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Introduction

Strongly correlated materials exhibit a very wide range of structural, elec-
tronic and magnetic properties, many of which are unusual and poorly un-
derstood. In strongly-correlated transition metal oxides (TMO), like the
one treated in this work, much of this behavior emerges from the electronic
structure of the open d-shell, and therein from the mutual influence of many
varied effects, such as on-site Coulomb repulsion, Jahn-Teller distortion, or-
bital hybridization, ligand-field effects, spin-orbit coupling, and magnetic
superexchange. The manner in which macroscopic properties emerge from
the microscopic ones is an active area in condensed matter research, as study
of how the observed phases of matter depend on these many-body effects can
unveil experimental pathways to novel physical phenomena [1, 2].

Scattering experiments probe the electronic structure of materials, and of
such methods Resonant Inelastic X-ray Scattering (RIXS) is one of the more
versatile ones owing to its element, orbital and spin selectivity, and momen-
tum resolution. This flexibility, however, complicates the interpretation of
an experimental spectrum, which requires the deconvolution of a variety of
effects.

One TM compound that has received much attention lately is the 5d TM ox-
ide Sr3NiIrO6, which has aroused interest as a candidate for realizing a Kitaev
spin-liquid [3, 4]. There has been some controversy as to the interpretation
of its ground-state[5, 6, 7, 8, 9]. In this study we calculate its RIXS spectrum
using a method based on the exact diagonalization of a single-particle model
Hamiltonian. By comparing this result both to experiment and to a more
general multiplet calculation, we gauge the descriptive power of the model
and shed light on the ground state electronic structure of the compound and
its relationship to emergent properties thereof.

In the sections 1-4, we lay the theoretical groundwork necessary to justify
the construction of this model and the spectral computation that follows. In
section 5, we review the literature on Sr3NiIrO6. The next section proceeds by
describing in detail the computational methods employed. Finally we present
the results and discuss their implications with respect to the literature on
this topic.
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Units and Symbols

In the theoretical background sections we use Hartree natural units:

e = ~ = me = 1

where the speed of light is c = α−1 ≈ 137, and α is the fine structure constant.
When presenting computational and experimental details, we revert to scale-
appropriate SI derived units, such as electronvolts (eV) for energies.
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1 Electronic structure

1.1 Introduction

The complete description of ordinary matter (consisting of electrons, photons,
and nuclei with the internal structure of the latter neglected) and their inter-
actions is the domain of quantum electrodynamics (QED). A single fermion
is described by the Dirac Hamiltonian [10, 11]:

hD = βmc2 + c(α · p) (1)

where α and β are the Dirac matrices whose action is on a four component
Dirac bispinor.

A system of n fermions is described by

H =
n∑
i=1

hD(i) +
1

2

∑
i 6=j

g(i, j) (2)

where g(i, j) is the interaction between two fermions. A coarse approxima-
tion (exact in the nonrelativistic (NR) limit c → ∞) yields the Coulomb
interaction g0(i, j) = 1

rij
. Replacing g with g0 yields the Dirac-Coulomb

Hamiltonian, the NR limit of yields the Levy-Leblond equation, which is a
first order analogue to the Schrödinger equation (as the Dirac equation is to
the Klein-Gordon equation):

Ĥ(τ )Ψ(τ , t) = i
∂

∂t
Ψ(τ , t) (3)

where τ ≡ (τ e, τ n) ≡ (τe,1, ..., τe,n, τn,1, ..., τn,N) are the spatial and spin co-
ordinates of n electrons and N nuclei. Square-integrable (over τ ) unit-norm
solutions to this equation represent completely-determined (pure) bound
states of the system. Free states are not square-integrable, and to avoid
discussing the mathematical constructions necessary to properly treat them,
we set box-normalized boundary conditions. The solutions to Ĥ then span
a separable complex Hilbert space (Hsys, 〈·|·〉). The Hamiltonian Ĥ is an
automorphism on Hsys.

Since typical macroscopic systems contain ∼1023 particles, this is an inordi-
nately complex equation, whose solution for any but the simplest of phys-
ical systems requires a series of successive approximations, many of which
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are poorly controlled. The typical approach in condensed matter theory is
to invoke any number of system-appropriate approximations that balance
tractability and descriptive power, and which usually lead to the creation of
model Hamiltonians over finite-dimensional Hilbert spaces, whose ultimate
justification is experimental in nature. In this chapter, we outline the ap-
proximations made in this study and set up the formal language that will be
employed in succeeding sections.

1.2 The Hamiltonian equation.

The Hamiltonian of a system with n electrons of N nuclei is

Ĥ = T̂n + T̂e + V̂nn + V̂ne + V̂ee + Ĥrel (4)

where

T̂n =
N∑
i

∇2
Ri

2mi

T̂e =
n∑
i

∇2
ri

2
(5)

V̂nn =
N∑
i<j

ZiZj
|Ri −Rj|

V̂ne =
n∑
i

N∑
j

−Zj
|ri −Rj|

(6)

V̂ee =
n∑
i<j

1

|ri − rj|
(7)

and where, ri(Ri) are the spatial coordinates of the ith electron (nucleus),
and Ĥrel are relativistic effects obtained from the low-energy limit of the
fully-relativistic Dirac equation [12]

Ĥrel = α2

n∑
i=1

−p4
i

8
− 1

4

∂V

∂ri

∂

∂ri
+

1

2ri

∂V

∂ri
si · li (8)

where si and li are the spin and orbital angular momentum operators. si
is an operator on the spinorial space, which is isomorphic to C2, and so
even the single particle Schrödinger equation is actually a set of coupled
complex-valued differential equations, or a 2x2 matrix equation. The only
nonscalar term in the 1-particle matrix equation is the last term on the left-
hand side of equation (8), which is known as spin-orbit coupling (SOC), and
which therefore provides unique experimental pathways to probe the state
of a system. Explicit treatment of nonscalar terms greatly increases the
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computational complexity of the problem. Since, for hydrogenic orbitals, the
SOC term scales as the fourth power of the effective nuclear charge Zeff , it is
often neglected for lighter elements [13, 12, 11].

With the exception of photons, which will be introduced later, the funda-
mental constituent particles at this level of theory are all spin-1/2 particles.
These have a degree of freedom (often called internal) corresponding to the
action of the fundamental representation of spin(p, q), and coinciding with
its double cover of the SO(p, q) group. In nonrelativistic approximations,
p, q = 3, 0, and so the spin group is SU(2). The action of SU(2) on the active
space C2 is given in the Pauli representation, which in the Cartesian basis of
the frame bundle has generators

s ≡ (sx, sy, sz) ≡
((

0 1
1 0

)
, i

(
0 −1
1 0

)
,

(
1 0
0 −1

))
associated with the SO(3) generators l = (lx, ly, lz) of rotations about the
subscripted axes.

Using the isomorphism L2(R3⊗C2) ' L2(R3)⊗L2(R3) we describe this extra
degree of freedom (dof) using basis functions χ± : {1, 2} → {0, 1}

χ+ := α(σ) : α(1) = 1 α(2) = 0

χ− := β(σ) : β(1) = 0 β(2) = 1

so that every three spatial dofs correspond to one discrete valued variable σ,
and the inner product on Hsys is that of

⊗2n
i=1 L

2(R3).

As vectors, states have formal time dependence only, and we denote them
using Dirac notation

Ψ(τ , t) ≡ |Ψ〉 (t) ≡ |Ψ〉

We denote the natural dual vector of |Ψ〉 by 〈Ψ|, which is defined uniquely
by the relation 〈Ψ|Ψ′〉 = 〈Ψ| (|Ψ′〉). Juxtaposition of vectors denotes tensor
product, unless it is visually reminiscent of an inner product, in which case
contraction in intended.

