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Highlights 17 

 Man-made fibres were spun from low refined kraft pulps. 18 

 E-beam as dry, non-chemical treatment was used for DP adjustment of lignocellulose. 19 

 The effect of the chemical compositions on the spinnability is only minor.  20 

 The spinnability is mainly dependent on the molecular integrity of lignocellulose matrix. 21 

 22 

ABSTRACT Man-made lignocellulosic fibres were successfully prepared from unbleached birch 23 

kraft pulps by using the IONCELL-F technology. Pulps with different lignin content were 24 
produced by tailored kraft pulping with varying intensity. The degree of polymerization of the 25 
pulps was adjusted by acid-catalyzed hydrolysis and electron beam treatment. All substrates were 26 
completely soluble in 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) and the 27 

respective solutions were spinnable to yield fibres with good to excellent mechanical properties 28 
despite the use of only mildly refined wood pulp. The tensile properties decreased gradually as the 29 
lignin concentration in the fibres increased. Changes in the chemical composition also affected the 30 

structure and morphology of the fibres. Both the molecular orientation and the crystallinity 31 
decreased while the presence of lignin enhanced the water accessibility. The effects of the 32 
crystallite size and lignin content on monolayer water adsorption are discussed.  33 

Keywords: Lignocellulose, fibres, refining, spinning, ionic liquid. 34 
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1. INTRODUCTION 36 

The global demand of textile fibres is gradually increasing in response to the global megatrends 37 

such as population and prosperity growth in combination with sustainability thinking and the 38 

limited increase in the production capacities of cotton. Thus, more man-made cellulosic fibres 39 

(MMCFs) are potentially needed to fill the ‘fibre demand gap’ in the future (Hämmerle, 2011). 40 

Currently, the major markets of MMCFs are dominated by viscose and Lyocell fibres. However, 41 

the viscose fibre process is connected to environmental and safety concerns due to the utilization 42 

of CS2 for the intermediate derivatization of cellulose into cellulose xanthate (Hermanutz, Meister, 43 

& Uerdingen, 2006). In addition to the mentioned drawbacks of this process, this technology 44 

demands dissolving pulp as feedstock. In the viscose process, the presence of lignin and 45 

hemicellulose will deteriorate the xanthation of the pulp and process filterability drastically. This 46 

results in poor spinnability, if processable at all (Hans Peter Fink et al., 2004; Gübitz, Stebbing, 47 

Johansson, & Saddler, 1998). The Lyocell process is an environmentally friendly process in which 48 

both the cellulose solvent and spent water are fully recovered and circulated. This process allows 49 

for the direct dissolution of cellulose to yield a spin dope that is processed through dry-jet wet 50 

spinning. The spun fibres are clearly stronger than regular viscose fibres. Despite the advantages 51 

of the Lyocell process, the process operates at a relatively high temperature and requires the 52 

addition of stabilizers to prevent dangerous runaway reactions during the dope preparation and 53 

spinning (H P Fink, Weigel, Purz, & Ganster, 2001). From the feedstock point of view, the 54 

NMMO-based Lyocell process can already utilize dissolving pulp, paper grade pulp (with high 55 

hemicellulose content) and even unbleached chemical pulp for fibre production (Rosenau, 56 

Potthast, Sixta, & Kosma, 2001). However, NMMO, as an oxidant, might react with the lignin 57 

present in the raw material to unexpected degradation reaction, especially at high temperatures 58 

between 110 and 130 ºC as typically used in the NMMO process. Furthermore, the dissolution of 59 
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the raw material in NMMO could be more difficult, thus affecting the quality of the dope which 60 

may lead to spinnability problems (Hans Peter Fink et al., 2004).    61 

The IONCELL-F process is a recently developed process in which the ionic liquid 1,5-62 

diazabicyclo [4.3.0]non-5-enium acetate ([DBNH][OAc]) is utilized as a solvent for cellulosic 63 

material and the resulting dope is processed in a dry jet-wet spinning process to form filaments 64 

with high mechanical properties (Hummel et al., 2015; A Michud et al., 2014; Parviainen et al., 65 

2013; Sixta et al., 2015). The IONCELL-F process, a Lyocell-type fibre process, is considered to 66 

be a green fibre spinning technology. It has been shown that it is largely insensitive to the 67 

composition of lignocellulosic material and tolerates varying amounts of non-cellulosic 68 

components such as lignin and hemicelluloses (Y Ma et al., 2016; Yibo Ma et al., 2015a). Thus, it 69 

is not necessary to source highly refined dissolving pulp for this spinning process.  70 

In previous studies (Le, Ma, Borrega, & Sixta, 2016; Y Ma et al., 2016), we have demonstrated 71 

the possibility to spin unbleached organosolv pulps, waste fine paper and pre-treated waste 72 

cardboard in IL solution and the spun fibres showed good to excellent properties. However, 73 

untreated waste cardboard (made from mainly low-refined semi-chemical pulp), which contains a 74 

large lignin content, cannot be dissolved in the IL completely. The spinning dope resulting from 75 

the untreated waste cardboard behaves likes a gel, which can only be spun with low draw ratio and 76 

the fibre properties were unacceptably low for commercial and technical applications. Jiang et 77 

al.(Jiang, Sun, Hao, & Chen, 2011) and Sun et al.(Sun et al., 2011) have also reported the 78 

possibility of spinning fibres from lignocellulosics using IL as a solvent. However, due to the 79 

presence of lignin and hemicellulose, the spun fibres showed rather low mechanical properties, not 80 

suitable for commercial use. To confirm the negative effect of native lignin on the solubility and 81 

spinnability, polymer blends of cellulose and lignin with different ratio were subjected to 82 
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dissolution and fibre spinning (Yibo Ma et al., 2015a). Different to the native lignocellulosic 83 

material, the polymer blends with up to 50% lignin can be readily dissolved in IL and the fibres 84 

produced from the IL – polymer dope show good mechanical properties. Presumably, lignin 85 

molecules embedded in the cell wall architecture are associated with polysaccharides, mainly 86 

hemicellulose, forming lignin-carbohydrate complexes (LCCs), which hamper the complete 87 

dissolution of the native lignocellulosics in IL and leads to a gel-like solution, respectively (Hauru 88 

et al., 2013; Sun et al., 2009).      89 

The main objectives of the study at hand are to investigate the spinnability of unbleached, 90 

hemicellulose-rich kraft pulps from birch wood. The primary goal is to identify the critical content 91 

of native lignin at which the pulp cannot be dissolved efficiently in an IL solvent and thus, results 92 

in poor spinnability. The findings from this research work provide valuable information on the 93 

necessary minimum refining degree for the dry-jet wet spinning of lignocellulosic material.  94 

