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Quaternionic Hyperbolic Function Theory

Sirkka-Liisa Eriksson and Heikki Orelma

Abstract. We are studying hyperbolic function theory in the skew-field
of quaternions. This theory is connected to k-hyperbolic harmonic func-
tions that are harmonic with respect to the hyperbolic Riemannian met-
ric

ds2k =
dx20 + dx21 + dx22 + dx23

xk3

in the upper half space R4
+ = {(x0, x1, x2, x3) ∈ R4 : x3 > 0}. In the

case k = 2, the metric is the hyperbolic metric of the Poincaré upper
half-space. Hempfling and Leutwiler started to study this case and no-
ticed that the quaternionic power function xm (m ∈ Z), is a conjugate
gradient of a 2-hyperbolic harmonic function. They researched polyno-
mial solutions. We find fundamental k-hyperbolic harmonic functions
depending only on the hyperbolic distance and x3. Using these func-
tions we are able to verify a Cauchy type integral formula. Earlier these
results have been verified for quaternionic functions depending only on
reduced variables (x0, x1, x2). Our functions are depending on four vari-
ables.

Mathematics Subject Classification (2010). Primary 30A05; Secondary
30A45.

Keywords. α-hypermonogenic, α-hyperbolic harmonic, Laplace-Beltrami
operator, monogenic function, Clifford algebra, hyperbolic metric, hy-
perbolic Laplace operator, quaternions.

1. Introduction

We study hyperbolic function theory in the skew- field of quaternions, denoted
by H. This theory was initiated by Thomas Hempfling and Heinz Leutwiler in
[15]. They studied quaternion valued twice continuous differentiable functions
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f (x) defined in the full space R4 satisfying the following modified Cauchy-
Riemann system

x3

(
∂f0
∂x0
− ∂f1
∂x1
− ∂f2
∂x2
− ∂f3
∂x3

)
+ 2f3 = 0,

∂f0
∂xi

= − ∂fi
∂x0

for all i = 1, 2, 3,

∂fi
∂xj

=
∂fj
∂xi

for all i, j = 1, 2, 3.

In [17] Leutwiler noticed that the power function xm, wherem ∈ Z, calculated
using quaternions, is a conjugate gradient of a hyperbolic harmonic function
h which satisfies the equation

∆2h = x23∆h− 2x3
∂h

∂x3
= 0

where as usual

∆h =
∂2h

∂x20
+
∂2h

∂x21
+
∂2h

∂x22
+
∂2h

∂x23
.

The operator ∆2 is the hyperbolic Laplace-Beltrami operator with respect to
the Poincaré hyperbolic metric

ds2 =
dx20 + dx21 + dx22 + dx23

x23
.

Leutwiler and the first author in [7] studied the total Clifford algebra
valued functions, called hypermonogenic functions. Their Cauchy-type for-
mula was proved in [6] and the key ideas are the relations between k and
−k-hypermonogenic functions, introduced in [3]. An introduction to the the-
ory is given in [18] and in more recent paper [8].

In this paper, we verify the Cauchy type theorems for quaternionic
valued fuctions called k-hyperregular. Our Cauchy type theorems are not
directly following from the theory of quaternionic valued hypermonogenic
functions, which are depending only on three variables. Our functions are
depending on four variables and k is an arbitrary real coefficient. However,
it is possible to deduce some results from the theory of paravector valued k-
hypermonogenic funcions (see [9]) which domain of the definition is an open
subset of R4 and the values are in the Clifford algebra C`0,3. These meth-
ods are rather complicated in case of quaternions and we prefer the direct
methods.

2. Preliminaries

The space of quaternions H is four dimensional associative division algebra
over reals with an identity 1 and generated by the elements 1, e1, e2 and e3
satisfying the relations

e3 = e1e2
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and

eiej + ejei = −2δij1,

where δij is the usual Kronecker delta. The elements α1 and α may be iden-
tified.

We denote the coefficients of the components of a quaternion x with
respect to the base {1, e0, e1, e2} by x0, x1, x2 and x3, that is

x = x0 + x1e1 + x2e2 + x3e3

where x0, x1, x2 and x3 are real numbers. The spaces R4 and H may be
identified as vector spaces.

We denote the upper half space by

H+ = {x | xi ∈ R, i = 0, 1, 2, 3 and x3 > 0}

and the lower half space by

H− = {x | xi ∈ R i = 0, 1, 2, 3 and x3 < 0} .

The hyperbolic distance dh(x, a) between the points x and a in H+ may be
computed from the formula dh(x, a) = arcosh λ(x, a), where

λ(x, a) =
(x0 − a0)

2
+ (x1 − a1)

2
+ (x2 − a2)

2
+ x23 + a23

2x3a3

=
‖x− a‖2 + ‖x− a∗‖2

4x3a3

=
‖x− a‖2

2x3a3
+ 1 =

‖x− a∗‖2

2x3a3
− 1,

a∗ = a0 + a1e1 + a2e2 − a3e3 and the distance

‖x− a‖ =

√
(x0 − a0)

2
+ (x1 − a1)

2
+ (x2 − a2)

2
+ (x3 − a3)

2

is the usual Euclidean distance (see the proof for example in [18]). Similarly,
we may compute the hyperbolic distance between the points x and a in H−.
Notice that if both x and a belong to H+ or in H− then

dh (x, a) = dh (x∗, a∗) .

We recall the following simple calculation rules

‖x− a‖2 = 2x3a3 (λ(x, a)− 1) , (2.1)

‖x− a∗‖2 = 2x3a3 (λ(x, a) + 1) , (2.2)

‖x− a‖2

‖x− a∗‖2
=
λ(x, a)− 1

λ(x, a) + 1
= tanh2

(
dh (x, a)

2

)
. (2.3)

We remind that hyperbolic balls are also Euclidean balls with a shifted
center given by the next result.
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Proposition 2.1. The hyperbolic ball Bh (a, rh) with the hyperbolic center a in
H+ and the radius rh is the same as the Euclidean ball with the Euclidean
center

ca (rh) = a0 + a1e1 + a2e2 + a3 cosh rhe3

and the Euclidean radius re = a3 sinh rh. Conversely, if b = (b0, b1, b2, b3) is
a point in H+ and re < b3 then the Euclidean ball Be (b, re) is the same as
the hyperbolic ball with the hyperbolic radius

rh = artanh

(
re
b3

)
and the hyperbolic center

a =

(
b0, b1, b2,

b3
cosh rh

)
.

