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Abstract  17 

Population increase of piscivorous cormorants in Europe and in North America has 18 

created a conflict between fisheries and the species. The impact of cormorants on 19 

natural fish populations and yields of fishermen is still under debate. We investigated  20 

potential connection of the great cormorant Phalacrocorax carbo abundance, fishing 21 

effort and water temperature with the economically important perch Perca fluviatilis 22 

and pikeperch Sander lucioperca yields, measured as catches per unit of effort 23 

(CPUE) in gillnet fishing along the Finnish coastal areas (Baltic Sea) using 50 km 24 

International Council for the Exploration of the Sea (ICES) grids. Since cormorants 25 
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generally take smaller prey than fishermen, we expected 2–5 years time lag effect of 26 

the cormorant numbers on CPUE. Correspondingly, we expected 4–7 years lag effect 27 

of temperature on CPUE. Despite the population increase of cormorants, CPUE of 28 

perch increased in 10 out of 29 ICES grids during the study period 2005–2014. 29 

Pikeperch CPUE increased in five out of 24 grids and decreased in one. There was 30 

significant annual variation in CPUE values of perch and pikeperch, but values were 31 

not significantly associated with changes in cormorant numbers and temperature 32 

either annually or long-term. However, the CPUE values of pikeperch decreased 33 

towards the north, which is likely temperature driven as northern colder waters are 34 

less suitable for this species than southern waters. There was no clear evidence that 35 

either predation by cormorants or fishing effort are associated with long-term trends 36 

of perch and pikeperch stocks on a larger scale along the Finnish coast. The 37 

increasing CPUE values in several areas indicate that stocks are more abundant than 38 

ten years ago despite an increasing cormorant population. Our study approach can be 39 

used to monitor potential changes in stocks and impacts of cormorant in the future.  40 

 41 
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 45 
1. Introduction 46 

 47 

Population sizes of the piscivorous great cormorant Phalacrocorax carbo and double-48 

crested cormorant Phalacrocorax auritus (hereafter together cormorants) have 49 

increased strongly in many European countries (great cormorant) and in North 50 

America (double-crested cormorant) creating a conflict between fisheries and the 51 

species (Carss, 2004; Fielder, 2010a,b; Rudstam et al., 2004; Van Dam and Asbirk, 52 

1997; Veldcamp, 1996). The impact of cormorants on natural fish populations and 53 

fish catches is under ongoing debate. Some studies have suggested that cormorant 54 

numbers can limit fish stocks (Fielder, 2008, 2010a; Rudstam et al., 2004; Vetemaa et 55 

al., 2010) whereas others have found no effect (Dalton et al., 2009; Diana 2010, Diana 56 

et al., 2006; Engström, 2001b; Lehikoinen et al., 2011; Östman et al., 2012). Most of 57 

these studies concern local cases, and the potential role of cormorants has rarely been 58 

investigated on a larger spatial scale. 59 

The great cormorant population in the Baltic Sea has increased strongly in 60 

recent decades. On the northern edge of the Baltic Sea, the species bred for the first 61 

time in Finland in 1996 (Lehikoinen, 2006) and in 2014 the population consisted of 62 

20,000 pairs. This has been suggested to particularly affect perch Perca fluviatilis and 63 

pikeperch Sander lucioperca populations, which are the two major prey species that 64 

have economic importance for fisheries (Lehikoinen, 2005, Mustamäki et al., 2013, 65 

Salmi et al., 2015). However, the potential effect of cormorant predation on the 66 

catches of the fishermen cannot be distinguished if the effect of environmental 67 

variables and fishing itself are not taken into account (Heikinheimo and Lehtonen, 68 

2016; Marzano et al., 2013). 69 
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According to cormorant diet studies in the southwestern coastal waters of 70 

Finland, perch is an important food object in all studied areas, making up 21–43% of 71 

the diet by mass. Contrastingly, pikeperch only appears important for cormorants in 72 

the inner archipelago, comprising a 10% share of the diet, as the cormorants mainly 73 

take prey species that are abundant in their feeding areas (Salmi et al., 2015). Gillnet 74 

fishing is also concentrated in the inner archipelago, increasing especially in the 75 

2000s, as the disturbance by grey seals (Halichoerus grypus) has made fishing almost 76 

impossible in the outer parts of the archipelago (Heikinheimo and Lehtonen, 2016; 77 

Lehtonen and Suuronen, 2004). Most cormorant colonies are situated in the same 78 

areas important for commercial coastal fisheries and thus are partly exploiting the 79 

same fish resources. As a consequence, effect on fisheries catches could be expected 80 

in those areas. However, in the southwestern archipelago, the mortality caused by 81 

cormorants on young pikeperch was not higher than 0.04–0.13 (annual instantaneous 82 

mortality), which was much less than other natural mortality, at a maximum third of 83 

the total mortality in these age groups (Heikinheimo et al., 2016). The cormorant 84 

predation mortality on perch has not been studied. 85 

Cormorants generally take smaller prey than fishermen (Lehikoinen et al., 2011; 86 

Salmi et al., 2015; Troynikov et al., 2013), which is why there is seldom any direct 87 

competition on the same fish individuals. However, if cormorants prey upon 88 

substantial amount of fish of the younger age classes, the yields of the fishermen 89 

might be affected after a time lag (Salmi et al., 2015). Nevertheless, the mortality 90 

effect caused by cormorants may be small if the prey fish stock is dense and the 91 

natural mortality from other sources is high (Heikinheimo et al., 2016). Heikinheimo 92 

and Lehtonen (2016) have shown in pikeperch that the impact of cormorants on 93 
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fisheries catches can be easily overestimated without taking the year class fluctuations 94 

and compensatory processes in the fish population into account.  95 

The aim of this study is to investigate how cormorant predation and weather 96 

conditions is connected with perch and pikeperch yields, measured as catches per unit 97 

of effort in gillnet fishing along the Finnish coastal areas. Climatic conditions, 98 

especially temperature, are known to strongly affect the survival of the young-of-the-99 

year of perch and pikeperch (Heikinheimo et al., 2014; Lappalainen et al., 1996, 100 

2000) and this influences the harvests of fishermen after a time lag (Pekcan-Hekim et 101 

al., 2011). Our study questions were whether cormorant numbers and water 102 

temperature affected the yields of fishermen with a time lag, as a consequence of 103 

increased mortality of young fish. We investigated this by examining the change in 104 

catch per unit effort (hereafter CPUE) as an index of fish abundance both (i) in the 105 

long-term and (ii) annually in a large spatial area. (iii) Third, we investigated, based 106 

on population growth rates, how much the cormorant population would still be able to 107 

grow in the area. When investigating the potential impact of cormorants on fish 108 

stocks, other potential factors such as temperature and fishing effort should be 109 

included. Our hypothesis is that cormorant numbers would have a negative effect on 110 

fish stocks and therefore we would expect to have decreasing CPUE values in areas 111 

with high cormorant densities compared to areas with low cormorant densities. 112 

Although our main interest was to investigate the impact of cormorants on fish stocks, 113 

it is important to control the potential effect of temperature. Increased temperature 114 

improves survival of the young-of-the-year perch and pikeperch and positively affects 115 

the yields of fishermen once these age groups have grown to a certain size (Pekcan-116 

Hekim et al., 2011). Last, if fishing effort from the year before is negatively 117 

connected with CPUE values, it suggests that harvesting is regulating fish stocks. 118 
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Based on our knowledge this topic has not been studied empirically on such a large 119 

spatial scale before. 120 

 121 

2. Methodology 122 

 123 

2.1. Cormorant and fisheries data 124 

 125 

The cormorant population of Finland has been intensively monitored along the whole 126 

coastline and each of the colonies have been surveyed from the start of colonization 127 

using single visit nest counts during the incubation period in May or early June. Since 128 

colonies are easy to detect and the species has received a lot of media attention, we 129 

are very confident that all of the colonies have been monitored from the start, i.e. 130 

since 1996 (see Lehikoinen, 2006). The most recent monitoring year was 2015 (P. 131 

Rusanen, Finnish Environment Institute). Although cormorant numbers have 132 

generally increased, there have also been local changes in dynamics and in some areas 133 

the population has been declining (Lehikoinen et al., 2011). This enables comparison 134 

between areas with increasing, stable or decreasing cormorant numbers. 135 

The fisheries data consist of catch and effort statistics of commercial gillnet fisheries 136 

(36–60 mm bar length) (Pirkko Söderkultalahti, Natural Resources Institute Finland) 137 

that are gathered in 50 km grids following the marine regional divisions of the 138 

International Council for the Exploration of the Sea (ICES statistical rectangles; Fig. 139 

1a). These data were used to calculate annual catches (kg) per unit of effort (in 140 

number of gillnet days), (CPUE) for perch and pikeperch in each ICES statistical 141 

rectangle. The gillnet effort, as the number of fishing days, is calculated separately for 142 

each species from the catch observations deviating from zero in the reporting period, 143 
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which is one month in the coastal fisheries. The CPUE is the catch (kg) of the given 144 

species per gear and per fishing day calculated from observations deviating from zero. 145 