 95 

2. Experimental Section 96 

2.1 Kraft cooking 97 

Birchwood (Betula pendula) chips were provided by Metla, Finland. The dissolving grade birch 98 

prehydrolyzed kraft (PHK) pulp (Enocell Pulp) was kindly supplied by Stora Enso, Finland. The 99 

birchwood chips were screened according to standard SCAN-N 2:88 prior to kraft cooking. The 100 

cooking was executed in 2 L autoclaves attached in a rotary air bath digester. The cooking 101 

conditions are list in Table S1. Pulp samples were taken at H-factor (Sixta, 2006) 25, 50, 200, 500, 102 

800, 1000 and 1200. These samples will be referred to as H25, H50 etc. After kraft cooking, the 103 

black liquor was removed and the pulps were washed. The kraft pulps H1200, H1000, H800 and 104 

H500 were subjected to screening with a Mänttä flat screen using a screen plate with a slot width 105 



5 

of 0.35 mm. The screening rejects were collected from the screen plate and dried in an oven at 105 106 

ºC for the determination of the rejects content. Due to the low degree of refining, the pulps H200, 107 

H50 and H25 could not be defibrillated manually. Thus, a disc refiner was utilized for pulp 108 

defibration. These samples were not screened due to the large amount of oversize fibers.  109 

2.2 Degree of polymerization (DP) adjustments 110 

The DP of the refined material was adjusted using two methods: acid-catalyzed hydrolysis and 111 

electron beam (E-beam) irradiation treatment. The acid-catalyzed hydrolysis was done in the same 112 

autoclave as was used for the kraft cooking. 5 samples, derived from H1200, H1000, H800, H500 113 

and H200, were selected for the acid-catalyzed hydrolysis. The hydrolysis was accomplished for 114 

2 hours at 130 ºC with an acid concentration of 6 g/l. The samples were then washed and air-dried 115 

for further use.  116 

Birch PHK, birch H50 and birch H25 pulps were irradiated at LEONI Studer AG, Switzerland, 117 

with a 10 MeV Rhodotron TT300 accelerator built by IBA for DP adjustment. Prior to E-beam 118 

treatment, pulp sheets (thickness is 0.15 mm for each sheet) were prepared using a laboratory sheet 119 

former. For establishing a dosage-DP relationship, the E-beam dosages were varied from 5 to 30 120 

kGy for the different pulps. The large batch treatment for H25 and H50 pulps was performed at an 121 

E-beam dosage of 20 kGy.    122 

2.3 Pulp dissolution 123 

[DBNH][OAc] was first melted at 70 ºC, then blended with the air-dried pulp (ground with a 124 

Willey mill with 1 mm mesh sieves), stirred for 1.5 h at 80 ºC with 10 rpm at reduced pressure 125 

(50–200 mbar) using a vertical kneader system. The polymer concentration of the dope was 126 

adjusted to 13 or 15 wt% according to the intrinsic viscosity of the pulps. The solutions were 127 

filtered through a hydraulic press filter device (metal filter mesh with 5 µm absolute fineness, Gebr. 128 
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Kufferath AG, Germany) at 2 MPa and 80 ºC to remove undissolved substrate, which would lead 129 

to unstable spinning. The prepared dope was finally shaped into the dimensions of the spinning 130 

cylinder and solidified upon cooling overnight to ensure filling without inclusion of air bubbles.  131 

2.3 Spinning trials  132 

Multi-filaments were spun with a customized laboratory piston spinning system (Fourné 133 

Polymertechnik, Germany). The solidified spinning dope was heated to 70 ºC in the spinning 134 

cylinder to form a highly viscous, air-bubble-free spinning dope. The molten solution was then 135 

extruded through a 36-hole spinneret with a capillary diameter of 100 μm and a length to diameter 136 

ratio (L/D) of 0.2. After the generated filaments had passed an air gap of 10 mm, they were 137 

coagulated in a water bath (10 to 15 ºC) in which they were guided by Teflon rollers to the godet 138 

couple. The extrusion velocity (Ve) was set to 1.6 ml/min (5.66 m/min), while the take-up velocity 139 

(Vt) of the godet was varied from 5 to 85 m/min to reach the maximum draw ratio (DR= Vt/Ve) at 140 

which stable spinning was ensured. The fibres were washed off-line in hot water (60 °C) and air-141 

dried. The analytical methods of the raw materials, spinning dopes and spun fires including  were 142 

carried out according to Yibo Ma et al. (2015b) and were presented in ESI section 1.  143 

3. Results and Discussion 144 

3.1 Pulp properties 145 

To obtain pulps with different lignin content, seven birch wood kraft pulps (from H-factor 1200 146 

to 25) were produced by means of a conventional kraft cooking method. As expected (and shown 147 

in Table S1), the pulp yield before screening decreases as the H-factor increases. Pulp screening 148 

was not possible for low refined pulps H25, H50, H200 due to incomplete defibration. Therefore, 149 

the yield after screening could not be determined. The intrinsic viscosity of the different pulp 150 

samples was almost at the same level. A significant reduction in viscosity was observed for H25 151 
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and 50. This is likely an artifact resulting from the low refining which prevents the dissolution of 152 

high molecular weight fractions of pulp in CED.  153 

Birch wood kraft pulps from H200 to H1200 were subjected to acid catalyzed hydrolysis in order 154 

to reduce the intrinsic viscosity (optimal range 420 to 450 ml/g), which has been identified earlier 155 

