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Abstract 17 

Storms cause major forest disturbances in Europe. The aim of this study was to model tree-level 18 

storm damage probability based on the properties of tree and its environment and to examine 19 

whether fine-scale topographic information is connected to the damage probability. We used data 20 

documenting effects of two autumn storms on over 17000 trees on permanent Finnish National 21 

Forest Inventory plots. The first storm was associated with wet snow fall that damaged trees, 22 

while exceptionally strong winds and gusts characterized the second storm. During the storms 23 

soils were unfrozen and deciduous trees without leaves.  Generalized linear mixed models were 24 

used to study how topographical variables calculated from digital elevation models (DEM) with 25 

resolutions of 2 and 10 m (TOPO2 and TOPO10) were related to damage probability, in addition 26 

to variable groups for tree (TREE) and stand (STAND) characteristics. We compared models 27 

containing different variable groups with Akaike Information Criteria. The best model contained 28 

variable groups TREE, STAND and TOPO2. Increase in slope steepness calculated from the 29 

high-resolution DEM decreased tree-level damage probability significantly in the model. This 30 

suggests that the local topography affects the tree-level damage probability and that high-31 

resolution topographical data improves the tree-level damage probability models. 32 

Keywords: windthrow, wind storm, wind damage, snow damage, digital elevation model  33 
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1. Introduction 34 

Changes in climate are expected to have pronounced effects on the disturbance regime of boreal 35 

forests (Seidl et al. 2017). In Europe, storms account for a larger amount of forest damage than 36 

other disturbance types (Schelhaas et al. 2003), and storm induced damage has increased in 37 

Europe over the last 60 years (Gregow et al. 2017). Understanding storm disturbance processes is 38 

crucial for predicting climate change effects on forests, as climate induced changes in forest 39 

productivity are altered by disturbances (Lindroth et al. 2009, Reyer et al. 2017). 40 

Wind damage probability of a tree is affected by its susceptibility to damage and the wind 41 

conditions subjected to it. As wind conditions during storms can have high spatial variance, the 42 

data about the local wind conditions affecting trees can be difficult to obtain. Local wind 43 

conditions are modified by forest management operations, such as thinnings and clear cuttings, 44 

in which trees in previously sheltered environments are exposed to stronger winds (Peltola et al. 45 

1999, Jalkanen and Mattila 2000). Local variation in wind properties is also influenced by 46 

topography, and therefore topographical variables have often been included in statistical models 47 

of wind damage (e.g., Laiho 1987, Schmidt et al. 2010, Albrecht et al. 2012, Schindler et al. 48 

2012). Suvanto et al. (2016) showed that, when detailed data about the wind conditions during 49 

the storms are not available, stand-level storm damage models can be improved by adding 50 

topographical variables derived from digital elevation models (DEM), when used in combination 51 

with estimated wind direction. Topographical information can also be included in storm damage 52 

models indirectly through wind field data, as near-surface wind characteristics are strongly 53 

dependent on topography. For example, Jung and Schindler (2016) and Venäläinen et al. (2017) 54 

utilized topographical data in developing high resolution wind speed data set for studying forest 55 

wind damage risk. 56 
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Tree susceptibility to damage is affected by properties such as tree species, size and shape. 57 

Probability of wind damage has been found to increase with increasing tree height (Lohmander 58 

and Helles 1987, Schmidt et al. 2010, Albrecht et al. 2012) and tall trees with relatively small 59 

diameter are particularly vulnerable to damage (Peltola et al. 1999). Norway spruce (Picea abies 60 

(L.) Karst) is considered more vulnerable to wind damage than Scots pine (Pinus sylvestris L.) 61 

(Peltola et al. 1999, Dobbertin 2002, Valinger and Fridman 2011), as its relatively shallow root 62 

system provides a weaker anchorage to the ground (Kalela 1949, Peltola et al. 2000). On the 63 

other hand, Scots pine has been found to be more vulnerable to snow damage than Norway 64 

spruce, due to differences in the crown shape between the species (Nykänen et al. 1997). In 65 

northern Europe, deciduous species have a lower risk of wind damage compared to evergreen 66 

conifers, because most storms and the strongest winds occur during autumn and winter when 67 

deciduous trees have already shed their leaves and have therefore lower wind loads (Peltola et al. 68 