Although the distinction is largely semantic, we use Dirac notation to dis-
tinguish the abstract vector from a particular functional representation. To
relate the two, one defines the dual vector 〈x,n, t| for a system with discrete
and continuous coordinates in Dd and Dc respectively by

〈x,n| (|f〉) :=
∑

n′∈Dd

∫
Dc

dx′δdimDc(x− x′)δn,n′f(x′,n′, t) = f(x, t) (9)

For (pure) states with a generic rather than function-denoting label, we write
〈x|ξ〉 = Ψξ(x, t).
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1.3 The Electronic Hamiltonian

The dynamic dependence on the spatial coordinates of the nuclei are sup-
pressed by a factor ofm−1

α ∼ 10−3. This forms the basis of the clamped-nuclei
approximation, in which we treat the nuclear spatial coordinates as fixed pa-
rameters. We separate the Hamiltonian into a nuclear and electronic part,
and apply the adiabatic approximation

Ĥ = T̂n + Ĥe

Ψ(τ , t) = Ψe(τ e, t; τ n)χ(τ n) (10)

The nuclear coordinates are treated as parameters, and any dynamic depen-
dence upon them is ignored. Nuclear dynamics can later be recovered by
varying the spatial parameters to obtain the potential energy surface. This
latter procedure is known as the Born-Oppenheimer approximation. In what
follows, we restrict our attention to the electronic problem

ĤeΨe(τ e, t; τ ) = i
∂

∂t
Ψe(τ e, t; τ ) (11)

and when the context is clear denote Ψe(τ e; τ n, t) as simply Ψ(τ e, t), and
Ĥe(τ e; τ n) as Ĥ(τ e).

1.4 Stationary states

Solutions with a separable time dependence have a time dependent factor
of e−iEt. These are eigenvectors of the Hamiltonian, as i ∂

∂t
Ψ = EΨ = ĤΨ.

Square-integrable separable solutions represent bound states, while unbound
or continuum states are not square-integrable. To avoid unessential mathe-
matical background, we describe our universe as a finite cubic region D ⊂ R3

so the full spectrum of the Hamiltonian is discrete. One can select from these
an orthonormal basis for a separable Hilbert space Hsys ' L2(Dn) ⊗ C2n.
Solutions corresponding to physical states must have unit norm, and are
therefore rays in Hsys.

The existence of bound electron states implies that these must be described
by a single electron wavefunction φ(r, σ) [14]. Its dynamics are described
by a single particle effective potential V̂eff , such that φ is described by the
Hamiltonian

ĤMF =
∇2

2
+ Veff(r, σ). (12)
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In many-body perturbative calculations, we write the Hamiltonian as

n∑
i=1

Ĥ1e(τ i) + Ĥτ e (13)

and the exact solutions for either ĤMF or H1e are then used to form the
tensor basis for Ĥsys.

The spatial part of the single particle stationary states is called an orbital.
The full eigenfunction, including Pauli spinors, is called a spin-orbital and
its eigenvalue is the orbital ionization potential in the non-interacting limit.
The span of all one-elecron (1e) states form the 1e Hilbert space H1. States
with occupation n are built up from linear combinations of products of these
1e-wavefunctions:

Ψ(τ 1, τ 2, ..., τ n) =
N∑
j=1

n∏
i=1

φaj(ri)χ(σi) (14)

where φaj is a 1e-wavefunction and χ is a spin function.

1.5 Antisymmetry

The spin-statistic theorem states that any physical state of n-fermions Ψ must
be antisymmetric with respect to permutation of any two of its arguments,
so
⊗n

i=1 H1 ) Hsys for n > 1.

The antisymmetry requirement is satisfied by the Slater determinant

|φ1χ1, ..., φnχn| ≡
1√
n!

det

∣∣∣∣∣∣∣
φ1(r1)χ1(σ1) ... φ1(rn)χ1(σn)

... . . . ...
φn(r1)χn(σ1) ... φn(rn)χn(σn)

∣∣∣∣∣∣∣ (15)

and the nonvanishing Slater determinants for n electrons, up to permuta-
tion of rows or columns, form a complete orthonormal basis of Hsys. We
can directly replace the tensor product with the wedge product1 of Slater-
determinants:

|ab||cd| := |ab| ∧ |cd| = 1

2
|ab| ⊗ |cd| − |cd| ⊗ |ab|

1We conflate forms with their natural duals.
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and adopting the notation for n-form subspaces Ωn, we define the Fock space
as F ≡ Ω(H1) =

⊕∞
i=1 Ωi(H1) and define the creation operator of an enu-

merated basis a†i ∈ End(F) by

a†i (|i1...in|) := |i〉 ∧ |i1...in|
and the annihilation ai as its hermitian conjugate.

1.6 Holes

For a subsystem of n electrons in an N -dimensional subspace, with n > N/2,
it could be more convenient to describe a state by listing the unoccupied 1e
states. In order to do this, we partition the 1-particle Hilbert space into finite-
dimensional ’shells’ or ’manifolds’ with an ordered set of N basis functions
A = span{|ai〉 |i ∈ [1, N ]}. This gives a canonical N -form ω ≡ |a1, ..., aN |,
with respect to which we define the hodge-star ∗ : Ωn(A) → ΩN−n(A) im-
plicitly via (f ∈ Ω(A))

|f | ∧ ∗|g| = 〈|f |||g|〉ω (16)

Following Sugano [19] we call this operation adjugation, and within a shell,
denote

|a∗i a∗j | ≡ ∗|aiaj|
but for two shells A and B we denote

|a∗i b∗j | ≡ ∗|ai| ∧ ∗|bj|

1.7 Symmetry

A symmetry with respect to some Ĥ ∈ Aut(H) is any operator S ∈ Aut(H)
satisfying

| 〈Sφ|Sψ〉 |2 = | 〈φ|ψ〉 |2 (17)

SĤS−1 = Ĥ (18)

The set G(Ĥ) of all symmetry operators form a subgroup of Aut(H)[13].

Wigner’s theorem states that all symmetries of a quantum mechanical system
must be either unitary and linear or antiunitary and antilinear. The latter
are associated with a reversal of time, and do not concern us here[15].
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For each eigenvalue λ in the spectrum σ(Ĥ), the set

Hλ := {|φ〉 ∈ H|Ĥ |φ〉 = λ |φ〉}

forms a subspace of H. We call this the degenerate subspace of λ, and we
call dimHλ its degeneracy. We obtain the decomposition

H =
⊕

λ∈σ(H)

Hλ

which is a partition of the Hilbert space into the aforementioned shells. By
choosing an orthonormal basis {φλ,i|i ∈ [1, dim(Hλ)]} for a degenerate sub-

space, we can directly identify G(Ĥλ) = G(Ĥ)

∣∣∣∣
Hλ

with a unitary irreducible

representation (irrep) D(λ) of symmetry group G(Ĥ): D(λ) : G → Cdim(Hλ)2

defined elementwise by

D(λ)(g)α,β := 〈φλ,α|g|φλ,β〉

The basis vectors are called partners of the irreps. We label state by ir-
rep Γ (identified up to unitary equivalence), partner γ and an additional
(multi)index α to account for the multiple occurrences of Γ.

