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Abstract. In this paper we introduce the modified Dirac operatorsMκ
xf :=

∂xf− κ
xm
em ·f andMτ

yf := ∂yf− τ
ym
em ·f , where f : Ω ⊂ Rm+ ×Rm+ →

C`0,m is differentiable function, and C`0,m is the Clifford algebra gen-
erated by the basis vectors of Rm. We look for solutions f(x,y) =
f(x, xm, y, ym) of the system Mκ

xf(x,y) = Mτ
yf(x,y) = 0, where the

first and third variables are invariant under rotations. These functions
are called (κ, τ)-hypermonogenic functions. We discuss about axially
symmetric functions with respect to the symmetric group SO(m − 1).
Some examples of axially symmetric (κ, τ)-hypermonogenic functions
generated by homogeneous functions and hypergeometric functions are
presented.
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1. Introduction

Clifford analysis is nowadays a well know generalization for the classical the-
ory of complex holomorphic function. The theory deals with the functions
taking values in a Clifford algebra, which is generated by the elements of
the basis of Rm subject to anti-commutative rule. The corresponding func-
tion class for complex holomorphic functions is the class of the monogenic
functions, which are null solutions of the so-called Dirac or Cauchy-Riemann
operators. In Clifford analysis one may construct a function theory with many
corresponding properties for the complex case, see [2, 3]. Classical complex
function theory may be extended straightforward to the case of several com-
plex variables assuming holomorphy in each coordinate separately. In the
case of Clifford analysis this generalization to several variables is constructed
considering Clifford algebra valued functions with several vector variables
(see [3, 11]), and we have the system of Dirac operators instead only one.
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Heinz Leutwiler with the first author began to study a modified version
of this theory related to hyperbolic spaces (see [4,6,7]). The main motivation
was that the natural generalisation of power functions (which are not mono-
genic in Clifford’s classical analysis) should have some sort of monogeinicity
property. They defined the so-called modified Dirac operator with the fea-
ture that the power functions also belong to its kernel. The null solutions of
this modified Dirac operator are the hypermonogenic functions. Nowadays
this “modified Clifford analysis” is designated by hyperbolic function theory,
which has also a very complete function theory.

The aim of this paper is to give the first steps in the construction of
hyperbolic function theory for functions of two variables. The definition of
such theory for the multidimensional case is identical and we leave the sys-
tematization of its structure for the future. Here we present the definition of
hypermonogenic functions and we show that the set of these functions has
non-trivial functions. To show the non-triviality we will study the existence of
axially symmetric hypermonogenic functions of two variables by adaptation
to the hyperbolic setting of the techniques presented in [11]. We point out
that the calculations are more involved in this case.

The classical theory of Dirac operator in Clifford analysis plays an im-
portant role in higher dimensional analogy of the theory of holomorphic func-
tions of one complex variables. The essential feature of the Dirac operator is
its SO(m) invariance, allowing many theoretical consequences. In the hyper-
bolic function theory, the fundamental operator (called modified Dirac oper-
ator), which is a generalization of the Dirac operator, has weaker symmetry
properties. Especially it is symmetric with respect to a subgroup SO(m− 1)
of SO(m). The biaxial theory of the Dirac operator is an interesting research
topic in current Clifford analysis. The theory plays a big role, for example,
in the construction the so-called higher spin Dirac operator (see [14]). In this
point of view, it is natural to look also solutions of modified Dirac operator
of two vector variables. This paper also works as an example of the systems
of Clifford algebra valued operators with more challenging symmetry.

The structure of the paper reads as follows: first we recall some prelim-
inary facts of Clifford and Hyperbolic function theory. In Section 3 we intro-
duce the concept of (κ, τ)-hypermonogenic functions and we discuss about
axially symmetric functions with respect to the symmetry group SO(m− 1).
In the last section we present some examples of axially symmetric (κ, τ)-
hypermonogenic functions generated by some special functions, namely, hy-
pergeometric functions.