Corollary 2.2. The hyperbolic metric in H+ (resp. in H−) is equivalent with
the Euclidean metric in H+ (resp. in H−), that is they generate the same
topology.

We may extend the hyperbolic topology to the whole space. Indeed, if
U ⊂ H and the set U ∩{x ∈ H | x3 = 0} is non-empty then we call the set U
open if it is open with respect to usual Euclidean topology. The inner product
〈x, y〉 in H is defined by

〈x, y〉 =

3∑
i=0

xiyi

similarly as in the Euclidean space R4.
The elements

x = x0 + x1e1 + x2e2

are called reduced quaternions if x0, x1and x2 are real numbers. The set of
reduced quaternions is identified with R3.

We recall that the prime involution in H is the mapping x→ x′ defined
by

x′ = x0 − x1e1 − x2e2 + x3e3.

Similarly, the reversion in H is the mapping x→ x∗ defined by

x∗ = x0 + x1e1 + x2e2 − x3e3.
The conjugation in H is the mapping x → x defined by x = (x′)

∗
= (x∗)

′
,

that is
x = x0 − x1e1 − x2e2 − x3e3.

These involutions satisfy the following product rules

(xy)
′

= x′y′,

(xy)
∗

= y∗x∗

and
xy = y x

for all x, y ∈ H.
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The prime involution may be characterized also as

xe3 = e3x
′

for all quaternions x.

The real part of a quaternion x is defined by

Re x = x0

and the vector part by

Vec x = x1e1 + x2e2 + x3e3.

We recall the product rule

xy = −〈x, y〉+ x× y

if Re x = Re y = 0, where × is the usual cross product in R3.

We define the mappings S : H→ R3 and T : H→ R by

Sa = a0 + a1e1 + a2e2

and

Ta = a3

for a = a0 + a1e1 + a2e2 + a3e3 ∈ H. Using the reversion, we compute the
formulas

Sa =
1

2
(a+ a∗) , (2.4)

Ta = −1

2
(a− a∗) e3. (2.5)

We recall the identities

ab+ ba = 2aRe b+ 2bRe a− 2 〈a, b〉 (2.6)

and

1

2

(
abc+ cba

)
= 〈b, c〉 a− [a, b, c] (2.7)

valid for all quaternions a, b and c . The term [a, b, c] is called a triple product
and is defined by

[a, b, c] = 〈a, c〉b− 〈a, b〉c.

If a, b and c are quaternions with Re a = Re b = Re c = 0, then (cf. [14])

[a, b, c] = a× (b× c).
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3. Hyperregular functions

We use the following hyperbolic modifications H l
k and Hr

k of the Cauchy-
Riemann operators

H l
kf (x) = Dlf (x) + k

f3
x3
, H

l

kf (x) = Dlf (x)− k f3
x3
,

Hr
kf (x) = Drf (x) + k

f3
x3
, H

r

kf (x) = Drf (x)− k f3
x3
,

where the parameter k ∈ R and the generalized Cauchy-Riemann operators
are defined by

Dlf =

3∑
i=0

ei
∂f

∂xi
, Dlf =

3∑
i=0

ei
∂f

∂xi
,

Drf =

3∑
i=0

∂f

∂xi
ei, Drf =

3∑
i=0

∂f

∂xi
ei.

We also abbreviate Dlf by Df and H l
k by Hk.

Definition 3.1. Let Ω ⊂ H be open. A function f : Ω → H is called k-
hyperregular, if f ∈ C1 (Ω) and

H l
kf (x) = Hr

kf (x) = 0.

for any x ∈ Ω\{x3 = 0}.

We may simply compute the components of the operators H l
k and Hr

k

as follows.

Lemma 3.2. Let Ω ⊂ H be open. If a function f : Ω → H is differentiable
then the coordinate functions of H l

k and Hr
k are given by(

H l
kf
)
0

= ∂f0
∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
+ k f3x3

, (Hr
kf)0 =

(
H l
kf
)
0
,(

H l
kf
)
1

= ∂f0
∂x1

+ ∂f1
∂x0
− ∂f2

∂x3
+ ∂f3

∂x2
, (Hr

kf)1 = ∂f0
∂x1

+ ∂f1
∂x0

+ ∂f2
∂x3
− ∂f3

∂x2
,(

H l
kf
)
2

= ∂f0
∂x2

+ ∂f2
∂x0

+ ∂f1
∂x3
− ∂f3

∂x1
, (Hr

kf)2 = ∂f0
∂x2

+ ∂f2
∂x0
− ∂f1

∂x3
+ ∂f3

∂x1
,(

H l
kf
)
3

= ∂f0
∂x3

+ ∂f3
∂x0
− ∂f1

∂x2
+ ∂f2

∂x1
, (Hr

kf)3 = ∂f0
∂x3

+ ∂f3
∂x0

+ ∂f1
∂x2
− ∂f2

∂x1
,

where (·)j denotes the real coefficient of the element ej for each j = 0, 1, 2, 3.

We obtain immediately the following result.

Proposition 3.3. Let Ω ⊂ H be open and a function f : Ω → H continuously
differentiable. A function f is k−hyperregular in Ω if and only if

∂f0
∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
+ k f3x3

= 0, if x3 6= 0,
∂f0
∂xi

= − ∂fi
∂x0

for all i = 1, 2, 3,
∂fi
∂xj

=
∂fj
∂xi

for all i, j = 1, 2, 3.

