  Paolo Magni Assoc. Prof. 

  Alberto Malovini Postdoctoral fellow 

  Simone Marini Postdoctoral fellow 

  Francesca Mulas Postdoctoral fellow 

  Silvana Quaglini Prof. 

  Lucia Sacchi Assist. Prof.  

  Francesca Vitali   

      

17 Ele Ferrannini Prof. Medicine; PI 

  Beatrice Boldrini Postdoctoral fellow 

University of Pisa Michaela Kozakova Senior investigator Medical Pathophysiology 

Italy Andrea Mari  Senior researcher Biomedical engineering (ISIB-CNR, Padova) 

  Carmela Morizzo Biologist, Sonographer Cardiovascular ultrasound 

  Lucrecia Mota EGIR administrative office 
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  Andrea Natali Assoc. Prof. Medicine 

  Carlo Palombo Assoc. Prof. Medicine; deputy leader WP3 

  Elena Venturi Researcher 

  Mark Walker  Prof. Molecular diabetic medicine (Univ Newcastle-upon-Tyne ) 

      

18 Carlo Patrono Prof.Pharmacology; PI 

Catholic University of Rome Francesca Pagliaccia PhD student 

Italy Bianca Rocca Assist. Prof. Pharmacology 

      

19 Pirjo Nuutila Prof. ; PI 

University of Turku Johanna Haukkala PhD student 

Finland Juhani Knuuti Prof. ; Director Turku PET Centre 

  Anne Roivainen Prof. 

  Antti Saraste Adj. Prof.  

      

20 Paul McKeague Prof. Genetic Epidemiology; PI 

University of Edinburgh Norma Brown Research administrator, Public Health Services 

Scotland Marco Colombo Bioinformaticist 

      

21 Birgit Steckel-Hamann Deputy coordinator; PI, Manager IMI, LRL 

Eli Lilly Krister Bokvist Biostatistician 

  Sudha Shankar Diabetologist 

  Melissa Thomas Translational Science 

      

22 Li-ming Gan Prof.; Translational Science Director Cardiovascular Disease; PI, WP3 leader 

AstraZeneca Suvi Heinonen  PhD, Internal AZ postdoc, Bioscience 

  Ann-Cathrine Jönsson-Rylander PhD, Assoc. Prof., Team Leader Bioscience, WP4 leader 

  Remi Momo Postdoctoral fellow 

  Volker Schnecke Informatician Translational Science, WP5 leader 

  Robert Unwin Translational Science Director Diabetic Nephropathy 

  Anna Walentinsson Geneticist Translational Science 

  Carl Whatling Bioscientist 



GWAS of DKD Supplement 

40 

      

23 Everson Nogoceke Pre-clinical and clinical aspects of metabolic and vascular disease; PI;  WP2 leader 

Roche Gonzalo Durán Pacheco Senior Research Statistician 

  Ivan Formentini Biomarker & Experimental Medicine Leader  

  Thomas Schindler Pre-clinical and clinical and clinical biomarkers  

      

24 Piero Tortoli  Professor of Electronics 

University of Florence Luca Bassi Postdoctoral fellow 

  Enrico Boni Postdoctoral fellow 

  Alessandro Dallai Postdoctoral fellow 

  Francesco Guidi Technician 

  Matteo Lenge PhD student 

  Riccardo Matera PhD student 

  Alessandro Ramalli PhD student 

  Stefano Ricci Assist. Prof.  