2. Analysis in higher dimension

In this section we recall some elementary facts about Clifford analysis and
hyperbolic theory.
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2.1. Clifford analysis

Let {e1, . . . , em} be a basis of Rm. An arbitrary vector x ∈ Rm may be written
as a linear combination of the basis vectors as x = x1e1 + · · ·+ xmem, where
xi ∈ R for each i = 1, . . . ,m. The scalar product of x,y ∈ Rm is defined by
〈x,y〉 = x1y1 + · · ·+ xnym. The norm for x ∈ Rm is defined in terms of the
Euclidean scalar product by |x| =

√
x · x. We shall assume that our basis is

orthonormal, i.e., ei ·ej = δij , where δij is the Kronecker symbol. The Clifford
product of basis vectors is defined by the anti-commutative rule eiej +ejei =
−2δij , for each i, j = 1, . . . ,m. The algebra with respect to these condition is
called a Clifford algebra, and denoted by C`0,m. The geometric product for
any vectors x and y may be decomposed into symmetric and antisymmetric
parts defined, respectively, by x · y = 1

2 (xy + yx) and x ∧ y = 1
2 (xy − yx),

where x,y ∈ Rm. The antisymmetric part x ∧ y is called the outer product
and the symmetric part x · y is called the inner product. It is easy to prove
that the inner product x · y is scalar valued and x · y = −〈x,y〉. The inner
product may be extended as follows: define the subspaces

C`k0,m =

{
Fk =

∑
i1<···<ik

Fi1,...,ikei1 · · · eik : Fi1,...,ik ∈ R

}
,

then we have the decomposition C`0,m = R⊕Rm⊕C`20,m⊕ . . .⊕C`
m
0,m, where

R = C`00,m and C`10,m = Rm. Let [·]k : C`0,m → C`k0,m be the natural projec-

tion. We define x·Fk = [xFk]k−1 and x·F0 = 0. Since f =
∑m
k=0[f ]k we define

x · f =
∑m
k=0 x · [f ]k. Let us consider differentiable functions f : Ω→ C`0,m,

where Ω ⊂ Rm is an open subset. In classical Clifford analysis, a fundamen-
tal differential operator is the Dirac operator, defined by ∂x =

∑m
i=1 ei ∂xi .

Functions satisfying ∂xf = 0 are called left-monogenic functions (resp. right-
monogenic if they satisfy f∂x = 0). For more details about Clifford algebras
and basic concepts of its associated function theory, we refer the interested
reader, for example, to [2, 3].

2.2. Hyperbolic function theory

A modified approach to the classical Clifford analysis was introduced by Heinz
Leutwiler and first author. Their idea was to find an operator such that the
power function (x0 + x)k would be a solution of the operator. Nowadays
this approach is called hyperbolic function theory. Our approach here is a
slide modification of that theory, since we will working with vector valued
operators. A comprehensive introduction to hyperbolic function theory can
be found in [5]. The fundamental idea is to work in hyperbolic upper half
space, i.e., Rm+ = {x ∈ Rm : xm > 0}, which is equipped with the metric

ds2 =
dx2

1+···+dx
2
m

x2
m

. Assume f : Ω→ C`0,m is a differentiable function, where

Ω ⊂ Rm+ is an open subset. The so called modified Dirac operator is defined
byMκ

xf := ∂xf− κ
xm
em ·f , where κ is an arbitrary real parameter. IfMκ

xf =
0, the function f is called κ-hypermonogenic. Note that 0-hypermonogenic
functions correspond to monogenic functions. Other interesting values of κ
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are κ = m−2k, where k = 0, . . . ,m, which are related to harmonic differential
forms in the upper half space (for more details see [8]).

3. (κ, τ)-Hypermonogenic Functions

The idea of this paper is to study hypermonogenic functions of two vector
variables. We will consider differentiable functions f : Ω → C`0,m, where
Ω ⊂ Rm+ × Rm+ is an open subset. For a function f = f(x,y), we define
modified Dirac operators

Mκ
xf := ∂xf −

κ

xm
em · f and Mτ

yf := ∂yf −
τ

ym
em · f.

Then we can introduce the following definition.

Definition 3.1. A differentiable function f : Ω ⊂ Rm+ ×Rm+ → C`0,m is (κ, τ)-
hypermonogenic if {

Mκ
xf(x,y) = 0

Mτ
yf(x,y) = 0

. (3.1)

Note that variables x and y live in the same space Rm+ , and therefore it
is possible that 〈x,y〉 6= 0.