Our operators are connected to the hyperbolic metric via the hyperbolic
Laplace operator as follows.
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Proposition 3.4. Let f : Ω→ H be twice continuously differentiable. Then

H l
kH

l

kf =∆f − k

x3

∂f

∂x3
+
kf3
x23

e3 +
k

x3

(
∂f1
∂x2
− ∂f2
∂x1

)
+

k

x3

(
∂f1
∂x3
− ∂f3
∂x1

)
e1 +

k

x3

(
∂f2
∂x3
− ∂f3
∂x2

)
e2

=H
l

kH
l
kf

and

Hr
kH

r

kf =∆f − k

x3

∂f

∂x3
+
kf3e3
x23

+
k

x3

(
∂f2
∂x1
− ∂f1
∂x2

)
+

k

x3

(
∂f1
∂x3
− ∂f3
∂x1

)
e1 +

k

x3

(
∂f2
∂x3
− ∂f3
∂x2

)
e2

=H
r

kH
r
kf.

Proof. We just compute

DlH l
kf = DlDlf − k

Df3
x3

+
kf3e3
x23

= ∆f − k
∂f3
∂x0

+ ∂f3
∂x1

e1 + ∂f3
∂x2

e2 + ∂f3
∂x3

e3

x3
+
kf3e3
x23

and (
H
l

kf
)
3

=
(
Dlf

)
3

= − ∂f0
∂x3

+
∂f1
∂x2
− ∂f2
∂x1

+
∂f3
∂x0

.

Hence we obtain

H l
kH

l

kf =∆f − k

x3

∂f

∂x3
+
kf3
x23

e3 +
k

x3

(
∂f1
∂x2
− ∂f2
∂x1

)
+

k

x3

(
∂f1
∂x3
− ∂f3
∂x1

)
e1 +

k

x3

(
∂f2
∂x3
− ∂f3
∂x2

)
e2.

Similarly, we compute

DrHr
kf = DrDrf − k

Drf3
x3

+
kf3e3
x23

= ∆f − k
∂f3
∂x0

+ ∂f3
∂x1

e1 + ∂f3
∂x2

e2 + ∂f3
∂x3

e3

x3
+
kf3e3
x23

and (
H
r

kf
)
3

=
(
Drf

)
3

= − ∂f0
∂x3
− ∂f1
∂x2

+
∂f2
∂x1

+
∂f3
∂x0

.

Hence we have

Hr
kH

r

kf =∆f − k

x3

∂f

∂x3
+
kf3e3
x23

+
k

x3

(
∂f2
∂x1
− ∂f1
∂x2

)
+

k

x3

(
∂f1
∂x3
− ∂f3
∂x1

)
e1 +

k

x3

(
∂f2
∂x3
− ∂f3
∂x2

)
e2.
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Moreover, we easily deduce that H
l

kH
l
kf = H l

kH
l

kf and H
r

kH
r
kf = Hr

kH
r

kf .
�

We immediately obtain two corollaries.

Corollary 3.5. If f : Ω → H is twice continuously differentiable and k 6= 0
then

H l
kH

l

kf = Hr
kH

r

kf = ∆f − k

x3

∂f

∂x3
+
kf3e3
x23

if and only if ∂fi
∂xj

=
∂fj
∂xi

for all i, j = 1, 2, 3.

Corollary 3.6. If f : Ω→ R is real valued and twice continuously differentiable
then

xk3H
l
kH

l

kf = xk3H
r
kH

r

kf = ∆kf,

where the operator

∆k = xk3

(
∆− k

x3

∂

∂x3

)
is the Laplace-Beltrami operator (see [19]) with respect to the Riemannian
metric

ds2k =
dx20 + dx21 + dx22 + dx23

xk3
. (3.1)

Differentiating the first equation of Proposition 3.3 with respect to xi
and applying the rest of the equations of Proposition 3.3 we obtain the fol-
lowing result.

Proposition 3.7. Let Ω ⊂ H be open and a function f : Ω→ H twice contin-
uously differentiable. If f is k-hyperregular then

xk3H
l
kH

l

kf = xk3H
r
kH

r

kf = ∆kf + xk−23 kf3e3 = 0.

The previous results motivate the following definition.

Definition 3.8. Let Ω ⊂ H be open. A twice continuously differentiable func-
tion f : Ω→ H is called k-hyperbolic, if

∆f − k

x3

∂f

∂x3
+
kf3e3
x23

= 0.

There exists a characterization of k-hyperregular functions in terms of
k−hyperbolic functions.

Theorem 3.9. Let Ω ⊂ H be open. A twice continuously differentiable hy-
perbolic harmonic function f : Ω → H is k-hyperregular if and only if the
functions f and xf + fx are k-hyperbolic and H l

kf = Hr
kf.
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Proof. In order to abbreviate notations, we denote g = xf + fx. Using the
standard formulas ∆ (xf) = x∆f + 2Dlf and ∆ (fx) = (∆f)x + 2Drf we
obtain by virtue of Proposition 3.7, that

x23∆g − kx3
∂g

∂x3
+ kg3e3 =x23xH

l
kH

l

kf + x23

(
H l
kH

l

kf
)
x+ 2x23H

l
kf + 2x23H

r
kf

− 4kx3f3 − kx3 (e3f́ + fe3) + 2k (x0f3 + x3f0) e3

− 2kf3 (x0e3 − x3)

=x23xH
l
kH

l

kf + x23

(
H l
kH

l

kf
)
x

+ 2x23H
l
kf + 2x23H

r
kf.

If f is k-hyperregular then

x23H
l
kH

l

kf = x23∆f − kx3
∂f

∂x3
+ kf3e3 = 0

and H l
kf = Hr

kf = 0 which implies that g is k−hyperbolic. Conversely, if g
and f are k-hyperbolic and H l

kf = Hr
kf then

H l
kf +Hr

kf = 0.

Hence f is k-hyperregular. �

Real valued k-hyperbolic functions are especially important, since they
produce k-hyperregular functions.