1999). Pathogens that cause wood decay and weaken trees predisposing them to abiotic damage 69 

(Whitney et al. 2001, Honkaniemi et al. 2017). 70 

Rapidly developing remote sensing methods provide increasingly detailed information about the 71 

physical environment, including fine-scale topography. The National Land Survey of Finland 72 

(NLS) is conducting a country-wide laser scanning campaign, and the resulting data is used for 73 

creating a new 2 meter resolution DEM, which will cover the whole country by 2020 (NLS 74 

2017a). Country-wide laser scanning data sets are being produced in other countries as well (e.g. 75 

Lantmäteriet 2017, Swisstopo 2017). In studies of forest storm damage, these data sets provide 76 

increased accuracy but also enable to consider thefine-scaled variation in topography within the 77 

close vicinity of the studied trees. While there are some examples of using fine-scale 78 

topographical data for studying wind damage in forests (see Saarinen et al. 2016), most studies 79 
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have used coarser data to account for topographical variation (e.g., Schmidt et al. 2010, Anyomi 80 

and Ruel 2015, Suvanto et al. 2016) or excluded topographical variables from the analysis (e.g., 81 

Valinger and Fridman 2011). 82 

The aim of this study was (1) to statistically model the damage probability of an individual tree 83 

during storms based on the properties of a tree and its environment and  (2) to examine whether 84 

fine-scale topographic information is connected to tree-level storm damage probability. To 85 

accomplish this, we used an extensive empirical data set documenting damage to trees after two 86 

severe autumn storms in 2001, and studied how tree and stand properties, as well as fine-scale 87 

and coarse-scale topographical variables were connected to damage probability of trees. 88 

2. Material and methods 89 

2.1 Storm damage data 90 

The storm damage data set was collected between November 2001 and January 2002 at 91 

permanent plots of the Finnish National Forest Inventory (NFI) after two exceptionally severe 92 

autumn cyclones Pyry (1.11.2001) and Janika (15.11.2001) (Fig. 1). The storms caused an 93 

estimated damage of 7.3 million cubic meters of stemwood (Ihalainen and Ahola 2003). Of the 94 

two storms, storm Janika was associated with stronger winds, average wind speed (10 minutes) 95 

ranging between 16 to 18 ms
-1

 and strongest measured gusts in land areas reaching 27.8 ms
-1

. 96 

These were the highest wind speeds measured in land-areas in Finland since autumn 1959 (FMI 97 

2001). Storm Pyry had lower wind speeds (in the study area, measured maximum 10 minute 98 

average wind speeds up to 12 ms
-1

 and gusts up to 21.9 ms
-1

 in land areas, higher close to the sea 99 

or large lakes) but was associated with wet snowfall that damaged trees. Snow fall related to 100 

storm Pyry lasted three days (30.10.-2.11.2001). The snow load on tree crowns during Pyry was 101 



6 

 

estimated to 30 kg m
-2

 (Zubizarreta-Gerendiain et al. 2012). Soils were unfrozen and broad-102 

leaved trees without leaves during both storms (Ihalainen and Ahola 2003). 103 

In the study area, NFI follows a cluster sampling design where clusters are arranged in a grid. 104 

Every fourth cluster in the 9
th

 National Forest Inventory in Finland (NFI9) was a permanent 105 

cluster containing 10 or 14 plots (Tomppo et al. 2011). On permanent clusters the tree locations 106 

on plots were mapped, which enabled the identification of trees in a re-measurement conducted 107 

after the storms in 2001. The trees included in plots were selected using angle count sampling 108 

with basal area factor 2 and maximum radius of 12.52 m (Tomppo et al. 2011).  109 

