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Abstract

We consider the modified Cauchy-Riemann operator

Mk =
n∑
i=0

ei∂xi +
k

xn
Q′

in the universal Clifford algebra C`0,n with the basis e1, . . . , en. The
null-solutions of this operator are called k-hypermonogenic functions.
We calculate the k-hyperbolic harmonic fundamental solutions i.e. so-
lutions toMkMkf = 0 and use these solutions find k-hypermonogenic
kernels for a Cauchy-type integral formula in the upper half-space.

1 Introduction

Complex function theory can be generalized to higher dimensions by consid-
ering different extensions of the Cauchy-Riemann equations. One possibility
is to consider the monogenic functions as has been done in [2]. A second way
to is to modify the C-R system so that the integer powers of the variable are
included in the class of function satisfying these equations. This approach
leads to the hypermonogenic functions and was started by H. Leutwiler and
studied in e.g. [3]. This particular modification of the C-R system with the
C-R operatorMn−1 is connected to hyperbolic geometry since the hyperbolic
Laplace operator appears in Mn−1Mn−1.
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The monogenic functions correspond to the null-solutions ofM0 and more
generally k-hypermonogenic functions can be defined by Mkf = 0. Several
properties of these functions were studied in [4] and [5]. An overview of the
theory can be found in [6]. We consider the k-hypermonogenic functions
in the Poincaré upper half-space. The concept of k-hyperbolic harmonicity
can be defined by MkMkf = 0. The solutions of this equation can be also
presented with eigenfunctions of the Laplace-Beltrami operator of the upper
half-space.
In this article we present the fundamental solutions ofMkMk and prove a

Cauchy-type integral formula in Rn+1
+ with k-hypermonogenic kernels given

in terms of hypergeometric series. We also present the previously known
kernels in R3

+ as special cases of these solutions.

2 Preliminaries

We work with the universal Clifford algebra C`0,n with the basis e1, . . . , en
which satisfies eiej + ejei = −2δij. The upper half-space Rn+1

+ is identified
with the elements

x =
n∑
i=0

xiei

which are also called paravectors. For the involutions in C`0,n we use the
following notations:

Main Involution a 7→ a′ ei 7→ −ei for i = 1, . . . , n (ab)′ = a′b′

Reversion a 7→ a∗ ei 7→ ei for i = 1 . . . , n (ab)∗ = b∗a∗

Conjugation a 7→ a a = (a′)∗

Q-Part a 7→ â ei 7→ (−1)δinei for i = 1, . . . , n âb = âb̂

For an arbitrary element a ∈ C`0,n given by

a = p+ qen

we define Pa = p and Qa = q. These parts can also be given as

Pa =
a+ â

2
and Qa = −a− â

2
en.

The (left) Cauchy-Riemann-operators are defined by

D = e0∂x0 +

n∑
i=1

ei∂xi , D = e0∂x0 −
n∑
i=1

ei∂xi
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and their modifications by

Mk = D +
k

xn
Q′, Mk = D − k

xn
Q′,

where Q′(a) = Q(a′). If the variable in the differentiation differs from x it is
denoted by superscript e.g. Da.
We use the Poincaré upper half space model for the hyperbolic geometry.

In this model the metric is defined by

ds2 =

∑n
i=0 dx

2
i

x2
n

.

Lemma 2.1. [9] The hyperbolic distance between points x and a in Rn+1
+ is

dh(x, a) = cosh−1(λ(x, a))

where

λ(x, a) =
|x− a|2
2xnan

+ 1

and |x− a| is the Euclidean distance between x and a in Rn+1
+ .

Definition 2.2. [4] Let Ω ⊂ Rn+1 be open. A continuously differentiable
function f : Ω → C`0,n is called (left) k-hypermonogenic if Mk = 0 for any
x ∈ {x ∈ Ω | xn 6= 0}. Special cases of this are monogenic functions if
k = 0 and hypermonogenic functions if k = n − 1. A twice continuously
differentiable function f : Ω → C`0,n is called k-hyperbolic harmonic if it
satisfies MkMkf = 0 for any x ∈ {x ∈ Ω | xn 6= 0}.
There is an important correspondence between the k-hypermonogenic and

−k-hypermonogenic functions.
Theorem 2.3. [5] Let Ω ⊂ Rn+1 \ {xn = 0} be open and k ∈ R. A con-
tinuously differentiable function f : Ω → C`0,n is k-hypermonogenic iff the
function x−kn fen is −k-hypermonogenic.
The name hyperbolic harmonic in the definition 2.2 stems from the ex-

pression
x2
nMn−1Mn−1f = ∆hf + (n− 1)Qfen,

where ∆h is the invariant Laplacian in the upper half-space. For P -and
Q-parts the equation MkMkf = 0 becomes [4](

x2
n∆− kxn

∂

∂xn

)
Pf =0, (1)(

x2
n∆− kxn

∂

∂xn
+ k

)
Qf =0. (2)
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We transform this by g = x
n−1−k

2
n f into two eigenvalue-problems(

∆h +
1

4

(
n2 − (k + 1)2

))
Pg =0, (3)(

∆h +
1

4

(
n2 − (k − 1)2

))
Qg =0. (4)

Functions depending only on the hyperbolic distance centered at a are of the
form

u(x, a) = ũ(λ(x, a)).