Theorem 3.10. Let Ω be an open subset of H. If h is real valued k-hyperbolic
on Ω then the function f = Dh is k-hyperregular on Ω. Conversely, if f is
k-hyperregular on Ω, there exists locally a real valued k-hyperbolic function h
satisfying f = Dh.

Proof. Let h be real k- hyperbolic on Ω and denote f = Dh. Applying Propo-
sition 3.6 we obtain

H l
kf = H l

kH
l

kh = ∆h− k

x3

∂h

∂x3
= 0 = Hr

kH
r

kh = Hr
kf.

Hence f is k-hyperregular. The converse statement is verified similarly as in
[7]. �

We use the following transformation property proved in [5].

Lemma 3.11. Let Ω be an open set contained in H+ or in H−. A function f :

Ω→ R is k-hyperbolic harmonic if and only if the function g (x) = x
2−k
2

3 f (x)
satisfies the equation

∆2Sg +
1

4

(
9− (k + 1)

2
)
Sg = 0. (3.2)
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4. Cauchy type integral formulas

We first recall the quaternionic version of the Stokes theorem verified for
example in [14] as follows. If Ω is an open subset of H, K a 3-chain satisfying
K ⊂ Ω and f, g ∈ C1 (Ω,H), then∫

∂K

gνfdσ =

∫
K

(Drgf + gDlf) dm (4.1)

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element
and dm is the usual Lebesgue volume element in R4 identified with H as a
vector space.

The T -part and S-part play a strong role in our operator Hk. We have
therefore two versions of the Stokes theorem. The first version deals with
T -parts and the second one with S-parts.

Theorem 4.1. Let Ω be an open subset of H\ {x3 = 0} and K a 3-chain sat-
isfying K ⊂ Ω. If f, g ∈ C1 (Ω,H), then∫

∂K

gνfdσ =

∫
K

((
Hr
−kg

)
f + gH l

kf +
k

x3
((g3)Sf − Sgf3)

)
dm

and therefore

T

(∫
∂K

gνfdσ

)
=

∫
K

T
((
Hr
−kg

)
f + gH l

kf
)
dm

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element
and dm is the usual Lebesgue volume element in R4.

Proof. Since Drg = Hr
−kg+k g3x3

and Dlf = H l
kf−k

f3
x3

we deduce using (4.1)
that ∫

∂K

(gdσf) =

∫
K

((
Hr
−kg

)
f + gH l

kf +
k

x3
((g3) f − gf3)

)
dm

=

∫
K

((
Hr
−kg

)
f + gH l

kf +
k

x3
((g3)Sf − Sgf3)

)
dm,

completing the proof. �

We may also prove

Theorem 4.2. Let Ω be an open subset of H4\ {x3 = 0} and K a 3-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω,H), then∫

∂K

fνgdσ =

∫
K

(
(Hr

kf) g + fH l
−kg +

k

x3
((g3)Sf − Sgf3)

)
dm

and therefore

T

(∫
∂K

fνgdσ

)
=

∫
K

T
(
(Hr

kf) g + fH l
−kg

)
dm,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element
and dm is the usual Lebesgue volume element in R4.
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Proof. Since Dlg = H l
−kg+k g3x3

and Drf = Hr
kf−k

f3
x3

we deduce using (4.1)
that∫

∂K

(gνf) dσ =

∫
K

(
(Hrf) g + fH l

−kg +
k

x3
(fg3 − f3g)

)
dm

=

∫
K

(
(Hrf) f + gH l

−kg +
k

x3
((g3)Sf − Sgf3)

)
dm,

completing the proof. �

Combining previous results we conclude the following results.

Theorem 4.3. Let Ω be an open subset of R4\ {x3 = 0} and K a 3-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω,H), then∫

∂K

T (gνf + fνg) dσ =

∫
K

T
(
Hr
−kgf + gH l

kf +Hr
kfg + fH l

−kg
)
dm,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element
and dm is the usual Lebesgue volume element in R4.

Theorem 4.4. Let Ω be an open subset of R4\ {x3 = 0} and K a 3-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω,H), then∫

∂K

S (gνf + fνg)
dσ

xk3
=

∫
K

S
(
Hr
kgf + gH l

kf +Hr
kfg + fH l

kg
) dm
xk3

,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element
and dm is the usual Lebesgue volume element in R4.

Proof. Applying (4.1), we deduce∫
∂K

gνf
dσ

xk3
=

∫
K

(
Drgf + gDlf − k

ge3f

x3

)
dm

xk3
.

Since Hr
kg = Drg + kg3

x3
and H l

kf = Dlg + kf3
x3

, we infer∫
∂K

gνf
dσ

xk3
=

∫
K

(
Hr
kgf + gH l

kf − k
g3f + gf3 + ge3f

x3

)
dm

xk3
.

Using the formula ge3f = ge3Sf − gf3, we obtain∫
∂K

gνf
dσ

xk3
=

∫
K

(
Hr
kgf + gH l

kf − k
g3f + ge3Sf

x3

)
dm

xk3

=

∫
K

(
Hr
kgf + gH l

kf − k
g3f3e3 + Sge3Sf

x3

)
dm

xk3
.

If we compute the coordinates of Sge3Sf , we have∫
∂K

gνf
dσ

xk3
=

∫
K

(
Hr
kgf + gH l

kf − k
g0f0 + g1f1 + g2f2 + g3f3

x3
e3

)
dm

xk3

−
∫
K

k
g1f2 − g2f1 + (g2f0 − g0f2) e1 + (g0f1 − g1f0) e2

xk+1
3

dm.
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If we interchange the roles of f and g, we infer∫
∂K

fνg
dσ

xk3
=

∫
K

(
Hr
kfg + fH l

kg − k
g0f0 + g1f1 + g1f1 + g3f3

x3
e3

)
dm

xk3

−
∫
K

k
f1g2 − f2g1 + (f2g0 − f0g2) e1 + (f0g1 − f1g0) e2

xk+1
3

dm

Hence∫
∂K

(gνf + fνg)
dσ

xk3
=

∫
K

(
Hr
kgf + gH l

kf +Hr
kfg + fH l

kg
) dm
xk3

− 2ke3

∫
K

g0f0 + g1f1 + g1f1 + g3f3
x3

dm

xk3

and therefore∫
∂K

S (gνf + fνg)
dσ

xk3
=

∫
K

S
(
Hr
kgf + gH l

kf +Hr
kfg + fH l

kg
) dm
xk3

.