The storm damage data covers a total of 1826 NFI9 plots in altogether 276 NFI9 permanent 110 

clusters in southern and western Finland, and includes a total of 17686 trees of which 220 had 111 

been damaged in the storms (Fig. 1, Ihalainen and Ahola 2003, Suvanto et al. 2016). However, 112 

we excluded standing trees classified as dead or dying in the NFI9 measurement (287 trees), as 113 

well as conifers other than Norway spruce and Scots pine (18 trees). The high-resolution digital 114 

elevation model was not available for the whole study area and trees located in the areas of 115 

missing data were excluded from the analysis (804 trees). Therefore, the final data set contained 116 

16577 trees (of which 202 were damaged) in 1730 NFI9 plots within 267 clusters (Table 1). 117 

Different types of storm caused damage were represented in the data set. Most common damage 118 

types in the data were uprooting (42 pines, 79 spruces and 4 deciduous trees) and stem breakage 119 

(25 pines, 12 spruces and 6 deciduous trees). The rest of the damaged trees were classified as 120 

leaning trees (10 pines and 9 spruces), damaged standing trees (2 spruces) or damaged trees that 121 

had already been removed and damage type could not be determined (3 pines, 9 spruces and 1 122 

deciduous tree). 123 
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Variables describing stand and tree characteristics were extracted from the storm damage data as 124 

well as from the NFI9 data collected at the plots before the storms (1996 to 1999). Stand-level 125 

variables included stand age, basal area (BA), type and timing of recent management operations, 126 

soil type, presence of decayed standing trees in the stand and presence of new open area within 127 

40 meters from the plot center (estimated by the field crew). Only open stand borders in the 128 

direction of the storm wind were considered and borders towards permanently open areas, such 129 

as lakes and agricultural fields, were not considered. Forest management variables included 130 

information about the type of the cutting (thinning or regeneration cutting) and the time of the 131 

cutting (last five or last ten years). As clear-cut stands were excluded, regeneration cuttings 132 

contained seed and shelter tree cuttings that leave 30 to 300 stems per hectare. 133 

Tree-level variables included tree species, tree height, stem diameter at breast height (1.3 m, 134 

DBH), relative DBH (the ratio between DBH and the stand average DBH), and height-to-DBH 135 

ratio. Tree height was measured in the field only for every seventh tree in each plot. For the rest 136 

of the trees we used height predictions based on a model by Eerikäinen (2009), which uses DBH, 137 

tree species, and site and stand properties as predictors. 138 

We attempted to account for the spatial variation in storm severity by using meteorological data 139 

from the storms, i.e. maximum wind speeds in storm Janika and snow accumulation in storm 140 

Pyry. However, as the spatial resolution of the available data was low and it was not possible to 141 

separate the occurred damage in the data between the two storms, these variables were left out of 142 

the final analysis. Insufficiency of coarse scale weather data in predicting storm damage has been 143 

shown before, for example, by Schindler et al. (2009). 144 
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2.3 Topographical variables 145 

In the study area, elevation ranges from the sea level to 229 meters above sea level. Elevation 146 

increases gradually with distance from the sea and local variations in elevation are relatively low: 147 

average difference in elevation between a tree location and its surroundings within one kilometer 148 

radius was 5.1 meters while maximum difference was 44.3 meters. Variables describing the 149 

topography in the neighborhood of the trees were calculated from the NLS digital elevation 150 

models in two resolutions: 2 m (DEM2) and 10 m (DEM10). DEM2 is based on NLS laser 151 

scanning data with a point density of at least 0.5 points per square meter, whereas DEM10 is 152 

produced with contour lines, ground surface points digitized in a stereo workstation environment 153 

and elevational information in the objects of NLS Topographical database. The elevation 154 

accuracy is 0.3 meters in DEM2 and 1.4 meters in DEM10 (NLS 2017a, NLS 2017b). The laser 155 

scanning data used for producing DEM2 has been collected after the studies storms in year 2001 156 

and, therefore, it could not be used for extracting information about tree characteristics in this 157 

study. 158 

From both DEMs slope angle and direction as well as topographic position index (TPI) with 159 

different radii (10, 20 and 30 m for DEM2 and 50, 100, 150, 500 and 1000 m for DEM10) were 160 

calculated with the R package raster (Hijmans 2016). TPI describes the relative topographical 161 

position of a location in relation to its surroundings and is calculated as a difference of elevation 162 

in a location to the mean elevation within a defined radius (Guisan et al. 1999, Gallant and 163 