The eigenfunctions u(λ) of the Laplace-Beltrami operator satisfy

(λ2 − 1)u′′(λ) + (n+ 1)λu′(λ) = γu(λ). (5)

For the solutions of this equation we use the associated Legendre functions.

3 Associated Legendre Functions

The associated Legendre equation in its standard form is

(1− x2)
d2u

dx2
− 2x

du

dx
+

(
ν(ν + 1)− µ2

1− x2

)
u = 0.

In general it has solutions P µ
ν (±x), P−µν (±x), Qµ

ν (±x), Qµ
−ν−1(±x), where we

have used the notation presented in [10]. These associated Legendre functions
can be defined with hypergeometric functions for all µ, ν ∈ C as

P−µν (x) =

(
x− 1

x+ 1

)µ
2

F

(
−ν, ν + 1;µ+ 1;

1− x
2

)
, |x− 1| < 2

Qµ
ν (x) =

√
π(x2 − 1)

µ
2

2ν+1xν+µ+1
F

(
1

2
µ+

1

2
ν + 1,

1

2
µ+

1

2
ν +

1

2
; ν +

3

2
;

1

x2

)
, |x| > 1.

In addition, we use the notational convention

F(a, b; c;x) =
1

Γ(c)
2F1(a, b; c;x).

The function P−µν (x) is now given by the previous series expansion in the
domain |x − 1| < 2. We transform this into the domain |x| > 0 by the
transformation (24) in [1] p.129 and obtain

P−µν (x) =
(x2 − 1)

µ
2

2µxµ−ν
F

(
1

2
µ− 1

2
ν,

1

2
µ− 1

2
ν +

1

2
;µ+ 1; 1− 1

x2

)
.
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We now have the solutions P−µν (x) which is zero at x = 1 and Qµ
ν (x) with a

singularity at x = 1. The functions Qµ
ν (x) satisfy

lim
x→1+

[
Qµ
ν (x)

(
2

x− 1

)−µ
2

]
=

Γ(µ)

2Γ(ν + µ+ 1)
,

in which the gamma functions cause some restrictions on the values of µ and
ν. In particular <µ > 0 and ν+µ /∈ Z−. The limit can be deduced by noting
that according to the formula 15.8.1 in [11] hypergeometric functions satisfy

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z)

if |z| < 1 and thus(
2

x− 1

)−µ
2

Qµ
ν =

√
π(x+ 1)

−µ
2

2ν+1+µ
2 xν−µ+1

F

(
1

2
ν − 1

2
µ+ 1,

1

2
ν − 1

2
µ+

1

2
; ν +

3

2
;

1

x2

)
which gives at x = 1

lim
x→1+

[
Qµ
ν (x)

(
2

x− 1

)−µ
2

]
=

√
π

2µ+ν+1

Γ (µ)

Γ
(

1
2
ν + 1

2
µ+ 1

2

)
Γ
(

1
2
ν + 1

2
µ+ 1

)
=

Γ (µ)

2Γ (ν + µ+ 1)
.

We used the formula (15.4.23) in [11] for 2F1 and in the last equality above
we have used the duplication formula for the gamma function.
We collect next some identities and particular cases concerning associated

Legendre functions.

Lemma 3.1. Associated Legendre functions of the second type satisfy the
differentiation formulas (|x| > 1)

(x2 − 1)
d

dx
Qµ
ν (x) = (ν + µ+ 1)(ν − µ+ 1)Qµ

ν+1(x)− (ν + 1)xQµ
ν (x),

(x2 − 1)
d

dx
Qµ
ν (x) = −Qµ

ν−1(x) + νxQµ
ν (x).