as optimum viscosity level to yield spinnable solutions. Table 1 lists the intrinsic viscosity (η0) of 156 

the pulps before and after the hydrolysis. The viscosity of the pulps was efficiently reduced by 157 

acid catalyzed hydrolysis, albeit to a slightly lower level than initially aimed at. Concomitantly, 158 

low molecular weight hemicelluloses were also degraded to such an extent that they became 159 

soluble in the reaction liquor (Mosier et al., 2005). These phenomena were reflected by the MMD 160 

as shown in Figure S1. Untreated pulps revealed a bimodal MMD (representing low-molecular 161 

weight hemicellulose and high-molecular weight cellulose). However, as expected, after acidic 162 

hydrolysis and further conversion to regenerated fibers (through dissolution in IL and regeneration 163 

during the spinning process) the low molar mass peaks almost disappeared, leaving a cellulose 164 

peak with a subtle shoulder at relatively low molar mass.  165 

 166 

Table 1. Intrinsic viscosity and chemical compositions of the original and DP adjusted kraft 167 

pulps and their spun fibres.   168 

 
Original kraft pulp  DP adjusted pulps  Fibres 

Samples Cellulose  Hemicellulose  Lignin η0 ml/g  Cellulose  Hemicellulose  Lignin η0 ml/g  Cellulose Hemicellulose Lignin 

H25 53.7 22.4 23.9 -  - - - -  55.8 20.2 24.0 

H50 56.4 21.8 21.8 -  - - - -  57.9 21.7 20.4 

H200 63.6 21.9 14.5 1795  75.1 9.8 15.1 361  75.2 6.1 18.7 

H500 68.9 22.5 8.6 1591  83.6 7.9 8.5 390  85.9 5.2 8.9 

H800 71.2 23.0 5.8 1626  84.6 10.4 5.0 367  88.5 6.9 4.6 

H1000 72.0 22.6 5.4 1656  85.0 10.2 4.8 403  88.1 8.0 3.9 

H1200 72.7 22.2 5.1 1599  85.9 9.8 4.3 351  87.8 7.2 5.0 

 169 
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The chemical composition of the initial kraft pulps, the DP adjusted pulps, and the spun fibres 170 

are summarized in Table 1. The hemicellulose content of acid hydrolyzed pulps is notably lower 171 

than in the kraft pulps. Furthermore, there is a slight decrease in the lignin content. The reduction 172 

in the hemicellulose and lignin contents result in a rise in the relative cellulose concentration of 173 

the pulp, which facilitates the subsequent fiber spinning.   174 

Birchwood kraft pulps H25, H50 were subjected to electron beam irradiation treatment. Electron 175 

beam irradiation is an environmental friendly pre-treatment technology for lignocellulosic biomass, 176 

that reduces the molecular weight and crystallinity by breaking chemical bonds in cellulose, 177 

hemicellulose and lignin (Khan, Labrie, & McKeown, 1986; Kristiani, Effendi, Styarini, Aulia, & 178 

Sudiyani, 2016; Lee et al., 2014). Prior to the main trials, several E-beam dosages had been 179 

screened in order to find the optimal radiation dosage for the DP adjustment. Pre-hydrolyzed birch 180 

kraft pulp and pine kraft paper pulp were selected as model pulps that were treated together with 181 

H25 and H50 by E-beam dosages from 5 to 30 kGy. E-beam treatment – especially at such low 182 

irradiation intensity – was expected to not alter the chemical compositions of the pulps (Imamura, 183 

Murakami, & Ueno, 1972; Kassim et al., 2016; Kristiani et al., 2016). Figure 1 presents the 184 

intrinsic viscosity of the original and the E-beam treated kraft pulps as a function of the irradiation 185 

dosages. A pronounced decrease in intrinsic viscosity (DP) was visible already at 10 kGy. The 186 

viscosity then tended to decrease gradually upon progressive increase of the E-beam dosage. This 187 

finding confirmed that E-beam irradiation is a suitable method to reduce the polymer-DP through 188 

chain scission (Imamura et al., 1972). 189 
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 190 
 191 

Figure 1. The intrinsic viscosity of E-beam treated H25 and H50 samples and a reference birch 192 

PHK pulp. 193 

 To assess the effects of E-beam treatment on the carbohydrates in more detail, the molecular 194 

weight distribution of the E-beam treated pulps was analyzed (Figure S2). Typically, a bimodal 195 

molecular weight distribution was obtained for all the measured samples. The results of GPC 196 

measurements clearly demonstrated that the high molecular weight domains shifted to lower molar 197 

mass, while the molecular weight of the short-chain fraction remained unchanged. This is in 198 

agreement with the intrinsic viscosity measurement where the intrinsic viscosity decreases as E-199 

beam dosage increases.   200 

 201 

3.2 Dissolution and dope properties  202 

Spinning dopes were prepared in [DBNH]OAc with the acid hydrolyzed kraft pulp from H1200 203 

to H200 and E-beam treated (20 kGy) kraft pulps H25 and H50. The rheological properties of the 204 

dopes were determined via oscillatory shear measurements yielding the complex viscosity and 205 

dynamic moduli as a function of the angular frequency. The crossover point of the dynamic moduli 206 
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and the zero shear viscosity were calculated using the Cross model and assuming the validity of 207 

the Cox-Merz rule (Hummel et al., 2015). In previous studies (Sixta et al., 2015), it was found that 208 

stable spinning is possible if the zero shear viscosity of the spin dope is around 30 000 Pa.s and 209 

the crossover modulus ranges between 3000 and 5000 Pa at a crossover  frequency of around 1 s-210 

1. Several subsequent studies (Asaadi et al., 2016; Yibo Ma et al., 2015a; A Michud et al., 2014; 211 

Anne Michud, Tanttu, et al., 2016) have confirmed these requirements for successful fibre spinning. 212 

However, a successful fibre spinning was observed when attempting to spin a spinning dope from 213 

an unbleached pulp, of which the rheology was outside the optimal spinning window (Y Ma et al., 214 