�

The hyperbolic Laplace operator of functions depending on λ is com-
puted in [5] as follows.

Lemma 4.5. Let x and y be poins in the upper half space. If f is twice con-
tinuously differentiable depending only on λ = λ (x, y), then

∆hf (x) =
(
λ2 − 1

) ∂2f
∂λ2

+ 4λ
∂f

∂λ
.

We recall the definition of the associated Legendre function of the second
kind

Qµν (λ) = C
(
λ2 − 1

)µ
2 λ−ν−µ−1 2F1

(
ν + µ+ 2

2
,
µ+ ν + 1

2
;

2ν + 3

2
;

1

λ2

)
where

C = −
√
πΓ (ν + µ+ 1)

2ν+1Γ
(
ν + 3

2

) .

and the hypergeometric function is defined by

2F1 (a, b; c;x) =

∞∑
m=0

(a)m (b)m
(c)m

xm

m!
,

converging in the usual sense at least for x satisfying |x| < 1. Associated
Legendre functions satisfies the differential equation (see [20])

(λ2 − 1)u′′(λ) + 2λu′(λ)−
(
ν (ν + 1)− µ2

1− λ2

)
u(λ) = 0. (4.2)

We are looking for solutions of the equation

∆hf (λ) + γf (λ) = 0

in the form

f (λ) =
(
λ2 − 1

)α
g (λ) .
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We just compute that(
λ2 − 1

)
g′′ (λ) + (4α+ 4)λg′ (λ) +

(
4α2 + 6α+ γ +

2α (2 + 2α)

λ2 − 1

)
g (λ) = 0.

In order to compute the solutions using Legendre functions, we compare this
equation with (4.2) and first we set 4α+ 4 = 2 and therefore α = − 1

2 . Then
we have the equation(

λ2 − 1
)
g′′ (λ) + 2λg′ (λ) +

(
−2 + γ − 1

1− λ2

)
g (λ) = 0

and again comparing with (4.2), we obtain equations

ν (ν + 1) = 2− γ,

µ2 =
(n− 1)

2

4
.

Hence µ = ±1 and ν =
√
9−4γ−1

2 . Setting −γ = 1
4

(
(k + 1)

2 − 9
)

, we obtain

ν =
±|k + 1| − 1

2
.

Consequently, we found a solution
(
λ2 − 1

)− 1
2 Q1

|k+1|−1
2

(λ). Note thatQ1
|k+1|−1

2

(λ)

is well defined since λ > 1 and |k+1|−1
2 > −1.

Denote ν = |k+1|−1
2 . Applying [20, S.2.9-4.] and the definition of Q1

ν (λ),
we obtain

Q1
ν (λ) = −ν + 1

2ν+1

∫ π
0

(λ+ cosα)
−ν

sin2ν+1 αdα

(λ2 − 1)
1
2

= −
√
πΓ (ν + 2)λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
λ2

)
2ν+1Γ

(
ν + 3

2

)
(λ2 − 1)

.

We recall that the volume measure of the Riemannian metric dsk de-
fined in (3.1) is

dmk = y−2k3 dm

where dm is the usual Lebesgue measure. Its surface element is defined by

dσ(k) = y
− 3k

2
3 dσ. The outer normal in ∂Bh (x,Rh) is denoted by ne and the

outer normal derivative is defined by ∂u
∂nk

= y
k
2
3
∂u
∂ne

.
We prove that the function

Fk (x, y) = −x
k−2
2

3 y
k−2
2

3 Q1
ν (cosh dh (x, y))

ω3 sinh dh (x, y)

is the fundamental k-hyperbolic harmonic function at the point x (symmet-
rically y), that is −∆kFk = δx in the distributional sense with respect to the
volume measure of the Riemannian metric dsk and ω3 = 2π2 is the Euclidean
surface area of the unit ball in H. We also remind that the fundamental k-
harmonic function is unique up to the k-hyperbolic harmonic function.

We first verify the following crucial result.
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Lemma 4.6. Let x be a point in the upper half space and denote ν = |k+1|−1
2 .

The function

gk (dh (x, y)) =
ν + 1

2ν+1

∫ π

0

(cosh dh (x, y) + cosα)
−ν

sin2ν+1 αdα

=

√
πΓ (ν + 2)λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
cosh2 dh(x,y)

)
2ν+1Γ

(
ν + 3

2

)
is positive and continuous for any y ∈ H+ and

gk (0) = 1.

Proof. Applying properties of hypergeometric functions (see for example [2])
and the Gamma function, we infer that

2F1

(
ν

2
,
ν + 1

2
;

2ν + 3

2
; 1

)
=

Γ
(
ν + 3

2

)
Γ (1)

Γ
(
ν+3
2

)
Γ
(
ν+2
2

) =
Γ
(
ν + 3

2

)
2ν+1

√
πΓ (ν + 2)

.

Hence gk (0) = 1. �

Next we prove that Fk (x, y) is integrable in the hyperbolic ballBh (a,Rh)
with respect to the Riemannian volume measure dmk.

Lemma 4.7. The function Fk (x, y) is integrable in the hyperbolic ball Bh (x,Rh)with
respect to the volume measure dmk in the hyperbolic ball Bh (x,Rh) and∫

Bh(x,Rh)

Fk (dh (y, x)) dmk (y) ≤ 2−
3k+4

2 Me
|3k+2|

2 x−k3 sinh2Rh,

where M = max
y∈Bh(x,Rh) (gk (y, x)) ≥ 1.

