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Aims 

Sleep is needed to maintain brain homeostasis. Chronic insufficient sleep has been associated with elevated levels 

of inflammatory markers. Microglia are the resident immune cells of the brain. As microglial morphology 

correlates with their functional state, the current study aimed to characterize microglial morphology after 

insufficient sleep and recovery sleep. We hypothesised that microglia adopt an activated state after insufficient 

sleep, indicated by a deramification of the branches and an enlargement of cell bodies compared with the controls. 

Methods 

We caused insufficient sleep with acute sleep deprivation by 9 h of gentle handling, and conducted sleep 

fragmentation for 14 days in mice. The tissue was collected after perfusing the animals with PFA. The brain tissue 

from ventral hippocampus was immunostained for microglia and imaged with a confocal microscope. Ramification 

and soma size were quantified by tracing the branches and segmenting the somas. 

Results 

Neither the acute sleep deprivation nor the chronic fragmented sleep did result in any differences in morphology 

compared with their control groups. Surprisingly, the soma size was significantly smaller following the recovery 

sleep after fragmented sleep compared with the controls. 

Conclusions 

Microglial morphology and thus function may not be affected by acute sleep deprivation and chronic fragmented 

sleep in ventral hippocampus. Microglial soma size was significantly smaller after recovery sleep following 

chronic fragmented sleep compared with the control. This could have been due to larger soma sizes in this control 

group compared with other controls. Further studies are needed. 
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Tavoitteet 

Unta tarvitaan aivojen tasapainotilan ylläpitämiseksi. Krooninen riittämätön uni voi aiheuttaa akuutin tulehdustilan. 

Mikrogliat ovat aivojen omia immuunipuolustussoluja. Tutkimukseni pyrki kartoittamaan, miten mikroglian 

morfologia muuttuu riittämättömän unen sekä siitä toipumisen jälkeen. Mikroglian morfologiaa tutkitaan, sillä 

mikroglian morfologia on yhteydessä microglian toiminnalliseen tilaan. Hypoteesimme oli, että mikrogliat 

aktivoituvat riittämättömän unen jälkeen. Aktivoitunut tila näkyy mikroglian haarakkeiden vähäisempänä 

haaroittumisena ja haarakkeiden vähentyneenä lukumääränä, sekä mikroglian sooman koon kasvamisena.  

 

Menetelmät 

Hiiriä käsiteltiin hellävaroen yhdensän tunnin ajan, jotta ne valvoisivat päivän ja siten mallintaisivat akuuttia 

unettomuutta. Kroonista katkonaista unta taas mallinnettiin hyödyntäen erityistä häkkiä, jossa tanko liikkui häkin 

läpi kahden minuutin välein havahduttaen hiiret unestaan 14 peräkkäisenä päivänä. Osa hiiristä sai toipua 

katkonaisesta unesta nukkumalla rajoittamattomasti kolmen vuorokauden ajan. Hiiriä käytettiin, jotta aivonäytteitä 

voitaisiin kerätä. Kummankin unettomuuden mallin jälkeen eläimet lopetettiin ja perfusoitiin. Aivonäytteet otettiin 

ventraalisesta hippokampuksesta. Mikroglia värjättiin immunohistokemiallisesti ja kuvattiin konfokaali-

mikroskoopilla. Mikroglian haarakkeiden ramifikaatio ja sooman koko kvantifioitiin  piirtämällä haarakkeet ja 

segmentoimalla soomat kuvista. 

 

Tulokset 

Akuutti unettomuus eikä krooninen unen katkonaisuus aiheuttaneet mikrogliassa morfologisia muutoksia 

kontrolliryhmiin verrattuna. Yllättäen sooman koko oli merkittävästi pienempi kroonisen katkonaisen unen ja sitä 

seuraavan toipumisunen jälkeen kontrolliryhmään verrattuna.  

 

Johtopäätökset 

Mikroglian morfologia ja siten toiminta ei ole välttämättä muuttunut ventraalisessa hippokampuksessa akuutissa 

unettomuussa ja kroonisessa katkonaisen unessa. Mikroglian sooman koko oli merkittävästi pienempi kroonisen  

katkonaisen unen ja siitä toipumisen jälkeen kontrolliryhmään verrattuna. Tämä voi johtua siitä, että tässä 

kontrolliryhmässä mikroglian sooman koko oli suurempi kuin muissa kontrolliryhmissä, joten jatkotutkimuksia 

tarvitaan vaikutuksen varmentamiseksi.   
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Abbreviations 

 

EEG  Electroencephalolography  

IL-1β  Interleukin 1 Beta 

LPS  Lipopolysaccharide 

NREM  Non rapid eye movement 

REM  Rapid eye movement 

S1 - S4  Sleep stages 1 - 4 

SWA  Short wave activity 

TLR  Toll-like receptors 

TNFα  Tumor necrosis factor alpha 
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INTRODUCTION 

Sleep has a crucial role in regulating and maintaining homeostatic state with regards to 

energy metabolism, inflammation, and neuronal plasticity (Porkka-Heiskanen et al., 2013). 

Furthermore, sleep and mental health are interconnected in many important ways. Psychiatric 

patients experience more sleep disturbances, but the effect has been suggested to be 

bidirectional – worse sleep quality can also be a risk factor for mental health disorders 

(Krystal, 2012). Anxiety disorders and major depression are the most common diagnoses 

associated with insomnia (Monti & Monti, 2000).  

What is sleep? 

Sleep is a behavioral state which is defined by reduced mobility and an increased sensory 

threshold (Wigren & Porkka-Heiskanen, 2018). Beyond the behavioral signs, the vigilance 

state can be measured with electroencephalography (EEG). EEG allows to identify and to 

divide the sleep into non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) 

sleep, and to further divide the NREM sleep into three stages (S1, S2 and S3) of increasing 

order of slow wave activity (SWA). SWA refers to low-frequency, high-amplitude waves. In 

REM sleep, EEG is characterized by low-amplitude and high-frequency waves similar to 

waking, but the muscle tone is lost. During sleep, these stages alternate in 90 minutes cycle 

starting from the S1, proceeding through stages S2 and S3 into REM sleep (Wigren & 

Porkka-Heiskanen, 2018). Both REM and NREM sleep are important for memory 

consolidation (Peigneux et al., 2001). REM sleep is also important for integrity of blood-

brain barrier, as REM sleep restriction increases the blood-brain barrier permeability 

(Gomez-Gonzalez et al., 2013).  