3.1. Axially symmetric functions

We consider a function of the splitted variables f : Ω ⊂ Rm+ × Rm+ → C`0,m,
such that x = x + xm em and y = y + ym em. Then we have functions
f = f(x, xm, y, ym) and these are SO(m− 1)-invariant functions w.r.t. x and
y. We note that emx = −x em, emy = −y em and em x y = x y em. Moreover,
all SO(m − 1)-invariant functions are essentially linear combinations of the
elements of the following set of functions{

A1, xA2, y A3, x y A4, emA5, x emA6, y emA7, x y emA8

}
, (3.2)

where Aj are functions of five axially coordinates |x|2, xm, |y|2, ym, 〈x, y〉.
That kind of functions in Euclidean case are defined in [11–13]. The aim
of the Section 4 is to present some concrete examples of axially symmetric
(κ, τ)-hypermonogenic functions, in order to show that the set of theses func-
tions is non-trivial. Before that we collect some results about the behaviour
of the defined modified Dirac operators Mκ

x and Mτ
y.

3.2. Action of operators

Here, we present some results about the action of operatorsMκ
x andMτ

y over
the preceding axially symmetric functions. This first result collects several
relations presented and proved in [11].
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Proposition 3.2. (cf. [11, Sec.4]) For a differentiable real valued function
A = A(a, xm, b, ym, c), with a = |x|2, b = |y|2 and c = 〈x, y〉, the following
relations hold

∂x (A) = 2x ∂aA+ y ∂cA,

∂x (xA) = − [(m− 1) + 2a ∂a + 2c ∂c]A− x y ∂cA,

∂x
(
yA
)

= −b ∂cA+ 2x y ∂aA,

∂x
(
x yA

)
= − [(m− 1) + 2a ∂a + 2c ∂c] yA+ b x ∂cA.

Using these we have the following result

Proposition 3.3. Let a = |x|2, b = |y|2 and c = 〈x, y〉. The action of the
operator Mκ

x over each element of (3.2) is given by (where we use the short
notation A = Aj, for each j = 1, . . . , 8):

Mκ
x (A) = 2x ∂aA+ y ∂cA+ em ∂xm

A,

Mκ
x (xA) = − [(m− 1) + 2a ∂a + 2c ∂c]A− x y ∂cA− x em ∂xm

A,

Mκ
x

(
yA
)

= −b ∂cA+ 2x y ∂aA− y em ∂xm
A,

Mκ
x

(
x yA

)
= b x ∂cA− [(m− 1) + 2a ∂a + 2c ∂c] yA+ x y em∂xmA,

Mκ
x (emA) = −

(
∂xm
− κ

xm

)
A+ 2x em ∂aA+ y em ∂cA,

Mκ
x (x emA) =

(
∂xm
− κ

xm

)
xA− [(m− 1) + 2a ∂a + 2c ∂c] emA

− x y em ∂cA,

Mκ
x

(
y emA

)
=

(
∂xm −

κ

xm

)
yA− bem ∂cA+ 2x y em ∂aA,

Mκ
x

(
x y emA

)
= −

(
∂xm −

κ

xm

)
x yA+ b x em ∂cA

− [(m− 1) + 2a ∂a + 2c ∂c] y emA.

The proof of this relations comes from straightforward calculations.
However, we point out that if a function f does not have the em-component,
i.e., em · f = 0, we have Mκ

x(emf) = − ∂xmf + κ
xm
f − em ∂xf . This remark

allow us to deduce more directly the last four relations.

A similar result can be obtained for the operator Mτ
yf = ∂yf − τ

ym
em · f .