The first of these differentiation formulas follows from the definition of Qµ
ν

and the differentiation formula for the hypergeometric function. The second
formula is a modification of the formula (14.10.5) in [11] for the function Qµ

ν

valid for ν + µ /∈ Z−.
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Also the following formulas can be found in [11]. We have the connection
formula

P−µν
Γ(ν − µ+ 1)

+
2 sin(µπ)

π
Q−µν =

P µ
ν

Γ(ν + µ+ 1)
(6)

and there are also simple expressions for certain values of µ and ν. In the
three-dimensional case relevant formulas are

P
1
2
ν (cosh r) =

(
2

π sinh r

) 1
2

cosh

((
ν +

1

2

)
r

)
,

Q
± 1
2

ν (cosh r) =
( π

2 sinh r

) 1
2 e−(ν+ 1

2)r

Γ
(
ν + 3

2

) ,
and in the hypermonogenic case

P−νν (cosh r) =
(sinh r)ν

2νΓ (ν + 1)
.

4 k-Hyperbolic Harmonic Kernels

We transform the problem (5) to the standard form by setting g = (λ2−1)−αu
with α = 1−n

4
. The equation for g becomes

(1− λ2)g′′ − 2λg′ +

(
γ +

n2 − 1

4
− (n− 1)2

4(1− λ2)

)
g = 0.

We use this to solve the problem (3). We now have γ = −n2−(k+1)2

4
so the

coeffi cients of the corresponding Legendre equation are

ν(ν + 1) =
(k + 1)2 − 1

4
⇐⇒ ν =

±|k + 1| − 1

2
,

µ =± n− 1

2
.

We take the coeffi cients µ, ν ≥ 0. After reversing the transformations we’ve
done the solutions to the original problem (1) for positive values of k become

fk = x
k+1−n

2
n (λ2 − 1)

1−n
4 Q

n−1
2

k
2

,

gk = x
k+1−n

2
n (λ2 − 1)

1−n
4 P

1−n
2

k
2

.
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We’ll need the solution also for negative k. We use the notation −k so the
parameter k itself is always non-negative. With the substitution k 7→ −k we
get

ν =
|1− k| − 1

2
=

{
k
2
− 1 if k > 1
−k

2
if k ≤ 1.

The solutions for −k are thus

f−k = x
−k+1−n

2
n (λ2 − 1)

1−n
4 Q

n−1
2

k
2
−1
,

g−k = x
−k+1−n

2
n (λ2 − 1)

1−n
4 P

1−n
2

k
2
−1
.

This works also in the case 0 < k < 1 since we may then use another solution
with −ν− 1 = k

2
− 1 in place of ν. We multiply these solutions with suitable

constants and get the k-hyperbolic harmonic fundamental solutions

Hk =2
1−n
2

Γ
(
k+n+1

2

)
Γ
(
n+1

2

) a
k+1−n

2
n x

k+1−n
2

n (λ2 − 1)
1−n
4 Q

n−1
2

k
2

,

H−k =2
1−n
2

Γ
(
k+n−1

2

)
Γ
(
n+1

2

) a
−k+1−n

2
n x

−k+1−n
2

n (λ2 − 1)
1−n
4 Q

n−1
2

k
2
−1
.

5 Kernels in The Case of R3
+

Previously known kernels can be obtained as special cases of the fundamental
solutions. If we consider the space R3

+ we have the parameters n = 2 and
µ = 1

2
. The familiar kernel which was studied in [7] can be given as a sum of

the solutions Hk and

Kk = 2−
n+1
2 π

Γ
(
k+n+1

2

)
Γ
(
n+1

2

)
Γ
(
k−n+3

2

)a k+1−n2
n x

k+1−n
2

n (λ2 − 1)
1−n
4 P

1−n
2

k
2

with the restriction n < k + 3. The function Kk is just a suitable constant
multiple of the solution gk, considered above, which vanishes at λ = 1. The
connection formula (6) implies now

Hk +Kk =
2−

n+1
2 π

Γ
(
n+1

2

)a k+1−n2
n x

k+1−n
2

n (λ2 − 1)
1−n
4 P

n−1
2

k
2

(λ)

=

√
π

2
a
k−1
2

2 x
k−1
2

2 (λ2 − 1)−
1
4P

1
2
k
2

(λ)

= a
k−1
2

2 x
k−1
2

2

cosh
(
k+1

2
r
)

sinh r
.
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where we have substituted n = 2 and λ = cosh r with r denoting the distance
dh(x, a). In the case k = n− 1 = 1 we have the kernel

H−1 =
1

a2x2

√
λ2 − 1

=
1

a2x2 sinh r

and the kernel for hypermonogenic functions [8] becomes

H1 = 2(coth r − 1).

6 Integral Formulas

We recall the Stokes’formula for the operator Mk.