Proof. Using Proposition 2.1 we infer that the hyperbolic ball Bh (x,Rh) is
an Euclidean ball with the Euclidean center cx (Rh) = x0 + x1e1 + x2e2 +
x2 coshRh and the Euclidean radius Re = x3 sinhRh. Hence we deduce

gk (dh (x, y))

x23 sinh2 dh (y, x)
=

gk (dh (x, y))

‖y − cx (Rh) ‖2

and in Bh (x,Rh)

2x3e
−Rh = x3 (coshRh − sinhRh) ≤ y3 ≤ x3 (coshRh + sinhRh) = 2x3e

Rh

for all y ∈ Bh (x,Rh). Since gk (dh (x, y)) is a continuous function, it attains
its maximum in the closure of the ball Bh (x,Rh). Since∫
Bh(x,Rh)

x−23 sinh−2 dh (y, x) dm (y) =

∫
Be(cx(Rh),x3 sinhRh)

dm (y)

‖y − cx (Rh) ‖2

=

∫ x3 sinhRh

0

r

∫
∂Bh(cx(rh),1)

dSdr

=
ω3x

2
3 sinh2Rh

2
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we conclude∫
Bh(x,Rh)

Fk (y, x) dmk (y) ≤ 2−
3k+4

2 Me
|3k+2|

2 x−k3 sinh2Rh.

�

We also need the result

Lemma 4.8. Let Ω ⊂ H+ be open and Bh (x,Rh) ⊂ Ω. Let u be a continuous
real valued function in Ω. Then

lim
Rh→0

∫
∂Bh(x,Rh)

u
∂Fk (x, y)

∂nk
dσ(k) (y) = −u (x) .

Proof. Applying Proposition 2.1 we obtain that the outer normal at y ∈
∂Bh (x,Rh) is

ne = (n0, n1, n2, n3) =
(y0 − x0, y1 − x1, y2 − x2, y3 − x3 coshRh)

x3 sinhRh

In order to abbreviate the notations, we denote briefly rh = dh (y, x). We
compute the outer normal derivative by

∂Fk (x, y)

∂nk
=y

k
2
3

∂Fk (x, y)

∂ne
= y

k
2
3 〈ne, gradFk (x, y)〉

=yk−13 x
k−2
2

3

∂ gk(rh)
sinh2 rh

∂rh

3∑
i=0

ni
∂rh
∂yi

+
k − 2

2
y
k−2
2

3 n3Fk (x, y) .

Since rh = arcosλ (y, x) we deduce

∂rh
∂yi

=
∂ arccosλ (y, x)

∂yi
=
yi − xi − x3 (cosh rh − 1) δi3

y3x3 sinh rh

and therefore the identity

3∑
i=0

ni
∂rh
∂yi

=
1

y3

holds. Hence we compute further

∂Fk (x, y)

∂nk
=
yk−23 x

k−2
2

3

ω3 sinh2 rh

∂gk (rh)

∂rh
+
k − 2

2ω3
yk−23 n3Fk (x, y)

− yk−23 x
k−2
2

3 gk (rh) cosh rh

ω3 sinh3 rh
.

Since Bh (x,Rh) = B (cx (Rh) , x3 sinRh) for

cx (Rh) = x0 + x1e1 + x2e2 + x2 coshRh
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we infer that

lim
Rh→0

x
k−4
2

3

ω3x33 sinh3Rh

∫
∂Bh(x,Rh)

sinhRhy
k−2
3

∂gk
∂rh

(Rh) dσ(k) = 0.

Similarly, we compute that

lim
Rh→0

(k − 2)x
k−6
2

3

2ω3x33 sinh3Rh

∫
∂Bh(x,Rh)

yk−23 (y3 − x3 coshRh) gk (Rh) dσ(k) = 0.

Finally, manipulating the last integral, we obtain

lim
Rh→0

−gk (Rh) coshRh

ω3 sinh3Rh

∫
∂Bh(x,Rh)

yk−23 x
k−2
2

3 dσ(k)

= lim
rh→0

−x
k+4
2

3 coshRhgk (Rh)

ω3x33 sinh3Rh

∫
∂Bh(x,Rh)

y
− k+4

2
3 dσ

= −u (x) ,

completing the proof. �

Theorem 4.9. Let Ω ⊂ H+ be open and Bh (a, ρ) a hyperbolic ball with a

center a and the hyperbolic radius ρ satisfying Bh (a, ρ) ⊂ Ω. If u is a twice
continuously differentiable functions in Ω and x ∈ Bh (a, ρ) then

u (x) =

∫
∂Bh(a,ρ)

(
Fk (y, x)

∂u (y)

∂nk
− u (y)

∂Fk (y, x)

∂nk

)
dσ(k) (y)

−
∫
Bh(a,ρ)

∆ku (y)Fk (y, x) dmk (y) ,

where dmk = y−2k3 dx, dσ(k) = y
− 3k

2
n dσ and the outer normal ∂u

∂nk
= y

k
2
3
∂u
∂ne

.

Proof. DenoteBh (a, ρ) = B and pick a hyperbolic ball such thatBh (x,Rh) ⊂
B. Denote R = B\Bh (x,Rh). Since Fk is k-hyperbolic harmonic in R, we
may apply the Green’s formula∫

R

(u∆kv − v∆ku) dmk =

∫
∂R

(
u
∂v

∂nk
− v ∂u

∂nk

)
dσ(k)

of the Laplace-Beltrami operator

∆k = xk3

(
∆− k

x3

∂

∂x3

)
with respect to the Riemannian metric ds2k (see [1]) and obtain∫

R

Fk (y, x) ∆kudxk =

∫
∂B

(
Fk (y, x)

∂u

∂nk
− u∂Fk (y, x)

∂nk

)
dσ (k)

−
∫
∂Bh(x,Rh)

(Fk (y, x)
∂u

∂nk
− u∂Fk (y, x)

∂nk
)dσ(k).
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Since ∂u
∂nk

and y
− 2k+2

2
3 x

k−2
2

3 gk (dh (x, y)) are bounded we obtain∫
∂Bh(x,Rh)

|Fk (y, x)
∂u

∂nk
|dσ(k) (y) ≤ M

sinh2R

∫
∂Bh(x,Rh)

dσ = M sinhRh

and therefore

lim
Rh→0

∫
∂Bh(x,Rh)

|Fk (y, x)
∂u

∂nk
|dσ(k) (y) = 0.