The symmetry group of a multiparticle system described by Ĥ =
∑n

i=1 Ĥ1(τi)

is
⊗n

i=1 G(Ĥ1). However, in the case of coordinate transformations, we retain
only the diagonal subgroup {

⊗n
i=1 g|g ∈ GS(Ĥ1)} ∼= G(Ĥ1), with which the

interaction term also commutes. Given any particular representation D(Γ) of
a group action on the 1-particle Hilbert space, a natural representation for
the action on the 2-particle Hilbert space is given by the Kronecker product
D⊗D, whose reduction to irreps is given by a unitary matrix whose elements
are called Clebsch-Gordan (CG) coefficients

CαΓγ
α1Γ1γ1...αnΓnγn

= (〈α1Γ1γ1| ⊗ ...⊗ 〈αnΓn,Γn|) |αΓγ〉 (19)

1.8 Reduction of symmetry

The full symmetry group of a physical system is the double cover of the
Poincare group, defined via their action in coordinate space. As noted above,
we restrict our consideration to the unitary subgroup R3 oSU(2), and when
applying the clamped nuclei approximation, or in the presence of an external
potential, a further reduction occurs. A common symmetry reduction occurs

9



when a perturbation lowers the symmetry of the system. In this case we
can relate the generically refined partition of H under the reduced symme-
try group to the coarser unperturbed partition via the great orthogonality
theorems of representation theory[16].

Two such preperturbative partitions are of key importance in condensed mat-
ter theory: the first is obtained by restriction to SO(3) (neglecting SOC) or
SU(2). The representation theory of these groups is well known, and the
2j + 1-dimensional irreps of SU(2) are labeled by whole or half integer j,
with integer j are also irreps of SO(3), while partners are labeled by whole
or half integer mj ranging from −j to j in integer steps. At the coordinate
level, this implies separability of the differential equation into radial and an-
gular parts. Solutions (wavefunctions) can also then be factored into radial
and angular parts. The radial part is a one-dimensional Hamiltonian which
depends only on the irrep, and is therefore indexed by n and j. The angular
part depends on irrep and partner, and is therefore indexed by j and m.
Where we take the spin to be separable, j is restricted to whole integers, and
we typically distinguish it with the generic label l. Spectroscopists use the
letter sequence s, p, d, f, g, h... corresponding to l = 0, 1, 2, 3...

The second is the finite translation group T ' ZdN , for a d-dimensional crys-
tal, where N is generally taken to be arbitrarily large. This is commutative,
and hence by Burnside’s theorem must have as many irreps as elements,
so each irrep is 1-dimensional. and therefore have the form eiθ(g). Since
g ∈ ZN =⇒ gN = e, N successive application of the irrep must be equiv-
alent to multiplication by 1, which means that eiθ(g)N = 1 =⇒ θ(1)N =
m2π =⇒ θ(1) = m2π

N
. For the irrep to be faithful, it must be generated

by some m, which can be unique for only N different values of m so each
set of d generators uniquely corresponds to an irrep. The requirement that
any state transform as an irrep of T is known as Bloch’s theorem, which is
usually stated in the form

φ(r) = eik(g1⊗g2⊗g3)·ru(r) (20)

where u(r) has the full symmetry of the crystal, and ki = 2πmi
niai

corresponds to
an irrep of T , and is known as crystal momentum. We can therefore describe
single-electron Bloch states as

φn,k = un,k(r)eik·r (21)

where the index n accounts for multiplicity of the irrep k. The nonredundant
set of k-values nearest k = 0 is called the first Brillouin zone (FBZ).

10



2 Model Hamiltonians

In this section, we describe general approaches for reducing the complexity
of the formalism thus far developed. These simplifications lead to model
Hamiltonians that can describe pertinent features of a physical system with
a small number of parameters that can be related to experiment.

2.1 Mean field theory and correlation

Mean field theories (MFT) attempt to estimate V̂eff , in the hope that the
many-particle Hamiltonian is principally diagonal in the basis given by the
ensuing Slater determinants. This is the case when the electrons are weakly
correlated. Two 1e states are uncorrelated if the probability of simultaneously
finding one at position r1 and another at position r2 is equal the product of
the two independent probabilities. In Hartree-Fock MFT, one distinguishes
between correlation and electron exchange effects, where the latter arise as
the exchange integral of two electron operators, ie, the last term on the LHS
of

〈|ab||O||ab|〉 = 〈ab|O|ab〉 − 〈ab|O|ba〉 , (22)

where the first term is called the direct 2e-integral. Exchange effects are
also called Fermi correlation, because they can be related to the Fermi-hole
in Thomas-Fermi MFT, which can be understood as the Pauli exclusion of
electrons of like spin. Since this tends to decrease the Coulomb repulsion, it
leads to a lowering of energy for spin aligned wavefunctions vis-a-vis those
with opposing spin. It is therefore related to Hund’s coupling parameter JH
which describes precisely this effect[17]. Correlation may therefore refer to
the difference between the Hartree-Fock limit and the exact solution.

2.2 Tight binding

In the tight binding picture, we partition σ(Ĥ1e) into quasi-continuous bands
En(k) which can be related to atomic orbitals that collectively contribute to
them. This can be justified by treating the non-co-centric electron-electron
interaction and lattice potential (with the removal of one center) as a per-
turbation of the isolated atom, in which case atomic SU(2) symmetry is
reduced to a finite subgroup, and translational symmetry is introduced.
Where the overlap of atomic orbitals is minimal, the dispersion is nominal:
En(k) u En(0), and we can speak of low-dispersion (flat) bands of tightly-
bound electrons. Electrons in these bands are sometimes called ’localized’,
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although true localization is only possible in completely flat bands, which in
a perfect crystal can only be realized as a limit, and the term should more
properly be reserved for states bound to impurities.

In the tight-binding approximation, we consider an orthonormal set of lo-
calized orbitals centered on nuclear sites at R as provided by the Wannier
functions

wn,R(r) =
1√
N

∑
k

e−i(k·R+φ(k))ψn,k(r) (23)

where ψn,k(r) are the Bloch functions of eq. (21), the summation over k is
over k-points in the first Brillouin zone, and φ(k) is an arbitrary real-valued
function, usually optimized so as to maximize the orbital’s localization.

When localization is attainable and the resulting Hamiltonian is principally
diagonal, a model for a lattice built of a single atomic species, with a single
electron in its open shell, neglecting 2nd and higher nearest neighbor inter-
actions can be reduced to just two parameters: the onsite Coulomb repulsion

U :=

∫
drdr′ V̂(r, r′) w∗R(r)w∗R(r′)wR(r)wR(r′)

also called the Hubbard-U, and the hopping integral

t :=

∫
drTe(r)w∗R(r)wR′(r)

Model Hamiltonian based on these and other derived parameters are em-
ployed to describe highly correlated materials which defy the predictions of
MFTs. These models, typically written in second quantization formalism,
restore the many-body nature of the underlying equations in the critical
region near the Fermi level, while relying on the simplifications of the tight-
binding approximation to elide much of the description. The Hubbard model
describes a singe spin degenerate band with local orbital basis indexed by
lattice site and spin

Ĥ = −t
∑

i,j∈Ai,σ

a†iσa
†
jσ + U

∑
i

ni+ni− (24)

where Ai is the set sites neighboring i, and niσ = a†iσaiσ is the number op-
erator. The Hubbard model has been solved exactly for one dimensional
systems (linear chains) and for the limit of infinite dimensions, but analyti-
cal solutions for three dimensional systems are not available and mean field
approaches are required. Where U exceeds the bandwidth of a partially filled
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band, a band gap opens up, and a nominal conductor becomes insulating.
These Mott-Hubbard insulators are the prototypical correlated compounds,
because they have been extensively studied, and key features arising from
them, are regularly fed parametrically back into MFTs in an effort to explain
correlated phenomena.

The Heisenberg model takes a statistical approach, accounting for both a
mean field operator h and a coupling constants J ∝ t2/U arising from an
isotropic exchange interaction. The effects captured by these parameters un-
derlie the magnetic behavior of many systems. The Heisenberg Hamiltonian
is

Ĥ = −J
2

∑
i,j∈Ai

si · sj −
∑
i

hsj.

More general models account for anisotropic exchange and nonparallel cou-
pling of neighboring sites. Antisymmetric exchange, known as Dzyaloshinski-
Moriya interaction, arises from relativistic SOC effects [18, 3].