Theorem 6.1. [5] Let Ω be an open subset of Rn+1 \ {xn = 0} and K an
n+ 1-chain satisfying K ⊂ Ω. If f, g ∈ C1(Ω, C`n), then∫

∂Ω

fdσkg =

∫
Ω

(fMk)g + f(Mkg)− k

xn
P (gf ′)endmk.

We also have the formulas separately for the P - and Q-parts:∫
∂Ω

P (fdσkg) =

∫
Ω

P ((fMk) g + f (Mkg)) dmk,∫
∂Ω

Q(fdσg) =

∫
Ω

Q ((fM−k) g + f (Mkg)) dm.

We show separately for both parts that the formulas reproduce k-hypermonogenic
functions with the function g replaced by the fundamental solution.

Theorem 6.2. Let Ω be an open subset of Rn+1
+ and K ⊂ Ω be a smoothly

bounded compact set with the unit normal ν. If f is k-hypermonogenic in Ω
and a ∈ K, then

Pf(a) = − 1

ωn

∫
∂K

P (MkHkdσkf).

For the Q-part we calculate similarly.

Theorem 6.3. Let Ω be an open subset of Rn+1
+ and K ⊂ Ω be a smoothly

bounded compact set with the unit normal ν. If f is k-hypermonogenic in Ω
and a ∈ K, then

Qf(a) = − a
k
n

ωn

∫
∂Ω

Q(M−kH−kdσf).
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Proof. Using the previous notations, the constant appearing in the kernel
H−k is −C

s′ . We obtain

DH−k =− C

s′
s′as

′

n enx
s′−1
n (λ2 − 1)

1−n
4 Qb

− C

s′
as
′

nx
s′

n (λ2 − 1)
1−n
4
−1 · (−ss′Qa+ s′λQb)D(λ)

= −Cas′n enxs
′−1
n (λ2 − 1)

1−n
4 Qb

+ Cas
′

nx
s′

n (λ2 − 1)
1−n
4
−1 · (sQa− λQb)D(λ)

where we have use the differentiation formula

(λ2 − 1)∂λQ
µ
ν = (ν + µ+ 1)(ν − µ+ 1)Qµ

ν+1 − (ν + 1)λQµ
ν ,

that is,

(λ2 − 1)∂λQb = −s′sQa− k

2
λQb.

Just as in the previous case we get

lim
λ→1+

∫
∂B(a,r)

Q(D(H−k)νf)dS = −ωn
akn
Qf(a).

Combining these P - and Q-parts we have the integral formula

f(a) =− 1

ωn

∫
∂Ω

[
x−kn P (MkHk) + aknQ(M−kH−k)en

]
P (dσf)

− 1

ωn

∫
∂Ω

[
aknP (M−kH−k) + x−kn Q(MkHk)en

]
Q′(dσf). (7)

Furthermore, we get a Cauchy-type formula for k-hypermonogenic functions.

Theorem 6.4. Let Ω be an open subset of Rn+1
+ and K ⊂ Ω be a smoothly

bounded compact set with the unit normal ν. If f is k-hypermonogenic in Ω
and a ∈ K, then

f(a) =
1

ωn

∫
∂K

hak(x, a)P (dσf) + ha−k(x, a)Q′(dσf),

where
hak(x, a) = x−kn D

a
Hk(x, a)

and
ha−k(x, a) = aknD

a
H−k(x, a)en

are the k-hypermonogenic kernels with respect to a.
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Proof. We show that

akn∂xnH−k + x−kn ∂anHk = 0,

akn∂anH−k + x−kn ∂xnHk = 0

so the formula (7) yields the result. We use the same notation as in the
previous theorems. We start with the first equation and take the xn derivative
from DH−k computed previously. Dividing by the constant

−C
s′

= 2
1−n
2

Γ
(
k+n−1

2

)
Γ
(
n+1

2

)
the first term on the right becomes

− s
′

C
· akn∂xnH−k =s′asnx

s′−1
n (λ2 − 1)

1−n
4 Qb

+ asnx
s′

n (λ2 − 1)
1−n
4
−1 · (s′λQb− s′sQa) ∂xnλ.

The an-derivative in the first equation is calculated in a similar fashion as in
the proof of the integral formula for the P -part. We thus find

1

C
· x−kn ∂anHk =sas−1

n xs
′

n (λ2 − 1)
1−n
4 Qa

+ asnx
s′

n (λ2 − 1)
1−n
4
−1 · (sλQa−Qb) ∂anλ.

Finally, using

∂xnλ =
1

an
− λ

xn
and ∂anλ =

1

xn
− λ

an

we find

akn∂xnH−k + x−kn ∂anHk = 0.

The second equation

akn∂anH−k + x−kn ∂xnHk = 0

can be proven similarly.
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