Moreover, since Fk (x, y) is integrable and u is bounded on B we infer∫
Bh(a,ρ)

∆ku (y)Fk (y, x) dmk = lim
Rh→0

∫
Rh

Fk (y, x) ∆ku dmk.

Then applying the previous result we conclude the result. �

Using the standard methods, we deduce that

φ (x) = −
∫

∆kφ (y)Fk (y, x) dmk

for all φ ∈ C∞0 (H+). Hence we have reached our main result.

Theorem 4.10. Let x and y be poins in the upper half space and denote ν =
|k+1|−1

2 . The fundamental k-hyperbolic harmonic function is

Fk (x, y) = − x
k−2
2

3 y
k−2
2

3 Q1
ν (λ (x, y))

2ν+1ω3

(
λ (x, y)

2 − 1
) 1

2

=
(ν + 1)x

k−2
2

3 y
k−2
2

3

∫ π
0

(λ (x, y) + cosα)
−ν

sin2ν+1 αdα

2ν+1ω3

(
λ (x, y)

2 − 1
)

=

√
πΓ (ν + 2)x

k−2
2

3 y
k−2
2 −1

3 λ−ν 2F1

(
ν
2 ,

ν+1
2 ; 2ν+3

2 ; 1
λ2

)
2ν+1ω3Γ

(
ν + 3

2

) (
λ (x, y)

2 − 1
) .

Corollary 4.11. Let x and y be points in the upper half-space H+. Then

Fk (x, y) = xk+1
3 yk+1

3 F−k−2 (x, y) .

The previous result follows also from the correspondence principle of
Weinstein (see [21]).

Lemma 4.12. If we denote

Kk (f) = ∆f − k

x3

∂f

∂x3

then
Kk (f) = xk+1

3 K−k−2
(
x−k−13 f

)
.

A kind of fundamental k-hyperbolic harmonic function has also been
computed by GowriSankaram and Singman in [13] using more technical de-
ductions. In order to compare the results, we first verify the following lemma.
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Lemma 4.13. Let λ > 1 and ν > −1. Denoting ν + 1 = β, then∫ π

0

(λ− cosα)−β sin2β−1 α dα = 2βQ0
ν(λ)

and therefore(
λ2 − 1

)− 1
2 Q1

ν(λ) = −β2−β
∫ π

0

(λ− cosα)−β−1 sin2β−1 α dα

= A

∫ π

0

(
‖x− y‖2 + 2x3y3 (1− cosα)

)−β−1
sin2β−1 α dα.

where A = −2βxβ+1
2 yβ+1

3 .

Proof. Appying [20, S.2.9-4.] and using complex numbers in computations,
we obtain

Q0
ν(λ) = ei(β)πQ0

ν(−λ) = ei(β)π2−(β)
∫ π

0

(−λ+ cosα)−β sin2β−1 α dα

= 2−(β)
∫ π

0

(λ− cosα)−β sin2β−1 α dα

Recalling the known formula

Q1
ν (λ) =

(
λ2 − 1

) 1
2
d

dλ
Q0
ν(λ)

we obtain the first equality. The second one follows from it when we substitute

λ = ‖x−y‖2+2x3y3
2x3y3

. �

Theorem 4.14. Let x and y be poins in the upper half space and denote ν =
|k+1|−1

2 . The fundamental k-hyperbolic harmonic function is

ω3Fk (x, y) =
(ν + 1)x

k−2
2

3 y
k−2
2

∫ π
0

(λ− cosα)−ν−2 sin2ν+1 α dα

2ν+1

= B

∫ π

0

(
‖x− y‖2 + 2x3y3 (1− cosα)

)−ν−2
sin

2ν+1

α dα

where

B = 2 (ν + 1)x
k−2
2 +ν+2

3 y
k−2
2 +ν+2

3 .

Moreover, if k ≤ −1 then

ω3Fk (x, y) = −k
∫ π

0

(
‖x− y‖2 + 2x3y3 (1− cosα)

) k−2
2 sin−k−1 α dα,

and if k ≥ −1 then

ω3Fk (x, y)

k + 2
= xk+1

3 yk+1
3

∫ π

0

(
‖x− y‖2 + 2x3y3 (1− cosα)

)− k+4
2 sin

k+1

α dα.

We may compute the following special cases.
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1. Let k = 0. Then

F0 (x, y) =
1

2ω3x3y3

(
1

λ− 1
− 1

λ+ 1

)
1

ω3

(
1

‖x− y‖2
− 1

‖x− y∗‖2

)
2. Let k = −2. Then

F−2 (x, y) =
1

2ω3x23y
2
3

∫ π

0

(cosh dh (x, y)− cosα)
−2

sinαdα

=
1

2ω3x23y
2
3

(
1

λ− 1
− 1

λ+ 1

)
=

1

ω3x23y
2
3 (λ2 − 1)

=
1

2ω3x3y3

(
1

‖x− y‖2
− 1

|x− y∗|2

)
=

4

ω3‖x− y‖2‖x− y∗‖2
.

3. Let k = 2, then

2ω−13 F2 (x, y) =

∫ π

0

(cosh dh (x, y)− cosα)
−3

sin3 αdα

=
[
−2−1 (cosh dh (x, y)− cosα)

−2
sin2 α

]π
0

+

∫ π

0

(cosh dh (x, y)− cosα)
−2

sinα cosαdα

=−
[
(cosh dh (x, y)− cosα)

−1
cosα

]π
0

−
∫ π

0

(cosh dh (x, y)− cosα)
−1

sinαdα

=
1

λ− 1
+

1

λ+ 1
− (log (λ+ 1)− log(λ− 1))

=
2λ

λ2 − 1
− log (λ+ 1) + log (λ− 1) .