Sleep is regulated by homeostatic and circadian processes (Borbély et al., 2016). The 

homeostatic aspect of sleep regulation depends on the sleep and waking states. When the 

wakefulness prolongs, the sleep pressure or sleep need builds up and induces sleep (Porkka-

Heiskanen et al., 2013). According to the sleep factor theory, there are substances such as 

adenosine that accumulate in the brain during wakefulness and inhibit brain activity, and 

again decrease during sleep (Porkka-Heiskanen, 1999). The amount of SWA in the EEG of 

NREM sleep is a reliable marker for sleep need (Tononi & Cirelli, 2014). The other aspect of 

sleep regulation - the circadian process – is independent of sleep and waking states. Instead, 

various circadian oscillations that are dependent on the time of the day are drivers of this 
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process, producing more sleepiness during the night and less during the day (Borbély et al., 

2016).  

Sleep deprivation experiments can help trying to disentangle what happens during sleep. 

Much of what is known about why we sleep comes from these studies (Porkka-Heiskanen, 

2013). Various experimental models of insufficient sleep are used to gain insights on what 

happens in the brain and the body during acute or chronic sleep deprivation. Acute, or total, 

sleep deprivation refers to a lack of sleep for 24 hours or more from the time of awakening. 

In partial sleep deprivation, the sleep time is only reduced. Applied for several subsequent 

nights, it becomes chronic insufficient sleep (Mullington et al, 2010). Beside sleep loss, 

fragmented sleep is a sleep phenotype that has been associated with day-time sleepiness and 

cognitive dysfunction in human (Martin et al., 1996) and in rodents (McCoy et al., 2007; 

McKenna et al., 2007; Ramesh et al., 2012). In fragmented sleep, short arousals disrupt the 

sleep. This occurs for example in obstructive sleep apnea (Nadjar et al., 2017). Fragmented 

sleep increases the delta power in NREM during subsequent recovery sleep, indicating that 

fragmented sleep induces a homeostatic sleep need in rats (McKenna et al., 2007). Delta 

waves are high amplitude waves seen in EEG recordings, and power is the square of the 

magnitude of these waves. Delta power is associated with the depth of the sleep, and an 

increase in delta power shows recovery sleep after sleep deprivation.  

Different research methods can be utilized when studying sleep in human and in animals. To 

study the effects of insufficient sleep in human, EEG can be used to mark changes in sleep 

architecture or blood samples for instance to see changes in inflammatory markers. With the 

use of positron emission tomography, the glucose uptake and thus brain metabolism levels 

(Wu et al., 1996)) has been studied in human after sleep deprivation. However, in human 

studies brain samples cannot be collected. With the use of animals, such studies can be 

conducted, and the sleep and wake can be experimentally studied on cellular and molecular 

level (Rihel & Schier, 2013). Mice are a common model organism in the biomedical field, 

and in sleep studies (e.g. Bellesi et al., 2017; Meetu et al. 2017; Ramesh et al., 2012). Even 

non-mammalian organisms such as drosophila can be used in sleep research for example in 

the study of circadian rhythm, which is regulated by only a few genes that are conserved 

across species (Zimmerman et al., 2008). The neuroanatomy and neural circuitries of non-

mammalian model organisms however considerably differs from the human brain, which 

presents a major pitfall to their usage in sleep research (Zimmerman et al., 2008). Therefore, 

the current study utilises mice. Nevertheless, it is to be noted that in contrast to human, mice 
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are nocturnal animals and thus sleep during the day and are wakeful during the night. 

Furthermore, mice do not display the substages of S1 to S4 during NREM which are seen in 

human, although recent research have identified substages in mice that could be human-like 

(Lacroix et al., 2018). 

The neural circuitry regulating sleep and wakefulness 

One of the most striking features of sleep is the reversible disconnection from the 

environment. The disconnection is induced by thalamus, which acts as a gate of sensory 

information to the cortex (Porkka-Heiskanen et al., 2013). In this state, the sleeper does not 

respond to external stimuli. Periodic high frequency bursts of action potentials in thalamic 

relay neurons are associated with NREM sleep, while tonic depolarization of these neurons 

results in a suppression of these bursts and in a wakeful or REM sleep state (McCormick & 

Bal, 1994). 

The ascending arousal system, or the waking system, consists of nuclei in the brain stem, 

hypothalamus and basal forebrain, and can be divided into two major branches (Saper et al., 

2005). The first branch ascends mainly from pedunculopontine and laterodorsal tegmental 

nuclei in the brainstem to the thalamus, and is responsible for activating the relay neurons, 

maintaining the transmission between the thalamus and the celebral cortex; and the second 

branch is a pathway originating from upper brain stem and caudal hypothalamus, which 

activates neurons in the hypothalamic area, basal forebrain and cerebral cortex. In rats, lesion 

in this pathway increased the amount of REM and NREM sleep, and rendered the sleep more 

fragmented (Gerashchenko et al., 2003).  

The ventrolateral preoptic area and the median preoptic nucleus are small nuclei in 

hypothalamus that are more active during NREM sleep than waking, and these nuclei are 

called sleep nuclei (Porkka-Heiskanen et al., 2013). During sleep, they inhibit the arousal 

system, whereas the arousal system inhibits the sleep nuclei during waking, creating a self-

reinforcing loop (Saper et al., 2005). This loop, termed flip-flop circuit, is thought to explain 

why transitions between waking and sleep are rapid.  

Hippocampus is not a part of the regulatory system of the wakefulness and sleep, however, it 

is of importance for the sleep-dependent memory consolidation. According to the active 

system consolidation hypothesis of the two-stage memory system, the events are initially 

encoded parallelly in the hippocampus and neocortical networks. Subsequently by repetitive 

re-activation during slow wave sleep the memory traces are redistributed, and the neocortical 



 9 

connections are strengthened (Diekelmann & Born 2010). Besides system consolidation, the 

memory representations are thought to be strengthened on a synaptic level, for which long-

term potentiation induced by hippocampus during REM sleep is crucial (Diekelmann & Born 

2010). Furthermore, the synaptic homeostasis hypothesis proposes that the reason we sleep is 

to maintain the synaptic plasticity in the brain (Tononi & Cirelli, 2014). According to this 

hypothesis, wakefulness strengthens connections throughout the brain, but the net synaptic 

strength is normalized during sleep, which is required for learning.  