CPUE is used as an index of fish abundance (Ricker 1975). This assumption is well 146 

valid for e.g. net fishing so long as significant gear saturation did not occur (Hilborn 147 

and Walters 1992, p. 175). When a single population is being fished, and when effort 148 

is proportional to rate of fishing mortality, it is well established that CPUE is 149 

proportional to the mean catchable stock present during the time fishing takes place 150 

(Ricker 1975). In commercial fishery, the CPUE typically results from thousands of 151 

individual units of fishing effort (Hilborn and Walters 1992), such as gillnet days in 152 

this case. The Baltic Marine Environment Protection Commission (Helsinki 153 

Commision, HELCOM) is for instance commonly using the CPUE values in their 154 

core indicators for evaluating the Good Environmental Status of the Baltic Sea 155 

(HELCOM 2015). The CPUE values were calculated by dividing the catch with the 156 

effort  157 

 158 

(1) CPUEj,t,i = Catchj,t,i  / Effortj,t,i, 159 

 160 

where Catch and Effort are the catch and gillnet effort of the species j (perch or 161 

pikeperch) in year t in grid i, respectively. Grids with no gillnet effort targeted on 162 

these species were omitted from the analyses. We used unit kg / 100 gillnet days in 163 

the analyses. The statistics were available till year 2014, and we used data from the 164 

last 10 years (2005–2014) when the cormorant population has been at its highest in 165 

the study area. Altogether there are 29 ICES grids along the Finnish coast, but 166 

pikeperch is targeted by fishing in only 24 of them because the species is rare in the 167 

northern part of the study area and in the outer archipelago (Fig. 1a, Supp. Table 1) 168 
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The analyses were conducted using ICES grids (size about 50 x 50 km, but in 169 

many grids large parts of the area are not suitable for perch, pikepearch or cormorants 170 

due to land area and open deep waters). We calculated the number of breeding 171 

cormorant pairs annually in each grid based on the annual locations and sizes of the 172 

colonies (P. Rusanen, Finnish Environment Institute). Since cormorants are eating 173 

smaller prey than those taken by fisheries (Lehikoinen et al., 2011, Salmi et al., 2015), 174 

we used a time lag in the cormorant numbers (mean values of lagged years), when 175 

investigating the potential effect of cormorants on catches of fishermen. Depending 176 

on growth rate of fish individuals in both perch and pikeperch the fishes preyed upon 177 

by cormorants would have mainly reached a suitable size for fishermen after 2 to 5 178 

years (the most common ages of preyed pikeperch and perch 2–5 years; Heikinheimo 179 

et al., 2016; Salmi et al., 2015). We thus used the mean number of breeding 180 

cormorants in each ICES grid cell 2–5 years prior as a proxy for the effect of the 181 

cormorant on the CPUE of a given year.  182 

 183 

2.2. Temperature data 184 

 185 

We calculated the mean annual summer water temperature for each ICES grid cell 186 

using the data provided by the Copernicus, Marine Environment Monitoring Service 187 

(myocean.eu). More specifically, we used a database called ‘Baltic Sea Physics 188 

Reanalysis from SMHI (1989-2013)’, which provides monthly mean temperatures 189 

from a depth of 2 metres throughout the Baltic Sea in 5.5 km grids. We calculated the 190 

mean of all grids that were situated inside each ICES grid. In perch we used the 191 

period between June and August, based on the monitoring data of Natural Resources 192 

Institute Finland, and for pikeperch we used the period July-August (Heikinheimo et 193 
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al., 2014: Pekcan-Hekim et al., 2011). Since temperature may affect the survival of 0-194 

year class fishes (Lappalainen et al., 2000), which would recruit to the harvested 195 

population after several years, we used temperature data of 4–7 years before the 196 

harvest season. This time lag is based on the fact that most pikeperch and perch 197 

(females) become large enough in 5–7 and 4–6 years respectively, to be caught by the 198 

gillnets of fishermen (Heikinheimo et al., 2016; Pekcan-Hekim et al., 2011; 199 

unpublished perch data of the Natural Resources Institute Finland). 200 

 201 

2.3. Statistical analyses 202 

 203 

2.3.1. Long-term changes 204 

 205 

To evaluate how much the cormorant population may yet increase, we investigated 206 

the change in annual growth rates of the Finnish cormorant population in relation to 207 

the previous year's population size using a linear regression: 208 

 209 

(2) Ln(Nt+1/Nt) ~ Nt, 210 

 211 

where N is population size in year t or t+1. 212 

 213 

We tested how changes in CPUEi,j during the time period 2005–2014 were related to 214 

changes in the local cormorant population and water temperature in grid i. First, we 215 

calculated the average rate of change in CPUEi,j,, referred as bCPUEi,j, using linear 216 

regressions between log-transformed CPUEi,j and years (2005–2014). Second, we 217 

examined how bCPUEi,j might be explained with grid-specific average rate of 218 
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changes in cormorant numbers during 2003–2012, the maximum number of breeding 219 

cormorants during 2003–2012, and average rate of change in temperature 2000–2009. 220 

Here we used a time lag in cormorant numbers (grid specific log-transformed 221 

maximum annual number of breeding pairs during years 2003–2012, two year time 222 

lag with the CPUE values). Furthermore, we used a grid specific log-transformed 223 

maximum value of breeding cormorant pairs as the maximum value of cormorants in 224 

the grid. Correspondingly, we investigated the rate of change in temperatures during 225 

summer (see species specific periods above) using a five-year time lag for the CPUE 226 

values (2000–2009). Temperature data was not log-transformed. Since trend in 227 

cormorant numbers and maximum number of cormorants were strongly correlated (r 228 

= 0.66), we did not use these two variables in the same model. Our model were thus  229 

 230 

(3) bCPUEi,j ~ bCori  +  bTempi 231 

(4) bCPUEi,j ~ Cormaxi  +  bTempi 232 

 233 

where bCPUE is average long-term change in CPUE in species j in grid i, bCor and 234 

Cormax are growth rate and log-transformed maximum size of cormorant population 235 

in grid i, and bTemp is the rate of change in temperature in grid i. We used the R 236 

function lm for the long-term analyses. 237 

 238 

2.3.2. Annual variation 239 

 240 

Furthermore, we used linear mixed effect models to explain the annual changes in 241 

ICES grid specific log-transformed perch and pikeperch CPUE values (function lme 242 

of nlme package in program R). 243 
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Our explanatory variables were: log-transformed catch per unit effort (CPUEt-1), 244 

fishing effort year before (Eft-1), mean temperature (Temp, depending on species 5 to 245 

7 or 4 to 6 years before, see Temperature data above), number of breeding cormorants 246 

2 to 5 years before (Cor), latitude coordinate of the grid (Lat), and study year (Year). 247 

The equation of the full model was 248 

 249 

(5) CPUEii,t,j ~ CPUEi,t-1,j  +  Efi,t-1,j  +  Tempi,t-lag,j   +  Cort-lag,j  +  Latj  +  Year  +  250 

1 | grid, 251 

 252 

where CPUEii,t,j  is catch per unit values of species i, in year t and from grid j. Efi,t-1,j is 253 

the fishing effort of the fish species i one year before (t–1). Tempi,t-lag,j is temperature 254 

in grid j based on lag and time requirements of species i. Cort-lag,j is a mean number of 255 

breeding cormorants 2–5 years before in grid j and Latj is the latitude of the grid. Year 256 

is study year as a categorical variable and grid was included as a random factor. The 257 

base model included only CPUEi,t-1,j and Year as fixed variables and grid as a random 258 

factor. In the annual analyses, we used R function lme of the nlme package. 259 

We used CPUE of the previous year (CPUEi,t-1,j) to account for autoregressive 260 

dynamics. Furthermore, the effort year before could reveal the impact of fisheries on 261 

fish stocks. Negative relationship between CPUE and effort year before could indicate 262 

that increasing fishing effort may have caused decreased fish stocks. The fishing 263 

effort and the cormorant numbers were log-transformed (ln(value + 1)) before the 264 

analyses because of large variation in the magnitude of the cormorant numbers. Since 265 

the fishing effort and temperature were strongly negatively correlated with the latitude 266 

we transformed temperature into ICES grid specific temperature anomalies (mean 0 267 

within each grid), as we were interested in the effect within each grid annually. 268 
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Furthermore, there was still strong negative collinearity between cormorant numbers 269 

and latitude (-0.46 and -0.50 for perch and pikeperch, respectively, both of which are 270 

close to the recommendations given by Booth et al. (1994); |r| < 0.5). We did not 271 

standardize cormorant values, since we need the non-standardized values to test if 272 

spatial differences in cormorant population size are associated with CPUE. Instead, 273 

we avoided using cormorant numbers and latitude in the same model. Otherwise the 274 

correlation between variables was lower, |r| < 0.42. 275 

We tested the connection between fishing effort, temperature, cormorants and 276 

latitude with CPUE values separately for perch and pikeperch. We used Akaike 277 

information criteria to do the model selection (Burnham & Anderson, 2002). We did 278 

not consider models within 2 AIC units of each other or the top model, but included 279 

uninformative parameter(s) (sensu Arnold, 2010). 280 

All the analyses were conducted in R version 3.3.1 (R Core Team, 2016). 281 

 282 

3. Results 283 

 284 

3.1. Change in cormorant numbers 285 

 286 

The Finnish cormorant population consisted of c. 23,000 pairs in 2015. The annual 287 

population growth rates of cormorant have strongly declined during last 15 years (Fig. 288 