Wilson 2000). Negative values of TPI mean that a location is at lower elevation than its 164 

surroundings, and thus better shelter from wind, whereas positive values indicate locations 165 

higher than their surroundings, and thus higher wind exposure. 166 
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Values from all topographic variables were extracted for each tree location. To reduce the error 167 

in the tree locations, coordinates of the midpoints of the permanent NFI plots were taken from 168 

the more recent 11
th

 NFI (2009-2013) with more accurate positioning of the plots. To account for 169 

uncertainty in the positioning of the tree locations, a mean (median for slope direction) of the 170 

neighboring cells, with cell center within a three meter radius from the tree location, was used for 171 

variables calculated from DEM2. Slope direction was transformed into a class variable 172 

describing whether the slope was directed towards the storm wind or sheltered from it (using 173 

wind direction 337.5° as the main wind direction of the storms was north to north-west. Detailed 174 

data of the near-surface wind direction was not available). If slope steepness was lower than 1° 175 

slope direction was set to wind side (Fig. 2). 176 

2.4 Statistical methods 177 

Storm damage probability of an individual tree was modeled with a mixed effects logistic model, 178 

where the response variable described whether or not a tree was damaged in the storms (0/1). 179 

The model was fitted in SAS (version 9.4, SAS Institute Inc. 2017) using procedure GLIMMIX. 180 

Random effects were used to account for the hierarchical structure of the data, resulting from the 181 

clustered sampling design of the NFI. Two-level nested random effects were used for the 182 

intercepts, as trees were located in plots and plots in clusters. 183 

In the 9
th

 NFI, the maximum radius of angle count plots was restricted to 12.52 meters. In angle 184 

count plots sampling probability is proportional to the basal area of a tree. However, as plot 185 

radius was restricted, large trees with a DBH larger than 35.4 cm were underrepresented in the 186 

data. Therefore, multi-level weights were used in the model to have the representation of tree 187 

sizes match an unrestricted angle count plot.  The inverse value of the difference in tree sampling 188 

probability between an ordinary angle count plot and the restricted diameter angle count plot was 189 
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used in calculating tree-level weights. Thus, trees with diameter less than 35.4 cm were assigned 190 

weight 1, while for larger trees the weight calculated as 1/(Arestricted / Aunrestricted), where Arestricted 191 

was the area of the 12.52 m radius plot and Aunrestricted was the DBH dependent area from which 192 

tree would have been included in an angle count plot if the plot radius was not restricted. The 193 

weights were then scaled by setting the sum of weights within each plot to correspond to the 194 

actual number of measured trees in the plot, following the “method 2” in Pfeffermann et al. 195 

(1998) and Rabe-Hesketh and Skrondal (2006). On plot and cluster levels all observations were 196 

given weight 1. 197 

The independent variables were divided into five variable groups containing variables related to 198 

tree characteristics (TREE), stand characteristics (STAND) and topographic characteristic 199 

calculated from two different resolution DEMs (TOPO2 and TOPO10). All continuous 200 

independent variables were scaled to have a mean of 0 and standard deviation of 1 (Table 3). 201 

Thus, the model intercept is interpreted as the expected value when all the continuous predictor 202 

variables are set to their means and the coefficient estimates between predictor variables are 203 

more comparable to each other. A logarithm transformation was tested for all continuous 204 

variables by comparing models with and without transformation with Akaike Information 205 

Criteria (AIC, Akaike 1974). 206 

Collinearity between independent variables in the final variable groups was checked with 207 

Pearson product-moment correlation coefficients between continuous variables. The correlations 208 

were well below 0.7 except for the correlation between slope steepness values calculated from 209 