Ventral hippocampus is a distinct region in its function (Fanselow & Dong, 2010) and its 

connections to other regions (Swanson and Cowan, 1977). Whereas dorsal hippocampus is 

associated with cognitive functions such as spatial memory, ventral hippocampus is linked 

with emotions. Ventral hippocampus projects into the amygdala, and this pathway has been 

implicated in fear learning (Fanselow & Dong, 2010). The amygdala–hippocampal network 

is also involved in the emotional processing and in the memory consolidation of emotional 

material that occurs during sleep. The “Sleep to Forget and Sleep to Remember” hypothesis 

proposes that during REM sleep, the activation of the amygdala–hippocampal network 

supports long-term retention of informational aspects of the emotional memory (Walker & 

van Der Helm, 2009). According to the model, the emotional charge associated with the 

emotional experience is instead decoupled from the memory, and then forgotten. 

Nevertheless, the topic is still a matter of discussion, and an opposite view states that the 

emotional charge along with the emotional memory would be consolidated during REM sleep 

(Tempesta et al., 2018). Maladaptive consolidation of the memory and its emotional charge 

during REM sleep is thought to be implicated in dysfunctional emotional memories such as in 

post-traumatic stress disorder (Murkar & De Koninck, 2018).  
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A) 

 

B)  

 

Figure 1. Sagittal (A) and coronal (B) sections on the mouse brain showing the brain regions 

important in sleep and wakefulness. Midbrain, pons and medulla form together brainstem. 

Pictures are created based on The Allen Mouse Brain Atlas (© 2010 Allen Institute for Brain 

Science. Allen Mouse Brain Atlas. Available from: https://mouse.brain-map.org). 

How does insufficient sleep affect the inflammatory system? 

Many sleep inducing factors have proinflammatory properties when occurring in bigger 

amounts. Numerous proteins that are associated with immune system have been seen to affect 

sleep (Imeri & Opp, 2009). These proteins are called cytokines, and they are involved in the 
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activation and regulation of the immune system (Hiscott & Ware, 2011). Many cytokines 

have multiple functions, and they can act on several receptors. Interleukin 1 Beta (IL-1β) and 

tumor necrosis factor alpha (TNFα) in particular have been studied for their sleep factor - 

like properties (Imeri & Opp, 2009). Interleukins are cytokine proteins that modulate 

immune responses and can regulate the differentiation and proliferation of certain immune 

cells (Shebert, 2011). TNFα is secreted by activated macrophages, and it can induce 

regulated cell death, apoptosis (Shebert, 2011). In the brain, inflammatory cells called 

microglia both release and receive cytokines as part of their communication with other cells 

(Hanisch et al., 2002). Cytokines from the peripheral immune system can also pass the blood 

brain barrier and enter the central nervous system, which can occur excessively in 

pathological states (Hanisch et al., 2002). 

After various durations of sleep restriction, sleep loss (Mullington et al, 2010) and 

fragmented sleep (Ramesh et al., 2012) has been seen to increase the levels of acute 

inflammatory system markers, including IL-1 beta and TNF-alpha. Acute phase response is 

the early activation of an immune cascade, which is mediated by the toll-like receptors 

(TLRs). TLRs are expressed and functional also in the central nervous system (Hanke & 

Kielian, 1979). TLRs recognize molecular patters of micro-organisms, and by activating the 

nuclear-factor kappa-beta (NKfB) stimulating gene transcription, inflammatory cytokines are 

produced (Takeuchi & Akira, 2010). Injection or stimulation of endogenous production of IL-

1β or TNFα enhances NREM sleep, whereas inhibiting either one reduces the spontaneous 

sleep (Krueger, 2008). Furthermore, intracerebroventricular injection of IL-1 β inhibitor 

reduces the amount of NREM sleep after sleep deprivation in rats (Opp & Krueger, 1994). It 

is unclear whether the changes in the inflammatory cytokine levels are sustained after 

recovery sleep following fragmented sleep; however, after chronic sleep restriction and two 

nights of recovery sleep several pro-inflammatory markers have been reported to remain 

elevated (van Leeuwen et al., 2009). 

Microglia 

Microglia are the resident phagocytic cells of the central nervous system (Kettenman et al., 

2011). Microglia are derived from mesodermal tissue, and their progenitors take up residence 

in the nervous system during embryonic and fetal development (Chan et al., 2007). Microglia 

enter all brain regions and are found ubiquitously in the mature brain, each cell occupying a 

defined, non-overlapping territory (Kettenman et al., 2011). Microglia in the healthy nervous 
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system were named to be resting as microglia’s primary function was thought to be gained in 

response to an inflammatory challenge. However, the resting microglia has turned out to be 

highly motile (Nimmerjahn et al., 2005).  Microglia constantly monitor the surrounding brain 

parenchyma with their dynamic branches (Nimmerjahn et al., 2005).  In response to a 

disruption in tissue homeostasis, microglia adopt an activated state (Hanisch & Kettenmann, 

2007). This state can be modelled with an inflammatory stimulant, such as lipopolysaccharide 

(LPS), a cell wall component of gram-negative bacteria (Fan et al., 2015). This pro-

inflammatory activated state is characterized by morphological changes such as an enlarged 

soma size and deramification, which means decreased number of microglial branches. These 

morphological changes are tightly coupled with a change in the microglial functional state. 

Therefore these changes are often used in research to characterize the functional changes in 

microglia (Kettenmann et al., 2007). Upon activation, microglia release inflammatory 

signaling molecules and cytotoxic factors to destroy the invading pathogens (Lull & Block, 

2010). Once the activated state is evoked, microglia can remain activated for a considerable 

period of time, even up to months (Qin et al., 2007).  

Besides the immune response, microglia have a plethora of other functions such as clearance 

of debris, and regulation of neuronal death and survival (Tay et al., 2017). They also partake 

in neuronal spine formation (Parkhurst et al., 2013) and synaptic pruning during the 

development (Paolicelli et al., 2011) and in mature brain (Ikegami et al., 2019). Microglial 

branches contact synapses and sense neural activity; these contacts are dependent on the 

neural activity and are prolonged after a disruption to the homeostatic state in the brain 

(Wake et al., 2009). Furthermore, the branches establish contacts with neuronal somas, 

preferably neurons with high spontaneous activity (Li et al., 2012).  A spontaneous activity 

decrease was observed after microglial interaction, suggesting that microglia can have an 

inhibitory influence on neuronal excitability (Li et al., 2012).  

Microglial activation in response to insufficient sleep 

Chronic activation of the microglia is a common pathological feature in neurodegenerative 

disorders (Hickman et al., 2018). In diseases such as Alzheimer’s, the initially useful 

microglia progress into deleterious drivers of the neuronal damage (Hickman et al., 2018). 