Comparing this function with the kernel function computed in [12], we
obtain

−
∫ 1

‖a−x‖
‖x−a∗‖

(
1− s2

)2
s3

ds = −
∫ 1

‖a−x‖
‖x−a∗‖

(
s−3 − 2s−1 + s

)
ds

=
|x− a∗|2

2‖a− x‖2
+ 2 log

‖a− x‖
‖x− a∗‖

− 1

2

‖a− x‖2

‖x− a∗‖2
.

Applying the properties (2.1) and (2.2), we infer that

−1

4

∫ 1

‖a−x‖
‖x−a∗‖

(
1− s2

)2
s3

ds =
λ

λ2 − 1
− log (λ+ 1)

2
+

log (λ− 1)

2
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In order to compute the kernel function for k-hyperregular functions,
we need the following lemma (see [12]).

Lemma 4.15. If a ∈ Rn+1
+ and ca (dh (x, a)) = a0+a1e1+a2e2+a3 cosh dh (x, a) e3

then

D
x
λ (x, a) =

x− ca (dh (x, a))

x3a3
.

Theorem 4.16. Denote rh = dh (x, y), t = k −2
2 , ν = |k+1|−1

2 and define as
earlier

gk (dh (x, y)) =
ν + 1

2ν+1

∫ π

0

(cosh dh (x, y) + cosα)
−ν

sin2ν+1 αdα.

The k-hyperregular kernel is the function

hk (x, y) =
1

2
D
x

(Fk (x, y))

= r(x, y)wk (x, y) p (x, y)

= r(x, y)p (x, y) vk (x, y)

where r(x, y) = 1
2x

k−2
2

3 y
k+4
2

3 ,

wk (x, y) = −te3gk (rh)
x− Py
y3

+ sinh rhg
′
k (rh)− (t+ 2) gk (rh) cosh rh,

vk (x, y) = −tx− Py
y3

e3gk (rh) + sinh rhg
′
k (rh)− (t+ 2) gk (rh) cosh rh,

and

p (x, y) =
(x− cy (rh))

−1

x3‖x− cy (rh) ‖2

is 2-hyperregular with respect to x.

Proof. The function Fk (x, y) is k-hyperbolic and therefore the function hk =

D
x
Fk (x, y) is k-hyperregular outside y and y∗. Denoting t = k −2

2 and
λ (x, y) = cosh rh, we compute as follows

2hk (x, y)

x
k−2
2

3 y
k−2
2

3

= − te3g (rh)

x3 sinh2 rh
+

(
sinh rhg

′ (rh)− 2g (rh) cosh rh

sinh3 rh

)
D
x
rh.

Applying [12] we obtain

D
x
rh =

x− cy (rh)

x3y3 sinh rh

and

x3D
x
rh

y33 sinh3 rh
=

x− cy (rh)

‖x− cy (rh) ‖4
=

(x− cy (rh))
−1

‖x− cy (rh) ‖2
.
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Since

x− cy (rh)

x3y3

(x− cy (rh))
−1

‖x− cy (rh) ‖2
=

1

x3y3‖x− cy (rh) ‖2

=
1

x3y33 sinh2 rh
.

Hence we obtain

hk (x, y)

yt+3
3 xt3

= wk (x, y)
(x− cy (rh))

−1

x3‖x− cy (rh) ‖2
,

where

wk (x, y) = −te3gk (rh)
x− Py
y3

+ sinh rhg
′
k (rh)− (t+ 2) gk (rh) cosh rh.

Similarly we prove the other equation. �

Using the similar deductions as in [4] we may prove the formula for S
and T -parts.

Theorem 4.17. Let Ω and be an open subsets of H+ (or H.−). Assume that K
is an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary
whose outer unit normal field is denoted by ν. If f is k−hyperregular in Ω
and a ∈ K , then

Sf (a) = −1

2

∫
∂K

S (hk (y, a) νf + fνhk (y, a))
dσ

yk3

=
1

2

∫
∂K

S [hk (y, a) , ν, f ]
dσ

yk3
− 1

2

∫
∂K

Shk (y, a) 〈ν, f〉 dσ
yk3
.

Proof. Let a ∈ K. Denote R = K\Bh (a, rh) and

A =

∫
∂K

S (hk (y, a) νf (y) + f (y) νhk (y, a))
dσ

yk3
.

Then we obtain

0 =

∫
∂R

S (hk (y, a) νf (y) + f (y) νhk (y, a))
dσ

yk3

= A−
∫
∂Bh(a,rh)

S (hk (y, a) ν (y) f (y) + f (y) ν (y)hk (y, a))
dσ

yk3
.

By virtue of Proposition 2.1, we deduce that

ν (y) =
y − ca (rh)

‖y − ca (rh) ‖
.

Hence we obtain

A = − lim
rh

a
k−4
2

3

2ω3‖a− ca (rh) ‖3

∫
∂Bh(a,rh)

S (wk (y, a) f + fvk (y, a))
dσ

y
k−4
2

3

= −f (a) .
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The last formula follows from (2.7) and the definition of the triple product.
�

Similarly we may verify the result for the T -part. The main difference
is that we use the surface measure dσ, not y−k3 dσ.

Theorem 4.18. Let Ω be an open subsets of H+ (or H.−). Assume that K is
an open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary
whose outer unit normal field at y is denoted by ν. If f is k−hyperregular in
Ω and a ∈ K ,

Tf (a) = −a
k
3

2

∫
∂K

T (h−k (y, a) νf + fν h−k (y, a)) dσ

=
ak3
2

(∫
∂K

T [h−k (y, a) , ν, f ]dσ −
∫
∂K

Th−k (y, a) 〈ν, f〉 dσ
)
.

5. Conclusion

Our main results produce integral formulas for the T - and S-parts of k-
hyperregular functions. An interesting problem is to research integral op-
erators produced by these formulas. However, these results requires much
computations and therefore they are left to the consequent publications.

Acknowledgement. The second author wishes to thank YTK for finan-
cial support to complete this job.
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