2) and the population is mainly concentrated to the western and southern sea areas 289 

(Fig. 1b). There are no colonies around inland lakes in Finland. 290 

 291 

3.2. Long-term changes in CPUE 292 

 293 
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For perch average long-term change in CPUE were significantly positive in 10 out of 294 

29 ICES grids during 2005–2014, whereas significantly negative trends were not 295 

found in any of grids. Correspondingly, in pikeperch significantly increasing trends 296 

were found in five grids out of 24 and a significant decreasing trend was found in one 297 

grid (Suppl. Table 2; Fig. 1a). Grid-specific trends in temperature and cormorant 298 

numbers or the maximum size of cormorant population were not significantly 299 

connected with the average long-term change in CPUE in the corresponding grids 300 

either in perch or pikeperch (Table 1; Fig. 3). The significant intercepts in the both 301 

perch models and in one out of the two pikeperch models suggested generally average 302 

long-term increase in the CPUE values (Table 1). 303 

 304 

3.3. Annual variation in CPUE  305 

 306 

In perch, none of the models were clearly better than the base model, which included 307 

CPUEt-1 and year (AICc difference less than 2; Table 2). Thus, only the base model 308 

was considered. CPUE values were positively connected with CPUE values year 309 

before suggesting positive autocorrelation (Table 3). Furthermore, CPUE values 310 

showed significant annual variation. More specifically, year 2009 had significantly 311 

lower and year 2014 significantly higher CPUEs than the starting year (2005), but 312 

other years did not significantly differ from that first year (Table 3). 313 

 314 

In pikeperch, the top ranked model included CPUE year before, latitude and year, and 315 

was clearly better than the base model (Table 4). There were three other models 316 

within 2 ∆AICc (Table 4), but all these included the same variables as in the top 317 

ranked models and additional variables in these models can be considered as 318 
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uninformative parameter(s) (Arnolds 2010). Thus, we only considered the top ranked 319 

model. Based on the coefficients, CPUE values of pikeperch were significantly 320 

negatively associated with latitude and significantly positively connected with CPUE 321 

values year before suggesting positive autocorrelation (Table 5, Fig. 4). 322 

 323 

4. Discussion 324 

 325 

Our findings show that the average long-term changes in CPUE were mainly non-326 

significant or positive in perch and pikeperch in ICES grids along the coastal waters 327 

of Finland. Furthermore, despite significant annual variation in CPUE values, we did 328 

not find any evidence that CPUE values would have been negatively associated with 329 

cormorant numbers or fishing effort in the year prior. In addition, there is a clear 330 

latitudinal gradient in pikeperch, with CPUE values being larger in the south 331 

compared to northern latitudes (see also Pekcan-Hekim et al., 2011). Although our 332 

results could not detect any connection between temperature and CPUE values, this 333 

gradient is likely climate driven (Lappalainen et al. 1996, 2000).  334 

According to our results average long-term changes in CPUE of perch and 335 

pikeperch show more increasing than decreasing trends during 2005–2014. As the 336 

CPUE is considered an index of fish abundance (Ricker 1975), this suggests that 337 

fished stocks of these species have generally increased. Pikeperch CPUE levels have 338 

remained relatively stable for decades, except for a temporary peak in 1990s (Pekcan-339 

Hekim et al., 2011). We are not aware of any temporal change in the efficiency of 340 

gears during the study period. In addition, the gillnet material has been the same 341 

during the study period. Recent changes in CPUE values could be also climate driven 342 

as warmer waters in the northern Baltic Sea are expected to cause an increase in 343 
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warm-adapted and freshwater species (Mackenzie et al., 2007) such as perch and 344 

pikeperch (Lappalainen et al., 1996). We did not find any evidence that changes in 345 

cormorant numbers are linked with change in CPUE, either annually or  with long-346 

term average changes. Furthermore, the CPUE trend analyses showed that CPUE 347 

values have significantly increased in several ICES grids, but decreased in only one 348 

grid in pikeperch. This suggests that despite increasing cormorant populations, 349 

fishable stocks of perch and pikeperch are abundant on a larger scale. The result is in 350 

concordance with the finding by Heikinheimo et al. (2016) that the mortality of 351 

pikeperch caused by cormorants in the Archipelago Sea was low compared to the 352 

level of natural mortality from other sources. Also, Heikinheimo and Lehtonen (2016) 353 

found no change in the mortality of perch in the same area when the periods before 354 

and after the establishment of the cormorant population were compared. If cormorants 355 

have an effect on fished populations, it might be more local and cannot be captured 356 

with the 50 km grid resolution. Although our survey grids are relatively large, they are 357 

currently the smallest unit where CPUE values can be examined on a larger scale. 358 

Furthermore, cormorants are relatively mobile (mean foraging distance 5 km) and 359 

their feeding area regularly extends up to 25 km from the breeding colonies (Thaxter 360 

et al., 2012). Importantly, our study design covers areas with high cormorant 361 

population densities also in European scale (see Bregnballe et al., 2014) as well as 362 

areas with no cormorants. This should enhance the potential to detect potential 363 

connections between cormorant numbers and changes in fish stocks. 364 

Mustamäki et al. (2014) deduced that pikeperch year class strength, based on 365 

CPUEs of three-year-old pikeperch in experimental gillnet fishing, was negatively 366 

affected by the presence of cormorants in a coastal area of Sweden, but such a trend 367 

was not seen in the commercial catches. Although cormorants consume relatively 368 
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large number of fishes, they typically take smaller fish than commercial fisheries 369 

(Lehikoinen et al., 2011, Salmi et al., 2015). As the mortality of young age groups is 370 

generally high, a large part of the cormorant predation may not be additive to other 371 

mortality (Hilborn and Walters, 1992; Heikinheimo et al., 2016). Compensatory 372 

mechanisms such as density-dependent mortality and growth (Rose et al., 2001; 373 

Heikinheimo et al. 2016) counteract the effect of predation mortality on fisheries 374 

catches. Despite this, there are local studies which indicate that e.g. perch populations 375 

can be less dense near cormorant colonies, however it is not known whether is this 376 

due to predation or indirect effects such as changes in water quality and vegetation, or 377 

avoidance of areas with higher predation risk (Gagnon et al., 2015). 378 

With perch, one explanation to the missing connection between cormorant 379 

abundance  and fisheries CPUEs is that cormorants eat both small sized males and 380 

females, but it is mainly females that grow large enough to be caught by fishermen 381 

(Heikinheimo and Lehtonen, 2016). Therefore, assuming that all perch taken by 382 

cormorants would have grown to the sizes caught with gillnets leads to overestimate 383 

of potential catch losses (Salmi et al. 2015; Heikinheimo and Lehtonen, 2016). 384 

Not only are cormorants mobile, but some fish are moving too, whereas some 385 

are quite sedentary. The range of migration usually depends on the distribution of 386 

food resources, the temperature conditions and abundance of neighbouring 387 

populations, as well as the morphology of the archipelago (Aro, 1989). For example, 388 

the migrations of perch are shorter in areas where the archipelago zone is narrow. 389 

When the area of shallow archipelago is extensive, the migrations are longer. About 390 

half of the recaptures of tagged perch in Finnish coastal waters are made at a distance 391 

of about 20 km from the point of release (Böhling and Lehtonen, 1984). The dispersal 392 

area of tagged pikeperch was also small in areas where the tagging site was 393 
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surrounded by a sparse archipelago. Locations where the dispersal area was large 394 

usually had good connections with other archipelagos. In most cases, 75% of 395 

pikeperch recaptures were made within a distance of 10 km from the tagging point 396 

(Lehtonen and Toivonen, 1987). Since the dispersal distances seem to me relatively 397 

short, the CPUE values of the grids are less likely driven by mixing of several grids. 398 

Lappalainen et al. (1996, 2000) have shown that survival of zero-year-old perch 399 

and pikeperch is higher in warmer temperatures, which explains the latitudinal 400 

pattern. It is possible that our study period was not long enough to catch this climatic 401 

effect, as especially in pikeperch CPUE peak years caused by the climatic fluctuation 402 

are scarce (Pekcan-Hekim et al., 2011), but temperature is still the main factor 403 

explaining the year-class strength in pikeperch (Heikinheimo et al. 2014). In addition, 404 

temperature data from the whole grid cell may not necessarily reflect the conditions 405 

experienced by young-of-the-year perch and pikeperch as spawning typically occurs 406 

in shallow waters (Lehtonen et al., 1996; Snickars et al., 2005; Veneranta et al., 407 

2011). 408 

We found no clear evidence that fishing effort in the year prior predicts CPUE 409 

values. This may be due to the fact that there were no large changes in the effort 410 

during the study period. Commercial fishing with gillnets has been intense in the 411 

2000s compared to earlier decades (Pekcan-Hekim et al., 2011). Due to the increased 412 

disturbance caused by grey seals (Lehtonen and Suuronen, 2004) in many coastal 413 

areas in the 2000s, gillnet fishing has largely moved from the outer archipelago nearer 414 

to the coast to more sheltered bay areas, where the fishing effort directed to perch and 415 

pikeperch has increased. Accordingly, in the outer archipelago the gillnet effort has 416 

decreased. Perch and especially pikeperch are relatively rare in the diet of grey seals 417 

in the Baltic (4% and <1% in the diet according to Lundström et al., 2010, 418 
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respectively; in the Finnish study <10% together; Kauhala et al., 2010), and thus seal 419 

predation is unlikely any important driver of the perch and pikeperch stocks. 420 