2016). 215 

Since the molar mass distribution and the DP of the raw material are crucial for the viscoelastic 216 

properties of the spinning dope, the selection of the polymer concentration (or spinning 217 

temperatures) has to be adjusted in order to meet the above-mentioned dope properties (Anne 218 

Michud, Hummel, & Sixta, 2015, 2016). Because of the low intrinsic viscosity of the resulting 219 

acid hydrolyzed kraft pulps, H1200 and H1000, a 15 wt% concentration of these pulps in 220 

[DBNH]OAc was prepared to adjust the required viscoelastic properties and thus to ensure their 221 

spinnability. Contrary to our expectation, these two dopes exhibited a high complex viscosity 222 

without a Newtonian plateau within the measured angular frequency range (gel-like power-law 223 

dependency). To reduce the dope viscosity, spinning dopes from H800, H500 and H200 were 224 

prepared with a polymer concentration of 13 wt%. However, only two of them, the H800 and 225 

H500-derived dopes, revealed the expected complex viscosity typical for spinnable solutions 226 

(Figure 2A). The zero shear viscosity of the spinning dopes from H200 to H1200 is listed in Table 227 

S2. At a low H-factor of H200, the respective dope showed a strong gel-character even at 13 wt% 228 

polymer concentration and despite a low pulp intrinsic pulp viscosity. This was attributed to a 229 
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lignin with a relatively high content of 15%, which is presumably bond to hemicellulose and/or 230 

cellulose to form lignin-carbohydrate complexes (LCC). Thus, it can be hypothesized that residual 231 

lignin embedded in the cell wall architecture acts as a crosslinker between the carbohydrate 232 

polymer chains, which tend to form extended aggregates in solution exhibiting a gel behavior of 233 

the resulting dope.    234 

 235 

Figure 2. A) Complex viscosity of the spinning dopes from H200 to H1200 at the spinning 236 

temperatures. B) Complex viscosity and dynamic moduli of E-beam treated kraft pulps H25 and 237 

H50 at 70 ºC. ■: Complex viscosity. ♦: Storage modulus. ●: Loss modulus.    238 

 239 
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The E-beam treated birch kraft pulps (20 kGy, H25 and H50) were dissolved in [DBNH]OAc at 240 

a polymer concentration of 13 wt%. Figure 2B illustrates the viscoelastic properties of the E-beam 241 

treated pulps. Unlike a solution from H200, these two dopes did not show any gel behavior 242 

regardless of the high lignin content. This could be explained by the efficient cleavage of the 243 

cellulose and lignin chains as well as the LCC bonds by the electron beam irradiation (Bak, 2014). 244 

Direct comparison of the viscoelastic properties of the dopes prepared from H25 and H50, revealed 245 

a more pronounced solution state for the H50. At high angular frequency complex viscosity and 246 

dynamic moduli of the two dopes were almost perfectly superimposed. At low angular frequency 247 

the complex viscosity of the H50 dope started to enter the Newtonian plateau whereas the complex 248 

viscosity of the H25 dope continues to raise. As a result, the zero shear viscosity of H25 dope was 249 

higher than that from the H50 dope.     250 

 251 

3.3 Dope spinnability and tensile properties of the spun fibres  252 

The spinning performance depends on several factors of which most are connected to the dope 253 

rheology. The polymer solution must exhibit the right fluidity to be extruded through the spinneret 254 

orifices. Further, a dry-jet wet spinning process demands the stretch of the filaments in the air gap. 255 

Hence, the filaments must have a certain visco-elasticity to withstand the draw without rupture. 256 

We have thus defined spinnability in terms of accessible draw ratios: DR<2 non-spinnable, 2–8 257 

poor, 8–14 good, >14 excellent spinnability. All dopes showed good to excellent spinnability. In 258 

the case of acid hydrolyzed kraft pulps, only H1200 showed a relative low spinnability (reflected 259 

by the low draw ratio of 8.8). Considering the high cellulose content in H1200, a better spinning 260 

performance was expected. Possibly, the high dope viscosity and the relatively high spinning 261 

temperature may have limited the spinnability. The solution prepared from the H800 pulp showed 262 

the highest spinnability with a maximum draw ratio of 17.7. Surprisingly, the dopes from H200, 263 
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H50 and H25, which contained large amounts of lignin and hemicellulose, were still spinnable and 264 

showed good spinnability (15.9 for H200 and 9.7 for both H25 and 50). Table 2 summarizes the 265 

mechanical properties of the spun fibres. The fibre tenacity is closely linked with the cellulose 266 

microfibril orientation in the fibre (H P Fink et al., 2001; Kong & Eichhorn, 2005). A high draw 267 

ratio results in fibres with more pronounced lateral orientation of the polymer chain, therefore, 268 

yields fibres with improved tenacity. Due to the low spinnability, the fibre spun form H1200 dope 269 

had the lowest conditioned (32.9 cN/tex) and wet tenacity (19.9 cN/tex) among the fibres from 270 

acid hydrolyzed kraft pulps, while the H800 fibre showed the highest conditioned tenacity of 40.2 271 

cN/tex and wet tenacity of 29.3 cN/tex due to the excellent spinnability of the dope. The lignin and 272 

hemicellulose content do not only affect the spinnability, but also influence the mechanical 273 

properties of the spun fibres through their relatively low DP and their inability to orient themselves 274 

along the molecular axis. Because the lignin contents in H200, H50 and H25 pulps are significantly 275 

higher as compared to the other pulps, the mechanical properties of the resulting fibres were 276 

notably reduced. Especially, the fibres spun from the H50 and H25 pulps reveal a conditioned 277 

tenacity of only 24.4 and 23.0 cN/tex, which may be explained by a very low cellulose content of 278 

56% and 58%, respectively (Table 2).   279 

  280 

Table 2. Tensile properties of the spun fibres from H1200 to H200 dopes.  281 

 282 
 283 

 284 

Samples Draw ratio Titer (dtex) Dry elongation 

(%) 

Dry tenacity  

(cN/tex) 

Wet elongation 

(%) 

Wet tenacity 

(cN/tex) 