Recently, it has been recognised that microglial dysfunction may contribute to the 

pathophysiology of the sleep disorders, potentially mediating the detrimental consequences of 
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sleep loss via neuronal circuit remodeling or a loss of physiological functions (Nadjar et al., 

2017). 

Recent studies in mice have shown that chronic sleep reduction, although not acute sleep 

deprivation, can induce morphological signs of microglial activation, indicated by significant 

reduction in the microglial process length and in the counts of well ramified cells compared 

with control mice (Bellesi et al., 2017; Wadhwa et al. 2017). Furthermore, microglia were 

expressing up-regulated levels of complement type 3 receptors in rats’ hippocampus 

following 5 days long sleep deprivation (Hsu et al., 2003). Complement type 3 is a crucial 

part of the complement system, which is a first line defense in the peripheral immune system 

as well as in the brain, where the complement system acts as a rapid and local immune 

surveillant (Stephan et al., 2012). 

 

Aim of the thesis 

 

The current study aimed to characterize the microglia’s morphological changes in the ventral 

hippocampus after acute sleep deprivation, chronic fragmented sleep and a recovery sleep 

after fragmented sleep. Specifically, I measured branch length, branch number and soma area 

after fragmented sleep in mice to address this aim.  

The hypotheses were: 

1. Fragmented sleep is expected to be associated with shorter microglial branch length, lower 

branch count, greater soma volume and thicker branches compared with the control.  

2. Acute sleep deprivation is not expected to be associated with the above-mentioned 

morphological changes. 

3. After three days of recovery sleep following fragmented sleep, the microglia is expected to 

show an incomplete transformation back to their ramified, resting state.  
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METHODS 

I participated in taking care of the animals and in conducting acute sleep deprivation. I did 

the immunostaining for a part of the samples. I set up the protocol for automatically 

segmenting the microglial somas and validated it against manual segmentations that were 

also done by me. I automatically segmented the somas and semiautomatically traced the 

microglial branches, and then conducted all the statistical analyses. Rest of the work 

involving the data preparation was done by my supervisor Sarah Steffens. 

Animals  

Thirty-eight male C57BL/6J mice, age ranging from 8 to 12 weeks and with a bodyweight of 

30±4 g, were purchased from Envigo, Netherlands. The mice were housed in groups in a 12 h 

light/dark cycle (lights on 8 am - 8 pm) and at a temperature (21 - 23°C). Up to four animals 

shared cages in which food and water were provided ad libitum. All efforts were made to 

minimize animal suffering and to reduce the number of animals used (Animal license number 

by the Provincial Government of Southern Finland: ESAVI/5752/04.10.07/2017).  

Treatment conditions  

There were four experimental groups accompanied with appropriate control groups (Figure 

1).     
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Figure 1. The timelines of treatment groups. Arrows indicate the timepoint of sacrification.  

SD = Acute sleep deprivation; SF = Sleep fragmentation; SF recovery = Recovery after sleep 

fragmentation; LPS = Lipopolysaccharide. 

To set a biological control of microglia activation, a group of mice was intraperitoneally 

injected with 5mg/kg LPS (Qin et al., 2007; Verdonk et al., 2016) from Escherichia coli 

(055:B5, Sigma, USA; diluted in 0.9% saline) and another group was injected 

intraperitoneally with 0.9 % saline solution. LPS causes a peripheral inflammation, which 

also activates microglia as there is communication between the peripheral immune system 

and the neuroimmune system (Fan et al., 2015; Qin et al., 2007). The brain tissue was 

collected 24 h after the injections. The LPS group was compared with the saline group that 

underwent the same process of injection with the vehicle (saline). 

Another group of mice underwent acute sleep deprivation for 9 h during the lights-on phase, 

which is resting time for these nocturnal animals, and the control mice were kept in similar 

conditions other than that they were not disturbed. For the experimental group, the acute 

sleep deprivation was initiated at the beginning of the lights-on period at 08:00 am by 

introducing novel objects into their cage, which keeps the animals awake without forcing 

activity (Franken et al., 1991). Mice that were falling asleep regardless of the experimental 

settings were gently poked with a painter’s brush by the investigator. The brain tissue of the 
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experimental and the control group were collected immediately after the acute sleep 

deprivation phase. 

Chronic sleep fragmentation was conducted for two weeks with a sleep fragmentation 

chamber (Model 80391, Lafayette Instruments, USA) as in previous studies (Hakim et al., 

2015; Kaushal et al., 2012). A sweeper arm crossed the cage close to the ground every two 

minutes during the lights-on period, which aroused the mice briefly and forced them to climb 

over the arm. The use of a sleep fragmentation chamber minimizes the animal’s activity and 

stress compared with inducing fragmented sleep by human interaction (Balcombe et al., 

2004). The control animals were housed in similar cages, but the sweeper arm was turned off 

and the animals were thus undisturbed. To adapt the animals to the novel cage before the 

sleep fragmentation experiment, they were housed for two days in the sleep fragmentation 

chamber with the sweeper arm turned off and for one further day with the sweeper arm 

crossing the chamber once in every twenty minutes. The brain tissue was collected at the end 

of the last lights-off period.  

Chronic sleep fragmentation with a recovery period was performed the same as the chronic 

sleep fragmentation, but it was followed with three days when the sweeper arm was switched 

off and the animals were undisturbed to allow recovery sleep. The brain tissue was collected 

at the end of the last lights-off period. 

Tissue Preparation  

Before the tissue collection, the animals were anesthetized with Pentobarbital (120 mg/kg, 

Mebunat, Orion, Finland) and perfused with phosphate-buffered saline (PBS, pH 7.4). Then 

the tissue was preserved by the perfusion with 100 ml paraformaldehyde (PFA) per animal. 

The tissue was fixed for 24 h in 4% PFA in PBS and cryoprotected in 20% sucrose solution 

and frozen down to -80 degree Celsius. The tissue samples were sliced on coronal plane with 

a cryostat (Leica CM3050 S) into 35 μm thick slices (bregma -50 to –70 mm) and placed in 

0.01 M tris-buffered saline solution (with 0.05 % Tween-20, TBS-T).  

Immunohistochemistry  

The tissue samples were first washed three times in 0.01 M TBS-T for 10 min. The samples 

were then incubated for 90 min at room temperature in 10 % normal goat serum (NGS) in 

0.001 M TBS-T to block unspecific binding. Thereafter, the samples were incubated 

overnight at +4 degrees Celsius with primary antibody (anti-Iba-1; rabbit; Synaptic Systems, 
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Germany, resolved 1:2000 in TBS-T), which stains the ionized calcium binding adaptor 1 

protein (IBA-1) that is localised specifically in microglia (Ito et al., 1998). The second day 

started by washing the samples three times in 0.01 M TBS-T for 10 min. This was followed 

by a 2 h light-protected incubation at room temperature with the secondary antibody (anti-

rabbit; 1:500; Alexafluor568; Invitrogen; Lot: 1670154), which binds to the primary antibody 

and gives the samples a fluorescent red colour. The three washing steps were then repeated, 

and then the slices were mounted onto uncoated specimen slides (Superfrost Ultra Plus, 

Thermo Scientific, Germany), dried at approximately 40 degrees Celsius, and then cover 

slipped. 