The easiest way to derive it, is to change the roles of x to y, xm to ym, a to
b, κ to τ , and use the relation yx = −2c− x y. Hence we get
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Proposition 3.4. Let a = |x|2, b = |y|2 and c = 〈x, y〉. The action of the
operator Mτ

y over each element of (3.2) is given by (where we use the short
notation A = Aj, for each j = 1, . . . , 8):

Mτ
y (A) = x ∂cA+ 2 y ∂bA+ em ∂ymA,

Mτ
y (xA) = − (4c ∂b + a ∂c)A− 2x y ∂bA− x em ∂ymA,

Mτ
y

(
yA
)

= − [(m− 1) + 2b ∂b]A+ x y ∂cA− y em ∂ymA,

Mτ
y

(
x yA

)
= [(m− 3)− 2b ∂b]xA− (4c ∂b + a ∂c) yA+ x y em ∂ymA,

Mτ
y (emA) = −

(
∂ym −

τ

ym

)
A+ x em ∂cA+ 2 y em ∂bA,

Mτ
y (xemA) =

(
∂ym −

τ

ym

)
xA− (4c ∂b + a ∂c) emA− 2x y em ∂bA,

Mτ
y

(
yemA

)
=

(
∂ym −

τ

ym

)
yA− [(m− 1) + 2b ∂b] emA+ x y em ∂cA,

Mτ
y

(
x yemA

)
= −

(
∂ym −

τ

ym

)
x yA+ [(m− 3)− 2b ∂b]x emA

− (4c ∂b + a ∂c) y emA.

Proof. The first three relations come directly. The fourth is not that straight-
forward than the previous three. In fact, first we compute

∂y
(
x y
)

=

m−1∑
i,j=1

∂yiyj ei x ej =

m−1∑
j=1

ej x ej = (m− 3)x.

Then we have

Mτ
y(x yA) = ∂yAxy + ∂y(x y)A+ x y em ∂xm

A

= 2 y x y ∂bA− a y ∂cA+ (m− 3)xA+ x y em ∂xm
A.

From the fact that y x y = −(b x + 2c y), we obtain the fourth relation. To
obtain the last four relations we observe (as we had done for Mκ

x) that if
a function f does not have the em-component, i.e., em · f = 0, we have
Mτ

y(emf) = − ∂ymf + τ
ym
f − em ∂yf . �

The mapping relations of the operators Mκ
x and Mτ

y over axially sym-
metric functions is resumed in the following table (the table is the same to
both operator up to constants):
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Mκ
x,Mτ

y A xA yA xyA emA xemA yemA xyemA

A • • •
xA • • •
yA • • •
x yA • • •
emA • • •
xemA • • •
yemA • • •
xyemA • • •

4. Examples of axially symmetric (κ, τ)-hypermonogenic
functions

In this section we use the relations presented in Propositions 3.3 and 3.4 to
obtain some examples of axially symmetric (κ, τ)-hypermonogenic functions.
We observe that all the examples presented in this section do not correspond
to trivial cases.

4.1. Axial symmetric (κ, τ)-hypermonogenic functions of the form emA

Taking into account Propositions 3.3 and 3.4, the system (3.1) takes the form
Mκ

x (emA) = −∂xm
A+

κ

xm
A+ 2x em ∂aA+ y em ∂cA = 0

Mτ
y (emA) = −∂ymA+

τ

ym
A+ 2 y em ∂bA+ x em ∂cA = 0.

,

which is equivalent to

∂xmA−
κ

xm
A = 0

∂ymA−
τ

ym
A = 0

∂aA = ∂bA = ∂cA = 0

.

Solving the previous system we get immediately that A = xκm y
τ
m, and there-

fore we get the following (κ, τ)-hypermonogenic function

f(x,y) = em x
κ
m y

τ
m.
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4.2. Axial symmetric (κ, τ)-hypermonogenic functions of the form (xA +
yB)em

Taking into account Propositions 3.3 and 3.4, the system (3.1) becomes

Mκ
x

(
x emA+ y emB

)
= x ∂xm

A− κ

xm
xA− (m− 1)emA− 2aem ∂aA

−(x y + 2c)em ∂cA+ y ∂xm
B − κ

xm
yB + 2x y em ∂aB − bem ∂cB = 0

Mτ
y

(
x emA+ y emB

)
= x ∂ymA−

τ

ym
xA− 2

(
x y + 2c

)
em ∂bA− aem ∂cA

+y ∂ymB −
τ

ym
yB − (m− 1)emB − 2bem ∂bB + x y em ∂cB = 0.