H25 9.7 2.02 8.1 23.0 7.7 11.1 

H50 9.7 2.14 7.4 24.4 7.0 13.7 

H200 15.9 1.71 7.6 32.1 8.8 20.1 

H500 12.4 1.78 9.0 38.1 9.2 26.1 

H800 17.7 1.43 7.7 40.2 9.7 29.3 

H1000 15.9 1.58 8.0 37.3 8.6 24.9 

H1200 8.8 2.74 9.2 32.9 9.4 19.9 

Lyocell - 1.3 9.5 34.3 - - 
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3.4 Structural properties of fibres  285 

As stated above, the tensile properties of the fibre are directly connected to the cellulose 286 

orientation. The total orientation of cellulose molecules in a fiber matrix can be assessed by means 287 

of birefringence measurement. In agreement with the previous studies (Asaadi et al., 2016; Yibo 288 

Ma et al., 2015a), the degree of orientation of the fibers increased significantly at low draw ratio 289 

and tends to level-off when exceeding a draw ratio of 5. A slight drop in the orientation might 290 

occur at higher draw ratio due to relaxation of the cellulose molecules, which is caused by the 291 

slippage of cellulose chains and the breakage of the intermolecular hydrogen bonds among the 292 

cellulose molecules (Asaadi et al., 2016; Kong & Eichhorn, 2005). Figure 3 shows that the total 293 

degree of orientation was affected by both the lignin concentration and the spinnability, 294 

characterized by the draw ratio during spinning. Surprisingly, H1200 fibres that could be produced 295 

only at relatively low draw ratio showed an overall lower orientation than pulps with a similar 296 

composition. In the case of H200, H50 and H25 fibres, having a significantly higher lignin content, 297 

the total orientation was notably reduced. The presence of lignin disturbs the highly ordered 298 

structure formed by cellulose chains and, thus, reduces the total orientation of the fiber (Kong & 299 

Eichhorn, 2005). The development of the degree of orientation is consistent with the tensile 300 

properties of the fibres. A reduction of total orientation caused a decrease of the fibre tenacity. 301 

 302 
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 303 
Figure 3. Degree of total orientation f_tot of the fibres at selected draw ratios.  304 

The crystallinity and the crystallite size of fibres listed in Table 3 were assessed by XRD 305 

measurement. The XRD spectra of selected samples are shown in Figure S3. The crystallinity of 306 

the fibres increases upon progressive cooking intensity of pulp production, with the fibre spun 307 

from the H1200 pulp having the largest crystallinity of 50%. The increase in the lignin content of 308 

the fibres spun  from kraft pulps prepared with gradually decreased cooking intensity (from H-309 

factor 200 to H-factor 25) results in a crystallinity drop to 43% and 40% in relation to the total 310 

sample, respectively. The crystallite dimensions were assessed in 110, 1-10 and 020 direction and 311 

extrapolated by using the Scherrer equation (Leppänen et al., 2011). The crystallite width 312 

measured in 110 direction (perpendicular to the cellulose crystal plane) follows the trend of the 313 

degree of crystallinity. By contrast, there is no distinct difference observed in the crystalline width 314 

in 1-10 direction. However, it has to be noted that the fit quality of the 110 and 1-10 crystallite 315 

width suffered from the overlap of the respective peaks. Furthermore, it has been shown that the 316 

signals from 110 and 1-10 may include crystal aggregations or less ordered cellulose chains on the 317 

surface which result in erroneous values for the crystallite width (Cheng et al., 2011; Maurer, Sax, 318 

& Ribitsch, 2013). In general, the crystallite width estimated in 020 direction (sharp peak from 22 319 

to 25º with high intensity in the XRD diffractograms) is more reliable. However, no distinct 320 
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correlation between the 020 crystallite width and the lignin content (i.e. pretreatment intensity) 321 

was observed. 322 

 323 

Table 3. Crystallinity and crystallite width analyzed by XRD from the H1200, H800, H200, H50 324 

and H25 fibres at the highest draw ratio.  325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

    Scanning electron microscopy images of the fibres (surfaces and cross sections) were recorded 334 

in order to examine their structural alterations along their compositional changes (Figure 4). Indeed, 335 

SEM images reveal a significant effect of the pretreatment intensity on the structure of the fibre. 336 

When the fibres contained a higher amount of lignin (H25 and H200), the microfibrils became less 337 

orientated and voids were clearly visible in the SEM images of the cross section. Consequently, 338 

the fibres become more ductile which leads to a loose structure. When the cellulose content 339 

increased (H800 and H1200), the orientation of the cellulose microfibrils became more 340 

pronounced and the fibre surfaces appeared smooth.  341 

 342 

   Crystallite width (nm) 

Samples Draw ratio Crystallinity index (%) 110 11̅0 020 

H25 9.7 40±3 2.6±0.15 3.2±0.3 5.7±0.3 

H50 9.7 40±3 2.9±0.15 3.2±0.3 6.0±0.3 

H200 15.9 43±3 3.4±0.15 2.9±0.3 5.6±0.3 

H800 17.7 48±3 3.8±0.15 2.9±0.3 5.8±0.3 

H1200 8.8 50±3 3.8±0.15 3.1±0.3 5.5±0.3 
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 343 

Figure 4. SEM images of fibres cross sections (top) and surface (bottom); 1) H25, 2) H200, 3) 344 

H800 and 4) H1200.  345 

Dynamic vapour sorption (DVS) studies were conducted to gain further insight into the 346 

relationship between the structural and chemical characteristics of the fibers. Water sorption 347 

behavior of regenerated cellulosic fibres depends on several factors, e.g. morphology, crystallinity, 348 

degree of orientation and the chemical compositions (Bingham, 1964; Kreze & Malej, 2003; 349 

Okubayashi, Griesser, & Bechtold, 2004, 2005b, 2005a; Siroka, Noisternig, Griesser, & Bechtold, 350 

2008; Stana-Kleinschek, Ribitsch, Kreže, Sfiligoj-Smole, & Peršin, 2003). It has been shown that 351 