Image Acquisition  

A confocal microscope (SPX 8, Motorized DMi8 inverted microscope, Leica, Germany) with 

a 63x magnification oil objective and controlled by LAS X software was used to image 

samples on the ventral hippocampus. Confocal microscope allows to gather a z-stack series of 

images of the sample (image resolution 1024 x 1024 pixels; pixel size: 0.24 x 0.24 microns; 

step size 0.20 microns; 33-79 z-layers per slice depending on the tissue quality) and thus the 

three-dimensional form of the microglia could be captured. 

Morphometric Analysis  

The morphometric features were analysed with Fiji ImageJ 1.51. Using the Simple Neurite 

Tracer plugin, microglial processes were semi automatically traced and the skeletonised paths 

analysed. The traces were drawn starting from a common point in the centroid of the soma, 

reaching to the furthest possible route along microglial process. These traces were then 

complemented with their branches, until all the visible branches were traced (see Figure 1A). 

The number of branches was calculated in a way that is sensitive for ramification. If a new 

branch emerged from a branch, the original branch was divided into two branches, one 

reaching from the beginning of the original branch to the starting point of the new branch, 

and the other starting from the new branch and ending where the original branch ends. The 

average length of these branches describes the mean of the branch length per cell, and 

together with branch count define the degree of ramification of the microglia. Microglia that 

were centred to fit the image in their full length were considered for tracing. 

The soma sizes were measured with an automatic script adapted from Salinas-Navarro et al., 

(2017) from maximal projections that were created with a script by Hoehne (2015) (see 

Figure 1B and 1C). These measures were validated against manually segmented soma 
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volumes, which showed a high positive correlation tested with Pearson’s correlation 

coefficient (Figure 2). 

A) B)  C)  

Figure 2. Traces (A), a maximal projection (B) and the soma area (C) of a microglial cell 

from a control group. 

 

 

Figure 3. A correlation between manually segmented soma volumes and automatically 

segmented soma areas in somatosensory cortex. Somatosensory cortex was used because the 

manual soma volume segmentations were available from this region.  

All the available confocal microscopy pictures were used to extract the soma areas. The 

automatically segmented areas were manually confirmed to be somas. Only somas that were 

fully seen in the picture were selected. The semiautomatic branch measurements were 

balanced to include a range of 2 to 5 animals per group. The number of pictures and animals 

used for each measurement per group are shown in table 1. 
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Table 1. The data structure of the treatment groups. 

 

Note. Min = Minimum; Max = Maximum. SD = Acute Sleep Deprivation, SD ctr = Acute Sleep 

Deprivation Control, SF = Sleep Fragmentation, SF ctr = Sleep Fragmentation control, SF rcv = 

Sleep Fragmentation with Recovery Sleep, SF rcv = Sleep Fragmentation with Recovery Sleep 

Control, LPS = Lipopolysaccharide. 

 

Statistical Analyses  

Statistical analyses were performed with SPSS (IBM SPSS statistics 25). Generalised 

estimating equations (GEE) were used to compare the treatment groups while considering 

that the microglia measurements coming from the same mouse may have had shared 

variance. Visual inspection and the Shapiro-Wilk test were used to test the normality of the 

data. All data were normalised with logarithmic transformations. When three comparisons 

per treatment group were made, the threshold for statistical significance was set with 

Bonferroni correction to p < 0.017. 

 

 

 

 

 

 

Animals Pictures Cells per animal Animals Pictures Cells per animal

N N Mean [Min;Max] N N Mean [Min;Max]

SD 4 10 9.00 [12;42] 4 8 2.50 [1;4]

SD ctr 3 8 21.33 [12;33] 2 6 5.00 [4;6]

SF 5 16 30.40 [7;32] 4 10 2.50 [2;3]

SF ctr 7 21 22.00 [13;33] 5 9 2.00 [1;3]

SF rcv 5 15 20.20 [15;29] NA NA NA

SF rcv ctr 5 11 19.80 [4;33] NA NA NA

LPS 7 21 23.14 [10;38] 5 10 2.00 [1;3]

Saline 2 5 25.50 [14;37] 2 6 5.00 [5;5]

Soma area Branches



 20 

 

RESULTS 

Descriptive statistics 

The effects of insufficient sleep on microglia morphology were investigated. The morphology 

of the microglia was measured by the soma size, number of the microglial branches and mean 

branch length. These features were studied after acute sleep deprivation, chronic fragmented 

sleep, and LPS injection, along with the appropriate control groups. The soma size was 

measured also after recovery sleep following the chronic fragmented sleep. The mean and 

standard errors of the mean are shown for the soma area, number of branches and mean 

branch length per treatment group in table 2.  

Table 2. Descriptive statistics on the morphological features of the treatment groups. 

 

Note. SEM = Standard error of the mean. NA = Not available. SD = Acute Sleep Deprivation, SD ctr 

= Acute Sleep Deprivation Control, SF = Sleep Fragmentation, SF rcv = Sleep Fragmentation with 

Recovery Sleep, SF rcv = Sleep Fragmentation with Recovery Sleep Control SF ctr = Sleep 

Fragmentation control, LPS = Lipopolysaccharide. 

Treatment effects 

The soma size, number of the microglial branches and mean branch length were compared in 

acute sleep deprivation, chronic fragmented sleep, recovery following the chronic fragmented 

sleep and LPS injection to the appropriate control groups. Pairwise comparisons of mean 

differences between the experimental group and the appropriate control group were tested 

with GEEs.  

There were no significant changes in the morphological features after acute sleep deprivation 

or fragmented sleep (tables 4 and 5).  