2.3 Crystal field theory

Within the tight binding picture, crystal field theory describes systems in
which the full rotational symmetry of hydrogenic orbitals is reduced by a
perturbative crystal field V̂n to a finite subgroup. The effective potential can
be expanded as [19]

V (r, φ, θ) =
∞∑
k=0

l∑
m=−l

ak,m(r)Yk,m(φ, θ) (25)

In the spherical basis {|nlm〉}, the operator is given as

V =
∑
n1,n2
k,l1,l2

m1,m2,m

〈n1l1m1|V (r, φ, θ)|n2l2m2〉 (26)

=
∑
n1,n2
k,l1,l2

m1,m2,m

〈l1m1|Yk,m|l2m2〉
∫ ∞

0

R∗n1,l1
(r)Rn2,l2ak,m(r) (27)
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where |ni, li〉 refers to the radial part of the ith orbital, |li,mi〉 to the angular
part, and ak,m ≡ 0 when |m| > k.

The matrix element

〈l1m1|l2m2|l3m3〉

=

∫ π

0

dθ

∫ 2π

0

dφYl1,m1(θ, φ)Yl2,m2(θ, φ)Yl3,m3(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
(28)

where (
l1 l2 l3
m1 m2 m3

)
:=

(−1)l1−l2−m3

√
2l3 + 1

〈l1,m1; l2,m2|l3,−m3〉

are the Wigner 3j-symbols, which are defined in terms of the Wigner coef-
ficients, is subject to selection rules that reduce the infinite sum to a small
number of nonzero terms that can be related to each other by ensuring that
V (r, θ, φ) respects the local symmetry.

The single electron states can be classified by irrep in the manner described
in the preceding sections. We describe the valence shell with a model Hamil-
tonian with this potential, usually parametrized in terms of the intrashell
splitting of single electron energy states. After removing the centrosymmet-
ric part (which corresponds to an arbitrary shift of the energy scale), we call
this the crystal field potential. When the valence shell splits into two levels,
we can unambiguously call this splitting parameter the crystal-field strength.

We can then introduce the intrashell Coulomb interaction as a perturbation.
These are usually expanded in terms of the spherical harmonics as

1

r12

=
∞∑
k=0

k∑
l=−k

rk<
rk+1
>

Y ∗k,m(θ1, φ1)Yk,m(θ2, φ2) (29)

where r<(r>) ≡min (max) {r1, r2}, we can separate out the angular integrals.

The diagonal matrix elements corresponding to atomic orbitals n1, l1, n2, l2
yield direct and exchange radial integrals, which are call the Slater-Condon
parameters, and are given by the symbols
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F k
n1l1n2l2

≡
∫ ∞

0

dr1

∫ ∞
0

dr2R
∗
n1l1

(r1)R∗n2l2
(r2)rk<r

−k−1
> Rn1l1(r1)Rn2l2(r2)

Gk
n1l1n2l2

≡
∫ ∞

0

dr1

∫ ∞
0

dr2R
∗
n1l1

(r1)R∗n2l2
(r2)rk<r

−k−1
> Rn1l1(r2)Rn2l2(r1)

(30)

When clear from context, we drop reference to indices ni, and use spectro-
scopic notation k = 0, p = 1, d = 2... for indices li.
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3 The RIXS cross-section

3.1 Introduction

Resonant inelastic X-ray scattering (RIXS) is a photon-in photon-out spec-
troscopy where energy of the incoming photon is tuned to the resonance
excitation energy of a core electron. RIXS is a coherent 2nd order process,
which means that the system can be described as passing through all possi-
ble virtual intermediate states where the adjective ’virtual’ denotes that it
may differ in energy from the initial and final state energy. In other words,
energy is not conserved in the intermediate state. The experimental out-
come is given by the weighted sum over intermediate states, with a weight
proportional to the deviation from energy conservation. This would imply a
singular contribution from the intermediate state that does conserve energy,
but the singularity is convoluted with a bounded distribution owing to the
Heisenberg uncertainty principle. By tuning the incident photon energy so
that the initial state (consisting of the target ground state and noninteract-
ing incoming photon) coincides with some given (photon free) intermediate
state2, one obtains the resonance condition, wherein the contribution of a
particular degenerate level dominates the experimental outcome, affording
a unique clarity of signal interpretation. Utilizing the x-ray portion of the
spectrum allows one to tune into tightly-bound core electrons. This makes
the probe sensitive to a particular atomic species (and site, if well-separated),
and fixes the allowed symmetries of the initial and final states by means of
the selection rules governing transitions (ie. matrix elements of the type
implicated in the radiation process)[20].

Even with the resonant amplification, however, the cross-section is quite
low, and most experiments are performed at synchrotron-radiation facilities,
where sufficiently intense radiation is available to obtain a statistically sig-
nificant number of scattering events in a short timespan. Radiation at these
facilities is naturally polarized and coherent, and this enables exploitation of
the spin and orbital selectivity of the RIXS process[21, p. 377]. Variation in
detector positioning and sample orientation afford access to a wide range of
momentum transfers.

2This is the usual setup. If the target is kept in an excited state during the experiment,
for example by lasing, then an intermediate state with two photons could also be resonant.
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3.2 Cross-section

A perturbative description of the interaction of matter with radiation is ob-
tained via minimal substitution [14, p. 228]

pµ → pµ − qAµ (31)

where pµ = (E,p) is the 4-momentum and Aµ = (φ,A) is the electromagnetic
4-potential.

In box-normalized operator form, the electromagnetic vector potential is

A(r) =
∑
k,ε

√
2π

V |k|

(
εakεe

ik·r + ε∗a†kεe
−ik·r

)
(32)

where akε, (a
†
kε) is the bosonic annihilation (creation operator), ε is one of

the two mutually orthogonal unit vectors orthogonal to k, and k takes on
all values allowed by the boundary conditions, namely ki = 2πni

3√V
for some

integer ni.

The condition k ⊥ ε leaves two degrees of freedom in choosing a polarization
basis. In a right-handed Cartesian basis whose third component is in the
direction of k we define the circularly polarized components as

ε± = ∓ 1√
2

 1
±i
0

 =: |±〉 (33)

which have the convenient properties of a) transforming under rotations like
a rank 1 spherical tensor and b) being orthogonal to its complex conjugate.

Under minimal substitution, the electronic Hamiltonian is

Ĥe =
n∑
i=1

(pi + A(ri))
2

2
− 1

2
σi · (B(ri)) +

∑
j 6=i

1

|ri − rj|

+
1

4
σi · (E(r)× (pi + A(ri)))

∑
kλ

a†kεakε

(34)

We split off ĤEM containing the terms involving vector potential A for a per-
turbative treatment and recover the Hamiltonian of eq. (7) with additional
diagonal terms that account for the energy of non-interacting photons.

The differential cross section dσ
dΩ

is the probability distribution, per unit time
and per incident flux, of detecting a scattered particle in the solid angular
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region dΩ far enough from the scatterer so that the interaction between the
scattered particle and the scatterer can be neglected. It is given by Fermi’s
golden rule (to second order) as

w = 2π|Mfi|2δ(Ef − Ei) (35)

Mfi = 〈f |ĤEM|i〉+
∑
n

〈f |ĤEM|n〉 〈n|ĤEM|i〉
Ei − En + iε

(36)

where i,n, and f respectively label initial, intermediate, and final states of
the combined noninteracting system, and

ĤEM =
∑
i

1

2
A(ri)

2 + pi ·A(ri) + ĤEM,1 (37)

where ĤEM,q indicates higher order terms with respect to the dipole expansion
parameter, which will be discussed later.