Lyocell type fibres absorb a little bit less moisture compared to viscose fibres due to their higher 352 

degree of orientation (which is closely related to crystallinity) and more compact structure. 353 
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However, when lignin as a hydrophobic component is present in the fibres it may hamper the 354 

moisture absorption as was observed earlier (Yibo Ma et al., 2015a). Figure 5 illustrates the 355 

equilibrium moisture sorption and desorption isotherms of tested fibres (a) and shows their 356 

hysteresis (b).  357 

 358 

Figure 5. Equilibrium moisture isotherms of spun fibres (a) and the hystereses of the sorption and 359 

desorption isotherms from H25, H50, H200, H800 and H1200 fibres (b). 360 

 361 
Comparing with the previous studies on the DVS of man-made cellulose fibres (Okubayashi et 362 

al., 2004, 2005a, 2005b), a similar moisture sorption and desorption development was found with 363 

the fibres spun from kraft pulp/ionic liquid dopes, which is typical for cellulosic materials. 364 

Contrary to our expectation, lignin did not act as a moisture repellent in these fibres. However, it 365 

contributed more to the loss of the fibre orientation together with hemicellulose. Thus, a clear 366 

effect of the degree of orientation on the wetting of the fibres was noted. Moreover, the role of the 367 

cellulose crystallite size (derived from the 020 reflection) on the monolayer (ML) hydration has 368 

been investigated based on the theory proposed by Driemeier (Driemeier & Bragatto, 2013) using 369 

the Hailwood-Horrobin (HH) model (Hailwood & Horrobin, 1946; Skaar, 1988) with lignin-free 370 
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cellulose I samples. However, no clear relationship between ML water sorption and reciprocal 371 

crystallite width could be identified, because of the presence of lignin and different crystal 372 

structure in our spun fibres (see ESI section 4, Table S2). Lignin, hemicellulose and the degree of 373 

orientation seem to be more dominant factors. 374 

 375 
To further exhibit the influence of the chemical composition/total orientation of the spun fibres 376 

on the water sorption/desorption (presented as ML water sorption, desorption and their hysteresis), 377 

multiple regression analysis was carried out with lignin content, hemicellulose content and total 378 

orientation as predictor variables. The multiple regression equations are listed in the ESI, section 379 

4. In this work, the three predictor variables are collinear, from which it is possible to express e.g. 380 

the total orientation as a linear combination of the other two variables. Thus, there is no need to 381 

estimate the responses of the ML water sorption/desorption for any arbitrary combination of the 382 

predictor variables. In this scenario, the total orientation could be used as third predictor and 383 

restricted to an interval centered around the value obtained by linearly fitting the total orientation 384 

to the other predictors. The responses of ML water sorption/desorption are visualized (shown as 385 

contour plots in Figure S3-5), in which lignin and hemicellulose are predictors at different levels 386 

of aberration of the total variables. The interpretation of the visualization almost proved that the 387 

wetting behavior is largely dependent on the chemical composition and the total orientation of the 388 

fibre. According to Figure S3, the ML sorption slightly decreases with the hemicellulose content 389 

and increases with the lignin content as well as with the total orientation. Figure S4 allows for a 390 

similar interpretation on ML desorption, but with the exception that increasing hemicellulose 391 

content causes a slight raise on the ML water desorption. Eventually, Figure S5 reveals that 392 

increasing the hemicellulose and lignin content simultaneously increases the hysteresis, whereas 393 

the increasing total orientation once again has a decreasing effect. However, it has to be stressed 394 
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that the five data points are not enough for a compelling regression analysis in three variables. 395 

Hence, the regression is rather a means of comprehensively visualizing the observed responses at 396 

different values of the predictor variables. 397 

 398 
 399 

4. CONCLUSION 400 

1,5-diazabicyclo[4.3.0]non-5-enium acetate is a promising biopolymer solvent for the 401 

production of high quality fibres, not only from costly dissolving pulps but also from low-refined 402 

unbleached pulps. In this study, our objective to find a limit in the lignin content was not achieved; 403 

even at the highest lignin content the pulp was still spinnable. The fibres showed good to excellent 404 

mechanical properties. The spinnability was primarily dependent on the macromolecular integrity 405 

of the carbohydrate matrix but not as much on its composition. Contrary to our previous study, the 406 

lignin present in the fibre did not render the fibre hydrophobic. However, it reduced the total 407 

orientation of the fibre, which leads to a more pronounced wetting of the fibre.  408 

Most importantly, E-beam irradiation was identified as an environmentally friendly alternative 409 

for DP adjustment and production of fibres from unbleached birch kraft pulp with varying amount 410 

of lignin and hemicellulose. Contrary to the DP adjustment with an acid treatment, E-beam 411 

irradiation does not yield any material losses.  This increases the overall process economy and 412 

environmental sustainability of the Ioncell-F technology. For further work, a milder pre-treatment 413 

in combination with E-beam irradiation (which cleaves the LCC bonds) is still necessary to 414 

investigate the spinning limitation. 415 

 416 



21 

Acknowledgements 417 

This study is part of the ‘’Design Driven Value Chains in the World of Cellulose’’ project funded 418 

by the Finnish Funding Agency for Innovation (TEKES). The authors would like to thank Rita 419 

Hataka for performing carbohydrate and molar mass distribution analyses.  420 

References 421 

 422 

Asaadi, S., Hummel, M., Hellsten, S., Härkäsalmi, T., Ma, Y., Michud, A., & Sixta, H. (2016). 423 

Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing 424 

an Ionic Liquid. ChemSusChem, 9(22), 3250–3258. https://doi.org/10.1002/cssc.201600680 425 

Bak, J. S. (2014). Electron beam irradiation enhances the digestibility and fermentation yield of 426 

water-soaked lignocellulosic biomass. Biotechnology Reports, 4, 30–33. 427 

https://doi.org///dx.doi.org/10.1016/j.btre.2014.07.006 428 

Bingham, B. E. M. (1964). A study of the fine structure of regenerated cellulose fibers. Die 429 

Makromolekulare Chemie, 77(1), 139–152. https://doi.org/10.1002/macp.1964.020770113 430 

Cheng, G., Varanasi, P., Li, C., Liu, H., Melnichenko, Y. B., Simmons, B. A., … Singh, S. (2011). 431 