The previous system is equivalent to

∂xm
A− κ

xm
A = 0

2 ∂aB − ∂cA = 0

2a ∂aA+ 2c ∂cA+ b ∂cB + (m− 1)A = 0

∂xm
B − κ

xm
B = 0

∂ymA−
τ

ym
A = 0

2 ∂bA− ∂cB = 0

4c ∂bA+ a ∂cA+ 2b ∂bB + (m− 1)B = 0

∂ymB −
τ

ym
B = 0

. (4.1)

Taking into account that A = u(a, b, c)xκm y
τ
m and B = v(a, b, c)xκm y

τ
m, then

(4.1) reduces to

2 ∂av − ∂cu = 0

2a ∂au+ 2c ∂cu+ b ∂cv + (m− 1)u = 0

2 ∂bu− ∂cv = 0

4c ∂bu+ a ∂cu+ 2b ∂bv + (m− 1)v = 0

. (4.2)

If c = 0, i.e., x and y are orthogonal, system (4.2) becomes

∂av = 0

2a ∂au+ (m− 1)u = 0

∂bu = 0

2b ∂bv + (m− 1)v = 0

.
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and then

u(a, b, c) = u(a) = a
1−m

2 ⇒ A = a
1−m

2 xκm y
τ
m,

v(a, b, c) = v(b) = b
1−m

2 ⇒ B = b
1−m

2 xκm y
τ
m,

where a = |x|2, b = |y|2. Hence we obtain the following axially symmetric
(κ, τ)-hypermonogenic function

f(x,y) = xκm y
τ
m

(
x |x|1−m + y |y|1−m

)
em. (4.3)

On the other hand, if c 6= 0, system (4.2) reduces to the following system of
two independent partial differential equations

a ∂au+ b ∂bu+ c ∂cu =
1−m

2
u

a ∂av + b ∂bv + c ∂cv =
1−m

2
v

,

under the condition that u and v are solutions of{
2 ∂av − ∂cu = 0

2 ∂bu− ∂cv = 0
. (4.4)

Taking into account Equation (8.2.1.7) in [10] we conclude that the solution
of each equation is given by

u(a, b, c) = c
1−m

2 Φ1

(
a

c
,
b

c

)
v(a, b, c) = c

1−m
2 Φ2

(
a

c
,
b

c

)
(4.5)

where Φ1 and Φ2 are two arbitrary differentiable functions of two variables.
These functions u and v should be solutions of (4.4), i.e., after substituting
them in (4.4) they must be solution of the following Vekua-type system

t ∂tΦ1 + s ∂sΦ1 + 2 ∂tΦ2 −
1−m

2
Φ1 = 0

t ∂tΦ2 + s ∂sΦ2 + 2 ∂sΦ1 −
1−m

2
Φ2 = 0

, (4.6)

where t = a
c and s = b

c . It remains now to obtain some examples of Φ1 and
Φ2, which are solutions of (4.6).

4.2.1. Case when Φ1 and Φ2 are homogeneous functions. The easiest possible
solution for (4.6) is when Φ1 and Φ2 are 1−m

2 -homogeneous, i.e., Φ1 and Φ2

are of the form

Φ1(t, s) =

m−1∑
j=0

αj t
− j

2 s
1−m+j

2 Φ2(t, s) =

m−1∑
j=0

βj t
− j

2 s
1−m+j

2 , (4.7)

where αj and βj are real coefficients. Substituting Φ1 and Φ2 into (4.6) we
obtain {

∂tΦ2 = 0

∂sΦ1 = 0
.
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Takin in account (4.7) the previous system becomes
−
m−1∑
j=0

j

2
βj t
− j+2

2 s
1−m+j

2 = 0

m−1∑
j=0

1−m+ j

2
αj t
− j

2 s
−m+j−1

2 = 0

,

and therefore we conclude that the only possible solution are, up to a con-
stant, given by

Φ1(t, s) = t
1−m

2 and Φ2(t, s) = s
1−m

2 .