Our population growth models of cormorants suggest that the cormorant 421 

population growth rate has been slowing down in recent years. The Finnish cormorant 422 

densities start to be at the same level as in other Baltic countries, where saturation has 423 

been reached already earlier (Bregnballe et al., 2014). If the Finnish population 424 

approaches its saturation point, it is unlikely that the cormorant population will cause 425 

large-scale declines in perch and pikeperch populations. Nevertheless, this issue 426 

should be monitored on a regular basis as the carrying capacity could alter due to 427 

changes in environment, such as climate. We believe that our study design provides 428 

an appropriate tool to (i) monitor the changes in perch and pikeperch stocks targeted 429 

by commercial fishery in the Finnish coastal waters and (ii) examine potential large-430 

scale connections between cormorants and catchable fish stocks, and the analysis 431 

could be applied to other areas where similar monitoring is occurring. However, there 432 

is likely a need to investigate potential impacts of cormorants on a more local scale. 433 

Since the Baltic Sea and its fish community has been predicted to change due to 434 

various environmental drivers, not least to climate change (Andersson et al., 2015; 435 

Mackenzie et al., 2007; Pekcan-Hekim et al., 2011; Vuorinen et al., 2015), it is 436 

important to continue monitoring fish stocks as accurately as possible.  437 
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 Table 1. Coefficients of variables (model 3: trends in temperature and log-611 

transformed cormorants numbers, model 4: trends in temperature and log-transformed 612 

maximum cormorant numbers) explaining the log-transformed long-term change in 613 

CPUE values in perch and pikeperch. Significant test-values are bolded. 614 

 Perch    Pikeperch   

Model 3 B ± SE t P  B ± SE t P 

Intercept 0.042 ± 0.016 2.56 0.017  0.049 ± 0.033 1.47 0.157 

Temperature 0.040 ± 0.308 0.13 0.898  -0.549 ± 0.624 -0.88 0.388 

Cormorant trend -0.037 ± 0.045 -0.83 0.415  -0.012 ± 0.061 -0.30 0.771 

Model 4        

Variable B ± SE t P  B ± SE t P 

Intercept 0.052 ± 0.018 2.83 0.009  0.078 ± 0.037 2.11 0.047 

Temperature 0.071 ± 0.302 0.24 0.814  -0.530 ± 0.597 -0.89 0.385 

Cormorant max -0.005 ± 0.003 -1.38 0.180  -0.007 ± 0.005 -1.42 0.170 

  615 

 616 

 617 

618 
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 618 
Table 2. Number of parameters (K), AIC differences corrected for a small sample size 619 

(∆AICc), and AIC weights of models explaining the annual log-transformed CPUE 620 

values of perch in ICES grids on the Finnish coast. CPUEt-1 = CPUE of the last year, 621 

Cor = number of cormorants, Eft-1 = catch effort year before, Lat = latitude and Temp 622 

= temperature. See more detailed in the text. 623 

Model K ∆AICc w 

CPUEt-1 + Year 13 0.00 0.22 

CPUEt-1 + Lat + Year 14 0.16 0.21 

CPUEt-1 + Cor + Year 14 1.30 0.12 

CPUEt-1 + Temp + Year 14 2.08 0.08 

CPUEt-1 + Eft-1 + Year 14 2.10 0.08 

CPUEt-1 + Lat + Temp + Year 15 2.27 0.07 

CPUEt-1 + Eft-1 + Lat + Year 15 2.27 0.07 

CPUEt-1 + Temp + Cor + Year 15 3.40 0.04 

CPUEt-1 + Eft-1 + Cor + Year 15 3.44 0.04 

CPUEt-1 + Eft-1 + Temp + Year 15 4.19 0.03 

CPUEt-1 + Eft-1 + Lat + Temp + Year 16 4.39 0.03 

CPUEt-1 + Eft-1 + Temp + Cor + Year 16 5.55 0.01 

 624 

 625 

 626 

 627 

628 



 28 

 628 
Table 3. Coefficients of variables after model averaging explaining the annual 629 

variation in log-transformed CPUE of perch in ICES grids on the Finnish coast. 630 

Coefficients that significantly differ from zero are bolded. CPUEt-1 is log-transformed 631 

CPUE year before. 632 

Variable B ± SE  Df t-value P-value 

(Intercept) 2.01 ± 0.18 1,251 10.90 < 0.001 

CPUEt-1 0.24 ± 0.06 1,251 4.15 < 0.001 

Year 2006 0.02 ± 0.10 1,251 0.18 0.858 
Year 2007 0.04 ± 0.10 1,251 0.45 0.655 
Year 2008 0.05 ± 0.10 1,251 0.56 0.577 
Year 2009 -0.23 ± 0.10 1,251 -2.38 0.018 
Year 2010 0.01 ± 0.09 1,251 0.09 0.926 
Year 2011 0.13 ± 0.10 1,251 1.38 0.169 
Year 2012 0.19 ± 0.10 1,251 1.97 0.051 
Year 2013 0.15 ± 0.10 1,251 1.48 0.141 
Year 2014 0.27 ± 0.10 1,251 2.72 0.007 

 633 

634 
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 634 
Table 4. Number of parameters (K), AIC differences corrected for a small sample size 635 

(∆AICc), and AIC weights (w) of models explaining the annual log-transformed 636 

CPUE values of pikeperch in ICES grids on the Finnish coast. Cor = number of 637 

cormorants, Eft-1 = gillnet effort year before, Lat = latitude and Temp = temperature. 638 

See more detailed in the text. 639 

Model K ∆AICc w 

CPUEt-1 + Lat + Year 14 0.00 0.31 

CPUEt-1 + Lat + Temp + Year 15 0.00 0.31 

CPUEt-1 + Eft-1 + Lat + Year 15 0.96 0.19 

CPUEt-1 + Eft-1 + Lat + Temp + Year 16 0.99 0.19 

CPUEt-1 + Temp + Year 14 23.29 0.00 

CPUEt-1 + Year 13 23.32 0.00 

CPUEt-1 + Eft-1 + Year 14 23.55 0.00 

CPUEt-1 + Eft-1 + Temp + Year 15 23.59 0.00 

CPUEt-1 + Cor + Year 14 25.17 0.00 

CPUEt-1 + Temp + Cor + Year 15 25.26 0.00 

CPUEt-1 + Eft-1 + Cor + Year 15 25.30 0.00 

CPUEt-1 + Eft-1 + Temp + Cor + Year 16 25.46 0.00 

 640 

641 
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Table 5. Coefficients and their standard errors of variables from the top ranked model 641 

explaining the annual variation in log-transformed CPUE of pikeperch in ICES grids 642 

on the Finnish coast. CPUEt-1 is the CPUE year before, Latitude is the latitude of the 643 

grid cell and different years are compared to the starting year 2005. CPUEt-1 is log-644 

transformed CPUE year before. 645 

Variable B ± SE Df t-value P-value 

(Intercept) 28.20 ± 4.73 1,226 5.97 < 0.001 

CPUEt-1 0.19 ± 0.06 1,226 3.21 0.002 

Latitude -0.43 ± 0.08 1,27 -5.71 < 0.001 

Year 2006 0.05 ± 0.14 1,227 0.35 0.723 

Year 2007 -0.09 ± 0.14 1,227 -0.61 0.545 

Year 2008 -0.11 ± 0.14 1,227 -0.77 0.439 

Year 2009 -0.14 ± 0.14 1,227 -1.00 0.319 

Year 2010 -0.05 ± 0.15 1,227 -0.37 0.715 

Year 2011 0.04 ± 0.14 1,227 0.26 0.796 

Year 2012 -0.08 ± 0.15 1,227 -0.57 0.572 

Year 2013 0.11 ± 0.15 1,227 0.76 0.450 

Year 2014 0.22 ± 0.14 1,227 1.53 0.128 

 646 

 647 

 648 

649 
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 649 
650 
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 650 

Fig. 1. Study grids along the coastal areas of Finland showing (a) significant changes 651 

in CPUE values in perch and pikeperch in 2005–2014 and (b) the maximum number 652 

of breeding cormorant pairs in Finland in the northern Baltic Sea inside ICES 50 km 653 

grids in 2003–2012 (Table 5). In both panels the upper value is the number of the grid 654 

cell, in panel (a) the trends (+  = positive, -  = negative, 0 = no significant trend) of 655 

perch (left) and pikeperch (right) CPUE are shown below.656 



 33 

657 
Fig. 2. Population growth rate of the Finnish cormorant population (log(Nt + 1/Nt)) in 658 

relation to population size the year before (year t) during 2000–2015. The linear 659 

regression line shows the significant negative correlation between variables (b = -660 