Transition of Cellulose Crystalline Structure and Surface Morphology of Biomass as a 432 

Function of Ionic Liquid Pretreatment and Its Relation to Enzymatic Hydrolysis. 433 

Biomacromolecules, 12(4), 933–941. https://doi.org/10.1021/bm101240z 434 

Driemeier, C., & Bragatto, J. (2013). Crystallite Width Determines Monolayer Hydration across a 435 

Wide Spectrum of Celluloses Isolated from Plants. The Journal of Physical Chemistry B, 436 

117(1), 415–421. https://doi.org/10.1021/jp309948h 437 

Fink, H. P., Weigel, P., Ganster, J., Rihm, R., Puls, J., Sixta, H., & Parajo, J. C. (2004). Evaluation 438 



22 

of new organosolv dissolving pulps. Part II: Structure and NMMO processability of the pulps. 439 

Cellulose, 11(1), 85–98. https://doi.org/10.1023/B:CELL.0000014779.93590.a0 440 

Fink, H. P., Weigel, P., Purz, H. J., & Ganster, J. (2001). Structure formation of regenerated 441 

cellulose materials from NMMO-solutions. Progress in Polymer Science, 26(9), 1473–1524. 442 

https://doi.org///dx.doi.org/10.1016/S0079-6700(01)00025-9 443 

Gübitz, G. M., Stebbing, D. W., Johansson, C. I., & Saddler, J. N. (1998). Lignin-hemicullulose 444 

complexes restrict enzymatic solubilization of mannan and xylan from dissolving pulp. 445 

Applied Microbiology and Biotechnology, 50(3), 390–395. 446 

https://doi.org/10.1007/s002530051310 447 

Hailwood, A. J., & Horrobin, S. (1946). Absorption of water by polymers: analysis in terms of a 448 

simple model. Transactions of the Faraday Society, 42(0), B092. 449 

https://doi.org/10.1039/TF946420B084 450 

Hauru, L. K. J., Ma, Y., Hummel, M., Alekhina, M., King, A. W. T., Kilpelainen, I., … Sixta, H. 451 

(2013). Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis 452 

pretreatment. RSC Advances, 3(37), 16365–16373. https://doi.org/10.1039/C3RA41529E 453 

Hermanutz, F., Meister, F., & Uerdingen, E. (2006). New developmens in the manufacture of 454 

cellulose fibres with ionic liquids. Chemical Fibers International, 56, 342–343. 455 

Hummel, M., Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Hauru, L. K. J., … Sixta, H. (2015). 456 

Ionic liquids for the production of man-made cellulosic fibers: Opportunities and challenges. 457 

Advances in Polymer Science, 217, 133-168. https://doi.org/10.1007/12_2015_307 458 

Hämmerle, F. M. (2011). The cellulose gap (the future of cellulose fibres). Lenzinger Berichte, 89, 459 



23 

12–21.  460 

Imamura, R., Murakami, K., & Ueno, T. (1972). Depolymerization of cellulose by electron beam 461 

irradiation. Bulletin of the Institute for Chemical Research, Kyoto University, 50(1), 51–63. 462 

Jiang, W., Sun, L., Hao, A., & Chen, J. Y. (2011). Regenerated Cellulose Fibers From Waste 463 

Bagasse Using Ionic Liquid. Textile Research Journal, 81, 1949–1958.  464 

Kassim, M. A., Khalil, H. P. S. A., Serri, N. A., Kassim, M. H. M., Syakir, M. I., Aprila, N. A. S., 465 

& Dungani, R. (2016). Irradiation Pretreatment of Tropical Biomass and Biofiber for Biofuel 466 

Production. In Radiation Effects in Materials (pp. 329–356). Rijeka: InTech. 467 

https://doi.org/10.5772/62728 468 

Khan, A. W., Labrie, J. P., & McKeown, J. (1986). Effect of electron-beam irradiation 469 

pretreatment on the enzymatic hydrolysis of softwood. Biotechnology and Bioengineering, 470 

28(9), 1449–1453. https://doi.org/10.1002/bit.260280921 471 

Kong, K., & Eichhorn, S. J. (2005). Crystalline and amorphous deformation of process-controlled 472 

cellulose-II fibres. Polymer, 46(17), 6380–6390. 473 

https://doi.org///dx.doi.org/10.1016/j.polymer.2005.04.096 474 

Kreze, T., & Malej, S. (2003). Structural Characteristics of New and Conventional Regenerated 475 

Cellulosic Fibers. Textile Research Journal, 73(8), 675–684.  476 

Kristiani, A., Effendi, N., Styarini, D., Aulia, F., & Sudiyani, Y. (2016). The Effect of Pretreatment 477 

by using Electron Beam Irradiation On Oil Palm Empty Fruit Bunch. Atom Indonesia, 42(1), 478 

9. https://doi.org/10.17146/aij.2016.472 479 

Le, H. Q., Ma, Y., Borrega, M., & Sixta, H. (2016). Wood biorefinery based on gamma]-480 



24 

valerolactone/water fractionation. Green Chemistry, 18(20), 5466–5476. 481 

https://doi.org/10.1039/C6GC01692H 482 

Lee, B.-M., Lee, J.-Y., Kim, D.-Y., Hong, S.-K., Kang, P.-H., & Jeun, J.-P. (2014). 483 

Environmentally-Friendly Pretreatment of Rice Straw by an Electron Beam Irradiation. 484 

Korean Society for Biotechnology and Bioengineering Journal, 29(4), 297–302. 485 

https://doi.org/10.7841/ksbbj.2014.29.4.297 486 

Leppänen, K., Bjurhager, I., Peura, M., Kallonen, A., Suuronen, J.-P., Penttilä, P., … Serimaa, R. 487 

(2011). X-ray scattering and microtomography study on the structural changes of never-dried 488 

silver birch, European aspen and hybrid aspen during drying. Holzforschung, 65(6), 865–873. 489 

https://doi.org/10.1515/HF.2011.108 490 

Ma, Y., Asaadi, S., Johansson, L.-S., Ahvenainen, P., Reza, M., Alekhina, M., … Sixta, H. (2015a). 491 