DEM2 and DEM10 (r = 0.73, p < 0.001). When the variables were log-transformed, all the 210 

correlations were below 0.7. 211 
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In a preliminary model selection variables were first chosen based on a priori knowledge of 212 

factors affecting storm damage. Different combinations of variables were then tested and 213 

variables were excluded from the variable groups if they showed small effect sizes (i.e., had 214 

negligible effect on damage probability in the model), counterintuitive coefficient signs (for 215 

example, if damage probability were to decrease with increasing wind exposure) or had large p-216 

values. In addition, AIC values of models with and without a variable were compared before a 217 

decision was made to exclude variables. 218 

Models were fitted with different combinations of variables groups (TREE, STAND, TOPO2, 219 

TOPO10) and then compared using AIC, AIC weights (wi), as well as receiver operating 220 

characteristic (ROC) curves and area under curve values (AUC). AIC measures the relative 221 

quality of the model, so that lower values of AIC indicate a better model. AIC weights were also 222 

calculated for the models. The weights add up to 1 for the considered set of models and are 223 

interpreted as the weight of evidence in favor of a model being the Kullback-Leibler best model, 224 

assuming that one of the considered models is the best model (Burnham and Anderson 2002). 225 

ROC curves and AUC values describe the model’s ability to discriminate between damage 226 

events and non-events (see Hosmer et al. 2013). 227 

3. Results 228 

In the preliminary model building process several candidate variables were left out of the 229 

models. From the TREE variable group DBH, relative DBH and height-to-DBH ratio were 230 

excluded and species were grouped to a two-class variable separating coniferous and deciduous 231 

species. Stand age, stand basal area, soil type and timing of the last cuttings were left out from 232 

the STAND variable group. In addition, type of last cutting was grouped into only two classes 233 
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where regeneration cutting (for example seed or shelter tree cutting) formed one class and 234 

thinning and no cuttings formed another class. In the TOPO groups the topographic position 235 

index (TPI) variables as well as the interaction between slope steepness and direction were left 236 

out of the final models. The meteorological variables describing the storm conditions were not 237 

included in the models, as they were not statistically significant and had illogical, negative 238 

coefficients (results not shown). The variables included in the variable groups that were used in 239 

the final model comparisons are described in Table 2. 240 

The best model, chosen by ranking the alternative models by AIC, contained variable groups 241 

describing tree and stand properties and fine-scale topographical information (TREE+STAND+ 242 

TOPO2, Table 4). The AIC weight (wi) for the TREE+STAND+TOPO2 model was clearly 243 

higher than for the other models. The second ranked model in the AIC comparison also 244 

contained TOPO2 variable group (model TREE+STAND+TOPO2+TOPO10, Table 4). In 245 

TOPO2 and TOPO10 variable groups slope steepness (SLOPE) had a negative coefficient, 246 

implying a decreasing damage probability in steeper slopes (Table 5, only shown for the first 247 

ranked model). 248 

TREE variables (conifer/deciduous species and height) were the most important single group 249 

accounting for damage probability. The other models with only one variable group (TOPO2, 250 

STAND, TOPO10) were last in the AIC comparison, with AIC weights close to 0 and low AUC 251 

values (Table 4). The coefficients of variables in the TREE group showed an increasing damage 252 

probability with increasing tree height for conifers, and lower damage probability, as well as 253 

decreasing damage probability with tree height, for deciduous trees (Table 5). 254 

The STAND variable group was included in the best model with the lowest AIC (Table 4). 255 

Model coefficients showed higher damage probability in the proximity of new open stand 256 
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borders (OPENAREA) and in stands where regeneration cuttings had been made within ten years 257 

(from NFI9 measurement). 258 

For the models ranked highest, the AUC values, which describe the models ability to 259 

discriminate between damage and non-damage events, were slightly under 0.7, which is often 260 

taken as a threshold of acceptable discrimination (Table 4, Fig. 3). The best model to reach the 261 

0.7 threshold was TREE + STAND + TOPO2, and similar AUC values were found for other top 262 

models of the AIC comparison. The lowest AUC values were found for one variable group 263 

models TOPO2 and TOPO10 (Table 4). 264 

4. Discussion 265 

Our results demonstrate that the high-resolution topographical data, describing local variations in 266 

topography, provides useful information about the storm damage probability of trees. Fine-scale 267 

topographical variables proved to work better than variables calculated from the coarser scale 268 