0.000013 ± 0.000002, t = 27.6, P < 0.001). 661 

662 



 34 

 662 
 663 

 664 

Fig. 3. Annual average change of log-transformed CPUE values (unit kg / 100 gillnet 665 

days) in (a-b) perch and (c-d) pikeperch during 2005–2014 in relation to (a and c) 666 

population growth rates of log-transformed cormorant numbers and (b and d) 667 

maximum population size of cormorants (in log-scale) during 2003–2012 in Finnish 668 

ICES grids.  669 

670 
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 670 

 671 

 672 

Fig. 4. Annual CPUE values (kg / 100 gillnet days) of pikeperch in relation to latitude 673 

on Finnish coasts during 2005–2014. 674 

 675 

 676 

677 
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 677 
Supplementary table 1. The data of the analyses including annual grid-specific CPUE 678 

values of perch(CPUEPerch and CPUEPerch-1) and pikeperch (CPUEPikep and CPUEPikep-679 

1), log-transformed fishing effort of perch (EfPerch-1) and pikeperch (EfPikep-1) year 680 

before, water temperature for perch (TPerch) and pikeperch (TPikep), log-transformed 681 

abundance of cormorants and the latitude (Lat) of the ICES grids (Grid). 682 

Year CPUEPerch CPUEPerch-1 CPUEPikep CPUEPikep-1 EfPerch-1 EfPikep-1 TPerch TPikep Cor Lat Grid 

2005 4.376 5.719 2.517 5.870 11.055 8.673 
-

0.799 
-

1.060 0.000 65.5 2 

2006 3.776 4.376 1.648 2.517 11.079 8.818 
-

0.459 
-

0.820 0.000 65.5 2 
2007 6.279 3.776 1.043 1.648 11.253 8.166 0.311 0.140 0.000 65.5 2 
2008 6.667 6.279 2.303 1.043 10.681 8.571 0.661 0.680 0.000 65.5 2 
2009 9.282 6.667 1.162 2.303 10.299 7.946 0.501 0.730 0.000 65.5 2 
2010 7.212 9.282 2.432 1.162 10.508 8.977 0.291 0.650 0.000 65.5 2 
2011 9.909 7.212 2.131 2.432 10.467 9.266 0.261 0.510 0.000 65.5 2 
2012 10.154 9.909 1.169 2.131 10.584 8.167 0.351 0.460 0.000 65.5 2 

2013 8.698 10.154 1.468 1.169 10.089 8.033 
-

0.489 
-

0.520 0.000 65.5 2 

2014 12.043 8.698 3.677 1.468 10.534 9.205 
-

0.629 
-

0.740 0.000 65.5 2 

2005 11.016 8.776 2.727 3.571 10.748 6.043 
-

0.799 
-

1.041 3.590 65 6 

2006 14.956 11.016 1.042 2.727 10.582 6.089 
-

0.429 
-

0.671 4.107 65 6 
2007 19.721 14.956 1.151 1.042 10.587 8.302 0.321 0.249 4.410 65 6 
2008 15.704 19.721 1.701 1.151 10.547 8.102 0.731 0.769 4.677 65 6 
2009 14.619 15.704 0.696 1.701 10.724 8.793 0.511 0.689 4.984 65 6 
2010 11.298 14.619 1.179 0.696 10.156 9.079 0.241 0.509 5.127 65 6 
2011 14.633 11.298 1.517 1.179 10.441 8.430 0.271 0.479 5.302 65 6 
2012 15.181 14.633 1.803 1.517 10.610 7.623 0.391 0.489 5.361 65 6 

2013 23.337 15.181 1.458 1.803 10.939 8.803 
-

0.469 
-

0.531 5.281 65 6 

2014 25.480 23.337 1.614 1.458 10.647 9.219 
-

0.769 
-

0.941 5.162 65 6 

2005 5.868 7.677 2.756 7.328 11.134 9.735 
-

0.749 
-

1.120 0.000 65 7 

2006 9.115 5.868 4.706 2.756 11.193 10.328 
-

0.339 
-

0.740 0.000 65 7 
2007 9.280 9.115 1.626 4.706 10.971 10.035 0.251 0.110 0.000 65 7 
2008 15.557 9.280 4.229 1.626 11.083 10.005 0.541 0.610 0.000 65 7 
2009 9.417 15.557 4.288 4.229 11.103 10.013 0.341 0.600 0.000 65 7 
2010 13.234 9.417 7.361 4.288 11.278 10.108 0.241 0.610 0.000 65 7 
2011 16.603 13.234 7.546 7.361 11.178 9.920 0.391 0.600 1.386 65 7 
2012 17.483 16.603 6.970 7.546 11.077 9.445 0.521 0.630 1.792 65 7 

2013 15.109 17.483 7.628 6.970 11.127 10.291 
-

0.399 
-

0.440 2.546 65 7 

2014 15.282 15.109 6.232 7.628 11.276 10.442 
-

0.799 
-

0.860 3.199 65 7 

2005 14.667 14.692 0.340 0.545 10.759 9.273 
-

0.815 
-

1.551 0.000 64.5 11 
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2006 16.390 14.667 0.176 0.340 10.674 8.083 
-

0.385 
-

1.091 0.000 64.5 11 

2007 18.813 16.390 1.576 0.176 11.228 7.952 0.275 
-

0.171 0.000 64.5 11 
2008 8.508 18.813 0.818 1.576 10.729 8.140 0.685 0.399 0.000 64.5 11 
2009 8.794 8.508 1.219 0.818 10.954 9.175 0.465 0.339 0.000 64.5 11 
2010 9.479 8.794 0.420 1.219 10.900 9.187 0.205 0.169 0.000 64.5 11 
2011 18.951 9.479 1.158 0.420 11.004 9.424 0.355 0.219 0.405 64.5 11 
2012 22.188 18.951 0.463 1.158 11.033 9.103 0.465 0.239 0.811 64.5 11 

2013 21.411 22.188 1.054 0.463 11.217 9.678 
-

0.415 
-

0.821 1.179 64.5 11 

2014 17.998 21.411 0.897 1.054 11.195 9.658 
-

0.835 
-

1.331 1.179 64.5 11 

2005 39.353 8.751 - - 7.072 - 
-

0.759 - 0.000 64.5 12 

2006 45.392 39.353 - - 7.735 - 
-

0.339 - 0.000 64.5 12 
2007 24.552 45.392 2.198 0.765 9.512 8.805 0.271 0.130 0.000 64.5 12 
2008 33.315 24.552 5.278 2.198 10.104 8.174 0.541 0.660 0.000 64.5 12 
2009 35.593 33.315 9.015 5.278 10.400 9.774 0.321 0.630 0.000 64.5 12 
2010 19.112 35.593 2.381 9.015 9.841 9.182 0.131 0.540 0.000 64.5 12 
2011 33.673 19.112 3.567 2.381 10.217 9.876 0.361 0.560 0.000 64.5 12 
2012 40.214 33.673 2.551 3.567 9.923 9.612 0.561 0.670 0.000 64.5 12 

2013 20.589 40.214 1.790 2.551 9.937 9.660 
-

0.299 
-

0.310 0.000 64.5 12 

2014 18.879 20.589 4.182 1.790 10.243 9.944 
-

0.789 
-

0.810 0.000 64.5 12 

2005 2.218 1.546 0.200 0.172 9.305 9.455 
-

0.612 
-

1.102 0.000 64 15 

2006 5.037 2.218 0.741 0.200 9.326 8.412 
-

0.172 
-

0.592 0.000 64 15 
2007 2.392 5.037 0.464 0.741 8.658 4.913 0.578 0.428 0.000 64 15 
2008 3.800 2.392 0.156 0.464 8.802 6.068 0.808 0.868 0.000 64 15 
2009 3.922 3.800 2.004 0.156 9.366 8.075 0.588 0.728 0.000 64 15 
2010 4.018 3.922 1.552 2.004 9.811 7.760 0.028 0.358 0.000 64 15 
2011 3.757 4.018 0.388 1.552 10.080 8.483 0.218 0.588 0.000 64 15 
2012 3.577 3.757 5.099 0.388 10.013 8.884 0.138 0.428 0.000 64 15 

2013 2.785 3.577 3.407 5.099 9.519 5.869 
-

0.612 
-

0.592 0.000 64 15 

2014 7.622 2.785 0.815 3.407 9.815 6.377 
-

0.962 
-

1.112 0.000 64 15 

2005 4.039 4.569 12.572 8.153 10.097 9.613 
-

0.867 
-

1.357 0.000 63.5 19 

2006 4.316 4.039 35.125 12.572 9.889 9.766 
-

0.417 
-

0.817 0.693 63.5 19 
2007 4.188 4.316 18.321 35.125 10.018 9.638 0.303 0.233 0.693 63.5 19 
2008 5.629 4.188 7.473 18.321 10.184 9.403 0.703 0.903 0.693 63.5 19 
2009 6.611 5.629 10.298 7.473 9.753 9.359 0.553 0.783 0.693 63.5 19 
2010 5.211 6.611 8.003 10.298 10.097 9.487 0.023 0.303 0.000 63.5 19 
2011 5.577 5.211 26.707 8.003 10.271 9.628 0.313 0.533 0.000 63.5 19 
2012 9.312 5.577 9.687 26.707 9.800 9.047 0.413 0.593 0.000 63.5 19 