Mean (± SEM) Number of Cells Mean (± SEM) Number of Cells Mean (± SEM) Number of Cells

SD 37.02 (± 1.75) 90 202.40 (± 25.67) 10 4.45 (± 0.29) 10

SD ctr 33.11 (± 2.06) 64 164.20 (± 16.48) 10 4.62 (± 0.21) 10

SF 39.47 (± 1.76) 152 141.00 (± 33.60) 10 4.25 (± 0.24) 10

SF ctr 33.83 (± 1.33) 154 183.30 (± 27.66) 10 4.86 (± 0.54) 10

SF rcv 32.51 (± 1.46) 101 NA NA NA NA

SF rcv ctr 35.55 (± 1.41) 99 NA NA NA NA

LPS 42.44 (± 1.64) 162 181.10 (± 23.06) 10 4.24 (± 0.27) 10

Saline 32.79 (± 2.26) 51 208.50 (± 23.82) 10 4.01 (± 0.19) 10

Soma area Number of branches Mean branch length
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Table 3. Generalised estimating equations for morphological differences between acute sleep 

deprivation and control groups.

 

Note. Wald CI = Wald confidence interval, Df = degrees of freedom; Std. error = Standard error,* p 

< .05. 

Table 4. Generalised estimating equations for morphological differences between fragmented 

sleep and control groups.

 

Note. Wald CI = Wald confidence interval, Df = degrees of freedom; Std. error = Standard error,* p 

< .05. 

The soma area was significantly greater in the LPS treated microglia compared with saline 

treated microglia. However, the number of branches or the mean branch length were not 

significantly different between the LPS and saline treated microglia (table 3).  

Table 5. Generalised estimating equations for morphological differences between LPS and 

saline treatment.  

 

Note. Wald CI = Wald confidence interval, Df = degrees of freedom; Std. error = Standard error, 

LPS = Lipopolysaccharide. ** p < .01. 

The tracing of the branches was not completed for the fragmented sleep with recovery sleep 

groups. As the branch features were unchanged after acute sleep deprivation and chronic 

fragmented sleep, there was no effect to recover from. The automatic soma area 

Outcome variable Mean Difference 95% Wald CI Std. Error df p-value
Number of branches 0.19 [-0.08; 0.46] 0.14 1 0.17

Mean branch length -0.047 [-0.14; 0.49] 0.049 1 0.34

Soma area 0.15 [0.037; 0.34] 0.1 1 0.12

Treatment effect

Outcome variable Mean Difference 95% Wald CI Std. Error df p-value
Number of branches 0.21 [-0.13; 0.55] 0.18 1 0.23

Mean branch length -0.11 [-0.30; 0.089] 0.099 1 0.29

Soma area 0.16 [-0.036; 0.35] 0.1 1 0.11

Treatment effect
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measurements were however conducted, because there was an insignificant 13.27% increase 

in the soma area after fragmented sleep. 

The soma area showed a significant 8.55 % decrease after fragmented sleep with recovery 

period compared with its control group (table 6).  

Table 6. Generalised estimating equations for morphological differences between fragmented 

sleep with recovery and control group.

 

Note. Wald CI = Wald confidence interval, Df = degrees of freedom; Std. error = Standard error,* p 

< .05. 

The means and the standard errors of the mean are plotted (Figures 2A, 2B and 2C) to allow 

visual estimation of the morphological differences between the experimental group compared 

with the appropriate control group.  

 

A)  B)  

Outcome variable Mean Difference 95% Wald CI Std. Error df p-value
Soma area -0.11 [-0.21; 0.017] 0.0.050 1 0.022*

Treatment effect
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C)  

Figure 2. The means of the number of branches (A) and mean branch length (B) and soma 

area (C) plotted with standard errors of the mean for each of the groups. 

Animal effect 

Several microglia from one animal were used to extract the morphological features. As such, 

there could be variation related to the animals within the treatment groups.  The individual 

microglia cells were colour coded according to the mice (Figure 3). The cells from the same 

animals did not cluster, which suggests that there are no effects of the animal. 

A) B)  

Figure 3. The cells plotted and colour coded by the animal. 
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DISCUSSION 

The current study aimed to characterise microglia’s morphological response to acute sleep 

deprivation, chronic fragmented sleep and to recovery sleep following fragmented sleep. The 

microglia’s morphology was not altered after acute sleep deprivation nor the chronic 

fragmented sleep in the ventral hippocampus compared with the control groups. Surprisingly, 

the soma area following the chronic fragmented sleep with a three days long recovery period 

was significantly smaller, showing an opposing effect compared with the classical activation 

induced by LPS. The microglial soma area was larger in LPS treated mice in comparison to 

saline treated mice, which indicates a classical activation state of the microglia. However, the 

mean branch length and branch count did not differ between the LPS and saline injected 

microglia. The hypothesised activated state was thus not seen after insufficient sleep nor the 

LPS injection. 

Acute sleep deprivation 

We did not find evidence that acute sleep deprivation would cause neuroinflammation 

indicated by microglial activation in the ventral hippocampus. However, acute sleep 

deprivation can induce peripheral inflammation as seen by increases in inflammatory markers 

such as circulating numbers of monocytes and neutrophils (Hurtado-Alvadaro et al., 2013). It 

has been hypothesized that the peripheral inflammation might be triggered by alterations in 

stress responses and vascular changes during loss of sleep (Mullington et al., 2010), but the 

central nervous system could be more resilient to these or other adverse events caused by 

acute sleep deprivation. Acute sleep deprivation may cause differential effects in the 

peripheral and neuroinflammatory systems.  

The lack of morphological changes after acute sleep deprivation in the ventral hippocampus 

is in line with a previous study that reported no alteration in the microglia branch length or 

the number of branch end points after 8 h of sleep deprivation in murine cerebral cortex 

(Bellesi et al., 2017), a similar sleep deprivation time as in the current study. Together these 

studies compile that microglia do not alter their branch or soma morphology after acute sleep 

deprivation in ventral hippocampus or cerebral cortex. Nevertheless, acute sleep deprivation 

could induce morphological changes in microglia in other brain regions.  

After chronic sleep reduction for 5 days previous studies have found a reduction in the 

microglia branch length and a decrease in the count of ramified cells cerebral cortex in mice 

(Bellesi et al., 2017) and hypertrophy of microglia in hippocampus in rats (Hsu et al., 2003). 
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In the study by Wadhwa et al. (2017), microglial ramification and soma area were not altered 

in the rat hippocampus after 24 hours of sleep deprivation, but in response to 48 hours sleep 

deprivation, the microglial morphology adopted the activated state characteristics. These 

changes were coupled with the increase of pro-inflammatory markers. A severe sleep 

deprivation sustained for several days may thus be required for causing microglial activation 

in these regions. 