Taking into account that t = a
c and s = b

c , we have, from the expressions of
Φ1 and Φ2, that

u(a, b, c) = c
1−m

2 t
1−m

2 = a
1−m

2 ⇒ A = a
1−m

2 xκm y
τ
m,

v(a, b, c) = c
1−m

2 s
1−m

2 = b
1−m

2 ⇒ B = b
1−m

2 xκm y
τ
m,

where a = |x|2, b = |y|2. Consequently we obtain the following axially sym-
metric (κ, τ)-hypermonogenic function

f(x,y) = xκm y
τ
m

(
x |x|1−m + y |y|1−m

)
em. (4.8)

It is imediate that (4.8) coincides with (4.3).

4.2.2. Case when Φ1 and Φ2 are hypergeometric functions. Let us consider
that the solutions Φ1 and Φ2 of (4.6) are of the form

Φ1(t, s) =

+∞∑
j=0

tj Aj(s) and Φ2(t, s) =

+∞∑
j=0

tj Bj(s). (4.9)

Substituting (4.9) into (4.6) we obtain

+∞∑
j=0

tj
[
sA′j(s) +

m+ 2j − 1

2
Aj(s) + 2(j + 1)Bj+1(s)

]
= 0

+∞∑
j=0

tj
[
sB′j(s) +

m+ 2j − 1

2
Bj(s) + 2A′j(s)

]
= 0

,

which leads to
sA′j(s) +

m+ 2j − 1

2
Aj(s) + 2(j + 1)Bj+1(s) = 0

sB′j(s) +
m+ 2j − 1

2
Bj(s) + 2A′j(s) = 0

, (4.10)

with j = 0, 1, 2, . . .. Taking derivatives with respect to s of both members of
the first equality in (4.10), we get

sA′′j (s) +
m+ 2j + 1

2
A′j(s) + 2(j + 1)B′j+1(s), (4.11)
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with j = 0, 1, 2, . . .. On the other hand, from the second equation of (4.10)
we have the following two relations

A′j(s) = −s
2
B′j(s)−

m+ 2j − 1

4
Bj(s), j = 0, 1, 2, . . . , (4.12)

A′′j (s) = −s
2
B′′j (s)− m+ 2j + 1

4
B′j(s), j = 0, 1, 2, . . . . (4.13)

Substituting (4.12) and (4.13) into (4.11) we get

−s
2

2
B′′j (s)− (m+ 2j + 1)s

2
B′j(s)−

(m+ 2j)2 − 1

8
Bj(s)

+2(j + 1)B′j+1(s) = 0, (4.14)

with j = 0, 1, 2, . . ., that is

B′j+1(s)

=
1

2(j + 1)

[
s2

2
B′′j (s) +

(m+ 2j + 1)s

2
B′j(s) +

(m+ 2j)2 − 1

8
Bj(s)

]
,

(4.15)

with j = 0, 1, 2, . . .. In order to solve (4.15) we start looking for solutions of
the differential equation

Bj(s) =
s2

2
B′′j (s) +

(m+ 2j + 1)s

2
B′j(s) +

(m+ 2j)2 − 1

8
Bj(s),

with j = 0, 1, 2, . . ., which is equivalent to

s2B′′j (s) + (m+ 2j + 1)sB′j(s) +
(m+ 2j)2 − 9

4
Bj(s) = 0, (4.16)

with j = 0, 1, 2, . . .. Equation (4.16) corresponds to the so-called Euler’s
equation and its solution can be found in several handbooks of ordinary
differential equations (see, for example, Equation (2.1.2-4.123) with a = m+

2j+1 and b = (m+2j)2−9
4 such that (1−a)2 > 4b in [9]). The set of fundamental

solutions for (4.16) is given by{
s−j+

3−m
2 , s−j−

3+m
2

}
, j = 0, 1, 2, . . . .

Combining (4.15) and (4.16) we may compute the terms recursively by the
formula

B′j+1(s) =
1

2(j + 1)
Bj(s), j = 0, 1, 2, . . . . (4.17)
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Then, we have

B1(s) =
1

2× 1

∫
B0(s) ds

B2(s) =
1

2× 2
× 1

2× 1

∫ ∫
B0(s) ds ds

B3(s) =
1

2× 3
× 1

2× 2
× 1

2× 1

∫ ∫ ∫
B0(s) ds ds ds

(4.18)

and in general

Bj(s) =
1

2j j!