The ε in the denominator is a formal parameter understood as limiting to
zero after the limit of non-interaction is attained (ie. after the time/distance
of the scatterer from the system is increased arbitrarily on either temporal
side of the scattering process). In scattering experiments on macroscopic
systems, it is replaced with a factor Γ (or Γ/2), called the lifetime energy,
which accounts for the energy-time uncertainty in the denominator, and gives
a Lorentzian profile to the divergence. This effect, called intrinsic lifetime
broadening, is convoluted with instrumentation broadening, whose profile
depends on the experimental setup, and statistical or band broadening of
approximately degenerate states.

3.3 RIXS cross section

In the RIXS process, we have a transition

|i〉 = |i〉 |ki, εi〉 → |f〉 = |f〉 |kf , εf〉

where |k,p〉 is the state containing a photon labeled by its wave vector and
polarization, and |f〉 , |i〉 are the noninteracting final and initial state respec-
tively. The amplitude Mfi can be split into a first order term proportional
to A2 and a second order term containing the operator A · p twice. The
former, governed by the operator ε∗o · εiei(ko−ki)·r, is implicated in diffraction
experiments, and usually suppressed by an appropriate choice of experimen-
tal geometry. The latter can be split into two terms, one with an intermediate
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state photon, and one without. Higher order terms, containing any number
of intermediate state photons, are not considered here. Using the commuta-
tion relation ip = [Ĥ, r] we obtain the result for the double differential cross
section

∂2w

∂Ω∂ω
∝ ωo
ωi

∣∣∣∣ ∑
|n〉∈Hi

〈f |
(
εo · εie

i(ki−ko)·r+ (38)

T †(ko, εo) |n〉 〈n| T (ki, εi)

Ei − En + ωi − iε
+
T †(ki, εi) |n〉 〈n| T †(ko, εo)

Ei − En + ko − iε

)
|i〉
∣∣∣∣2

where
T (k, ε) =

∑
i

ri · εeik·ri (39)

In the dipole approximation, we assume that k · ri << 1 over the most
significant part of its domain, and neglect the exponential term entirely.
This is valid when the wavelength of incident radiation far exceeds the Bohr
radius, and is somewhat coarse for the hard X-ray range. Inclusion of the first
order term in the exponent series expansion, which contains a term ri ·εk · ri
is only consistent upon simultaneous inclusion of the magnetic term in ĤEM.

The elastic contribution is typically suppressed by an appropriate choice of
scattering geometry, and the resonant condition ensures that the second term
in equation (38) dominates the spectrum.

4 The RIXS spectrum (elementary excitations)

An excitation is a deviation of a system from its ground state. Since the re-
sponse properties of a system depend upon its excited states, they determine
its macroscopic properties. Single particle excitations, which can largely be
ascribed to a change in the occupation of a single orbital eigenstate of the
effective single particle Hamiltonian, is often distinguished from collective
excitations, which are attributable to a small change in many orbital occu-
pations or other degrees of freedom. For example phonons are a collective
correlated small change in the degrees of freedom of the lattice potential.

It is often the case that an excited state which differs in energy from the
ground state by ∆E = Ee − Eg can be described as the sum of two smaller
excitations ∆E u ∆E1 +∆E2. This forms the basis for quasiparticle formal-
ism, in which we term the excitations that do not admit such a decomposition
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elementary, and describe them as quasiparticles in a Fock space, which are
created or destroyed during the transitions, and ascribe the energy difference
Ei = ∆E − ∆E1 + ∆E2 to an interaction between the two quasiparticles.
This allows us to write an effective Hamiltonian using second quantization
formalism, in which we factor out the ground state (shifting the energy scale
by Eg).

The single-electron hole states described previously are both quasiparticles
and are describable in the single particle picture. In a result termed the
orthogonality catastrophe, [22] showed that the states of the new system
will be orthogonal to those of the old. Using the sudden approximation,
we see that the excitation of a single hole leaves a macroscopic system with
∼ 1023 electron-hole pairs. The primacy of this description has been verified
in experiment [23].

More formally, we can describe excitations as arising from the various degrees
of freedom of the system, and the elementary excitations as those in which
the system gains energy in a particular degree. Strongly correlated systems
are then those in which the degrees of freedom are highly entangled.

The macroscopic properties of materials depend critically on their elementary
excitations, since they are implicated in their response to external stimuli. In
strongly correlated materials, these are poorly understood, and it is precisely
in such materials that many unusual emergent properties can be found.
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5 Sr3NiIrO6

5.1 Introduction

Transition metal oxides (TMOs) are a class of crystalline compounds in
which transition metals cations are surrounded by oxygen ligands (cages),
which determine the local symmetry character of the open d− shell, most
commonly octahedral (Oh) or tetrahedral (Td), subordinate to the global ro-
tational and translational symmetries of the crystal. These cages may share
all their faces, but in many interesting compounds they are embedded in a
host matrix of magnetically inactive cations, typically alkaline earth metals
like calcium, strontium or barium, which affect the emergent magnetic and
electronic properties primarily via their structural role. The TM cages may
be edge, face or corner sharing, forming planar substructures, as is typical of
the high-T superconductors, or linear chains, which lend themselves well to
analysis by Heisenberg-like models.

Among the most intensively studied TMOs are the two-dimensional per-
ovskites (A2+B4+C2−

3 ) that comprise the parent compounds of the high-TC

superconductors. The superconducting behavior can be lifted by applying
a strong external magnetic field to reveal a rich phase diagram, with both
short range and long range correlated regimes, including antiferromagnetism,
strange metal, charge density wave and pseudogap phases [24]. Perovskite so-
lar cells have recently attained efficiencies approaching those of silicon cells,
and this has been driven by research into the interrelation between elec-
tronic and macroscopic properties, which guides experimentalists in tuning
the spectral response properties that play a critical role in efficiency [25].

As they scale strongly with effective atomic number, SOC effects become
more pronounced in the higher periods of the periodic table. Counterparts
to the 2d cuprates, such as Sr2IrO4, have attracted attention as an indirect
means of studying superconductivity. The discovery in 2008 of an SOC-
induced Mott-state, however, has drawn attention to the iridates in their own
right. The effects of SOC on highly correlated systems introduces anisotropic
spin interactions, introducing frustration to otherwise isotropic systems. The
Kitaev model of a frustrated magnetic order on a honeycomb lattice, in
particular, has spurred research into canditates like Sr3NiIrO6[2, 1]. Such
compounds are particularly relevant to the nascent field of spintronics.
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Figure 1: Unit cell of Sr3NiIrO6. Strontium positions are indicated with green
spheres, nickel-centered octahedra in silver and iridium-centered distorted
octahedra are gold. Each vertice is centered on an oxygen site, which are
shown as red spheres in the view along the c-axis (right). Produced with
Vesta[26].

5.2 Structure and Magnetic Properties

Sr3NiIrO6 belongs to the class A3MM’O6 TMOs, which is closely related to
the double perovskites (A2MM’O6), and which consists of collinear chains of
alternating MO6 polyhedra and M’O6 trigonal prisms, with adjacent polyhe-
dra sharing a triangular face or edge along the c-axis. The overall spacegroup
symmetry (up to magnetic orientation) of Sr3NiIrO6is R3̄c, with direct struc-
ture parameters a = 9.58Å and c = 11.13Å (figure 1). Trigonal prisms are
distorted octahedra, and the local symmetry group reduction, from Oh to
D3d, splits the M’ t2g level into a1 and (t2g)eg (figure 2) with the distinct
possibility of (t2g)eg - (eg)eg mixing. Both polyhedra alterate in orientation
such that a translation of half a unit cell along the c-axis corresponds to
a 60◦ rotation about the same axis. The chains themselves are separated
by buffering regions of alkaline earth metal cations A2+, and like polyhedra
in neighboring chains are staggered in position along the c-axis, allowing a
corkscrew-like simultaneous translation and rotation about that axis. While
the linear structure lends itself well to either ferromagnetic (FM) or anti-
ferromagnetic (AF) global order, any magnetic ordering in the perpendic-
ular plane is geometrically frustated, paving the way for a quantum liquid
phase[27].