DEM. Using high-resolution data with high elevation accuracy is useful especially in tree-level 269 

studies, where it can be used to characterize the local neighborhood of a tree in detail. However, 270 

understanding the fine-scaled factors driving tree-level vulnerability to damage is also important 271 

for larger scale studies, as shown by Seidl et al. (2014) who found that neglecting spatial and 272 

structural within-stand heterogeneity weakened the outcome of wind disturbance models. 273 

The use of laser scanning data as a source for elevation models not only enables the 274 

improvement of data resolution but also improves the accuracy of the data. Due to the difference 275 

in methods in creating the elevation models the high-resolution DEM2 has significantly better 276 

elevation accuracy than the older DEM10. This in part also explains the better performance of 277 

variables calculated from DEM2 in the storm damage models. 278 
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Not all studies have found topography to be useful in modeling storm damage. Albrecht et al. 279 

(2012) gave three possible explanations for why topography was not found to affect damage 280 

probability in their study: (1) variables describing stand and tree characteristics were superior to 281 

geographical conditions such as topography, (2) the used variables were not suitable for 282 

describing the conditions affecting damage probability, and (3) the data set did not contain 283 

extremely exposed sites where the effect of topography would have been clear. While the two 284 

first explanations are in line with our results, the third one is not supported by our results. The 285 

results showed that topography was connected to storm damage probability, even though our 286 

study area is characterized by a gentle topography with only small variations in elevation. This is 287 

in contrast with some previous studies suggesting that non-significant effect of topography was 288 

caused by low topographic variation of the study area (Anyomi and Ruel 2015, Saarinen et al. 289 

2016). 290 

The choice of variables calculated from DEMs is crucial for effectively describing the local wind 291 

conditions. In addition to topographical variables included in this study effects of topography on 292 

wind conditions have been described with different indices, such as distance-limited 293 

topographical exposure (TOPEX), which is calculated as sum of maximum angle to the ground 294 

in eight directions (Quine and White 1998, Scott and Mitchell 2005). The used spatial scale may 295 

also influence the functioning of the used variables. While the interaction of slope steepness and 296 

slope direction was found to significantly affect stand-level damage probability in another study 297 

using the same data set as used here (Suvanto et al. 2016), only slope steepness was significant in 298 

this tree-level study. Slope direction calculated from a high-resolution DEM may vary locally a 299 

lot (Fig. 2) and therefore may not describe well the location’s exposure to wind. The significant 300 

effect of slope steepness may be related to locations with high slope steepness being associated 301 
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with more variable topography in general, and being therefore more sheltered from wind. In 302 

addition, high-resolution slope steepness may be correlated to other variables than wind that are 303 

related to storm damage. For example, topography is related to soil properties, which in turn 304 

affect the support trees have against uprooting (Peltola et al. 1999). 305 

While fine-scale topographical variables were included in the model with lowest AIC, they did 306 

not perform well alone (i.e., the TOPO2 model in Table 4). Instead, the results show that of the 307 

studied variable groups, tree properties are most clearly linked to storm damage probability, as 308 

the TREE model had clearly lower AIC values, higher AIC weights and higher AUC values 309 

compared to the other models with only one variable group (Table 4). Similar results 310 

emphasizing the importance of tree species and height have been reported in previous studies 311 

(Lohmander and Helles 1987, Schmidt et al. 2010, Albrecht et al. 2012). 312 

The TREE variable group consisted of tree species group (conifer or deciduous), tree height, and 313 

interaction term of these two. Norway spruce and Scots pine were grouped into one class as their 314 

difference was not significant in the models. Previous studies have shown differences between 315 

the species (Nykänen et al. 1997, Dobbertin 2002, Valinger and Fridman 2011). However, the 316 

storm damage in our data set contained both wind and snow related damage. This may have 317 

reduced the difference between the two conifer species, as spruce is considered to be more 318 

vulnerable to wind and the crown shape of pines may expose them to snow damage. It is also 319 

possible that the damaged deciduous trees in the data have been mostly damaged by snow, as the 320 

damaged deciduous trees were smaller than average (Table 1) and model results for deciduous 321 

trees showed decreasing damage probability with tree height, which is atypical for wind damage. 322 