∫
. . .

∫
B0(s) ds . . . ds︸ ︷︷ ︸
j times

, j = 0, 1, 2, . . . , (4.19)

where

B0(s) = s
3−m

2 or B0(s) = s−
3+m

2 .

By induction it is possible to prove that∫
. . .

∫
B0(s) ds . . . ds︸ ︷︷ ︸
j times

=
s

3−m
2 +j(

5−m
2

)
j

, when B0(s) = s
3−m

2 , (4.20)

∫
. . .

∫
B0(s) ds . . . ds︸ ︷︷ ︸
j times

=
s−

3+m
2 +j(

− 1+m
2

)
j

, when B0(s) = s−
3+m

2 . (4.21)

Therefore (4.19) takes the form

Bj(s) =
s

3−m
2 +j

2j j!
(
5−m
2

)
j

, when B0(s) = s
3−m

2 , (4.22)

Bj(s) =
s−

3+m
2 +j

2j j!
(
− 1+m

2

)
j

, when B0(s) = s
3−m

2 , (4.23)

where in each case m is chosen such that the argument of the pochhammer
symbol is not a negative integer number. From (4.22) and (4.23) we get the
following two possible expressions for Φ2

Φ2(t, s) =

+∞∑
j=0

tj s
3−m

2 +j

2j j!
(
5−m
2

)
j

= s
3−m

2 0F1

(
5−m

2
,
st

2

)
, (4.24)

Φ2(t, s) =

+∞∑
j=0

tj s−
3+m

2 +j

2j j!
(
− 1+m

2

)
j

= s−
3+m

2 0F1

(
−1 +m

2
,
st

2

)
, (4.25)
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when B0(s) = s
3−m

2 or B0(s) = s
3−m

2 , respectively, and 0F1(α, z) is the
confluent hypergeometric function defined by the following series (see [1])

0F1(α, z) =

+∞∑
j=0

zj

(α)j j!
.

Moreover, in (4.24) and (4.25) the value of m is chosen such that the first
argument of 0F1 is not a negative integer number. From (4.24) and (4.25) we
get, for each possible choice of B0, the correspondent expressions for v(a, b, c)
(see (4.5))

v(a, b, c) =
b

3−m
2

c
0F1

(
5−m

2
,
ab

2c2

)
, (4.26)

v(a, b, c) =
c1+m

b
3+m

2
0F1

(
−1 +m

2
,
st

2

)
, (4.27)

where t = a
c and s = b

c , and m is in the conditions described previously.
Now we find the expression for Aj . Taking into account (4.22) and (4.23),
expression (4.12) takes the form

A′j(s) = − (2j + 1) s
3−m

2 +j

2j+1 j!
(
5−m
2

)
j

, when B0(s) = s
3−m

2 ,

A′j(s) = − (j − 1) s−
3+m

2 +j

2j j!
(
− 1+m

2

)
j

, when B0(s) = s
3−m

2 ,

and therefore

Aj(s) = − (2j + 1) s
5−m

2 +j

2j j! (5−m+ 2j)
(
5−m
2

)
j

, when B0(s) = s
3−m

2 , (4.28)

Aj(s) =
(j − 1) s−

1+m
2 +j

2j−1 j! (1 +m− 2j)
(
− 1+m

2

)
j

, when B0(s) = s
3−m

2 , (4.29)

where in each case m is chosen such that the argument of the pochhammer
symbol is not a negative integer number. Now from (4.28) and (4.29) we can

present the final expression for Φ1, when B0(s) = s
3−m

2 or B0(s) = s
3−m

2 ,
respectively, and m is even

Φ1(t, s) = −
+∞∑
j=0

tj (2j + 1) s
5−m

2 +j

2j j! (5−m+ 2j)
(
5−m
2

)
j

= −
Γ
(
5−m
2

)
2

(
s

5−m
2 0F̃1

(
7−m

2
,
st

2

)
+ t s

7−m
2 0F̃1

(
9−m

2
,
st

2

))
,

(4.30)
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or

Φ1(t, s) =

+∞∑
j=0

tj (j − 1) s−
1+m

2 +j

2j−1 j! (1 +m− 2j)
(
− 1+m

2

)
j

=
Γ
(
− 1+m

2

)
2

(
2s−

1+m
2 0F̃1

(
1−m

2
,
st

2

)
− t s

1−m
2 0F̃1

(
3−m

2
,
st

2

))
,

(4.31)

where 0F̃1(α, z) is the regularized confluent hypergeometric function defined
by the following series (see [1])