  Jacopo Viti PhD student 

      

25 Bernd Jablonka SAD internal IMI coordinator 

Sanofi-aventis Dan Crowther Biomarker researcher 

  Johan Gassenhuber Biostatistician 

  Sibylle Hess Biomarker researcher 

  Thomas Hübschle Pharmacologist Diabetes 

  Hans-Paul Juretschke Imaging 

  Hartmut Rütten Head Translational Medicine 

  Thorsten Sadowski Pharmacologist Diabetes 

  Paulus Wohlfart Pharmacologist Diabetes 

     

26 Julia Brosnan Biochemist, (pre)clinical research CVD, Pfizer US; WP2 leader 

Pfizer Valerie Clerin Cardio-renal biologist, WP2 

  Eric Fauman Computational biologist 

  Craig Hyde Statistician 

  Anders Malarstig Human genetics, Pfizer Europé; WP1 leader 
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Figure S1. Manhattan and QQ Plots for each case-control definition and covariate model (minimal and full) 

 

DN - minimal λ = 1.011 
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DN - full λ = 1.009 
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macro - min λ = 1.010 



GWAS of DKD Supplement 

45 

 

macro - full λ = 1.012 
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ESRD vs. ctrl- min λ = 1.025 
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ESRD vs. ctrl - full λ = 1.019 
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ESRD vs. non-ESRD - 
min 

λ = 1.032 
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λ = 1.021 ESRD vs. non-ESRD - 
full 
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λ = 1.001 ESRD vs. macro - min 
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ESRD vs. macro - full λ = 1.014 
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All vs. ctrl - min λ = 1.019 
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All vs. ctrl - full λ = 1.013 
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Micro - min λ = 1.017 
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Micro - full λ = 1.010 
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CKD - min λ = 1.019 
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CKD - full λ = 1.017 
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CKD extreme - min λ = 1.027 
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CKD extreme - full λ = 1.023 
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CKD-DN - min 
λ = 1.018 
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CKD-DN - full λ = 1.017 
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Figure S2. Regional chromosomal location plots and forest plots by cohort of newly discovered DKD associations
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chr2:3745215 – rs12615970 – COLEC11 – CKD min 

chr3:926345 – rs115061173 – LINC01266 – ESRD vs ctrl min    

rs12615970 – CKD min 

rs115061173 – ESRD vs. ctrl min 
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chr2:228121101 – rs55703767 – COL4A3 – DN min 

chr3:11910635 – rs142823282 – TAMM41 – Micro full 

rs55703767 – DN min 

rs142823282 – Micro full 



GWAS of DKD Supplement 

65 
 

chr4:71358776 – rs191449639 – MUC7 – DN min 

chr5:121774582 – rs149641852 – SNCAIP – CKD extreme min 

rs191449639 – DN min 

rs149641852 – CKD extreme min 
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chr6:30865279 – rs118124843 – DDR1 – Micro full 

chr8:128100029 – rs551191707 – PRNCR1 – ESRD vs macro min 

rs118124843 – Micro full 

rs551191707 – ESRD vs. macro min 
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chr7:99728546 – rs77273076 – MBLAC1 – Micro min 

chr11:16937846 – rs183937294 – PLEKHA7 – Micro min 

rs77273076 – Micro full 

rs183937294 – Micro min 
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chr14:26004712 – rs61983410 – STXBP6 – Micro full 

chr18:1811108 – rs185299109 – 18p11 – CKD min 

rs61983410 – Micro full 

rs185299109 – CKD full 
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  chr14:73740250 – rs113554206 – PAPLN – Macro full 

chr20:55837263 – rs144434404 – BMP7 – Micro min 
rs144434404 – Micro min 

rs113554206 – Macro full 
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Figure S3. Correlation of expression of COL4A3 with degree of fibrosis and eGFR in microdissected kidney samples.  
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Figure S4. Genotype – phenotype associations at the lead loci when stratified by mean HbA1c <7.5% in the FinnDiane study. 
Only loci with a minor allele count ≥10 in each stratum are shown.  
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Figure S5. Genotype – phenotype associations at the lead rs55703767 (COL4A3) 
locus when stratified by mean HbA1c <7.5% in up to 3226 individuals with type 2 
diabetes (T2D) from the GoDARTS.   
 
For All vs. ctrl phenotype, 1632 individuals (848 cases, 784 controls) had HbA1c<7.5%, and 
1572 individuals (874 cases, 698 controls) had HbA1c>=7.5%. 