Many structures in this class exhibit a partially disordered antiferromagnetic
(PDA) phase between two critical temperatures. The signature of this PDA
phase is a slow spin-dynamic [28]. The PDA phase yields to a glass-like
frozen disordered state upon cooling past the lower critical temperature, and
susceptibility decreases drastically. In the presence of an external field, how-
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ever, the susceptibility rises to a maximal value, as the magnetic order is
frozen-in [29].

Sr3NiIrO6was first synthesized by Nguyen et al. [30] in a systematic study of
the effect of fixing the M’ = Ir4+ ionic centers, which have a single vacancy in
their open t2g-shell, while varying the electronegativity of the cation M. On
the basis of susceptibility studies, they suggest a transition from AF ordering
at a bit under 20 K to ferromagnetic (FM) ordering at higher temperatures,
and rule out structural changes at this transition temperature.

Flahaut et al. [28] undertook a more detailed study of its magnetic properties,
and calculated from the susceptibility curve an effective magnetic moment
consistent with a low-spin configuration at the Ir4+ site (d5, S = 1/2), and a
high-spin configuration at the Ni2+ site (d8, S = 1). They found a negative
Curie-Weiss temperature, indicating that AF fluctuations dominate at high
temperatures, giving overall ferrimagnetism along the chains. This is further
indicated by absence of saturation in fields of to 35 T. At critical onset
temperature of T2 = 70 K they find evidence of PDA state, which is frozen
in at T1 = 21 K. They measure a coercive field strength of more than 22 T
at 15 K. They find that the PDA is characterized by loss of order within one
third of the chains.

Mikhailova et al. found lower values of T1 = 15K [31], but no evidence for
an AF state in the neutron diffraction data. They note an AF state cannot
be inferred from the Curie-Weiss fitting parameter alone, as temperature-
dependent interactions due to SOC may lead to significant deviations from
Curie-Weiss behavior. Singleton et al. (2016) found a record coercive field
strength of 55 T, and suggest that yet another transition may take place at
still higher field strengths [32].

In a single crystal neutron diffraction study, LeFrancois et al. (2014) found
a magnetic order aligned with the C3 rotation axis and ferrimagnetic intra-
chain ordering[29]. In another neutron diffraction study, Toth et al. [8].
measured the dispersion and temperature dependence of a magnon between
30 and 38 meV. They compare the results to a generic Dzyaloshinski-Moriya
model Hamiltonian and fit the exchange parameters under various global or-
der assumptions. They find that the largest term in the Hamiltonian is the
AF exchange between nearest neighbor Ir-Ni sites, with a strong anisotropy
on the Nickel site, and a much weaker one on the Ir-site.
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5.3 Computational Studies

Following the discovery of SOC-induced Mott states in 5d TMOs, Zhang
et al. (2010) undertook a computational study of Sr3NiIrO6, using DFT
calculation with the Wu and Cohen GGA functional and the inclusion of a
Hubbard-U parameter on both the Ni and Ir sites, which wrongly predicted a
metallic ground state. The addition of an SOC term on the Ir site, however,
opened up a small gap, even when the correlation on the Ir site was decreased
to 0.5 eV, and they conclude that it is an SOC-induced Mott insulator. They
attribute the AF coupling to an oxygen-mediated superexchange pathway,
and describe the ground-state Ir4+ configuration as (t2g)e

3
ga

2
1g, i.e. a single

hole in the t2g-manifold occupies the (t2g)eg-orbital [33].

A similar but spin-polarized calculation was attempted shortly thereafter by
another team [34] who failed to stabilize any but an FM groundstate. While
they acknowledge that the exchange pathway suggested by Zhang et al. is
AF in nature, they propose two additional FM pathways: one O-mediated
pathway between the half-filled Ni eg orbitals and the unoccupied Ir (eg)eg
orbitals, and a direct one between the Ni and Ir t2g-derived orbitals.

An LSDA+U calculation by Ou and Wu (2014) found an insulating FM
solution, from both AF and FM initial configurations, whose ground-state is
characterized by an A1g-hole in the Ir t2g manifold. The addition of SOC,
however, led to an AF state, characterized by a hole in the (t2g)eg-manifold
[5]. Another computational study by Gordon et al. (2016) stabilized both
intrachain FM and AF states, of which the AF state is more stable with at
the GGA+U level, and insulating with the inclusion of SOC. They also find
that the preferred spin orientation depends on the nature of the exchange
coupling, with AF coupling associated with spin orientation parallel to the
c-axis, and FM coupling associated with a perpendicular spin orientation.
This, they find, is because the AFM groundstate has an a1g hole due to

Figure 2: Splitting of the O(3) degeneracy of the Ir-centered d-shell in an
IrO6-cluster by lowering of symmetry to that of the double cover of D3d.
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strong interactions with the d-orbitals on the nickel site [6].

5.4 RIXS Spectrum

Lefrancois et al. studied the RIXS spectrum of Sr3NiIrO6at the Ir L3-edge [7].
They identify 2 features at 568(3) and 728(5) meV as d-d excitations, and one
strongly temperature dependent feature at [55 - 85] meV as a magnonic exci-
tation. Although no visible dispersion was detected, the RIXS spectrum of a
spin-wave excitation entangled with a d-d excitation may not have any mo-
mentum dependence, as the d-d excitation can act as a momentum sink [35].
A weak feature seen at about 350 meV is noted but has not been identified.
They fit the results to a model Hamiltonian for a single hole in the t2g-shell,
subject to SOC and a D3d crystal field, but neglecting any exchange-field
terms (figure 2 ). Of the three possible parametrizations (figure 3a, table
2) they consider only the two with largest value of λ, probably because it
is expected to be about 0.3 - 0.4 meV [36]. They find the parametrization
with the positive value of ∆, termed here R+, is in better agreement with
neutron diffraction data [29], and agrees well with the parameters derived
from a multireference configuration interaction study.
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6 Methods

6.1 Single electron model

A model Hamiltonian for an electron-hole in the t2g-shell is given in matrix
form with respect to a basis of the free tensor product of the three partners
a, e+, and e− of D3d irreps A1g and Eg with the Pauli spinors |±〉 as

Ĥ =
∑

γ∈{+,−}
s∈{+,−}

∆

3
(|(Eγ; s)∗〉 〈(Eγ; s)∗| − |(A; s)∗〉 〈(A; s)∗|) + λ(L · S)

∣∣∣∣
T2g

(40)

Where (L · S) is the restriction in both domain and target of the total spin
orbit coupling operator to the T2g shell, justified by the quenching of angular
momentum by the dominant octahedral field[19, p155]. We compute this
using the change of basis

 |a〉
|e−〉
|e+〉

→ Rd(r)


Y2−2(θ, φ)
Y2−1(θ, φ)
Y2 0(θ, φ)
Y2 1(θ, φ)
Y2 2(θ, φ)

 (41)

given by

Bt2g =

 0 0 1 0 0
− 1√

3
− i√

6
0 − i√

6
− 1√

3

− i√
3
− 1√

6
0 1√

6
i√
3

 (42)

whose action in the adjoint representation on the 1-particle SOC operator
gives the restriction

l · s
∣∣∣∣
T2g

= (Bt2g ⊗ I2)†l · s(Bt2g ⊗ I2) (43)

and we use the relation L · S
∣∣∣∣
T2g

|a∗〉 = −l · s
∣∣∣∣
T2g

|a〉 to find its further (endo-

morphic) restriction to the t52g configuration.