The STAND variable group showed increased damage probability in stands after regeneration 323 

cuttings, which in this data are seed and shelter tree cuttings that leave 30 to 300 stems per 324 
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hectare to the stand. Increased damage probability was also found for trees close to open stand 325 

borders (OPENAREA variable). This effect results from increased wind load after the cutting or 326 

at newly created stand border on trees that have not been acclimated to strong winds (Lohmander 327 

and Helles 1987, Peltola et al. 1999, Jalkanen and Mattila 2000). The model also showed 328 

increased damage risk of trees in stands where decay in living trees had been documented. Wood 329 

decay decreases stem strength and tree anchorage and, therefore, increases the vulnerability of 330 

the tree to wind damage (Honkaniemi et al. 2017). Stand level information about decay was 331 

selected in this study instead of tree-level information because wood-decay in living trees is 332 

difficult to detect in the field (Mattila and Nuutinen 2007). Yet, if there are trees in the stand that 333 

are visibly affected by wood-decaying fungi (e.g. Heterobasidion sp.) the probability of decay in 334 

other trees in the same stand is also higher. 335 

The location accuracy of the trees is a source of uncertainty in the topographical variables as 336 

there is necessarily some error involved in the GPS positioning of the NFI plots. In this study, we 337 

aimed to control this effect by calculating the high-resolution topographical variables as the 338 

average values of grid cells within three meters from the tree location. Yet, it is still likely that 339 

inaccuracy in the tree locations causes uncertainty to the DEM2 variables. 340 

The statistical significance of individual variables is affected by the size of the data set. Even 341 

though the data set is large, the proportion of damaged trees was rather low (~1.2% of the data) 342 

in comparison with many other studies (e.g., Schmidt et al. 2010, Kamimura et al. 2016). A 343 

larger data set, especially a larger number of damaged trees, would be useful in specifying the 344 

factors affecting damage probability. 345 

Our results demonstrate the connection between fine-scaled topographical variation in a tree’s 346 

neighborhood and the storm damage probability of a tree. Topography affects tree damage 347 
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probability indirectly, through its effects on other factors such as wind and soil characteristics. 348 

Thus, the effects of fine-scaled topography should be taken into account in calculation of these 349 

variablles, as most of the available data sets are based on input data of coarser resolution than the 350 

DEMs used in this study (e.g., Jung and Schindler 2016, Venäläinen et al. 2017). When high-351 

resolution topographical information is available, it should be considered in future studies of 352 

storm damage in forests, either as topographical variables or as an inputs for variables describing 353 

the direct factors affecting the damage probability. 354 
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Table 1. Details about the storm damage data: number of trees, DBH (cm) and tree height (m) in 492 

damaged and undamaged trees for different species. 493 

    No damage Damage All 

Number of trees 

   

 

All species 16375 202 16577 

 

Scots pine 6447 80 6527 

 

Norway spruce 6793 111 6904 

 

Broad-leaved 3135 11 3146 

DBH (mean ± st. deviation) 

   

 

All species 20.07 ± 9.35 23.98 ± 9.89 20.11 ± 9.37 

 

Scots pine 20.64 ± 8.83 21.42 ± 7.98 20.65 ± 8.82 

 

Norway spruce 21.45 ± 9.46 26.88 ± 10.30 21.54 ± 9.50 

 

Broad-leaved 15.87 ± 8.93 13.36 ± 5.04 15.86 ± 8.92 

Height (mean ± st. deviation) 

   

 

All species 16.34 ± 5.85 18.91 ± 5.87 16.37 ± 5.86 

 

Scots pine 15.57 ± 5.47 16.56 ± 4.90 15.58 ± 5.46 

 

Norway spruce 17.47 ± 5.92 21.05 ± 5.85 17.53 ± 5.93 

  Broad-leaved 15.47 ± 6.06 14.54 ± 3.21 15.47 ± 6.05 

  494 
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Table 2.  Description of variable groups and independent variables used in the final models. In 495 

categorical variables the class mentioned first is used as the reference class in the models (i.e. 496 

parameters are estimated only to the other classes). 497 

    data type units/classes data source 

TREE 
   

 
Species group (SPECIES) categorical conifer, deciduous NFI9 

 
Tree height (HEIGHT) numeric cm NFI9 

STAND 
   

 