0F̃1(α, z) =

+∞∑
j=0

zj

Γ(α+ j) j!
,

and m is chosen such that the first argument of 0F̃1 is not a negative integer
number. From (4.30) and (4.31) we get, for each possible choice of B0 and
considering m even, the correspondent expressions for u(a, b, c) (see (4.5))

u(a, b, c)

= −
Γ
(
5−m
2

)
2

(
b

5−m
2

c2
0F̃1

(
7−m

2
,
ab

2c2

)
+
a b

7−m
2

c4
0F̃1

(
9−m

2
,
ab

2c2

))
,

(4.32)

u(a, b, c)

=
Γ
(
− 1+m

2

)
2

(
2

c

b
1+m

2
0F̃1

(
1−m

2
,
ab

2c2

)
− a b

1−m
2

c
0F̃1

(
3−m

2
,
ab

2c2

))
,

(4.33)

and m is chosen such that the first argument of 0F̃1 is not a negative integer
number. From the expressions obtained previously for the functions u and v
(see (4.32), (4.33), (4.26) and (4.27)), we obtain the following two examples
of axially symmetric (κ, τ)−hypermonogenic functions, (which are only valid
for the case when m is even, and where a = |x|2, b = |y|2 and c = 〈x, y〉)

f(x,y) =
(
xA+ yB

)
em

=
(
xu
(
|x|2, |y|2, 〈x, y〉

)
+ y v

(
|x|2, |y|2, 〈x, y〉

))
xκm y

τ
m em

=
|y|3−m

〈x, y〉

[
−

Γ
(
5−m
2

)
2

x

(
|y|2

〈x, y〉2 0F̃1

(
7−m

2
,
|x|2|y|2

2〈x, y〉2

)

+
|x|2|y|4

〈x, y〉3 0F̃1

(
9−m

2
,
|x|2|y|2

2〈x, y〉2

))
+ y 0F1

(
5−m

2
,
|x|2|y|2

2〈x, y〉2

)]
xκm y

τ
m em,
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when B0(s) = s
3−m

2 , and

f(x,y) =
(
xA+ yB

)
em

=
(
xu
(
|x|2, |y|2, 〈x, y〉

)
+ y v

(
|x|2, |y|2, 〈x, y〉

))
xκm y

τ
m em

=

[
Γ

(
−1 +m

2

)
x

(
〈x, y〉
|y|1+m 0F̃1

(
1−m

2
,
|x|2|y|2

2〈x, y〉2

)

−
|x|2|y|1−m

2〈x, y〉 0F̃1

(
3−m

2
,
|x|2|y|2

2〈x, y〉2

))

+y
〈x, y〉1+m

|y|3+m 0F1

(
−1 +m

2
,
|x|2|y|2

2〈x, y〉2

)]
xκm y

τ
m em,

when B0(s) = s
3−m

2 . In both expressions and m is chosen such that the

first argument of the hypergeometric functions 0F̃1 and 0F1 is not a negative
integer number.

5. Conclusions

In this paper we started to study (κ, τ)-hypermonogenic functions, which are
hypermonogenic generalizations of monogenic functions of two vector vari-
ables defined in [11]. We also started to look for axially symmetric solutions
for the system obtaining some simple examples. These non-trivial solutions
guarantee that the theory is well defined and worth to study further. The
complete study of axially symmetric functions we leave to the future. A
more general class of axially symmetric solutions is obtained multiplying our
axially symmetric functions by a (k, l)-homogeneous polynomial Pk,l(x, y)
(see [11,12]). This will be also an interesting topic in future.
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