 

 
 
  



GWAS of DKD Supplement 

73 

Figure S6. Fishplots comparing significance and directionality between minimal and fully adjusted models for each of the 10 
phenotype definitions. Fishplots comparing the significance and directionality between the minimal and fully adjusted models for each of the 10 
phenotype definitions. P-values are signed according to consistency in the direction of effect between the two GWAS under comparison, such that 
the –log(P) of SNPs with effect sizes in the same direction are plotted on quadrant 1 (the head and body of the fish), and the –log(P) of SNPs with 
effect sizes in opposite directions are plotted in quadrant 3 (the tail of the fish). 
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DN macro ESRD vs. ctrl 

ESRD vs. non-ESRD ESRD vs. macro 

micro 

All vs. ctrl 

CKD CKD-DN CKD extreme 
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Figure S7: Association at previously reported loci (p<5×10-8) for renal complications in individuals with diabetes. AFF3 and 

RGMA-MCTP2 were originally reported for ESRD (T1D) (Sandholm et al., 2012); CDCA7/SP3 for ESRD in women (T1D) (Sandholm et al., 2013); 

ERBB4 for DN (T1D) (Sandholm et al., 2012); GABRR1 for microalbuminuria (T2D)(Van Zuydam et al., 2018); GLRA3 for albuminuria (T1D) 

(Sandholm et al., 2014); PRKAG2 and UMOD for eGFR (Pattaro et al., 2016; Van Zuydam et al., 2018); and SCAF8/CNKSR3 for DN (T2D) 

(Iyengar et al., 2015). 
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Figure S8: Forest plots of the associations at the previously reported lead loci from the GENIE consortium with largely 
overlapping studies. A: RGMA-MCTP2 rs12437854. B: AFF3 rs7583877. C: ERBB4 rs7588550. Meta-analysis results for RGMA-MCTP2: 
Previous P = 2.0×10-9, OR = 1.80 (95% confidence interval 1.48, 2.17), Current P = 7.4×10-4, OR = 1.31 (1.12, 1.54); Meta-analysis results for 
AFF3: Previous p=1.20×10-8, OR = 1.29 (1.18, 1.40), Current p=5.97x10-4, OR=1.15 (1.06, 1.24). Meta-analysis results for ERBB4: Previous P = 
2.1×10-7, OR = 0.66 (0.56, 0.77), Current P = 3.5×10-5, OR = 0.76 (0.67, 0.87). 
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Figure S9: Meta-analysis results for the loci that have previously been associated with DKD, or with eGFR or AER in the 
general population. Figure shows OR [95% CI] for the 25 loci with p<0.05 for at least one sub-phenotype; associations with p<0.05 are indicated 
with black confidence intervals. Results are plotted so that odds ratio (OR)>1 indicates association in the same direction with the original report (for 
eGFR, this means that the allele associated with higher risk of DN is associated with lower eGFR). A total of 69 loci were evaluated, including loci 
for DKD (5 loci: AFF3, RGMA-MCTP2, ERBB4 (Sandholm 2012), CDCA7/SP3 (Sandholm2014), SCAF8/CNKSR3 (Iyengar 2015)), for albuminuria 
in individuals with diabetes (GLRA3 (Sandholm 2013), 3 suggestive loci CUBN, HST6ST1 and RAB38 (Teumer 2016)), for eGFR in individuals with 
diabetes (UMOD, Pattaro et al. 2016 and Van Zuydam et al. 2018, PRKAG2 Van Zuydam et al. 2018) or without diabetes (61 loci, Gorski 2017). 
Associations at AFF3, RGMA-MCTP2, ERBB4, SCAF8/CNKSR3, and UMOD remained significant after correction for 69 tested loci (p<7×10-4). 
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Figure S10. Expression of quantitative trait loci (eQTL) analysis in microdissected 

tubule samples. Boxplots showing normalized gene expression by stratified by homozygous 

common (red), heterozygous (green), and homozygous rare (blue) genotype. We identified 