Cutting  in the last 10 years 

(CUTTYPE) 
categorical 

none or thinning, regeneration 

cutting 

NFI9, storm 

data 

 
Decay in stand categorical absent, present NFI9 

 

New open area in wind direction 

(OPENAREA) 
categorical absent, present storm data 

TOPO2 
   

 
Slope steepness (SLOPE) numeric degrees DEM2 

TOPO10 
   

  Slope steepness (SLOPE10) numeric degrees DEM10 

NFI9 – 9
th

 National Forest Inventory, storm data – described in section 2.1, DEM2 – 2 m 498 

resolution digital elevation model, DEM10 – 10 m digital elevation model.  499 
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Table 3. Parameters used for scaling the continuous variables in the final models. Scaling to 500 

mean 0 and standard deviation 1 were calculated as Xscaled = (X – μ) / σ. 501 

Variable μ σ 

log(HEIGHT) 2.72 0.43 

log(SLOPE + 0.1) 1.24 0.82 

log(SLOPE10 + 0.1) 0.58 1.55 

  502 
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Table 4. Comparison of models with AIC, difference in AIC compared to the best model 503 

(ΔAIC), AIC weights (wi) and AUC. For the explanations of the variable groups, see Table 2. 504 

Model AIC ΔAIC wi AUC 

TREE + STAND + TOPO2 1551.58 0.00 0.48 0.70 

TREE + STAND + TOPO2 + TOPO10 1553.44 1.86 0.19 0.70 

TREE + STAND 1554.22 2.64 0.13 0.70 

TREE 1554.37 2.79 0.12 0.66 

TREE + STAND + TOPO10 1554.92 3.34 0.09 0.70 

STAND 1576.76 25.18 0.00 0.62 

TOPO2 1577.12 25.54 0.00 0.51 

TOPO10 1579.51 27.93 0.00 0.53 
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Table 5. The fixed effect results and the covariance parameter estimates for the random effects 

(clusters and plots nested within clusters) of the best model. For the explanations of the fixed 

effects variables, see Table 2. Note that continuous variables were scaled before model fitting, 

parameters used in scaling can be found in Table 3. 

Fixed effects Estimate St.Error DF t value Pr > |t| 

 

Intercept -9.92 0.36 266 -27.95 <.001 

TREE 

      

 

SPECIESdeciduous -1.32 0.60 262 -2.19 0.030 

 

log(HEIGHT) 0.55 0.17 16303 3.23 0.001 

 

SPECIESdeciduous : log(HEIGHT) -0.76 0.26 16303 -2.87 0.004 

STAND 

     

 

OPENAREA 0.93 0.25 154 3.67 <.001 

 

CUTTINGregeneration 1.17 0.51 71 2.29 0.025 

 

DROT 0.84 0.42 57 2.01 0.050 

TOPO2 

       log(SLOPE) -0.36 0.15 16303 -2.48 0.013 

Random effects Estimate St. Error 

   

 

Cluster 2.68 0.79 

     Plot (Cluster) 34.00 5.27 
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Figure 1. Map of the study area. The NFI9 plots where the storm damage data is collected from 

are shown in the figure on the left, the size of the dot refers to number of damaged trees in each 

plot cluster. 

  



31 

 

 

Figure 2. Examples of the topography variables calculated for the same area from digital 

elevation models (DEM) with different resolutions: Slope steepness (degrees) calculated from 2 

meter resolution DEM (DEM2) (A) and 10 meter resolution DEM (DEM10) (B), slope direction, 

with shelter side shown as shadowed, calculated from DEM2 (C) and DEM10 (D). Top of the 

figures are towards north. 
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Figure 3. ROC curves of the model with the lowest AIC. The curve illustrates the discrimination 

ability of the model and shows the model’s sensitivity (true positive rate) and 1-specificity (false 

positive rate) with different classification thresholds. Area under the curve (AUC) = 0.70. 