2013 4.642 9.312 15.345 9.687 10.189 9.812 
-

0.287 
-

0.317 0.000 63.5 19 

2014 4.757 4.642 9.596 15.345 10.349 9.993 
-

0.737 
-

0.857 0.000 63.5 19 

2005 9.469 5.031 - - 7.857 - 
-

1.116 - 0.000 63 22 
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2006 10.241 9.469 - - 8.632 - 
-

0.656 - 0.000 63 22 
2007 4.709 10.241 - - 9.493 - 0.284 - 0.000 63 22 
2008 15.903 4.709 - - 9.373 - 0.854 - 0.000 63 22 
2009 5.810 15.903 - - 8.711 - 0.774 - 0.000 63 22 

2010 4.917 5.810 - - 9.344 - 
-

0.106 - 0.000 63 22 
2011 23.995 4.917 - - 9.711 - 0.234 - 0.000 63 22 
2012 5.212 23.995 - - 8.703 - 0.364 - 0.000 63 22 

2013 21.006 5.212 - - 6.422 - 
-

0.036 - 0.000 63 22 

2014 47.956 21.006 2.050 3.720 8.717 8.322 
-

0.596 
-

0.998 0.000 63 22 

2005 17.660 13.290 0.744 1.127 13.017 11.143 
-

1.086 
-

1.411 0.000 63 23 

2006 17.302 17.660 0.361 0.744 12.956 10.830 
-

0.478 
-

0.841 0.000 63 23 
2007 24.281 17.302 1.261 0.361 13.019 11.091 0.355 0.189 0.000 63 23 
2008 25.204 24.281 1.156 1.261 13.022 10.959 0.932 1.039 0.000 63 23 
2009 19.090 25.204 0.437 1.156 12.897 10.563 0.783 0.889 1.910 63 23 
2010 21.286 19.090 0.685 0.437 13.136 11.195 0.115 0.269 3.258 63 23 
2011 28.047 21.286 1.236 0.685 12.992 10.774 0.453 0.479 3.845 63 23 
2012 30.849 28.047 0.493 1.236 12.931 10.790 0.633 0.509 3.845 63 23 

2013 30.130 30.849 3.104 0.493 12.921 11.320 0.123 
-

0.211 3.714 63 23 

2014 34.808 30.130 2.057 3.104 12.898 12.001 
-

0.438 
-

0.911 3.534 63 23 

2005 5.287 6.162 2.282 2.232 10.247 9.691 
-

0.707 
-

1.242 0.000 63.5 24 

2006 7.476 5.287 3.085 2.282 11.008 9.529 
-

0.267 
-

0.762 0.000 63.5 24 
2007 5.289 7.476 5.685 3.085 10.518 9.408 0.363 0.268 0.000 63.5 24 
2008 4.701 5.289 1.816 5.685 10.493 9.133 0.583 0.778 0.000 63.5 24 
2009 7.244 4.701 0.862 1.816 10.877 9.706 0.313 0.638 0.000 63.5 24 

2010 7.937 7.244 1.193 0.862 11.332 10.420 
-

0.107 0.308 0.000 63.5 24 
2011 10.227 7.937 1.067 1.193 11.042 10.140 0.303 0.528 0.000 63.5 24 
2012 12.238 10.227 1.625 1.067 10.342 9.717 0.493 0.628 0.000 63.5 24 

2013 10.304 12.238 2.991 1.625 10.550 9.830 
-

0.227 
-

0.292 0.000 63.5 24 

2014 13.417 10.304 2.492 2.991 10.552 9.523 
-

0.747 
-

0.852 0.000 63.5 24 

2005 13.024 10.619 0.901 0.061 10.228 8.090 
-

1.049 
-

1.270 0.000 62.5 27 

2006 12.760 13.024 - - 9.797 - 
-

0.609 - 0.000 62.5 27 
2007 24.226 12.760 - - 9.900 - 0.361 - 0.000 62.5 27 
2008 18.266 24.226 1.064 0.140 10.097 6.572 0.881 1.090 0.000 62.5 27 
2009 12.434 18.266 0.244 1.064 10.580 8.207 0.721 0.880 0.000 62.5 27 

2010 22.884 12.434 0.445 0.244 10.988 9.310 
-

0.149 0.060 0.000 62.5 27 
2011 29.165 22.884 0.283 0.445 10.662 8.593 0.171 0.390 0.000 62.5 27 
2012 24.702 29.165 - - 10.393 - 0.301 - 0.000 62.5 27 

2013 25.312 24.702 - - 10.320 - 
-

0.069 - 0.000 62.5 27 

2014 32.949 25.312 1.665 0.949 10.135 7.653 
-

0.559 
-

0.960 0.000 62.5 27 
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2005 30.679 26.742 1.100 1.163 12.202 10.412 
-

0.937 
-

1.336 0.000 62.5 28 

2006 27.538 30.679 3.046 1.100 12.096 9.675 
-

0.437 
-

0.716 0.000 62.5 28 
2007 28.628 27.538 0.392 3.046 12.402 9.205 0.283 0.284 1.322 62.5 28 
2008 29.474 28.628 0.928 0.392 12.196 9.371 0.803 1.014 1.322 62.5 28 
2009 21.280 29.474 0.624 0.928 12.272 10.322 0.543 0.804 1.322 62.5 28 

2010 20.108 21.280 0.278 0.624 12.744 11.184 
-

0.097 0.214 1.322 62.5 28 
2011 28.190 20.108 0.278 0.278 12.839 10.977 0.163 0.404 3.350 62.5 28 
2012 25.422 28.190 0.345 0.278 12.792 10.586 0.373 0.424 3.350 62.5 28 

2013 24.965 25.422 1.719 0.345 12.716 11.257 
-

0.067 
-

0.216 3.350 62.5 28 

2014 35.989 24.965 2.269 1.719 12.867 11.802 
-

0.627 
-

0.876 3.376 62.5 28 

2005 26.422 21.060 1.532 2.736 11.482 10.932 
-

0.979 
-

1.448 0.000 62 32 

2006 26.139 26.422 1.749 1.532 10.746 9.393 
-

0.369 
-

0.668 0.000 62 32 
2007 14.793 26.139 0.462 1.749 11.365 10.703 0.321 0.332 0.000 62 32 
2008 27.428 14.793 2.095 0.462 11.402 10.508 0.761 0.962 0.000 62 32 
2009 21.887 27.428 2.416 2.095 11.102 10.443 0.411 0.682 0.000 62 32 

2010 35.969 21.887 3.861 2.416 11.123 10.812 
-

0.219 0.082 2.398 62 32 
2011 33.147 35.969 2.928 3.861 11.239 11.019 0.101 0.372 2.848 62 32 
2012 30.720 33.147 1.894 2.928 11.182 10.629 0.421 0.482 2.848 62 32 

2013 23.981 30.720 2.953 1.894 11.207 10.843 0.061 
-

0.068 2.848 62 32 

2014 31.450 23.981 7.854 2.953 11.262 11.061 
-

0.509 
-

0.728 1.981 62 32 

2005 19.331 16.194 7.397 9.213 12.189 12.069 
-

0.904 
-

1.393 3.045 61.5 37 

2006 21.389 19.331 9.778 7.397 12.089 11.861 
-

0.294 
-

0.553 4.193 61.5 37 
2007 22.013 21.389 10.361 9.778 11.942 11.658 0.366 0.437 5.053 61.5 37 
2008 15.251 22.013 7.493 10.361 11.812 11.359 0.676 0.887 5.672 61.5 37 
2009 8.426 15.251 8.169 7.493 11.826 11.426 0.296 0.517 6.319 61.5 37 

2010 16.597 8.426 12.659 8.169 11.989 11.764 
-

0.404 
-

0.153 6.843 61.5 37 
2011 17.775 16.597 12.075 12.659 11.732 11.605 0.056 0.337 7.329 61.5 37 
2012 22.244 17.775 10.528 12.075 11.844 11.601 0.456 0.517 7.577 61.5 37 
2013 20.125 22.244 9.593 10.528 11.675 11.471 0.156 0.027 7.780 61.5 37 

2014 22.467 20.125 17.395 9.593 11.621 11.500 
-

0.404 
-

0.623 7.992 61.5 37 

2005 25.192 21.773 4.023 3.465 12.209 11.981 
-

0.836 
-

1.365 1.558 61 42 

2006 26.993 25.192 5.420 4.023 12.095 11.727 
-

0.166 
-

0.405 3.618 61 42 
2007 21.742 26.993 3.484 5.420 12.298 11.899 0.384 0.455 5.328 61 42 
2008 15.845 21.742 1.769 3.484 12.191 11.791 0.714 0.955 6.110 61 42 
2009 8.577 15.845 1.244 1.769 12.203 11.684 0.294 0.505 6.609 61 42 

2010 14.990 8.577 2.111 1.244 12.117 11.577 
-

0.426 
-

0.175 7.076 61 42 

2011 18.179 14.990 2.418 2.111 11.988 11.613 
-

0.006 0.285 7.449 61 42 
2012 21.608 18.179 1.097 2.418 11.941 11.355 0.384 0.465 7.697 61 42 

2013 18.089 21.608 2.053 1.097 11.718 11.059 0.104 
-

0.045 7.924 61 42 
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2014 22.860 18.089 1.694 2.053 11.655 10.864 
-