An objective function is given by

χ2(∆, λ) =
∑
i

(
Ei −H
σEi

)2

(44)
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where Ei is the difference from ground state of the observed d− d excitation
with uncertainty σEi . This resembles the objective function of the least
squares method, whose minimization corresponds to the maximization of
the likelihood function. Since we have two observed energy differences and
the same number of free parameters, we must be able to find a minimum
arbitrarily close to zero, and χ2 has no significance as a test statistic.

We find three roots to this equation, leading to three possible parameter-
izations of the model Hamiltonian, only two of which were considered in
[7]. These are shown in figure 3a. These parameterizations constitute three
hypotheses, and are listed in table 2.

For each of the three hypotheses, we solve the Hamiltonian eigenvalue equa-
tion, order the eigenstates by energy Ei, i = 0, ... , 6 and label the corre-
sponding eigenstates |i〉.
This allows us to then compute the leading contribution to the RIXS cross-
section within the dipole approximation as

I(ET ; εi, εo) ∝
∑

(i,f)∈D(ET )

P (Ei)

∣∣∣∣∣∣
3/2∑

mj=−3/2

〈
f
∣∣T †d (εo)

∣∣m∗j〉 〈m∗j ∣∣Td(εi)∣∣i〉
ET + iΓ

∣∣∣∣∣∣
2

(45)

where D(ET ) = {(i, f) ∈ [0, 5]2 ⊂ Z2|Ef−Ei = ET}, P (Ei) is the probability
that a multiplet is initially in the state |i〉 and

∣∣m∗j〉 is the unique state with
a hole the L3/2 - edge and a fully occupied T2g-manifold.

The matrix elements decompose into angular and radial integrals, and the
latter are identical for all the terms within the employed approximations, and
we neglect them entirely. Factoring out the radial part allows us to write any
state as a linear combination of tensor products of spherical harmonics with
spin functions |a〉 =

∑l
m=−l

∑
s∈{+,−} |lm〉 |s〉.

Factoring out the spin functions and writing the vector transition operators
in spherical basis leaves us with matrix elements of the form

〈l1m∗1|Y1,m(θ, φ)|l2m∗2〉

which we compute using equation 28 and the relation

Y ∗l,m = (−1)mYl,−m (46)

thus reducing each term in the amplitude to a weighted sum over Wigner
3j-symbols.
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(a) Single-electron (b) Multiplet

Figure 3: Roots to the objective equation. The innermost ellipse indicates
the uncertainty in the parameters and their correlation.

This amplitude calculation is written as a suite of MATLAB routines.

At the core of these is transition_sph(ll,lr,k) which returns the transi-
tion matrix whose elements are

Tml,mr = 〈ll,ml∗|C(1)
k |lr,mr∗〉 (47)

where C(1)
k is the renormalized spherical harmonic and the star indicates con-

jugation. This function is used by
kramers_heisenberg_resonant(V,Vn,pin,pout)
which returns the square of the absolute value of the resonant dipole tran-
sition matrix element from each initial state vector in the list V to any final
state vector in the list, with intermediate states in Vn. The thermal aver-
age is then taken by the calling routine. The code is hosted by github at
https://github.com/chnyok/RIXS_Sr3NiIrO6.git

6.2 Polarization dependence

The dipole transition operators are polarization dependent, and higher order
transition operators depend on the wave vectors as well. As the polarization
is in the scattering plane, knowledge of the wave vectors suffices to deduce
the polarization vectors. The published experiment [7] only reports the mo-
mentum transfer q, which fixes 3 of the 4 angular degrees of freedom for the
wave vectors, and this leaves one rotational degree of freedom that leaves q
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Table 1: Slater Condon parameters from Hartree-Fock calculation

Parameter: F 2
dd F 4

dd F 4
pd G1

pd G3
pd

Value: 14.3 eV 9.93 eV 3.27 eV 2.93 eV 1.76 eV

fixed. This parameter is fixed by specifying σ, the orientation of the scat-
tering plane. The dependence of the scattering amplitudes on σ, as shall
see in the next section, is critical. This parameter was communicated by the
authors, and is given (within 0.1%) in hexagonal crystal coordinates as (27
1 -67).

The polarization vector must be described in the same Cartesian basis as
the spherical harmonic basis functions Yl,m(r

r
) are defined. Since our model

Hamiltonian describes an isolated IrO6 cluster, which has two distinct ori-
entations with respect to the global crystal coordinates, we must take an
average of these two orientations. This is more easily accomplished by rotat-
ing the polarization vectors than by redefining the orbitals. The C3 cluster
axis coincides with the C3 crystal axis.

6.3 Full multiplet calculation

The full-multiplet calculation is performed using the Quanty many-body
scripting language[37]. This entails a larger number of parameters. The
Slater-Condon parameters (table 1) are calculated using radial wavefunc-
tions obtained from a Dirac-Hartree-Fock calculation, employing Cowan’s
code [38, 39], of the bare Ir4+ ion, and are multiplied by a uniform scaling
factor SHF = 0.8. An additional Crystal-Field term ME, governing the con-
figuration mixing of the two Eg levels in the d1 configuration, occurs, and as
initially set to 0 to coincide with its value in the octahedral limit, and later
varied.

The crystal-field splitting of a d-shell in a generic field of D3d symmetry is
parametrized in terms of the single occupation splitting parameters ∆, Dq
and ME as (Ak,m =

√
2k+1

4π
ak,m)

Ak,m =


∆− 2ME k,m = 2, 0

−14Dq + 4
3
∆ + 2ME k,m = 4, 0

−i
√

7
10

(
20Dq + 2

3
∆ +ME

)
k,m = 4,±3

(48)

the spherically symmetric terms A0,0 and F 0
mm′ are neglected, as their only
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Table 2: Roots to the objective equation χ2(∆, λ) = 0

Hypothesis ∆1e(meV) λ1e(meV) ∆m(meV) λm(meV)

H+ 294(13) 396(3) 308(13) 324(2)
H− −218(4) 417(2) −225(7) 342(1)
H3 594(4) 196(9) 606(4) 168(8)

effect is to uniformly shift the barycenter of a shell.

Any such parametrization depends on a particular choice of Cartesian basis
in which the spherical harmonic functions are expressed, and is constrained
by the desire that ME → 0 in the octahedral limit. In this basis the C3

rotational axis coincides with the z-axis, and one of the 3 C2 rotational-axes
coincides with the x-axis. The partners of the T2g irrep are given in terms
of the spherical harmonics defined on this basis by equation 42, and the
remaining partners of the higher-lying Eg irrep are given similarly by

Beg =

(
− i√

6
1√
3

0 − 1√
3

i√
6

− 1√
6

i√
3

0 i√
3
− 1√

6

)
(49)

We seek roots for the objective function in equation 44. As in the single
electron case, there are three of these, and their correspondence is clear.
They are listed in table 2. The RIXS cross-section is calculated for each of
the resultant parameterizations

6.4 One-electron model within the full multiplet code

Withing the framework of a full multiplet code, the approximations made
in our own single electron model can be described by setting the scaling
parameter to zero and increasing 10Dq enough to preclude any SOC-induced
eg− t2g orbital mixing. We use this description to test whether the difference
between our own code and the full multiplet calculation are attributable to
the additional approximations entailed or whether they are a byproduct of
small differences in the calculation of broadening effects.

6.5 Temperature dependence parameter extraction

For a quantitative analysis of the temperature dependence of the [55-90] meV
feature of the RIXS spectrum, we fit 4 Gaussian functions with parameters
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Figure 4: Comparison of one-electron model (blue) with Quanty full multiplet
calculation both with (red) and without (green) the one electron approxima-
tion for the R1 parametrization.

Ai, σi, µi to the experimental data. This data is obtained by digitizing graphs
from [7], and the error inherent in this process is not included in the error
analysis, which accounts only for the covariance in the fitting parameters.