Chronic fragmented sleep 

The current study suggests that chronic fragmented sleep alone without restriction to the 

sleep time does not induce changes to the microglia morphology in the ventral hippocampus. 

In previous studies that have used the same frequency of sleep interruptions as the current 

study, already 24 hours exposure to fragmented sleep has been associated with sleepiness and 

cognitive dysfunction in mice (Ramesh et al., 2012) and in rats (McKenna et al., 2007; 

McCoy et al., 2007). The fragmented-sleep induced cognitive dysfunction and sleepiness 

seem to require the activation of the inflammatory TNF-α-dependent pathways, as TNF-α 

double receptor knockout mice or mice treated with TNF-α neutralizing antibody do not 

exhibit sleepiness or cognitive dysfunction after fragmented sleep (Ramesh et al., 2012). 

Activated microglia are the primary source for TNF-α release in the brain (Gregersen et al., 

2000), and the microglial release of TNF-α can also recruit more microglia (Hanisch, 2002). 

Despite the role of TNF-α-dependent pathways in the maladaptive effects of fragmented 

sleep, we found no evidence of the microglial activation. Chronic fragmented sleep may not 

lead to a fully developed neuroinflammation. 

Chronic fragmented sleep with a recovery period 

The microglia soma size was significantly smaller in mice that had had recovery sleep 

following chronic fragmented sleep than in control mice that had not had chronic fragmented 

sleep. Microglia may reduce their soma size after having been exposed to chronic fragmented 

sleep and then to an opportunity of recovery sleep. However, the microglia’s soma size in the 

control group is larger compared with the other control groups. This suggests that potentially 

the effect is driven by an increase in the soma size in the control group instead of a decrease 

in the recovery sleep group. For instance, various stressors have been reliably seen to activate 

microglia in the hippocampus (Calcia et al., 2016). 

After recovery from sleep restriction, persistent pro-inflammatory changes in the peripheral  

immune system have been reported in humans (van Leeuwen et al., 2009; Pejovic et al., 
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2013), but no studies have yet addressed the recovery from chronic fragmented sleep in the 

peripheral or neuroimmune system in human or animals. Future studies are needed to 

determine how microglia respond to recovery sleep following chronic fragmented sleep.  

The effects of LPS 

The size of microglial cell bodies were significantly larger after LPS injection compared with 

saline. Enlargement of the microglial cell bodies is associated with classical microglial 

activation (Ransohoff & Cardona, 2010). However, there were no significant effects seen in 

the branch measurements associated with deramification after the LPS injection compared 

with saline injection. LPS, consisting of cell wall components of gram-negative bacteria (Fan 

et al., 2015), is a powerful stimulus for microglia and a classical model for stimulating 

inflammation. Its effects on the microglia function and morphology are well documented 

(Kettenmann et al., 2011; Abd‐El‐Basset & Fedoroff, 1995). The dosage used in the current 

study has been seen to result in microglial activation, measured with cathepsin H expression, 

at the time point used also in the current study, 24 hours after intraperitoneal injection (Fan et 

al., 2015). Nevertheless, while the current study did not find morphological differences in the 

microglial branches induced by the LPS treatment in the ventral hippocampus, a significant 

decrease in average branch length has been seen in the somatosensory cortex and in basal 

forebrain (Unpublished data). This could be due to regional differences in the microglial 

activation induced by peripheral inflammation. For instance, cathepsin H expression that has 

been associated with neuroinflammation, has been reported to be lower in the hippocampus 

than in the cortex 24 hours after LPS injection (Fan et al., 2015). 

The Morphological features 

The average soma size was 32.79 ± 2.26 (mean ± SEM) μm2 in saline injected mice.  The 

automatized soma area measurements were based on the script by Salinas-Navarro et al. 

(2017), who reported previously an average soma size of 53.10 ± 1.3 (mean ± SEM) μm2 in 

naïve murine retina. The microglial cell bodies reactive to the optic nerve crush were 

previously reported to have an increased size of 74.3 ± 2.7 μm2 which is also likely to be 

significantly greater than the average size of the somas in the LPS injected mice 

(42.44± 1.64 μm2) in the current study. Instead of a difference in the script performance, 

these results likely reflect regional differences between retinal and hippocampal microglia. 

In murine hippocampus, average soma sizes of 22.72 ±2.24 μm2 and 26.47 ±1.33 μm2 in 

naïve and LPS -treated mice, respectively, have been reported (Verdonk et al., 2016). These 
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results indicate similar although slightly smaller numbers than in the current study. As the 

current study used semiautomatic tracing instead of usual automated tracing to reveal 

morphological changes in branch features on a more sophisticated level, comparison of the 

branch features with other studies is not straightforward. Also, in the current study the 

branches were defined differently than in the studies such as Bellesi et al., (2017), making the 

numbers incomparable. In the current study, the branch length also reflects the ramification, 

as the further branching cut the primary branch in two. Instead, Bellesi et al. (2017) 

calculated the whole length of microglia’s branches per cell. Nevertheless, the careful visual 

determination of the branches can be considered reliable even in the absence of other 

converging measures.  

The Strengths and limitations 

The current study utilised three different experimental models for insufficient sleep and a 

recovery from it, along with a biological control for the microglial activation. The study was 

carefully planned, and all the experimental groups had their own control groups to avoid any 

bias from factors related to, for instance, the mice’s circadian rhythm, housing or age. 

Moreover, this was the first study to address the morphological response of the microglia to a 

recovery sleep after chronic fragmented sleep.  

Furthermore, a strength of the current study was the high level of detail that could be 

captured on the semiautomatic tracing of the microglia. Sometimes the activated state is 

analysed by thresholding the picture and analysing the overall level of thresholded material 

(Beynon & Walker, 2012) or by contrasting the soma size to the total area occupied by the 

cell (Bellesi et al., 2017). These approaches offer only a very crude measure of the 

morphological changes occurring in microglia. A detailed morphological analysis, as done in 

the current study, may enable to distinguish the morphological and thus the functional state of 

the microglia from various possible morphological states. Besides the classical deramified 

state, microglia may become hyper-ramified in response to chronic stress (Hinwood et al., 

2012), and also the phagocytic amoeboid state microglia have been proposed to have three 

different stages – transitional, motile and locomotor type stages (Stence et al., 2001). 

Furthermore, the characterisation of the morphological changes is of biological importance, 

as it can thus capture alterations in the microglia that might not be seen, for example, in the 

cytokine expression level. In response to non-pathological events, microglia have shown 

morphological signs of activation and hyper-ramification in absence of changes in 
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inflammatory marker levels after chronic sleep deprivation (Bellesi et al., 2017) and chronic 

stress (Hinwood et al., 2012), respectively.  