nominal associations for rs55703767 in tubule samples with IRS1 (a) and in glomerular samples 

with RP11-395N3.2 and AGFG1 (b). We also found nominal associations of rs61983410 with 

the gene encoding Cathepsin G, CTSG, in both eQTL analysis of whole kidney samples (c) and 

microdissected tubule samples (d). 
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Figure S11. Functional annotation of TAMM41. ChIP-seq data derived from healthy adult 

human kidney samples (Bernstein et al., 2010) shows that variants associated with 

microalbuminuria are located close to H3K27ac, H3K9ac, H3K4me1, and H3K4me3 signals, 

suggesting that this locus is an active regulator of TAMM41.
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Supplemental Methods: Cohort descriptions 
 
CACTI: The Coronary Artery Calcification in Type 1 Diabetes (CACTI) study enrolled 

656 subjects with diabetes diagnosed before age 30 years, treated with insulin within 1 

year of diagnosis, and diabetes duration of at least 10 years on enrollment.1 

DCCT/EDIC: The Diabetes Control and Complications Trial (DCCT) was a multi-center 

randomized clinical trial to compare intensive and conventional insulin therapy on the 

development and progression of early vascular and neurological complications of type 1 

diabetes (T1D). Renal outcomes were defined as time in years from DCCT baseline 

until the event. AERs were measured annually in DCCT and every other year in the 

post-study Epidemiology of Diabetes Interventions and Complications (EDIC) cohort. 

Persistent microalbuminuria was defined as the time to two consecutive AER >30 mg/24 

hours (>20.8 µg/min); severe nephropathy was the time to AER >300 mg/24 hours 

(>208 µg/min) with prior persistent microalbuminuria, or ESRD. 22% developed 

persistent microalbuminuria during follow-up (268 events, 976 censored), while 10% 

developed severe nephropathy (132 events, 1,172 censored).2, 35 

EDC: The Pittsburgh Epidemiology of Diabetes Complications (EDC) is a historical 

cohort study based on incident cases of childhood onset (prior to age 17 years) T1D, 

diagnosed or seen within one year of diagnosis (1950-80) at Children’s Hospital of 

Pittsburgh.4 The cohort, which has been shown to be epidemiologically representative 

of the Allegheny County, Pennsylvania, T1D population,36 was first assessed for the 

EDC study between 1986 and 1988 (mean participant age and diabetes duration were 

28 and 19 years, respectively). Subsequently, biennial examinations were conducted for 

10 years, with a further detailed examination at 18 and 25 years from enrollment. All 

EDC study participants provided informed consent, and all study procedures were 

approved by the University of Pittsburgh Institutional Review Board (IRB). 

Microalbuminuria was defined as albumin excretion rate (AER) 20-200 μg/min (30-300 

mg/24 hours), overt nephropathy as AER >200 μg/min (>300 mg/24 hours) and 

albuminuria as >20 μg/min (>30 mg/24 hours) in at least two of three validated timed 

urine collections. End-stage renal disease was defined as receiving dialysis or renal 

transplantation.  
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FinnDiane: Finnish Diabetic Nephropathy Study (FinnDiane) is an ongoing 

nationwide Finnish multicenter study of adult participants with T1D described previously.5, 

6 The participants were invited to the study by their attending physician who filled a 

questionnaire on the medical status of the patient and performed a clinical examination. 

A subset of the patients participated at one or more follow-up visits with a similar setting. 