High-Strength Composite Fibers from Cellulose–Lignin Blends Regenerated from Ionic 492 

Liquid Solution. ChemSusChem, 8(23), 4030–4039. https://doi.org/10.1002/cssc.201501094 493 

Ma, Y., Asaadi, S., Johansson, L. S., Ahvenainen, P., Reza, M., Alekhina, M., … Sixta, H. (2015b). 494 

High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic 495 

Liquid Solution. ChemSusChem, 8(23), 4030–4039. https://doi.org/10.1002/cssc.201501094 496 

Ma, Y., Hummel, M., Maattanen, M., Sarkilahti, A., Harlin, A., & Sixta, H. (2016). Upcycling of 497 

waste paper and cardboard to textiles. Green Chemistry, 18(3), 858–866. 498 

https://doi.org/10.1039/C5GC01679G 499 

Maurer, R. J., Sax, A. F., & Ribitsch, V. (2013). Moleular simulation of surface reorganization 500 

and wetting in crystalline cellulose I and II. Cellulose, 20(1), 25–42. 501 



25 

https://doi.org/10.1007/s10570-012-9835-9 502 

Michud, A., Hummel, M., & Sixta, H. (2015). Influence of molar mass distribution on the final 503 

properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet 504 

spinning. Polymer, 75, 1–9. https://doi.org///dx.doi.org/10.1016/j.polymer.2015.08.017 505 

Michud, A., Hummel, M., & Sixta, H. (2016). Influence of process parameters on the structure 506 

formation of man-made cellulosic fibers from ionic liquid solution. Journal of Applied 507 

Polymer Science, 133(30), n/a. https://doi.org/10.1002/app.43718 508 

Michud, A., King, A., Parviainen, A., Sixta, H., Hauru, L., Hummel, M., & Kilpeläinen, I. (2014). 509 

Process for the production of shaped cellulose articles.  510 

Michud, A., Tanttu, M., Asaadi, S., Ma, Y., Netti, E., Kääriainen, P., … Sixta, H. (2016). Ioncell-511 

F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell. Textile 512 

Research Journal, 86(5), 543–552. https://doi.org/10.1177/0040517515591774 513 

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). 514 

Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource 515 

Technology, 96(6), 673–686. https://doi.org/10.1016/j.biortech.2004.06.025 516 

Okubayashi, S., Griesser, U. J., & Bechtold, T. (2004). A kinetic study of moisture sorption and 517 

desorption on lyocell fibers. Carbohydrate Polymers, 58(3), 293–299. 518 

https://doi.org///dx.doi.org/10.1016/j.carbpol.2004.07.004 519 

Okubayashi, S., Griesser, U. J., & Bechtold, T. (2005a). Moisture sorption/desorption behavior of 520 

various manmade cellulosic fibers. Journal of Applied Polymer Science, 97(4), 1621–1625. 521 

https://doi.org/10.1002/app.21871 522 



26 

Okubayashi, S., Griesser, U. J., & Bechtold, T. (2005b). Water Accessibilities of Man-made 523 

Cellulosic Fibers – Effects of Fiber Characteristics. Cellulose, 12(4), 403–410. 524 

https://doi.org/10.1007/s10570-005-2179-y 525 

Parviainen, A., King, A. W. T., Mutikainen, I., Hummel, M., Selg, C., Hauru, L. K. J., … 526 

Kilpeläinen, I. (2013). Predicting Cellulose Solvating Capabilities of Acid-Base Conjugate 527 

Ionic Liquids. ChemSusChem, 6(11), 2161–2169. https://doi.org/10.1002/cssc.201300143 528 

Rosenau, T., Potthast, A., Sixta, H., & Kosma, P. (2001). The chemistry of side reactions and 529 

byproduct formation in the system NMMO/cellulose (Lyocell process). Progress in Polymer 530 

Science (Oxford), 26(9), 1763–1837. https://doi.org/10.1016/S0079-6700(01)00023-5 531 

Siroka, B., Noisternig, M., Griesser, U. J., & Bechtold, T. (2008). Characterization of cellulosic 532 

fibers and fabrics by sorption/desorption. Carbohydrate Research, 343(12), 2194–2199. 533 

https://doi.org///dx.doi.org/10.1016/j.carres.2008.01.037 534 

Sixta, H. (2006). Chemical Pulping Processe: Sections 4.2.8–4.3.6.5. In Handbook of Pulp (pp. 535 

366–509). Weinheim, Germany: Wiley-VCH Verlag GmbH. 536 

https://doi.org/10.1002/9783527619887.ch4c 537 

Sixta, H., Michud, A., Hauru, L., Asaadi, S., Ma, Y., King, A. W. T., … Hummel, M. (2015). 538 

Ioncell-F: A High-strength regenerated cellulose fibre. Nordic Pulp and Paper Research 539 

Journal, 30(1), 043–057. https://doi.org/10.3183/NPPRJ-2015-30-01-p043-057 540 

Skaar, C. (1988). Theories of Water Sorption by Wood. In Wood-Water Relations (pp. 86–121). 541 

Berlin: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-73683-4_3 542 

Stana-Kleinschek, K., Ribitsch, V., Kreže, T., Sfiligoj-Smole, M., & Peršin, Z. (2003). Correlation 543 



27 

of regenerated cellulose fibres morphology and surface free energy components. Lenzinger 544 

Berichte, 82, 83–95.  545 

Sun, N., Li, W., Stoner, B., Jiang, X., Lu, X., & Rogers, R. D. (2011). Composite fibers spun 546 

directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green 547 

Chemistry, 13(5), 1158–1161. https://doi.org/10.1039/C1GC15033B 548 

Sun, N., Rahman, M., Qin, Y., Maxim, M. L., Rodriguez, H., & Rogers, R. D. (2009). Complete 549 

dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-550 

methylimidazolium acetate. Green Chemistry, 11(5), 646–655. 551 

http://dx.doi.org/10.1039/B822702K 552 

 553 

 554 
 555 

 556 

 557 