0.446 
-

0.675 7.948 61 42 

2005 27.544 21.368 36.246 31.384 12.683 12.762 
-

1.128 
-

1.643 1.658 60.5 47 

2006 24.893 27.544 23.986 36.246 12.751 12.719 
-

0.338 
-

0.583 4.047 60.5 47 
2007 22.996 24.893 23.122 23.986 12.759 12.779 0.262 0.267 4.970 60.5 47 
2008 23.790 22.996 22.010 23.122 12.761 12.727 0.782 1.047 5.610 60.5 47 
2009 12.718 23.790 19.285 22.010 12.634 12.550 0.402 0.627 6.251 60.5 47 

2010 20.380 12.718 17.424 19.285 12.815 12.797 
-

0.278 0.067 6.641 60.5 47 
2011 22.625 20.380 31.130 17.424 12.818 12.785 0.022 0.327 6.996 60.5 47 
2012 24.559 22.625 25.093 31.130 12.742 12.752 0.402 0.487 7.115 60.5 47 

2013 28.853 24.559 19.820 25.093 12.717 12.696 0.172 
-

0.023 7.084 60.5 47 

2014 52.489 28.853 26.074 19.820 12.584 12.600 
-

0.298 
-

0.573 6.989 60.5 47 

2005 36.887 34.006 28.538 37.619 11.567 11.400 
-

1.336 
-

1.604 0.000 60 49 

2006 41.952 36.887 48.568 28.538 11.478 11.296 
-

0.636 
-

0.754 0.000 60 49 
2007 44.363 41.952 42.917 48.568 11.333 11.051 0.164 0.096 0.000 60 49 
2008 47.749 44.363 28.654 42.917 11.300 11.035 0.894 1.016 0.000 60 49 
2009 47.203 47.749 33.814 28.654 11.251 10.920 0.724 0.856 0.000 60 49 

2010 71.038 47.203 45.424 33.814 11.093 10.694 
-

0.166 0.186 0.000 60 49 
2011 78.915 71.038 53.931 45.424 10.982 10.715 0.014 0.366 0.000 60 49 
2012 92.114 78.915 37.162 53.931 11.310 10.967 0.234 0.326 0.000 60 49 
2013 62.831 92.114 26.338 37.162 11.226 10.815 0.284 0.026 0.000 60 49 

2014 71.234 62.831 34.552 26.338 11.386 10.970 
-

0.176 
-

0.514 0.000 60 49 

2005 27.161 23.152 12.889 21.376 12.149 11.126 
-

1.319 
-

1.646 0.000 60 50 

2006 38.139 27.161 22.186 12.889 11.975 10.550 
-

0.489 
-

0.636 0.000 60 50 
2007 35.351 38.139 13.741 22.186 11.914 10.878 0.171 0.134 0.000 60 50 
2008 32.390 35.351 8.258 13.741 11.926 10.783 0.901 1.104 0.000 60 50 
2009 22.876 32.390 8.719 8.258 11.794 10.630 0.601 0.804 0.000 60 50 

2010 32.368 22.876 17.726 8.719 11.593 10.372 
-

0.149 0.224 2.442 60 50 
2011 42.197 32.368 7.643 17.726 11.404 9.481 0.001 0.314 3.239 60 50 
2012 57.617 42.197 8.809 7.643 11.759 10.680 0.301 0.334 3.239 60 50 

2013 50.976 57.617 9.699 8.809 11.447 9.936 0.231 
-

0.046 3.239 60 50 

2014 56.280 50.976 18.821 9.699 11.470 10.094 
-

0.249 
-

0.586 3.114 60 50 

2005 28.509 19.050 23.256 27.685 12.161 12.258 
-

1.237 
-

1.672 3.229 60 51 

2006 35.825 28.509 25.492 23.256 12.119 12.136 
-

0.437 
-

0.612 3.555 60 51 
2007 30.000 35.825 21.569 25.492 11.838 11.826 0.153 0.148 4.252 60 51 
2008 24.264 30.000 24.425 21.569 11.668 11.696 0.813 1.068 4.670 60 51 
2009 13.346 24.264 11.820 24.425 11.396 11.334 0.483 0.708 5.215 60 51 

2010 23.678 13.346 11.136 11.820 11.387 11.415 
-

0.197 0.158 5.745 60 51 

2011 29.954 23.678 27.765 11.136 11.306 11.489 
-

0.047 0.268 6.187 60 51 
2012 37.946 29.954 24.535 27.765 11.588 11.538 0.353 0.388 6.305 60 51 
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2013 53.535 37.946 19.975 24.535 11.464 11.494 0.253 0.018 6.479 60 51 

2014 55.925 53.535 24.913 19.975 10.843 10.795 
-

0.137 
-

0.472 6.757 60 51 

2005 11.848 8.297 31.640 36.156 12.311 12.512 
-

1.102 
-

1.607 3.442 60 52 

2006 10.031 11.848 36.258 31.640 12.275 12.387 
-

0.322 
-

0.557 4.369 60 52 
2007 9.828 10.031 37.396 36.258 12.403 12.516 0.138 0.173 5.372 60 52 
2008 10.412 9.828 36.166 37.396 12.404 12.473 0.768 1.083 5.878 60 52 
2009 6.884 10.412 27.348 36.166 12.186 12.232 0.398 0.673 6.497 60 52 

2010 8.520 6.884 24.601 27.348 12.271 12.351 
-

0.162 0.233 6.999 60 52 

2011 10.239 8.520 34.714 24.601 12.268 12.387 
-

0.002 0.263 7.195 60 52 
2012 10.225 10.239 33.586 34.714 12.217 12.361 0.418 0.423 7.339 60 52 

2013 7.128 10.225 26.882 33.586 12.201 12.255 0.208 
-

0.027 7.473 60 52 

2014 8.325 7.128 25.413 26.882 12.037 12.161 
-

0.342 
-

0.657 7.405 60 52 

2005 7.177 6.727 26.793 26.975 11.417 11.507 
-

0.753 
-

1.382 3.080 60 53 

2006 4.347 7.177 24.959 26.793 11.036 11.257 
-

0.053 
-

0.332 4.245 60 53 
2007 7.078 4.347 23.887 24.959 11.221 11.344 0.227 0.338 5.116 60 53 
2008 9.776 7.078 20.577 23.887 11.028 11.093 0.647 1.088 5.784 60 53 
2009 6.566 9.776 14.144 20.577 10.489 10.596 0.197 0.598 6.292 60 53 

2010 4.733 6.566 15.956 14.144 11.071 11.211 
-

0.313 0.108 6.573 60 53 
2011 7.359 4.733 13.619 15.956 11.104 11.222 0.037 0.188 6.887 60 53 
2012 7.411 7.359 20.640 13.619 11.338 11.493 0.417 0.338 7.151 60 53 

2013 4.533 7.411 13.996 20.640 10.402 10.608 0.137 
-

0.132 7.409 60 53 

2014 4.534 4.533 25.096 13.996 10.557 10.864 
-

0.543 
-

0.812 7.567 60 53 

2005 5.872 5.102 28.511 22.634 11.810 11.948 
-

0.806 
-

1.461 0.000 60 54 

2006 6.008 5.872 34.662 28.511 11.341 11.560 
-

0.136 
-

0.431 0.000 60 54 
2007 5.796 6.008 33.234 34.662 11.515 11.676 0.144 0.259 0.000 60 54 
2008 8.199 5.796 29.169 33.234 11.473 11.585 0.564 0.999 1.099 60 54 
2009 7.966 8.199 35.120 29.169 11.260 11.400 0.154 0.529 3.209 60 54 

2010 10.640 7.966 38.051 35.120 11.359 11.461 
-

0.276 0.139 4.500 60 54 
2011 12.612 10.640 41.313 38.051 11.428 11.569 0.084 0.219 5.115 60 54 
2012 18.333 12.612 42.737 41.313 11.322 11.523 0.514 0.449 5.559 60 54 

2013 6.818 18.333 28.035 42.737 10.929 11.130 0.164 
-

0.051 5.883 60 54 

2014 14.824 6.818 39.047 28.035 10.897 11.172 
-

0.406 
-

0.651 6.111 60 54 

2005 11.224 9.751 26.005 19.505 11.138 11.240 
-

0.667 
-

1.267 5.724 60 55 

2006 10.895 11.224 28.503 26.005 10.892 10.960 
-

0.057 
-

0.317 6.110 60 55 
2007 11.407 10.895 23.774 28.503 11.024 11.367 0.223 0.353 6.400 60 55 
2008 10.312 11.407 19.223 23.774 10.927 11.140 0.583 1.003 6.477 60 55 
2009 8.383 10.312 20.822 19.223 11.057 11.107 0.083 0.443 6.643 60 55 

2010 9.374 8.383 29.195 20.822 11.027 11.203 
-

0.447 
-

0.057 6.791 60 55 
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2011 13.175 9.374 32.954 29.195 11.182 11.390 
-

0.137 
-

0.047 6.869 60 55 
2012 12.314 13.175 29.289 32.954 11.253 11.277 0.383 0.283 6.997 60 55 