Additional health related information was obtained from Finnish hospital discharge 

registry and from the patients’ medical records. Further patients were included to the 

FinnDiane study through collaboration with the Finnish National Institute for Health and 

Welfare; for these participants, health related data was obtained from the hospital 

discharge registry and from the medical records. For this study, participants were limited 

to those with T1D diagnosed prior to age 40 years and with insulin treatment begun within 

2 calendar years from diabetes onset. Disease status was defined by urine albumin 

excretion rate (AER) or urine albumin to creatinine ratio (ACR) in at least two out of three 

consecutive urine collections at local centers: microalbuminuria was defined as AER 20-

200 µg/min or 30-300 mg/24h or an ACR of 2.5-25 mg/mmol for men and 3.5-35 mg/mmol 

for women in overnight, 24-hour or spot urine collections, respectively. Similarly, the limit 

for macroalbuminuria was AER >200 µg/min or >300 mg/24h or ACR > 25 mg/mmol for 

men and >35 mg/mmol for women. ESRD was defined as ongoing dialysis treatment or 

receipt of transplanted kidney. Control patients with normal AER were required to have 

T1D duration of at least 15 years.5, 6 

France-Belgium: The GENEDIAB ('Génétique de la Néphropathie Diabétique, Genetics 

of Diabetic Nephropathy) and Genesis subjects were recruited in France, and in France-

Belgium, respectively. Patients with T1D were selected on the following criteria: 1) age at 

diabetes onset before age 35 years, and 2) definitive insulin use within one year after 

diagnosis. Diabetic nephropathy was classified according to the highest three AER 

measurements within the last 5 years. Categories included: 1) controls 

(normoalbuminuria), 2) incipient nephropathy (microalbuminuria), 3) established 

nephropathy (proteinuria), and 4) advanced nephropathy (serum creatinine >150 mol/L 

and/or renal replacement therapy).7, 8 
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GoKinD US: Genetics of Kidneys in Diabetes US Study (GoKinD): The GoKinD study 

consists of a DKD case-control cohort of individuals diagnosed with T1D prior to 31 years 

of age who began insulin treatment within 1 year of T1D diagnosis. Controls were 18-59 

years of age, with T1D for at least 15 years but without DKD. DKD definition includes 

individuals with end-state renal disease (ESRD), dialysis or kidney transplant and 

persistent macroalbuminuria (at least 2 out of 3 tests positive for albuminuria by dipstick 

≥1+, or ACR >300 µg albumin/mg of urine creatinine). Cases were defined as people 18-

54 years of age, with T1D for at least 10 years and DKD. Individuals were recruited at two 

study centers, George Washington University and the Joslin Diabetes Center using 

differing methods.9 The Joslin GoKinD subjects were analyzed jointly with subjects from 

the Joslin Microalbuminuria and 50-years medalists (see below).  

The InterDiane Consortium: The International Diabetic Nephropathy Consortium 

(InterDiane) was initiated in 2010 based on the protocol of the FinnDiane Study. The aim 

of the study is to identify risk factors for diabetic nephropathy and other chronic 

complications in patients with T1D. The participating studies follow the main protocol of 

the FinnDiane Study and use the same standardized questionnaires for data 

acquisition. T1D was defined as diabetes onset <40 years with insulin treatment initiated 

within one year of diagnosis. The main renal phenotype information has been collected 

at a baseline visit but in some countries prospective patient visits have been performed 

and additional phenotype information has been gathered. The last available phenotype 

information has been used in the analyses. Patients included fulfil the harmonized case 

and control criteria of the present study. InterDiane centers included in this study come 

from Romania, Austria, Latvia and Lithuania.  

- AusDiane: The Austrian Diabetic Nephropathy Study (AusDiane) was initiated 

in 2012 in the state of Salzburg in Austria, and is part of the InterDiane Consortium 

(please see also the InterDiane cohort description). The patients have been 

studied during a regular visit at two hospitals (Department of Internal Medicine 1, 

Paracelsus Medical University Hospital Salzburg and Diakonissen-Wehrle 

Hospital Salzburg). Recruitment was done consecutively in the outpatient 

departments of these two hospitals. Clinical data were collected mainly as part of 
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the Type 1 diabetes Registry of the state of Salzburg. Patients have been studied 

repeatedly every 1 to 1.5 years to improve the phenotype. The last available 

phenotype is used for the analysis. This study comprises 71 patients with normal 

AER and diabetes duration ≥15 years, 13 with microalbuminuria, 4 with 

macroalbuminuria and 2 with ESRD and with GWAS data available and passing 

the inclusion criteria. Renal status was assessed by morning urine samples at least 

once every year. The study received ethical approval from the local ethics 

committee (Ethikkommission Salzburg). Written consent was obtained prior to 

participation in the study. 