7 Results and discussion

7.1 Comparison with full multiplet calculation

A comparison of the spectral calculation for the parametrization R+ (az = 0)
is shown in figure 4. Both the one-electron model and the full multiplet calcu-
lation with the one electron approximation slightly underestimate the elastic
peak, since they respectively neglect or suppress the contributions of the eg
orbitals thereto. The effects of eg - t2g mixing are otherwise apparent only
in the difference in the parameters required to reproduce the experimental
spectra (table 2). The degree of eg character in the ground state for the full
multiplet calculation for all three parametrizations is shown in table 3.

The computed RIXS spectrum for the three parameterizations with no spin
flip term is independent of temperature, as thermal effects enter the model
only via the increased occupancy of the first excited state, which is spin

31



Table 3: eg - t2g mixing in the ground and first excited states,
〈
Neg

〉
Hypothesis State αz = 0 αz = 80 meV αz = 160 meV

H+ g 5.9% 5.8% 5.7%
H+ 1 5.9% 6.0%
H− g 6.9% 6.2% 6.9%
H− 1 6.2% 6.2%
H3 g 4.8% 3.7% 3.7%
H3 1 3.8% 3.8%

Figure 5: Computed 1e-model RIXS cross-section for three parameterizations
sans spin-flip term compared with experimental data at 300 K.

degenerate. These are compared with the room temperature experimental
results in figure 5. Although the third parametrization is the most visually
appealing, the lack of a quantitative error analysis makes it difficult to draw
any conclusions. As the model spectrum consists of delta functions, intrinsic
and instrumentation broadening effects are simulated by the convolution of a
Gaussian with the Lorentzian distribution. This leaves two free parameters
for each peak, which are fit to experiment.
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(a) R+ (b) R- (c) R3

Figure 6: Visualization of the hole in the ground state for each of the three
spin-free parametrizations of the Hamiltonian.

Figure 7: Computed 1e-model RIXS cross-section for R+ parameterization
with spin-flip term, compared with experimental data at 10 K.
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Figure 8: Computed 1e-model RIXS cross-section for R- parameterization
with spin-flip term, compared with experimental data at 10 K.

7.2 Effect of the exchange field

The introduction of a local spin-flip term along the C3-axis splits the de-
generacy of all three levels (figures 7 - 12), opening a small gap between

Figure 9: Computed 1e-model RIXS cross-section for R3 parameterization
with spin-flip term, compared with experimental data at 10 K.
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Figure 10: Computed 1e-model RIXS cross-section for R+ parameterization
with spin-flip term, compared with experimental data at 300 K.

the highest occupied and lowest unoccupied molecular orbitals. The degree
of this splitting differs for the different parameterizations, and is most pro-
nounced in the R3-parameterization, as it has the least spin-orbit coupling.

Figure 11: Computed 1e-model RIXS cross-section for R- parameterization
with spin-flip term, compared with experimental data at 300 K.
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Figure 12: Computed 1e-model RIXS cross-section for R3 parameterization
with spin-flip term, compared with experimental data at 300 K.

The entanglement of spin and orbital degrees of freedom leads to an energetic
trade-off between a favorable spin alignment and orbital symmetry. This can
be visualized by comparing figure 14 with 6. The width of the energy gap
opened by the introduction of an exchange field term αz is largest when the
spin and orbital degrees of freedom are completely decoupled. At the other
extreme, the R+ parameterization is most strongly coupled, and the polar-
ization of its ground state along this axis is suppressed by the cost of mixing
in energetically unfavorable orbitals.

After opening a small gap by splitting the degeneracy, the first excited state
has non-negligible occupation even at low temperatures. This means that, in
addition to the elastic line, there are 9 Stokes and one anti-Stokes lines in the
d-d part of the spectrum. However, depending on the exact parametrization,
only 3-5 peaks are resolvable. This is partially due to their proximity, but
also some the amplitudes are greatly suppressed by the selection rules in
the dipole matrix elements. This effect is most clearly visible in the R3
parametrization, where spectral weight shifts from the elastic line to the first
Stokes line.

In figure 9, we see that the addition of a local spin-flip term of about 100
meV is able to reproduce the observed magnonic feature at 10 K. However
the effect of this term on the 568 meV and the 728 meV features does not cor-
respond well with observations, and from figure 12 we see that the room tem-
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perature spectrum is not well explained by this model. The agreement at 300
K may be improved by including the phonon contribution to the spectrum.
This would entail the calculation of all the transition elements c†iε ·rcj, where
c†i (ci) are the phonon creation (annihilation) operators projected onto some
suitable local basis. The phonon contribution to the spectrum is responsible
for the much of the fine structure visible in low-temperature experiments,
and may therefore also explain to some extent the lack of agreement for the
higher d-d excitations. An explicit calculation of the phonon contribution
would require accurate parameters from quantum chemistry calculations, and
are therefore beyond the scope of this work.

7.3 Temperature dependence

The RIXS amplitude of a spin-wave is proportional to the spin-susceptibility
[35, 40, 20], which is the magnitude of fluctuations ∆S2. This may be com-
pared with the dependence on the Debye-Waller factor for scattering from
phonons, however no prior knowledge of the temperature-dependence of spin-
susceptibility is assumed. The temperature dependence of the magnonic
feature is calculated by fitting four Gaussians to the experimental spectra
obtained at 10, 20 , 100, 150 and 300 K and comparing the amplitudes of the
elastic and first excited states. The results are compared with a phenomeno-
logical model function describing Boltzmann-like temperature-dependent dis-
sipation in figure 13.

8 Conclusion and outlook

In this work, the RIXS spectrum of Sr3NiIrO6was studied at the L3-resonance
in the sub-eV energy transfer range, which includes crystal-field and magnetic
excitations. An effective one-electron model is developed for this task. The
results are compared with the experimental RIXS spectra and to another
crystal-field multiplet theory calculation using the software Quanty [37].

The results of this calculation strongly suggest that of the possible one elec-
tron model Hamiltonians, the overlooked R3-parametrization best describes
the RIXS spectrum of Sr3NiIrO6. The temperature-dependent magnetic fea-
ture in the observed spectra would then, at least in the low-temperature
domain, be better be described as a local spin-flip term rather than a low-
dispersion magnonic feature. This agrees with the preponderance of evidence
[7, 9, 8] for a positive sign of the D3d crystal-field parameter, but entails a dif-
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Figure 13: Ratio of low-lying spin excitation to elastic peak as calculated
from experiment by Gaussian peak-fitting (blue bars) compared with a phe-
nomenological model (red line).

ferent ratio between it and the spin-orbit coupling parameter. This could be
explained by more effective screening of the ground-state hole than is usual,
and agrees with the computational studies [33, 5] that found that even a very
modest degree of spin-orbit coupling sufficed to predict an insulating ground
state.

In conclusion, the methodology developed here yields results in good agree-
ment with experiment and crystal-field multiplet theory. Interestingly, we
find that the magnetic excitations observed in the RIXS spectrum can be de-
scribed as local spin-flip excitations, rather than as dispersive excitations, as
has been previously suggested[7]. The agreement with experiment in the low
temperature regime can be further improved by treating the entanglement
of vibrational modes with the electronic excitation spectra, as for example,
in Franck-Condon theory. The drastic reduction of the state space entailed
in this one electron model is an initial step that facilitates the creation of
an extended model that can be used to model the dispersive excitations and
magnetic features of geometrically frustrated A3MM’X6 compounds.

38



(a) Parametrization 1
ground state

(b) Parametrization 2,
ground state

(c) Parametrization 3,
ground state

(d) Parametrization 1
First excited state

(e) Parametrization 2
First excited state

(f) Parametrization 3
First excited state

Figure 14: Visualization of the hole density in the ground state and first
excited state for each of the three parametrizations of the Hamiltonian with
an exchange field term aligned with the C3-axis.
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