2013 11.627 12.314 32.940 29.289 10.805 10.878 0.213 
-

0.007 7.089 60 55 

2014 14.343 11.627 37.335 32.940 11.074 11.147 
-

0.177 
-

0.387 7.165 60 55 

2005 14.178 11.727 14.939 11.085 10.179 10.681 
-

0.443 
-

1.258 0.000 60.5 56 

2006 7.784 14.178 15.318 14.939 9.962 10.441 0.197 
-

0.228 0.000 60.5 56 
2007 17.273 7.784 13.772 15.318 9.941 10.621 0.257 0.302 0.000 60.5 56 
2008 9.212 17.273 13.373 13.772 9.643 10.029 0.527 0.962 0.000 60.5 56 
2009 7.692 9.212 13.067 13.373 10.045 10.396 0.107 0.522 0.000 60.5 56 

2010 10.940 7.692 16.953 13.067 9.246 9.953 
-

0.273 0.212 0.000 60.5 56 
2011 11.827 10.940 16.000 16.953 9.922 10.268 0.117 0.262 0.000 60.5 56 
2012 6.225 11.827 11.291 16.000 10.209 10.537 0.417 0.432 0.000 60.5 56 

2013 15.270 6.225 14.479 11.291 10.360 10.600 
-

0.143 
-

0.298 3.512 60.5 56 

2014 7.412 15.270 16.965 14.479 10.497 10.784 
-

0.763 
-

0.908 4.284 60.5 56 

2005 7.057 21.456 9.165 8.720 9.902 10.046 
-

0.778 
-

1.328 1.447 60 57 

2006 10.488 7.057 13.058 9.165 9.942 10.194 
-

0.138 
-

0.308 1.910 60 57 
2007 14.023 10.488 6.986 13.058 9.985 10.240 0.242 0.422 2.506 60 57 
2008 18.318 14.023 8.866 6.986 9.071 9.090 0.582 1.022 2.773 60 57 
2009 8.758 18.318 7.996 8.866 9.596 9.354 0.262 0.632 3.466 60 57 

2010 4.943 8.758 11.239 7.996 9.939 9.979 
-

0.128 0.222 4.900 60 57 
2011 5.658 4.943 15.540 11.239 9.924 9.988 0.172 0.262 5.941 60 57 
2012 5.476 5.658 7.368 15.540 10.225 10.338 0.412 0.302 6.458 60 57 

2013 6.709 5.476 7.637 7.368 9.896 10.014 
-

0.098 
-

0.348 6.810 60 57 

2014 6.800 6.709 13.533 7.637 9.660 10.073 
-

0.528 
-

0.878 7.020 60 57 

2005 44.784 43.265 27.174 3.586 8.850 6.163 
-

1.442 
-

1.709 0.000 59.5 59 

2006 68.973 44.784 1.923 27.174 8.520 4.533 
-

0.572 
-

0.649 0.000 59.5 59 
2007 83.445 68.973 13.514 1.923 8.515 4.654 0.178 0.161 0.000 59.5 59 
2008 75.068 83.445 12.376 13.514 8.592 3.638 0.938 1.121 0.000 59.5 59 
2009 33.954 75.068 - - 8.400 - 0.638 - 0.000 59.5 59 

2010 27.473 33.954 - - 8.693 - 
-

0.092 - 0.000 59.5 59 

2011 35.873 27.473 - - 8.359 - 
-

0.022 - 0.000 59.5 59 
2012 48.208 35.873 - - 8.736 - 0.308 - 0.000 59.5 59 
2013 66.452 48.208 - - 8.459 - 0.218 - 0.000 59.5 59 

2014 52.578 66.452 4.593 8.900 9.336 8.581 
-

0.152 
-

0.559 0.000 59.5 59 

2005 44.846 21.176 31.195 100.000 4.454 4.956 
-

1.342 
-

1.664 0.000 59.5 60 

2006 18.124 44.846 56.794 31.195 6.617 5.841 
-

0.462 
-

0.544 0.000 59.5 60 
2007 45.283 18.124 24.823 56.794 8.494 8.155 0.188 0.206 0.000 59.5 60 
2008 22.381 45.283 8.696 24.823 6.862 4.956 0.858 1.106 0.000 59.5 60 
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2009 7.481 22.381 83.333 8.696 5.352 5.088 0.518 0.746 0.000 59.5 60 

2010 35.308 7.481 - - 5.996 - 
-

0.122 - 0.000 59.5 60 

2011 2.302 35.308 - - 6.087 - 
-

0.032 - 0.000 59.5 60 
2012 27.322 2.302 - - 8.684 - 0.298 - 0.000 59.5 60 
2013 53.365 27.322 - - 5.905 - 0.218 - 0.000 59.5 60 

2014 16.631 53.365 - - 6.461 - 
-

0.122 - 0.000 59.5 60 

2005 14.853 14.779 24.836 32.625 11.389 11.382 
-

1.074 
-

1.490 2.351 59.5 61 

2006 15.007 14.853 23.202 24.836 11.197 11.162 
-

0.294 
-

0.420 3.332 59.5 61 
2007 14.027 15.007 19.054 23.202 11.365 11.354 0.196 0.270 4.379 59.5 61 
2008 15.499 14.027 21.654 19.054 11.264 11.211 0.776 1.110 5.014 59.5 61 
2009 17.077 15.499 22.838 21.654 11.136 11.064 0.416 0.690 5.528 59.5 61 

2010 19.261 17.077 28.096 22.838 10.904 10.787 
-

0.134 0.230 6.143 59.5 61 

2011 21.627 19.261 35.104 28.096 10.805 10.773 
-

0.024 0.200 6.405 59.5 61 
2012 24.531 21.627 29.201 35.104 10.853 10.861 0.316 0.260 6.529 59.5 61 

2013 25.823 24.531 26.080 29.201 10.864 10.796 0.126 
-

0.160 6.567 59.5 61 

2014 20.496 25.823 31.495 26.080 10.708 10.655 
-

0.304 
-

0.690 6.277 59.5 61 

2005 9.119 11.495 30.273 35.935 11.595 11.728 
-

0.980 
-

1.476 6.268 59.5 62 

2006 10.329 9.119 27.102 30.273 11.472 11.552 
-

0.170 
-

0.366 6.495 59.5 62 
2007 11.513 10.329 23.229 27.102 11.511 11.651 0.270 0.374 6.600 59.5 62 
2008 9.324 11.513 21.458 23.229 11.584 11.717 0.760 1.174 6.604 59.5 62 
2009 11.760 9.324 17.906 21.458 11.441 11.416 0.330 0.694 6.659 59.5 62 

2010 14.556 11.760 21.406 17.906 11.419 11.446 
-

0.200 0.204 6.628 59.5 62 

2011 16.436 14.556 21.920 21.406 11.568 11.633 
-

0.010 0.144 6.536 59.5 62 
2012 13.909 16.436 22.455 21.920 11.726 11.757 0.320 0.204 6.368 59.5 62 

2013 13.743 13.909 22.191 22.455 11.387 11.407 0.090 
-

0.186 6.078 59.5 62 

2014 13.878 13.743 25.656 22.191 11.209 11.290 
-

0.410 
-

0.766 5.899 59.5 62 
 683 

684 
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Supplementary Table 2. Average annual growth rate of log-transformed perch and 684 

pikeperch CPUE values during 2005–2014 and maximum breeding cormorant 685 

numbers during 2003–2012 in ICES grids. Significant coefficients are bolded.  686 

ICES Perch  Pikeperch  Cormorant max 

2 0.111 ± 0.020  0.022 ± 0.047  0 

6 0.054 ± 0.026  -0.004 ± 0.044  240 

7 0.096 ± 0.024  0.123 ± 0.040  47 

11 0.043 ± 0.041  0.080 ± 0.070  4 

12 -0.062 ± 0.032  -  0 

15 0.054 ± 0.037  0.185 ± 0.114  0 

19 0.035 ± 0.027  -0.048 ± 0.058  4 

22 0.129 ± 0.080  -  0 

23 0.070 ± 0.015  0.122 ± 0.068  83 

24 0.105 ± 0.022  -0.042 ± 0.065  0 

27 0.093 ± 0.026  -  0 

28 -0.000 ± 0.020  -0.016 ± 0.103  110 

32 0.034 ± 0.027  0.163 ± 0.062  40 

37 0.013 ± 0.034  0.058 ± 0.023  3981 

42 -0.017 ± 0.038  -0.114 ± 0.043  3426 

47 0.045 ± 0.038  -0.018 ± 0.025  1654 

49 0.087 ± 0.019  -0.007 ± 0.029  0 

50 0.074 ± 0.025  -0.025 ± 0.044  56 

51 0.068 ± 0.042  -0.001 ± 0.038  1389 

52 -0.032 ± 0.017  -0.029 ± 0.016  2179 

53 -0.029 ± 0.031  -0.039 ± 0.028  2437 
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54 0.100 ± 0.033  0.023 ± 0.016  629 

55 0.024 ± 0.016  0.044 ± 0.019  1519 

56 -0.031 ± 0.039  0.003 ± 0.015  156 

57 -0.074 ± 0.043  0.012 ± 0.033  1264 

59 -0.024 ± 0.043  -  0 

60 -0.056 ± 0.111  -  0 

61 0.064 ± 0.012  0.041 ± 0.016  925 

62 0.052 ± 0.014  -0.017 ± 0.016  879 

 687 

 688 

 689 