However, there is a trade-off between the time and the level of detail in the morphological 

analysis, and the current study was underpowered to study the variability in microglia’s 

responses.  For example, both hyper- and deramified microglia have been observed after 

ischemia (Morrison & Filosa, 2013), suggesting that the microglial responses to a non-

homeostatic state can be diverse. When the responses may vary between the cells, it is of 

particular relevance not to select only some of the cells for morphological analysis. As such, 

the future studies could consider fully automated methods for extracting information on the 

microglia morphology and thus maximising the information gained from the mice used. The 

measurements could also be more objective, as in manual tracing the researcher may be 

inclined to choose the most representative cells for the measurement even when the files are 

blinded. 

As another limitation to the current study is that it is not known if and how much the mice 

slept during the lights-off period during the fragmented sleep. However, previous studies 

have indicated that the mice subjected to fragmented sleep do not sleep during the night even 

when permitted (Ringgold et al., 2013; Trammel et al., 2014). 

Future directions 

The current and previous studies (Hsu et al., 2003; Meetu et al., 2017, Bellesi et al., 2017) 

point out that microglia’s responses to insufficient sleep might peak only after the sleep 

deprivation has sustained for more than a day, suggesting that the future studies should 

consider prolonging the sleep deprivation and to further study chronic sleep deprivation. At 

least 6 days of partial sleep deprivation can also increase the permeability of the blood brain 

barrier in mice (He et al., 2014). This could potentially alter the integrity of the immune 

privileged state of the central nervous system and cause microglial activation. Elevated stress 

might not be a confounding factor even when the sleep deprivation is prolonged, as mice’s 

corticosterone levels have not been reported to be elevated after acute (Hagewoud et al., 

2010a) or 4 days partial sleep deprivation (Hagewoud et al., 2010b). 

Genome-wide expression profiling is an approach that has been adopted in studying the 

murine microglia in many neurodegenerative disease models (Wes et al., 2016). While the 

morphological features are associated with microglia’s function, the morphology alone does 

not reveal how or if the microglia respond to insufficient sleep at transcriptional level. An 
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unbiased, single cell gene expression study could potentially capture transcriptional changes 

associated with the morphology and suggest which pathways are involved. This could help in 

elucidating the functional meaning of the microglia after insufficient sleep, and partly help 

answering whether the changes are adaptive or maladaptive. 

Furthermore, using in vivo two-photon microscopy and thinned-skull preparation, time lapse 

images on microglia have been achieved transcranially from transgenic mice that were 

expressing enhanced green fluorescent protein specifically in microglia (Nimmerjahn et al., 

2005). Considering the microglia’s importance in monitoring synapses (Wake et al., 2009) 

and increased microglial synaptic phagocytosis after chronic sleep deprivation (Bellesi et al., 

2017), a dynamic inspection of both morphological changes and contacts with synapses could 

be investigated. This could be done if both neurons and microglia were labelled and imaged 

with two-photon microscopy during sleep deprivation or chronic fragmented sleep. It has 

been suspected that the sustained neuronal activity and synaptic membrane damage during 

prolonged wakefulness could be activating signals for microglia after chronic sleep 

deprivation (Bellesi et al., 2017), which might be seen in such an experiment.  

Future studies could also count the numbers of microglia and to assess any differences 

between regions and treatment groups compared with the controls. A notably higher amount 

of OX-42 positive cells in hippocampus and dentate gurys has been reported after 5 days 

chronic sleep restriction compared with the control (Hsu et al., 2003). OX-42 is a marker for 

complement type 3 receptors, which are expressed in microglia.  The higher cell count 

suggests that either a greater number of microglia were expressing complement type 3 

receptors, or that the total amount of microglia were increased. If the numbers of microglia 

are increased, either migration or microgliosis could be occurring in response to insufficient 

sleep. Microglia are known to migrate to a site of injury (Kettenman et al., 2011), and 

microglia can migrate also in cases where the tissue homeostasis is disrupted although direct 

damage due to injury is not present, such as in Alzheimer’s disease where microglia co-

localizes with amyloid deposits (Mirzaei et al., 2016). In leech nervous system, microglia can 

migrate to a site of nerve injury and to be present in almost 6 folded numbers compared with 

controls at the site of injury within 24 hours after the injury (Morgese et al., 1983) and to start 

migrating within 15 minutes from the occurrence of injury (McGlade-McCulloh et al., 1989). 

Similarly in mice, majority of the microglia has been observed to be motile after 1 day from 

injury, with peak speed bursts beyond 10 μm/min (∼600 μm/h) (Carbonell et al., 2005). As 

such, the dynamics of the microglial migration may be rapid, and selective to only some of 
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the cells.  By including a wide range of brain regions and with the use of e.g. flow cytometry, 

which can efficiently and reliably sort and calculate cells, potential differences in microglia 

counts due to migration or microgliosis after insufficient sleep could be screened for.  

Conclusions 

The acute sleep deprivation nor the chronic fragmented sleep did not induce morphological 

changes in murine microglia in the ventral hippocampus, suggesting that hippocampal 

microglia does not respond morphologically to acute sleep deprivation or chronic fragmented 

sleep. Potentially, only a prolonged sleep deprivation causes a microglial response in the 

ventral hippocampus (Meetu et al., 2017; Hsu et al., 2003; Bellesi et al., 2017). The 

microglial responses to acute sleep deprivation could be focused on other brain regions. 

Microglia in the ventral hippocampus may also not be involved in the maladaptive effects 

that are associated with the fragmented sleep (McCoy et al., 2007; McKenna et al., 2007; 

Tartar et al., 2010; Ramesh et al., 2012). The microglia soma size was significantly smaller 

after recovery sleep following chronic fragmented sleep compared with the control, 

indicating an opposite effect to the classical microglia activation. However, this control group 

seemed to have a larger soma size when compared with other control groups, which 

alternatively could explain the finding. LPS injection caused an enlargement of the microglia 

soma size, as expected as a sign of classical microglial activation. However, the mean branch 

length and branch count were not changed upon the LPS treatment. Ventral hippocampus is 

associated with processing of emotional memories during sleep. Prolonged wakefulness and 

insufficient sleep may disrupt this processing and change the neuronal activity in the ventral 

hippocampus. While microglia are active sensors of their surroundings, they might not 

change their morphology and functional state in ventral hippocampus in response to 

insufficient sleep.  
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