- The Latvian Diabetic Nephropathy Study (LatDiane) was initiated in 2012 and 

is part of the InterDiane Consortium (please see also the InterDiane cohort 

description). Recruitment of patients took place in Pauls Stradins University 

Hospital (Riga). The patients were recruited from the Endocrinology department of 

Pauls Stradins University Hospital and from out-patient clinics of Riga and Riga 

district (cities Jelgava, Jurmala, Ogre, Salaspils ect). The study comprises 80 

patients with normal AER and diabetes duration ≥15 years, 33 with 

microalbuminuria, 18 with macroalbuminuria and 7 with ESRD and with GWAS 

data available and passing the inclusion criteria. Patients from out-patients clinics 

of Riga and Riga district were invited for a separate recruitment visit following the 

invitation of their endocrinologist. Patients undergoing treatment or correction of 

therapy in Endocrinology department of Pauls Stradins University Hospital were 

recruited in the department. Renal status was assessed based on available data 

of albuminuria (albumin content in 24-hour urine or albumin/creatinine in morning 

spot urine). In addition, during the recruitment visit, morning spot urine was 

collected from all patients, and sent for albumin/creatinine measurement. For 

patients without available data on measurements of albuminuria before 

recruitment to the LatDiane Study, albumin/creatinine determination in morning 

spot urine was repeated also several weeks after recruitment. Follow-up visits are 

planned for 2018. The study received ethical approval from the Latvian Central 

Ethics Committee. Written consent was obtained prior to participation in the 

study.11 
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- The Lithuanian Diabetic Nephropathy Study (LitDiane) was initiated in 2013 

and is part of the InterDiane Consortium (please see also the InterDiane cohort 

description). Patients with T1D have been collected in a single center at the 

Hospital of Lithuanian University of Health Sciences (HLUHS) in Kaunas. Patients 

were included in the study from out-patient and inpatient departments of 

Endocrinology clinic of HLUHS during separate study visit. Medical records were 

reviewed for each patient and prospective visits are performed once a year. Renal 

status was classified based on the urinary albumin excretion rate (AER) in at least 

two out of three consecutive urine collections as: normal AER (<30mg/24h in a 24-

hour urine collection), incipient diabetic nephropathy (microalbuminuria; AER ≥30 

and <300mg/24h) or overt diabetic nephropathy (macroalbuminuria; AER 

≥300mg/24h). Patients on dialysis or with a kidney transplant were considered to 

have end-stage renal disease (ESRD). As a measure of renal function estimated 

GFR (eGFR) was calculated with the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) formula. At the time of analysis, the study comprised 39 

patients with normal AER, 32 with microalbuminuria, 9 with macroalbuminuria and 

10 with ESRD and with GWAS data available and passing the inclusion criteria. 

The study received ethical approval from the Kaunas Regional Biomedical 

Research Ethics Committee (No. BE-2-16, 13-March-2013). Written consent was 

obtained prior to participation in the study.  

- The Romanian Diabetic Nephropathy Study (RomDiane) was initiated in 2010 

in Romania as the pilot study of the InterDiane Consortium. Patients have been 

studied in a cross-sectional manner in two centers in Bucharest and one in Craiova 

between 2010 and 2012. Renal status was assessed based on the AER or ACR 

in two out of three consecutive urine collections at local centers. This study 

comprises 89 patients with normal AER and diabetes duration ≥15 years, 48 with 

microalbuminuria, 70 with macroalbuminuria and 28 with ESRD, and with GWAS 

data available and passing the inclusion criteria. The study received ethical 

approval from the local ethics committee. Written consent was obtained prior to 

participation in the study.12  
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Italy: Subjects with T1D were recruited at the Complications of Diabetes Unit of the San 

Raffaele Scientific Institute, Milan, Italy. Diabetic nephropathy was defined as a median 

AER >200 µg min-1 in three overnight collections of sterile urine in patients with T1D for 

at least 10 years, concomitant diabetic retinopathy and absence of clinical or laboratory 

evidence of cardiac failure or other renal or urinary tract disease. Patients without 

nephropathy had a median AER <20 µg/min.5 

Joslin Cohort: There were 2,271 Joslin patients with T1D included in this study. These 

patients were derived from three cohorts included in the ongoing Joslin Kidney Study.10 

Recruitment of 1,600 patients into the 1st Joslin Kidney Study on Natural History of 

Microalbuminuria in T1D took place between 1991 and 1993, and the cohort was followed 

through 2004. Recruitment of 1,108 patients into the 2nd Joslin Kidney Study on Natural 

History of Early Renal Decline in T1D took place between 2003 and 2012 and the follow-

up of this cohort is still ongoing. The Joslin Proteinuria Cohort that included 630 patients 

was assembled from among those who developed proteinuria while attending the Joslin 

Clinic between 1991 and 2004. The follow-up of this cohort is still ongoing. In the analysis 

of data for this study, the kidney phenotypes of patients at the enrollment into the Joslin 

Kidney Study were considered. Genotyping data were available for 244 patients with 

ESRD, 475 patients with proteinuria, 470 patients with microalbuminuria and 1,189 

patients with normoalbuminuria. 

SDRNT1BIO: The Scottish Diabetes Research Network Type 1 Bioresource is a 

prospective cohort study of 6,127 individuals from across Scotland. Participants aged 16 

years and over with a clinical diagnosis of T1D and insulin use within a year of onset were 

recruited from primary and secondary care across Scotland between 2010 and 2013. 

Serum, plasma, whole blood and urine samples were collected at study day allowing 

eGFR and albuminuria status to be obtained. Further retrospective and prospective 

biochemistry, co-morbidity and lifestyle data were linked from routine electronic health 

care records, providing serial estimates of renal status.13  

Steno: Patients with T1D attending the outpatient clinic at Steno Diabetes Center were 

invited to participate in a study of genetic risk factors for diabetes complications. T1D was 
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considered present if the age at onset of diabetes was ≤35 years and time to definite 

insulin therapy ≤1 year. DKD was defined by persistent albuminuria (>300 mg/24 h) in 

two out of three consecutive measurements, presence of retinopathy, and absence of 

other kidney or urinary tract disease. Absence of DKD (controls) was defined as persistent 

normoalbuminuria (<30 mg/24 h) after more than 15 years of T1D in patients not treated 

with ACE inhibitors or angiotensin-II receptor blockers. ESRD was defined as chronic 

dialysis or kidney transplantation.15 

Sweden: All patients with T1D were Swedish and diagnosed before 30 years of age. The 

patients with macroalbuminuria (urinary AER ≥ 200 µg min-1 in at least two consecutive 

overnight samples) were defined as case. The patients with AER <20 µg min-1 were 

considered as control.16 

UK-ROI: In the United Kingdom (UK) GoKinD, Warren 3 and All Ireland (UK-ROI) study, 

data were collected under a parallel protocol to that of the GoKinD study in the United 

States (see above). Briefly, all individuals are white with parents and grandparents born 

in the UK or Ireland and who had T1D diagnosed before 31 years of age. Cases have 

DKD diagnosed by the onset of proteinuria (>0.5 g/24 hr) >10 years since diagnosis of 

diabetes; controls are diabetic individuals without evidence of proteinuria (or 

microalbuminuria) >15 years after onset of diabetes.18 

WESDR: The Wisconsin Epidemiologic Study of Diabetic Retinopathy was an 

epidemiologic study of subjects with diabetes diagnosed before 30 years of age and 

taking insulin. Outcomes collected included proteinuria on a urine dipstick test.19 
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